
When trees collide: An approximation algorithm for the generalized

Steiner problem on networks

Ajit Agrawall Philip Kleinl

R. Ravil

Brown University

Abstract

We give the first approximation algorithm for the general-
ized network Steiner problem, a problem in network design.
An instance consists of a network with link-costs and} for
each pair {i, j} of nodes, an edge-connectivity requirement
Tij. The goal is to find a minimum-cost network using the

available links and satisfying the requirements. Our al-
gorithm outputs a solution whose cost is within 2 lg R of
optimal, where R is the highest requirement value.

In the course of proving the performance guarantee, we
prove a combinatorial min-max approximate equality relat-
ing minimum-cost networks to maximum packings of cer-
tain kinds of cuts. As a consequence of the proof of this
theorem, we obtain an approximation algorithm for opti-
mally packing these cuts; we show that this algorithm has
application to estimating the reliability of a probabilistic
network.

1 Introduction: On designing a

network

//-””””””””””””-””-””-”””””””-”-”--”---
Here’s the scenario: You’re in the business of providing
communication channels to your customers. You have a
set of clients with communication requirements; each client
has specified a pair of cities between which the client must
have communication capabilities. In front of you is the
AT&T2 price list, which gives prices for constructing com-
munication links between various cities. Each link built
has essentially unbounded capacity. Your job is to se-
lect a minimum-cost collection of communication links that
can accommodate all your clients’ communication require-
ments. The network you must construct need not be con-
nected; all that is needed is that every client’s pair of cities
be connected through your network.

Unfortunately, your job’s NP-complete. Even the very
special case in which each client wants to connect some city
to New York is the dreaded Network Steiner Tree Prob-
lem, one of Karp’s original list of NP-complete problems
[7]. Since you only have polynomial time to spare, you are

Figure 1: An instance of the unweighed network design forced to turn to approximation algorithms. Consulting
problem and its solution. Solid edges correspond to unit- the literature [1, 4, 9, 12, 13, 15, 17, 23], you find a vari-
cost links; dotted edges connect site pairs. ety of good approximation algorithms for the Steiner tree

problem in networks. Each of these algorithms constructs
a nearly minimum-cost tree connecting together a given set
of cities.

Permissionto copywithoutfee all or part of this matertial is granted
provided that tbe copies are not made or distributed for direct

1Researchsupported by NSF grant CCR-9012357, NSF grant
commercial advantage, the ACM copyright notice and the titte of tfre
publication and its date appear, and notice is given that the copying is by

CDA S722809, ONR and DARPA contract NOO014-S3-K-0146 and
ARPA Order No. 6320, Amendment 1 .

permission of the Association for Computing Machinery. To copy other- 2Disclaimer: The authors are in no way connected to AT&T.
wise, or to republish, requires a fee and/or specific permission.

@ 1991 ACM 089791-397-319110004/0134 $1.50

134

However, none of the algorithms addresses the more gen-
eral case in which each client can specify an arbitrary pair
of cities, and the output network need not be connected.
Moreover, a minimum-cost Steiner tree solution can be ar-
bitrarily costlier than a minimum-cost solution to this more
general problem.

In this paper, we give the first approximation algorithm
for this network design problem. Our algorithm is guaran-
teed to output a network that is within a factor of 2–2/k of
optimal, where k is the number of cities specified by clients.
It generalizes the known approximation algorithms for the
Network Steiner Tree Problem, in that its worst-case per-
formance on instances of this special case is asymptotically
at least as good as those of other known algorithms.

Theorem 1.1 There is an O(rn log m) dgorithrn for jind-
ing a network of cost at most 2 — 2/k times optimal, where

k is the number of cities specijied by clients, and m is the

number of edges in the input graph.

In fact, we can generalize our result to include costs on
nodes as well as edges. To our knowledge, no approxi-
mation algorithms that allow node-weighted graphs were
known, even for the Steiner tree special case, but they fit
easily into our framework. We can handle hypergraphs
with weighted hyperedges as well, through a simple trans-
formation to the node-weighted case.

unsatisfiable.2 Assuming link failures are independent, de-
termining the probability that the surviving links can serve
all clients’ requirements is a generalization of the notorious
#P-complete problem [19] called Network Reliability. No
approximate ion algorithms are known.

However, one powerful and useful heuristic for estimating
two-terminal and k-terminal reliability [2] can be directly
generalized to handle the case of arbitrary pairs. The (gen-
eralized) heuristic consists in finding a large collection of
edge-disjoint cuts in the network such that each cut sep-
arates at least one client’s pair of cities. For a surviving
network to be able to serve all clients’ requirements, at least
one edge in each cut must survive; thus such a cut-packing
can be used to obtain a lower bound on the probability of
catastrophic failure. Experience [2] with this heuristic in
the cases of two-terminal and k-terminal reliability indi-
cates that it is one of the best available.

One of the results of this paper is an algorithm for finding
a nearly maximum collection of such cuts in an auxiliary
network whose reliability is the same as that of the original
network. We give more details in Section 3.

The combinatorial basis for our algorithms:

a new approximate min-max equality

At the heart of our proofs of near-optimality is a combina-
torial theorem that relates the network design problem to
the cut-packing problem.

The Generalized Steiner Problem in Net- Theorem 1.3 The minimum size of a nei!work design is

works approximately eqval to one-half the maximum size of a

collection of cuts, where each cut separates some client’s

In fact, the algorithm can be generalized to handle a cities, and no edge is in more than two cuts. By “approz-

problem involving certain redundancy requirements. Each imately, ” we mean within a factor of 2 – 2/k, where k is

client can specify that her pair of cities must be connected the number of client-specified cities.

by some number of edge-disjoint paths, in order that the The proof of Theorem 1.3 is algorithmic, and is given in
connection be less vulnerable to link failure. The network S t.
is then allowed to use multiple links connecting a pair of

ec Ion 5. We can formulate the two combinatorial quan-
tities as the values of integer linear programs that are dual

nodes. This problem is the generalized Steiner problem in to one another. It follows from Theorem 1.3 that the frac-
networks. tional relaxation of these programs provides a good ap-

proximation to both combinatorial quantities. Moreover,
Theorem 1.2 There is an O(m log m h R) abo~i~hm b the factor of 2 _ 2/k i5 existentially tight for the example
finding a network of cost at most (2 – 2/k) Pogz(R + 1)1 of a k-cycle given by Goemans and Bertsimas [5].
times optimal, subject to arbitrary edge-connectivity y re-

quirements rij, where R is the largest requirement value.

2 Related work

Packing cuts, with application to network
2.1 The Steiner tree problem in networks

reliability
There has been volumes of work done on the Steiner tree

Well, our algorithm’s just made your old job obsolete. So problem in networks, including proposed solution meth-
you turn to a new job: evaluating network reliability. You ods, computational experiments, heuristics, probabilistic
are presented with an existing network and the same list of

2A related problem—tiding the minimum number of comrnu-clients, each specifying a pair of cities. Now you would like
to determine how likely it is that random failure of com-

nication links that would need to fail for all requirements to be
unsatisfiable-can be solved approximate ely, using techniques we have

munication links renders some of your clients’ requirements presented in an earlier paper [8].

135

and worst-case analyses, and algorithms for special classes
of graphs. Winter [20] recently surveyed this body of work.

Karp [7] showed that the problem is NP-complete. Taka-
hashi and Matsuyama [17], Kou et al. [9], E1-Arbi [4],
Rayward-Smith [13], Aneja [1], and Wong [23] are among
those who proposed heuristics. Among these, the heuristics
that have been analyzed have a worst-case performance ra-
tio of 2 – 2/k, where k is the number of cities that need to
be connected up (called Z-vertices in [20]). One algorithm,
proposed by Plesnik [12] and by Sullivan [15], performs
somewhat better. In computational experiments, these
heuristics generally perform considerably better than the

heuristic. They show that this approach yields solutions
that are within a factor of 2 min(log R, p) of optimal, where
R is the maximum r~ and p is the number of distinct
nonzero values Ti in the input. Moreover, they show that
their analysis is tight in the worst case.

Goemans and Bertsimas restricted their attention to
edge-connectivity requirements of the special form Tij =
min(ri, Tj) in order that each subproblem have essentially
the form of an (ungeneralized) Steiner tree problem. Thus
this restriction was a result of the lack of a known approx-
imation algorithm for the case of Tij c {0, 1}. We remedy
this lack.

worst-case bound predicts. Jain [6] proposed an integer-
program formulation of the Steiner tree problem in net-
works, and showed that for two random distributions of s Background
costs, the value of this integer program differed drastically
from the value of its fractional relaxation. Segev [14] for- An instance of the generalized Steiner problem consists of

mulated the node-weighted Steiner problem, and proposed a graph G with edge-costs c, together with a collection

branch-and-bound techniques for its solution. We know of {RI,. ... Rhj of requirements each requirement fi consists

no approximation algorithms for this problem. of a site pair {si, ti}, a pair of nodes of G, and a Requirement

value T~, a positive integer. A feasible solution, which we

2.2 The generalized Steiner problem in call a network design, is ‘a multiset N consisting of edges of
G, such that for every requirement Ri = ({si, G}, Ti), there

networks
are at least ri edge-disjoint paths between si to ti in the

The generalized Steiner problem in networks, as originally Multigraph with edges N.
formulated by Krarup (see [21]), is as follows. The input
consists of a graph with edge-costs, a subset Z of the ver-
tices, and, for each pair of vertices i, j c Z, a required

3.1 The unweighed case

edge-connectivity Tij. The goal is to output a minimum-
cost subnetwork satisfying the connectivity requirements.
When the Tij’s are allowed to be zero, we can clearly as-

sume without loss of generality that Z consists of all the
vertices of the graph.

To our knowledge, no approximation algorithms for the
generalized Steiner problem are known. There have been
papers addressing finding an exact solution and algorithms
for special classes of graphs [21, 20]

In the work of Goemans and Bertsimas, described be-
low, and in our work, the edge-connectivity requirement
is allowed to be satisfied in part by duplicating edges of
the input graph. This corresponds to “buying” multiple
communication links of the same cost and with the same
endpoints.

2.3 Survivable networks

In very recent work, Goemans and Bertsimas [5] consid-
ered a special case of the generalized Steiner problem in
networks, which they called the su?’vivabie network design

problem. Instead of arbitrary edge-connectivity require-
ments, the input includes an assignment of integers ri to
nodes. The goal is to find a minimum-cost network sat-
isfying edge-requirements Tij = IIIhI(Ti, ~j). They propose
a simple but powerful approach which involves solving a
series of ordinary Steiner tree problems using a standard

To prove performance guarantees for our algorithm, we
exploit a duality between network design and packing of
cuts. Fix some instance of the generalized Steiner prob-
lem, where all costs and requirement values are 1. Thus
the instance consists of a graph G and a collection of site
pairs {si, ti}. We will denote the cardinalit y of the set of
sites by k.

Let N be any network design for this instance. (Observe
that if N is minimal, then it is just a forest.) Let S be any
subset of nodes of G such that for some site pair {si, ti}l
one of the sites is in S and one is not. In this case, the
set of edges A with exactly one endpoint in S is called a
Requirement cut. There must be a path between si and ti

in i’f, so N intersects A in at least one edge. Thus we have

Lemma 3.1 fiveTy network design and eveTy Requirement

cut have at least one edge in common.

Suppose Al, ..., AP are (not necessarily distinct) require-
ment cuts such that each edge of G occurs in at most two
cuts. We call such a collection of cuts a 2-packing. Then
we have the following easy lower bound on the minimum
size of a network design.

Lemma 3.2 The minimum size of a network design is at

least one-half the mazimum size of a 2-packing of require-

ment cuts.

136

Proof: Let N be a network design and let Al,..., Ap be
a 2-packing consisting of D requirement cuts. We have

because each lAi n NI is at least one. ❑

For comparison, Edmonds and Johnson [3] show that T-
joins and T-cuts satisfy an analogous inequality, and, more
importantly, they satisfy it with equality.

Instead of showing equality, we show approximate equal-
ity, to within a factor of 2(1 – I/k). This is the content of
Theorem 1.3.

Our proof of Theorem 1.3 is algorithmic. We give an al-
gorithm that constructs a network design and a 2-packing,
such that the first has size at most (1 —l/k) times the sec-
ond. It follows that the network design is approximately
minimum and the 2-packing is approximately maximum,
to within a factor of 2(1 – l/k). The algorithm takes time
O(ma(m, m)), where m is the number of edges in the input
graph G.

The first step is to transform the original graph GinPUi
into a bipartite graph G by replacing each edge w of Ginput
with two edges U2 and xv in series, where z is a new node.
The resulting graph G has the following properties:

● Any minimal network design in G corresponds to a
network design in GO of half the size.

. Any packing of edge-disjoint requirement cuts in G
corresponds to a 2-packing of requirement cuts in Go
of the same size.

Consequently, in order to prove Theorem 1.3 for Go, it is
sufficient to show the following for G:

We can find a network design N and a packing of edge-
disjoint requirement cuts Al, Ap such that N ~
2(I – l/k)~, where k is the total number of sites.

(2)
We show (2) in Sections 4 and 5.

3.2 The weighted case

Now we consider the case in which the costs of edges may
vary, but the requirement values are still all one. It turns
out that, like Edmonds and Johnson’s theorem, Lemma 3.2
and Theorem 1.3 are self-refining. For nonnegative integer
edge-costs c, we simply replace each edge e by a path of
length c(e). We say a collection of requirement cuts is a 2c-
packing if each edge e appears at most 2c(e) times. Using
this transformation, we obtain the following theorem from
Theorem 1.3.

To actually compute an approximately minimum net-
work design, we don’t use this refinement technique but
instead use a more direct approach, and thereby achieve
the time bound stated in Theorem 1.1. In fact, this algo-
rithm proves Theorem 3.1 for rational (non-integral) costs c
as well, where we define ‘fractional” packings in the usual
way (see, e.g. [10]). By considering fractional packings
of node-cuts instead of edge-cuts, we can prove a node-
weighted version of Theorem 3.1, and give an algorithm
for the node-weighted case of the network design problem.
In Section 6, we briefly allude to some of the issues arising
in implementing these algorithms.

3.3 Arbitrary integral requirements

So far we have dealt with the case in which each site pair
need only be connected in the final network design. As
discussed in the introduction and Section 2, a client may
also require that there be at least Tij edge-disjoint paths
between her pair of sites.3 Thus the case dealt with up to
now requires each Tij to be either O or 1.

In order to obtain an approximation algorithm for this
generalized problem from our algorithm for the case of O–
1 requirements, we make use of a heuristic technique due
to Goemans and Bertsimas [5]. They propose a technique
they call the tree heuristic, which consists essentially of
decomposing a problem with many different requirement
values into a series of simpler problems in which only two
requirement values appear. As we mentioned in Section 2,
they use the technique for solving only a special case of the
generalized Steiner problem. In conjunction with our new
algorithms for the O–1 case, however, the technique can be
easily adapted to apply to the general case.

Let the different values of Tij be O = p. < PI < P2 <
. . . < p,. For each O < d ~ s, consider the transformed
problem

~d =

{

Pd – Pd- 1 if l’ij ~ Pd

tj o otherwise

which is essentially pd – pd- 1 copies of a O-1 problem prob-
lem. Use a standard heuristic to find an approximately
optimal solution, and combine the solutions to the s trans-
formed problems to get a solution to the original problem.
The resulting performance guarantee is @(s).4 By using a
similar approach, if each ri is an integer b bits long, then
the original problem can be decomposed into b problems,
and the resulting performance bound is 2(1 – l/k)b. This
is how we get the performance bound stated in Theorem
1.2.

The obvious question is whether one can do better than
this. Goemans and Bertsimas can show that their analysis

Theorem 3.1 The minimum- cost of a network design is

at least one-half the size of a 2c-packing of requirement

cuts, and at most (1 — l/k) times this size.

s In this case, the network design is allowed to use multiple copies
of edges of the input graph; each copy of a given edge costs the same.

*More specifically, Goemans and Bert simas show the performance
bound is 2(1 - l/k~~’=l (Pd – Pal-l)/Pd)”

137

is tight, so another approach is needed, one that can deal
simultaneously with widely varying requirement values.

3.4 Reliability estimation

In the introduction, we described a heuristic for estimation
of network reliability in a probabilistic network. In order
to use this heuristic effectively, we want to find a maximum
collection of edge-disjoint requirement cuts. This problem
is NP-complete for general graphs. Moreover, an approxi-
mation algorithm for this cut-packing problem would yield
an approximation algorithm for maximum independent set,
a problem that has steadfastly resisted approximation [2].
However, we can apply the transformation described in
Subsection 3.1 to turn an arbitrary graph into a bipartite
graph with all sites on one side of the bipartition: replace
an edge having failure probability 1 —p with two series
edges each having failure probability 1 – @ We don’t
change the probability of reliability in carrying out this
transformation, and we can apply the algorithm of Section
4 to find an approximately maximum set of edge-disjoint
cuts in the resulting graph.

Thus we propose a four-step recipe for estimating net-
work reliability. Transform the network into-a bipartite
network, find an approximately maximum cut-packing,
compute for each cut the probability that at least one edge
survives, and multiply these probabilities to get an upper
bound on the probability that all clients can continue to
communicant e.

4 The algorithm

In this section, we describe an algorithm for finding a cut-
packing and a network design. Let G be a bipartite graph
with all sites on the same side of the bipartition. (We can
obtain such a graph from an arbitrary graph as described in
Subsection 3.1. All subsequent references to the “original
graph” refer to G.) We are given a collection of site pairs
{Sl, tl}, {sa, tz}, {s,, tb}.We refer to the nodes Si,ta as
sites. We say that two sites in the same site pair are mates

of each other.

4.1 Overview

We grow breadth-first search trees from the sites, accu-
mulating cuts as we go. The algorithm employs a notion
of timesteps. At each timestep, each of the breadth-first
trees grows by an additional level. Each tree grows until
all the sites it contains have found their mates. When trees
collide, they are merged. As we grow trees, we build net-
works spanning the trees’ sites. Using a charging scheme,
we show that the size of each network in a tree is about
twice the number of cuts accumulated while growing the
tree.

4.2 Finding a cut-packing

The algorithm for constructing the cut-packing is quite in-
tuitive. (A summary is given at the end of this subsection.)
We grow disjoint breadth-first search trees from all sites s
simultaneously. We call the edges connecting one level to
the next in a breadth-first search tree a level cut. Each
level cut in a breadth-first search tree rooted at s is a re-
quirement cut because its edges separate s from its mate.
Thus at each timestep, we accumulate one additional re-
quirement cut for each tree being grown.

When multiple trees collide, we merge them into a single
tree and continue growing from its boundary. Thus in gen-
eral a tree may contain many sites. As soon as every site
in a tree has its mate in the same tree, we can no longer
guarantee that subsequent level cuts of the tree are require-
ment cuts, so we call the tree inactive, and we contract all
its nodes into a single supermxie. A tree that is still in the
process of being grown is said to be active. The algorithm
terminates when there are no active trees. At this point,
every site pair’s two nodes are contained in the same tree.
More precisely, since each tree has become inactive, and
has hence been contracted to a supernode, there are no
sites remaining in the graph.

Because of contractions, the graph on which we are work-
ing evolves during the course of the algorithm. We use Gt
to denote the graph after t timesteps. When we refer to a
graph, unless we explicitly call it the ‘original graph,” we
will mean the contracted graph Gt at a certain point t in

the algorithm.
It is important to the analysis that all active trees grow

at the same rate. The algorithm takes place over a series
of timesteps. In each timestep, each active tree grows by
one level. Thus after t timesteps, active trees that have
not participated in any collisions all have radius t (as mea-
sured in the contracted graph Gt). More generally, let the
boundary of a tree be the set of nodes at the most recent
level of the tree. We have the following proposition

Proportion 4.1 After t timesteps, each node in the

boundary of an active tree is distance t from some site in-

ternal to the tree.

In the initial bipartite graph, all the sites are on the
same side of the bipartition. We show that this property
continues to hold throughout the algorithm.

Lemma 4.1 After t timesteps, the graph is still bipartite,

with all sites on the same side of the bipartition.

Proof: by induction on t. The basis t = O is trivial. We
must show that the bipartition property described in the
lemma is preserved by contractions. Suppose that Gt _~
obeys the property, and that after t timesteps, some tree T
has just become inactive and is about to be contracted. By
Proposition 4.1, all the nodes in the boundary of T have

138

distance t from some site. Hence they all belong in the
same side of Gt _ l’s bipartition. It follows that after the
nodes of T are contracted to a single node, the bipartition
property still holds. ❑

We can use Lemma 4.1 to show that all the cuts found
by the algorithm are edge-disjoint.

Corollary 4.1 No edge belongs to a level cut of more than

one tree.

Proof: By Proposition 4.1 and Lemma 4.1, all the nodes
in boundaries of all active trees are in the same side of the
bipartition of the graph. Hence no edge is incident to two
active trees. ❑

Thus trees collide by reaching the same node in a given
step. Below we summarize the cut-packing algorithm. In
anticipation of the analysis of the algorithm, we ‘assignn
cuts found to particular trees.

1 Initialize each site to be an active tree. Repeat the
following steps until every tree is inactive.

2 Grow each tree by one level. Assign the correspond-
ing level cut to the tree.

3 Contract each tree that has just become inactive.

4 Repeat

5 Take two distinct trees sharing a boundary node,
and merge them into a single tree (For the cut-
packing algorithm, merging trees consists merely
of union-ing their nodes and the cuts assigned to
them.)

6 Until no more trees can be merged.

Because trees are merged immediately after they col-
lide, we can claim the following Just before the trees
are grown, they are node-disjoint. Just after the trees are
grown, they are internally node-disjoint: only their bound-
aries can share nodes. We make use of this property in the
next subsection.

4.3 The network design algorithm

The basic approach to building a network design is also
quite intuitive. For each tree, we maintain a connected
network connecting together all sites in the tree. This is
easy: start with each site being a network in itself, and,
whenever trees merge, use simple paths to join up their
two networks.

It is possible to show that for each tree, the size of a
network for that tree is no more than twice the number
of cuts assigned to the tree. Such an analysis, however,
is insufficient: the networks formed in this way are not
connected in the original graph, because of the contractions
we have performed along the way. A path that contains a
supernode is not in general a path in the original graph.
Therefore, we must be more careful in joining networks,
and must not forget to include edges between nodes within

Figure 2: The network NT corresponds in a natural way to
a subgraph NT* of the original graph. To obtain NT* from
NT, replace each supernode v in NT with the subgraph NV,
and recurse on the supernodes in NV, like v’ in the above
figure.

inactive trees. Note that such edges do not even appear in
the contracted graph Gt.

We introduce some terminology to help us relate various
contracted graphs to each other and to the original graph.
We call a node a real node if it appears in the original graph,
in order to distinguish such nodes from supernodes. If the
tree T was contracted to form the supernode u, we say T
corresponds to v, and vice versa. We say v immediately
encloses v’ if v is a supernode corresponding to a tree T
containing v’. Note that each node is immediately enclosed
by at most one node. We say v encloses v’ if either v = v’
or v immediately encloses some node v“ that encloses v’.
That is, v encloses v’ if by some series of contractions, v’
was identified with other nodes to form v.

For an edge e incident to a node v in a contracted graph,
there is a real node v! enclosed in v such that e is incident
to v’ in the original graph. We say that v’ is the real node
by which e is incident to v.

For each tree T, we maintain a network N+z, a subgraph
of T. We maintain the following site-inclusion invariant:

For each T, the network NT includes all sites that
are nodes of T.

We specifically mean to exclude those sites strictly enclosed
by supernodes belonging to T. In the site-inlusion invariant
only speaks of sites that are themselves nodes of T. If v is
a supernode corresponding to an (inactive) tree T, we use
Tv to denote T, and we use NV to denote NT. We say a
node is free if it is not contained in any network NT.

139

Each network NT corresponds in a natural way to a sub-
graph N; of the original graph. Namely, to get N; from
NT, replace each supernode u in NT with the subgraph Na,
and recurse on the supernodes in NV.

We want each network NT to correspond to a connected
subgraph in the original graph. We therefore maintain the
following connectivity y invariant.

Each subgraph N; is connected.

At any stage in the algorithm, the networks NT induce
a subgraph of the original graph, namely the subgraph in-
duced by the edges in UT NT where the union is over all
trees active and inactive. Let us call this subgraph N. Note
that each induced subgraph N; is a subgraph of N.

We now observe that when the algorithm terminates,
the invariants imply that N is a valid network design—for
each site pair {sl, S2}, there is a path in N between S1and
S2. Let T be the tree containing S1. Once the algorithm
terminates, T must be inactive, and hence contains S1’s
mate S2 as well. By the site-inclusion invariant, S1 and
S2 are nodes of NT. Since they are original nodes, they
are also nodes of the induced subgraph N;, which is a
subgraph of N. Finally, by the connectivity y invariant, N;
is connected, so the required path exists.

Now we give the algorithm for network design. We run
the cut-packing algorithm of the last subsection and, when-
ever a ‘{mergen of trees occurs, we update the NT’s in order
to maintain the invariants. Initially, when every active tree
T consists of a single site, NT consists also of this site. For
each tree T not yet formed, NT is empty. Thus trivially
the invariants hold initially.

In step 5 of the cut-packing algorithm, we merge a pair of
distinct trees T1 and T2 sharing a common boundary node
w. By simply unioning their networks NTi, we get a net-
work that obeys the site inclusion invariant. However, this
net work does not obey the connectivity y invariant. We must
therefore connect up these networks. To do this, we add
paths from the common node u to each of the networks NT,.
This involves some care when v is a supernode. However,
in this description of the algorithm, we omit discussion of
this case. Assume therefore that v is a real node. We call
a procedure CONNECTTONETWORK(W, Ti) for i = 1, 2.

The goal of CONNECTTONETWORK(V, T) is to augment

various networks NTI until v is connected to N;. To do
this, the procedure first finds a shortest path I’. in T from
v to a site in T, identifies the shortest initial subpath P

of P. that ends on a node of NT, and adds the edges of

P to NT. We are not yet done; P does not necessarily

correspond to a connected subgraph of the original graph

because it may contain supernodes. Moreover, we have

just added such supernodes v to NT, so the networks NW
corresponding to these supernodes belong to N;. In or-
der to maintain the connectivity y invariant, therefore, we
must connect the networks NV to N;. We make these con-
nections recursively using a procedure EXPANDPATH(v, P).

P

‘T

Figure 3: After identifying a path P of VI,..., u, to con-
nect v to T, any supernode u in P is expanded by Ex-
pandPath(v,P) into a connection via the network design
tree of u, NU. If the last node in P, v., is a supern-
ode, it is recursively expanded to a path in the original
graph by identifying a vertex v’ on its boundary and call-
ing CONNECTTO NETWORK(V’, TV.) recursively to connect
v’ to the network N...

This procedure expands P into a real path (i.e. a path
in the original graph) by replacing each supernode v in
the path with a subpath within T. that connects a bound-
ary node of TV to v’s network, goes through that network,
and comes out again to the boundary of TV. For techni-

cal reasons, EXPANDPATH does not replace the last node

of P, so if this last node is a supernode, we use a recur-
sive call to CONNECTTO NETWORK to make this part of
the path real. Making a path real using EXPANDPATH and
CONNECTTONETWORK is illustrated in fig. 3.

Now we give the
procedure for CONNECTTONETWORK(V, T). Once again,
the basic idea is to find a short path P in T from v to
the network NT, then introduce additional edges to make
P correspond to a real path, i.e. a path among the real
nodes.

CONNECTTONETWORK(V, T’)

Assumption:The node v is a real node enclosed by some

node V. in the boundary of T.

cl

C2

C3

Let V. be the node in T that encloses v.

Let P. be a shortest path in T from V. to a site s. Let
UT be the first node of P. belonging to NT, and let P

be the subpath of P. from V. to v..

Add P to NT.

140

C4

C5

C6

C7

C8

C9

call EXPANDPATH (v, P) to make a real path out of P,

except possibly for the last connection.

If the last node v, in P is a real node, then stop.

Else,

Let T’ be the (inactive) tree corresponding to the
supernode VV.

Let v’ be the real node by which the last edge of P

is incident to Vr.

Recursively call CONNECTTONETWORK(V’, T’).

The procedure CONNECTTONETWORK uses a subproce-

dure EXPANDPATH (v, P) to make a real path out of P. For
each node v of P except the last, if that node is a supern-
ode, we may have to add edges to NV and, recursively.

EXPAND PATH (V, P)

Assumption:P is a path in some tree T, whose first node

encloses v, which is assumed to be a real node.

El Write P = voeovlel . . .er_lvr.

E2 Fori:=Otor–ldo

E3 Let v’ be the real node by which ei is incident to vi.

E4 comment :We must make a real path in N from v
to v).

E5 If vi is a supernode then

E6 Let T be the tree corresponding to vi.
E7 call CONNECTTONETWORK(V, T).

E8 Call CONNECTTONETWORK(V’, T).

E9 comment: Now there is a real path from v to T’s

network to v’.

E1O Let v be the real node by which ei is incident to
v~+l.

To prove that by using these procedures in the merge,
we maintain the connectivity y invariant, we would use in-
duction to show the following two statements: The call
CONNECTTONETWORK(V, T) introduces edges in N; to
connect the real node v to N;. The call EXPANDPATH (v, P)

introduces edges in the networks Nvi (for each supernode
vi c P except the last) so that the edges of P are connected
up in N.

5 The proof

To prove (2) of Subsection 3.1, we shall show that the cost
of the network design produced by the algorithm is small
relative to the number of cuts produced.

At any point in the execution of the algorithm, the
age of a tree is the number of timesteps the tree grew.
Thus the age of an active tree is the current number of
elapsed timesteps, while the age of an inactive tree is the
number of timesteps that had elapsed when the tree be-
came inactive. We denote the age of a tree T by age(T).

Figure 4: Proof of lemma 5.2 that the cost of a call to Con-
nectToNetwork in the construction of the Network Design
solution for the tree T is at most Age(T).

We define the connect-cost of a call to the subroutine
CONNECTTO NETWORK as the number of edges added to
the network by the routine not including any calls to the
routine EXPANDPATH, That is, the cost for a call is the
number of edges added in step C3, plus the cost of the
recursive call in C9. We recursively define the height of
a node to be O if it is a real node and one more than the
maximum height of any node it encloses if it is a supernode.

Lemma 5.1 Steps E7 and E8 of EXPANDPATH are eze-

cuted at most once for a given tree T through the course of

the algorithm.

Proof: Suppose we are about to begin the merging pro-
cess for a given timestep. Through a series of calls
to CONNECTTONETWORK, we build paths P that con-
nect up some trees’ networks. The key observation is
that for every such path P, constructed in step C2 of
CONNECTTONETWORK, every node of P except the last
was previously free. Moreover, since the edges of P are
added to the network in step C3, such nodes are subse-
quently not free. Consequently, each node appears as a
non-final node of a path P at most once during the course
of the algorithm.

To complete the proof of the lemma, we need only
add that a tree T for which Steps E7 and E8 of
EXPANDPATH (v, P) are executed corresponds to a non-final
node vi of the path P. ❑

141

Lemma 5.2 The connect-cost of a tree T is at most

age(T).

Proof: We prove it by induction on the height of the nodes
on the path from v to NT. The statement trivially holds
if all nodes have height O, because by Proposition 4.1, u is
at distance age(Z’) from NT.

Assume that the statement is true for nodes of height at
most 1. Let P be the path added in step C3, and let Vr be
P’s final node. By Proposition 4.1, P has at most age(T)

edges. Therefore, if v, is a real node, we are through.
Otherwise, v, corresponds to an inactive tree T’. The proof
for this case is illustrated in fig. 4. Let c be the cost
of the recursive call CONNECTTO NETWORK(V’, T’) in step
C9. By the inductive hypothesis, c is at most age(T’),
since no node in T1 has height more than L Suppose UTwas
added to T after t timesteps. It follows that the number
of edges in P is age(T) – t. Moreover, age(T’) is at most
t,since T’ was already inactive when v, was added to T.
Hence the total cost of the call to CONNECTTONETWORK
which is 1P I + c, is at most age(T) – t + age(T’), which in
turn is at most age(T). ❑

Define the ezpand-cost of a tree T as the cost of the
two calls CONNECTTONETWORK(V, T)

and CONNECTTONETWORK(tI’, T) in steps steps E7 and
E8. By Lemmas 5.1 and 5.2, the expand-cost of T is at
most 2.age(T). Moreover, by the proof of Lemma 5.1, if
the node v corresponding to T remains forever free, then
these calls are never made, so the expand-cost of T is zero.
We use ExpandCost(T) to denote the expand-cost of T.

When trees T1, T. merge, the network NT for the
resulting tree T is constructed by union-ing the net-
works for the Ti ‘s, and then making some calls to
CONNECTTONETWORK. We recursively define the cost of
T as the sum of the costs of the trees merged to form T,

plus the costs of the calls to CONNECTTONETWORK. Thus
the cost of a tree T is the number of edges added to cre-

by one. So far, so good. Next, trees are merged. The addi-
tional cost incurred in merging TI, . . ., T. to form a tree T
is the cost of 2(T – 1) calls to CONNECTTONETWORK, each
at cost at most age(T) by Lemma 5.2. Hence the total cost
of T is P

2(T – l)age(T) + ~ Cosi!(Ti)

i=l

which, by the inductive hypothesis, is at at most
2(CP(T) – age(T)). ❑

Now we can bound the size of the network design output
by our algorithm. The size is just the sum, over all inactive
trees T when the algorithm terminates, of the cost of T plus
the expand-cost of T. For any tree T whose node remains
free, the expand-cost is zero. Let us call a tree free if its
corresponding supernode is free. Thus we have

size of network design

< ~ Cost(T) + ExpandCost(T)

< ~ Cost(T)+ ~ (COSt(T) + EqxzndCOS~(T))

free T unfree T

< 2(~CP(T) – ~ age(T)) (3)
T free T

where the last inequality follows from Lemma 5.3 and our
remarks about expand-cost.

Since XT CP(T) is the total number of cuts assigned by
the cut-packing algorithm, we have proved a version of (2)
with a factor of 2 instead of 2(1 – I/k). To get the smaller
factor, we prove a lower bound on the second sum in (3).

For a tree T, let kT denote the number of sites that are
nodes of T. Define k; = ~{kT, : T encloses T’}. Simi-
larly, let CP*(T) = ~{ CP(T’) : T encloses T’}.

Lemma 5.4 For any tree T, age(T) is at least

CP*(T)/k; .

ate N;, not including edges added in steps E7 and E8 of
Proof: The key observation is that for any tree T’, CP(T’)

EXPAND PATH. We denote the cost of T by Cost(T).

We will charge the cost of a tree against the number of
is at most kTl times age(T’), since each of the k(T’) sites is

cuts assigned to the tree. Recall from the cut-packing algo-
assigned a maximum of one cut per timestep until age(T’)
timesteps. If T’ is enclosed by T, then age(T’) is at most

rithm that in each timestep we grow each tree, and assign
the corresponding level cut to the tree. Moreover, when

age(T), so we have

trees are rnerged~ their cuts are assigned to the resulting cp* (qI) = ~{c!p(g”) ;T enclosesT’}

tree. We denote the number of cuts assigned to a tree by
CP(T). < ~{krl : T encloses T’]czge(T) = k~age(T)

Lemma 5.3 After t timesteps have elapsed, the cost of a ❑

tree T is at most 2CP(T) – 2. age(T). We use Lemma 5.4 to get our lower bound on ~{age(T) :
T free}. Let k“ = max{k~ : T free}. Then by Lemma 5.4,

Proof: We shall prove this statement by induction on the for each free tree T, age(T) ~ CP* (T)/k”. Since each tree
number t of elapsed timesteps. When t is O, the lemma is enclosed by some free tree, ~{CP* (2’) : T free} is the
holds trivially. Assume that the statement holds for t.Dur- total number CP of cuts assigned. Hence

ing the t + 16t timestep, each active tree T, is grown by one
level, so CP(T) goes up by one, while its age also increases ~{age(T) : T free} > CP/k*— (4)

142

Substituting into (3) and replacing k“ by k, the total num-
ber of sites, gives (2) and completes the proof of the theo-
rem.

6 Implementation issues

In this section, we touch on some of the issues arising in ob-
taining algorithms for the unweighed and weighted cases.
Implementation of the unweighed algorithm uses union-
find data structures. Implementation of the weighted al-
gorithm is similar, but replaces one of the union-find data
structures with a mergeable heap data structure.

6.1 The unweighed case

First we describe the implementation of the cut-packing al-
gorithm, then we show how data structures created during
cut-packing can be used for network design.

For purposes of the algorithm, it is convenient to copy
the input graph, replacing each edge with two oppositely
directed arcs. We will be removing arcs from the copy as
the algorithm progresses. A top-level tree or node is one
not contained in any tree. It is also convenient to repre-
sent toplevel real nodes, top-level supernodes, and active
trees uniformly, so each is considered as if it were a supern-
ode. Thus for each we maintain an arc set consisting of its
outgoing arcs, a node set consisting of all its enclosed real
nodes, and an active site set consisting of all its enclosed
active sites. Initially, the only nodes are real nodes. A
real node’s arc set consists of its outgoing arcs, its node set
consists of itself, and its site either consists of itself, if it is
a site, or is empty otherwise. Since we maintain these sets
only for toplevel nodes or trees, and since every real node
is in exactly one top-level node or tree, these sets remain
disjoint throughout the algorithm.

A timestep consists of growing each active tree (a tree
with a nonempty active site set) by one step. We consider
the active trees in any order. Growing a tree consists of
the following substeps. Scan the tree’s outgoing arcs in
order to find the set U of real nodes at distance 1 from
the tree, and remove these scanned arcs from the graph.
Next, use the FXND operation on the nodes in U to find
the set W of toplevel nodes or trees containing nodes of
U. That is, if U contains some real node cent ained in

either a supernode or active tree, then W will contain that
supernode or active tree. This substep includes the case
where the tree being grown has collided with another tree
grown previously during the same timestep.

Next, augment the node set associated with the tree be-
ing grown by the union of the node sets of elements of W.

Then construct the arc set of the active tree by taking the
union of the arc sets of elements of W. Finally, modify
the active site set of the tree being grown by taking the

symmetric difference with the active site sets of all the el-
ements of W. If the symmetric difference turns out to be
empty, designate the tree being grown as inactive.

The number of operations in the above cut-packing al-
gorithm is proportional to the number of arcs, so the time
required is O(m.a(m)), where m is the number of edges,
using Tarjan’s analysis of union-find [18].

While the above cut-packing algorithm is progressing,
it should construct two data structures to enable the net-
work design to take place. First, the algorithm builds a
enclose tree to record the enclosing relation among nodes
and trees. The enclose tree contains one leaf for every real
node and one internal vertex for every supernode and ev-
ery tree, such that v is an ancestor of w if and only if u
encloses w. Second, every time the cut-packing algorithm
grows a tree, the top-level nodes newly added to the tree
are assigned arc pointers to the arcs by which they were
reached. Thus by using these pointers, one can traverse a
shortest path from a node in a tree to a site in the same
tree.

These two data structures enable the first two steps of
CONNECTTONETWORK(V, 2’) to be implemented so that
the total time required for network design is O(m.a(m)).
We add some cryptic remarks in justification of this claim,
and postpone a careful description to the final paper.
Given a real node v and a tree T enclosing v, one can trace
up the enclose tree to find the node V. in T that encloses v.
Namely, V. is the child of T that is an ancestor of v. During
the trace, one determines all the intermediate ancestors of
v; this sequence of supernodes is stored temporarily with
V. to enable EXPANDPATH to recurse. Once vo has been
found, its arc pointer can be used to find the first arc in
a shortest path PO from vo to a site. That arc points to
a real node v’ on which this procedure is repeated, and so
on.

6.2 The weighted case

The basic algorithm to handle the weighted case is essen-
tially the same as that for the unweighed case, except
that Dijkstra’s shortest-path algorithm is used in place of
breadth-first search. It is useful to imagine that in the
cut-packing algorithm for the weighted case, each growing
tree continuously “consumes” all its outgoing arcs at the
same rate until some edge is completely consumed, at which
time things must be updated. The implementation can be
modified according y by substituting mergeable heaps, e.g.
binomial trees, for the arc sets. Note that, in constrast to
Dijkstra’s algorithm, the heaps contains arcs rather that
nodes. The key associated with an arc is the amount of
the corresponding edge yet to be consumed, plUS the cur-
rent timestep.

We must make one additional modification. Because an
edge can be consumed from both ends at the same time
(usually from different trees), we must partition a tree’s

1[+3

outgoing arcs into two heaps, one for the arcs whose edges
are being consumed from only one end, and one for the
arcs whose edges are being consumed from both ends. The
latter arcs are essentially being consumed twice as fast, so
in determining the next outgoing edge to be completely
consumed, we compare the minimum key in the first heap
to half the minimum key in the second heap. To maintain
these two heaps, when some tree begins to consume an
arc, it checks whether the oppositely oriented arc is already
being consumed. If so, it notifies the tree consuming that
arc, and the arcs are moved into the appropriate heaps.

[5]

[6]

[7]

[8]

7 Remarks
[9]

We described the algorithm above for integral edge weights.
The algorithm extends naturally to include node weights.
When node and edge weights are allowed, a set of nodes
and edges separating a requirement forma requirement cut.
An assignment of nonnegative rationals to such cuts con-
st it ut es a “fractional” cut-packing; a c-packing in this case
is a packing in which the sum of the rationals assigned
to any edge or node is at most its cost. The notion of
fractional cut-packing lets us extend our results to rational
node and edge weights. Moreover, by reducing the prob-
lem in a hypergraph to the problem in a graph with node
and edge weights, we can obtain similar guarantees for the
generalized Steiner problem in hypergraphs.

It remains an open question if finding a maximum 2c-
packing of cuts in a graph is NP-complete. Obtaining an
approximation algorithm for the directed version of the
generalized Steiner problem remains an important open
problem.

Acknowledgements

Thanks to Marshall Berne, Michel
and Richard Wong.

References

[1]

[2]

[3]

[4]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Goemans, Arie Segev,

[18]

[19]

Y. P. Arreja, ‘An integer linear programming approach to
the Steiner problem in grapha”, N;tworkw, ;ol. 10 (1980) [20]
167-178.

C. J. Colbourn, “Edge-packings of graphs and network re- [21]

liability”, J. Discrete Math., vol. 72 (1988) pp. 49-61.

J. Edmonds, and E. L. Johnson, “Matching, Euler tours [22]

and the Chinese postman”, Math. Programming, vol. 5

(1973) pp. 88-124.

C. E1-Arbl, “One heuristique pour le problem de l’arbre de
[23]

Steiner”, R. A.I.R. O. Opemtions Research, vol. 12 (1978),

pp. 207-212.

M. X. Goemans, and D. J. Bertsimas, “Survivable Net-
works, Linear Programming Relaxations and the Parsimo-
nious Propert y“, OR 216-90, Center for Operations Re-
search, MIT (1990).

A. Jain, ‘Probabtistic analysis of an LP relaxation bound
for the Steiner problem in networks”, Networks, vol. f 9

(1989), pp. 793-801.

R. M. Karp, “Reducibility among combinatorial prob-

lems”, in R. E, Miller and J. W. Thatcher (eds.), Complex-

ity of Computer Computations. Plenum Press, New York

(1972) pp. 85-103.

P. N. Klein, A. Agrawa.1, R. Ravi, and S. Rae, “Approxi-

mation through multicommodit y flow”, 31st Annual Symp.

on Foundations of Comp. Sci., (1990), pp. 726-737.

L. Kou, G. Markowsky, and L. Berman, “A fast algorithm

for Steiner trees”, Acts Informatica, vol. 15 (1981), pp.

141-145.

L. L6vasz, “An algorithmic theory of numbers, graphs and

convexity”. SIAM, PhJadelphia (1986).

M. Minoux, “Network synthesis and optimum network

design problems: models, solution methods and applica-

tions”, Networks, vol. 19 (1989) pp. 313-360.

J. Plesnik, “A bound for the Steiner tree problem in

graphs”, Math. Slouaca, vol. 31 (1981) pp. 155-163.

V. J. Rayward-Smith, “The computation of nearly minimal

Steiner trees in graphs”, Int. J. Math. Educ. Sci. Tech., vol.

14 (1983), pp. 15-23.

A. Segev, “The node-weighted Steiner tree problem”, Net-
works, vol. 17 (1987) pp. 1-17.

G. F. Sullivan, “Approximation algorithms for Steiner tree
problems”, Tech. Rep. 249, Dept. of Comp. Sci., Yale Univ.
(1982).

H. Suzuki, T. Akama, and T. Nishizeki, “Finding Steiner
forests in planar graphs”, Ist Ann. ACM-SIAM Symp. on

Disc. Alg. (1990), pp. 444-453:

H. Takahashi, and A. Matsuyama, “ An approximate so-

lution for the Steiner problem in graphs”, Math. Japonica,

vol. 24 (1980) pp. 573-577.

R. E. Tarjan, “Efficiency of a good but not linear set union
algorithm”, J. Assoc. Comput. Mach., vol. 22 (1975), pp.
215-225.

L. G. Valiant, “The complexity of enumeration and re-

liability problems”, Siam J. Comput., vol. 8 (1979), pp.

410-421.

Pawel Winter, “Steiner Problem in Networks : A Survey”,
B~~ .S5 (1985), pp. 485-496.

Pawel Winter, “Generalized Steiner Problem in Outerpla-

nar graphs”,, Networks (1987), pp. 129-167.

R. T. Wong, “Worst-case analysis of network design prob-

lem heuristics”, SIAM J. Atg. Disc. Math., vol. 1 (1980),

pp. 51-63.

R. T. Wong, “A dual ascent approach for Steiner tree prob-

lems on a directed graph”, Math. Program., vol. 28, (1984)

pp. 271-287.

144

