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Abstract. Demand-robust versions of common optimization problems were re-
cently introduced by Dhamdhere et al. [4] motivated by the worst-case consider-
ations of two-stage stochastic optimization models. We study the demand robust
min-cut and shortest path problems, and exploit the nature of the robust objective
to give improved approximation factors. Specifically, we give a (1 +

√
2) ap-

proximation for robust min-cut and a 7.1 approximation for robust shortest path.
Previously, the best approximation factors were O(log n) for robust min-cut and
16 for robust shortest paths, both due to Dhamdhere et al. [4].

Our main technique can be summarized as follows: We investigate each of the
second stage scenarios individually, checking if it can be independently serviced
in the second stage within an acceptable cost (namely, a guess of the optimal
second stage costs). For the costly scenarios that cannot be serviced in this way
(“rainy days”), we show that they can be fully taken care of in a near-optimal first
stage solution (i.e., by ”paying today”).

We also consider “hitting-set” extensions of the robust min-cut and shortest
path problems and show that our techniques can be combined with algorithms
for Steiner multicut and group Steiner tree problems to give similar approxima-
tion guarantees for the hitting-set versions of robust min-cut and shortest path
problems respectively.

1 Introduction

Robust optimization has been widely studied to deal with the data uncertainty in op-
timization problems. In a classical optimization problem, all parameters such as costs
and demands are assumed to be precisely known. A small change in these parameters
can change the optimal solution considerably. As a result, classical optimization is in-
effective in those real life applications where robustness to uncertainty is desirable.

Traditional approaches toward robustness have focused on uncertainty in data
[3, 12, 13]. In a typical data-robust model, uncertainty is modeled as a finite set of sce-
narios, where a scenario is a plausible set of values for the data in the model. The objec-
tive is to find a feasible solution to the problem which is “good” in all or most scenarios,
where various notions of “goodness” have been studied. Some of them include
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1. Absolute Robustness (min-max): The objective is to find a solution such that the
maximum cost over all scenarios is minimized.

2. Robust Deviation (min-max regret): For a given solution, regret in a particular sce-
nario is the difference between cost of this solution in that scenario and the optimal
cost in that scenario. In the robust deviation criteria, the objective is to minimize
the maximum regret over all scenarios.

More recent attempts at capturing the concept of robust solutions in optimization
problems include the work of Rosenblatt and Lee [19] in the facility design problem,
and Mulvey et al. [14] in mathematical programming. Even more recently, an approach
along similar lines has been advocated by Bertsimas et al. [1, 2]. Other related works
in the data-robust models include heuristics such as branch and bound and surrogate
relaxation for efficiently solving the data-robust instances. A research monograph by
Kouvelis and Yu [11] summarizes this line of work. An annotated bibliography available
online is a good source of references for work in data-robustness [16].

Most of the prior work addresses the problem of robustness under data uncertainty. In
this paper, we consider a model which also allows uncertainty in the problem constraints
along with the uncertainty in data. We call this model of robustness as demand-robust
model since it attempts to be robust with respect to problem demands (constraints).
Our model is motivated by the recent work in two-stage stochastic programming prob-
lems with recourse [7, 5, 9, 17, 20]. In a two-stage stochastic approach, the goal is to
find a solution that minimizes the expected cost over all possible scenarios. While the
expected value minimization is reasonable in a repeated decision-making framework,
one shortcoming of this approach is that it does not sufficiently guard against the worst
case over all the possible scenarios. Our demand-robust model for such problems is a
natural way to overcome this shortcoming by postulating a model that minimizes this
worst-case cost.

Let us introduce the new model with the demand-robust min-cut problem: Given an
undirected graph G = (V, E), a root vertex r and costs c on the edges. The uncertainty
in demand and costs is modeled as a finite set of scenarios, one of which materializes
in the second stage. The ith scenario is a singleton set containing only the node ti. We
call the nodes specified by the scenarios terminals. An edge costs c(e) in the first stage
and σi · c(e) in the recourse (second) stage if the ith scenario is realized. The problem
is to find a set E0 ⊆ E (edges to be bought in the first stage) and for each scenario i, a
set Ei ⊆ E (edges to be bought in the recourse stage if scenario i is realized), such that
removing E0 ∪ Ei from the graph G disconnects r from the terminal ti. The objective
is to minimize the cost function maxi{c(E0) + σi · c(Ei)}.

Note that in the above model, each scenario has a different requirement (in sce-
nario i, ti is required to be separated from r). Such a scenario model allows to han-
dle uncertainty in problem constraints. Another point of difference with the previous
data-robust models is that the demand-robust model is two-stage i.e. solution is bought
partially in first stage and is then augmented to a feasible solution in the second stage
after the uncertainty is realized. However, cost uncertainty in the our demand-robust
model is restrictive, as each element becomes costlier by the same factor in a particular
scenario in the second stage unlike the data-robust models which handle general cost
uncertainties.
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1.1 Our Contributions

In this paper we consider the shortest path and min-cut problems in the two-stage
demand-robust model. In a recent paper Dhamdhere et al. [4] introduced the model
of demand robustness and gave approximation algorithms for various problems such
as min-cut, multicut, shortest path, Steiner tree and facility location in the framework
of two-stage demand-robustness. They use rounding techniques recently developed for
stochastic optimization problems [7, 8, 17] for many of their results and obtain similar
guarantees for the demand-robust versions of the problem. In this paper we crucially
exploit and benefit from the structure of the demand-robust problem: in the second
stage, every scenario can pay up to the maximum second stage cost without worsening
the solution cost. This is not true for the stochastic versions where the objective is to
minimize the expected cost over all scenarios. At a very high level, the algorithms for
the problems considered in this paper are as follows: Guess the maximum second stage
cost C in some optimal solution. Using this guess identify scenarios which do not need
any first stage “help” i.e. scenarios for which the best solution costs at most a constant
times C in the second stage. Such scenarios can be ignored while building the first stage
solution. For the remaining scenarios or a subset of them, we build a low-cost first stage
solution and prove the constant bounds by a charging argument.

We give the first constant factor approximation for the demand-robust min-cut prob-
lem. The charging argument leading to a constant factor argument crucially uses the
laminarity of minimum cuts separating a given root node from other terminals. The
previous best approximation factor was O(log n) due to Dhamdhere et al. [4].

Theorem 1.1. There is a polynomial time algorithm which gives a (1 +
√

2) approxi-
mation for the robust min-cut problem.

For the demand-robust shortest path problem, we give an algorithm with an improved
approximation factor of 7.1 as compared to the previous 16-approximation [4].

Theorem 1.2. There is a polynomial time algorithm which gives a 7.1 approximation
for the robust shortest path problem.

Demand-robust shortest path generalizes the Steiner tree problem and is thus NP-hard.
The complexity of demand-robust min-cut is still open. However, in section 4 we
present NP-hard generalizations of both problems, together with approximation algo-
rithms for them. In particular, we consider “hitting set” versions of demand-robust min-
cut and shortest path problems where each scenario is a set of terminals instead of a
single terminal and the requirement is to satisfy at least one terminal (separate from the
root for the min-cut problem and connect to the root for the shortest path problem) in
each scenario. We obtain approximation algorithms for these “hitting set” variants by
relating them to two classical problems, namely Steiner multicut and group Steiner tree.

2 Robust Min-Cut

In this section, we present a constant factor approximation for this problem. To motivate
our approach, let us consider the robust min-cut problem on trees. Suppose we know
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the maximum cost that some optimal solution pays in the second stage (say C). Any
terminal ti whose min-cut from r costs more than C

σi
should be cut away from r in the

first stage. Thus, if we know C, we can identify exactly which terminals U should be
cut in the first stage. The remaining terminals pay at most C to buy a cut in the second
stage. If there are k scenarios, then there are only k + 1 choices for C that matter, as
there are only k + 1 possible sets that U could be. Though we may not be able to guess
C, we can try all possible values of U and find the best solution. This algorithm solves
the problem exactly on trees.

The algorithm for general graphs has a similar flavor. In a general graph if for any
terminal the minimum r-ti cut costs more than C

σi
, then we can only infer that the first

stage should “help” this terminal i.e. buy some edges from a r-ti cut. In the case of
trees, every minimal r-ti cut is a single edge, so the first stage cuts ti from the root.
However, this is not true for general graphs. But we prove that a similar algorithm gives
a constant factor approximation using a charging argument. As in the algorithm for
trees, we reduce the needed non-determinism by guessing a set of terminals rather than
C itself.

Algorithm for Robust Min-Cut
T = {t1, t2, . . . , tk} are the terminals, r ← root .
α ← (1 +

√
2).

1. For each terminal ti, compute the cost (with respect to c) of a minimum r-ti cut,
denoted mcut(ti).

2. Let C be the maximum second stage cost of some optimal solution.
Guess U := {ti : σi · mcut(ti) > α · C}.

3. First stage solution: E0 ← minimum r-U cut.
4. Second stage solution for scenario i: Ei ← any minimum r-ti cut in G \ E0

If we relabel the scenarios in decreasing order of σi ·mcut(ti), then for every choice
of C, U = ∅ or U = {t1, t2, . . . , tj} for some j ∈ {1, 2, . . . , k}. Thus, we need to try
only k + 1 values for C. This algorithm runs in Õ(k2mn) time on undirected graphs
using the max flow algorithm of Goldberg and Tarjan [6] to find min cuts. The above
algorithm (1 +

√
2)-approximates the robust min-cut problem.

Proof of Theorem 1.1. Let OPT be an optimal solution, let E∗
0 be the edge set it buys

in stage one, and let C∗
0 and C be the amount it pays in the first and second stage,

respectively. Let α be a constant to be specified later, and let U := {ti : σi ·mcut(ti) >
α · C}, where mcut(ti) is the cost of minimum r-ti cut in G with respect to the cost
function c. Note that we can handle every terminal ti /∈ U by paying at most αC in
the second stage. We will prove that the first stage solution E0, given by the algorithm
has cost c(E0) ≤ (1 + 2

α−1 )C∗
0 . The output solution is thus a max{α, (1 + 2

α−1 )}-

approximation. Setting α := (1 +
√

2) then yields the claimed approximation ratio.
To show c(E0) ≤ (1+ 2

α−1 )C∗
0 , we exhibit an r-U cut of cost at most (1+ 2

α−1 )C∗
0 .

Recall that OPT buys E∗
0 in the first stage. Since σi · mcut(ti) > C for all ti ∈ U , E0

must “help” each such ti reduce its second stage cost by a large fraction. The high level
idea is as follows: we show how to group terminals of U into equivalence classes such
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that each edge of E∗
0 helps at most two such classes and then cut away each equivalence

class from the root using a cut that can be charged to its portion of E∗
0 .

Formally, let G = (V, E) be our input. Define G′ := (V, E \ E∗
0 ). The goal is to

construct a low-cost r-U cut, C. We include E∗
0 in C. This allows us to ignore terminals

that E∗
0 separates from the root. U is the set of remaining terminals with σi ·mcut(ti) >

α · C. For a terminal t ∈ U , let Qt ⊂ V be the t side of some minimum r-t cut in
G′. Lemma 2.1 proves that there exist min cuts such that F := {Qt : t ∈ U} is a
laminar family (see figure 1). Let F be all the node-maximal elements of F , that is,
F = {Q ∈ F : ∀Q′ ∈ F , either Q′ ⊆ Q, or Q′ ∩ Q = φ}. For Q ∈ F , we say Q uses
edges {(u, v) ∈ E∗

0 | Q∩{u, v} 
= ∅}. Since F is laminar, all the sets in F are disjoint.
It follows that each edge e ∈ E∗

0 can be used by at most two sets of F . For each Q ∈ F ,
we include the edges of G′ incident to Q in the cut C, and charge it to the edges of E∗

0
it uses as follows:
For a graph G = (V, E) and Q ⊂ V , let δG(Q) := {(q, w)|q ∈ Q, w ∈ V \ Q} ∩ E
be the boundary of Q in graph G. Fix Qti ∈ F , let X = δG(Qti) ∩ E∗

0 (edges that Qti

uses) and let Y = δG(Qti) \ E∗
0 (edges of G′ incident to Qti). Since δG(Qti) is a r-ti

cut in G,

c(δG(Qti)) = c(X) + c(Y ) ≥ mcut(ti) (2.1)

Since ti ∈ U , σi · mcut(ti) > α · C so with (2.1) we have (c(X) + c(Y )) > α·C
σi

.
Also, we know that OPT pays at most C in second stage costs for any scenario which
implies σi · c(Y ) ≤ C. Thus, we have c(Y ) < 1

α−1 c(X) Thus we can pay for c(Y )
by charging it to the cost of X ⊆ E∗

0 and incurring an overhead of 1/(α − 1) on the
charged edges. Since each edge in E∗

0 is charged at most twice, the total charge to buy

all edges in
⋃

Q∈F (δG(Q) \ E∗
0 ) is at most 2c(E∗

0 )
α−1 = 2C∗

0
α−1 . Thus, a minimum r-U cut

costs at most (1 + 2
α−1 )C∗

0 . �

Lemma 2.1. Let U , Qt be defined as in the proof of Theorem 1.1 Then there exists a
minimum r-t cut in G′ for each terminal t ∈ U such that F := {Qt : t ∈ U} is a
laminar family.

Proof. We start with minimally sized sets Qt. That is, for each t ∈ U , Qt is the t side
of a minimum r-t cut in G′, and every vertex set Q′ containing t but not the root such
that |Q′| < |Qt| satisfies c(δG′(Q′)) > c(δG′(Qt)). We claim this family is laminar.
Suppose not, then there exists A := Qa, B := Qb, a, b ∈ U that violate the laminar
property. Thus, A ∩ B 
= ∅, A � B, and B � A.

Case 1: a ∈ A \ B, b ∈ B \ A. Let X := A ∩ B, A′ := A \ X , and B′ := B \ X .
Note the cut capacity function of G′, defined f(Q) := c(δG′(Q)), is submodular.
We claim that f(A′) ≤ f(A) or f(B′) ≤ f(B), contradicting the minimality of A
and B. Let c(V1, V2) denote the sum of costs of edges from V1 to V2 in G′, where
V1, V2 ⊆ V . Then

f(A) < f(A′) =⇒ c(X, B′) + c(X, (V \ (A ∪ B))) < c(A′, X) (2.2)

f(B) < f(B′) =⇒ c(X, A′) + c(X, (V \ (A ∪ B))) < c(B′, X) (2.3)
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Fig. 1. Once the edges bought in the first stage, E∗
0 , are fixed, there exists an optimal (w.r.t. E∗

0 )
second stage solution {E∗

i | i = 1, 2, . . . , k} such that the ti sides of the cuts {E∗
0 ∪ E∗

i } are
a laminar family. Here, the labeled vertices are all terminals, the dashed contour corresponds
to E∗

0 , and the dotted contours correspond to second stage edge sets for various terminals. The
node-maximal elements of this family are the terminal side cuts for v1, v5, and v6.

Adding inequalities (2.2) and (2.3), we get c(X, (V \ (A ∪ B))) < 0, which is
clearly impossible.

Case 2: a ∈ B (equivalently, b ∈ A). Since A and B are terminal sides of min-cuts,

max{f(A), f(B)} ≤ f(A ∪ B) (2.4)

f(A ∩ B) + f(A ∪ B) ≤ f(A) + f(B) (2.5)

where (2.5) follows from submodularity. Inequalities (2.4) and (2.5) together imply
f(A ∩ B) ≤ min{f(A), f(B)}. But f(A ∩ B) ≤ f(A) contradicts the minimality
of A. �

3 Demand-Robust Shortest Path Problem

The problem is defined on a undirected graph G = (V, E) with a root vertex r and cost
c on the edges. The ith scenario Si is a singleton set {ti}. An edge e costs c(e) in the
first stage and ci(e) = σi · c(e) in the ith scenario of the second stage. A solution to the
problem is a set of edges E0 to be bought in the first stage and a set Ei in the recourse
stage for each scenario i. The solution is feasible if E0 ∪ Ei contains a path between
r and ti. The cost paid in the ith scenario is c(E0) + σi · c(Ei). The objective is to
minimize the maximum cost over all scenarios.

The following structural result for the demand-robust shortest path problem can be
obtained from a lemma proved in Dhamdhere et al. [4].

Lemma 3.1. [4] Given a demand-robust shortest path problem instance on an undi-
rected graph, there exists a solution that costs at most twice the optimum such that the
first stage solution is a tree containing the root.

The above lemma implies that we can restrict our search in the space of solutions where
first stage is a tree containing the root and lose only a factor of two. This property is
exploited crucially in our algorithm.
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Algorithm for Robust Shortest Path
Let C be the maximum second stage cost of some fixed connected optimal solution.
T = {t1, t2, . . . , tk} are the terminals, r ← root, α ← 1.775, V ′ ← φ.

1. V ′ := {ti| distc(ti, r) > 2α·C
σi

}
2. B := {Bi = B(ti,

α·C
σi

)| ti ∈ V ′}, where B(v, d) is a ball of radius d around v
with respect to cost c. Choose a maximal set BI of non-intersecting balls from B
in order of non-decreasing radii.

3. Guess R0 := {ti|Bi ∈ BI}.
4. First stage solution: E0 ← The Steiner tree on terminals R0 ∪ {r} output by the

best approximation algorithm available.
5. Second stage solution for scenario i: Ei ← Shortest path from ti to the closest

node in the tree E0

3.1 Algorithm

Lemma 3.1 implies that there is a first stage solution which is a tree containing the
root r and it can be extended to a final solution within twice the cost of an optimum
solution. We call such a solution as a connected solution. Fix an optimal connected
solution, say E∗

0 , E∗
1 , . . . , E∗

k . Let C be the maximum second stage cost paid by this
solution over all scenarios, i.e. C = maxk

i=1{σi · c(E∗
i )}. Therefore, for any scenario

i, either there is path from ti to root r in E∗
0 , or there is a vertex within a distance C

σi

of ti which is connected to r in E∗
0 , where distance is with respect to the cost function

c, denoted distc(·, ·). We use this fact to obtain a constant factor approximation for our
problem.

The algorithm is as follows: Let C be the maximum second stage cost paid by the
connected optimal solution (fixed above) in any scenario. We need to try only k · n
possible values of C 1, so we can assume that we have correctly guessed C. For each
scenario ti, consider a shortest path (say Pi) to r with respect to cost c. If c(Pi) ≤ 2α·C

σi
,

then we can handle scenario i in the second stage with cost only a factor 2α more than
the optimum. Thus, ti can be ignored in building the first stage solution. Here α > 1 is
a constant to be specified later. Let V ′ = {ti | distc(r, ti) > 2α·C

σi
}.

For each ti ∈ V ′, let Bi be a ball of radius α·C
σi

around ti. Here, we include internal
points of the edges in the ball. We collectively refer to vertices in V and internal points
on edges as points, VP . Thus, Bi = {v ∈ VP | distc(ti, v) ≤ α·C

σi
}.

The algorithm identifies a set of terminals R0 ⊆ V ′ to connect to the root in the first
stage such that the remaining terminals in V ′ are close to some terminal in R0 and thus,
can be connected to the root in the second stage paying a low-cost.

Proposition 3.1. There exist a set of terminals R0 ⊆ V ′ such that:

1. For every ti, tj ∈ R0, we have Bi ∩ Bj = φ; and
2. For every ti ∈ V ′ \ R0, there is a representative rep(ti) = tj ∈ R0 such that

Bi ∩ Bj 
= φ and α·C
σj

≤ α·C
σi

.

1 For each scenario i, the second stage solution is a shortest path from ti to one of the n vertices
(possibly ti), so there are at most k · n choices of C.
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Fig. 2. Illustration of first-stage tree computation described in Lemma 3.2. The balls with solid
lines denote B(ti,

C
σi

), while the balls with dotted lines denote B(ti,
α·C
σi

).

Proof. Consider terminals in V ′ in non-decreasing order of the radii α·C
σt

of the cor-
responding balls Bt. If terminal ti is being examined and Bi ∩ Bj = φ, ∀tj ∈ R0,
then include ti in R0. If not, then there exists tj ∈ R0 such that Bi ∩ Bj 
= φ; define
rep(ti) = tj . Note that α·C

σj
≤ α·C

σi
as the terminals are considered in order of non-

decreasing radii of the corresponding balls. �

The First Stage Tree. The first stage tree is a Steiner tree on the terminal set R0 ∪{r}.
However, in order to bound the cost of first stage tree we build the tree in a slightly
modified way. For an illustration, refer to Figure 2.

Let G′ be a new graph obtained when the balls B(ti, C
σi

) corresponding to every
terminal ti ∈ R0 are contracted to singleton vertices. We then build a Steiner tree E01
in G′ with the terminal set as the shrunk nodes corresponding to terminals in R0 and
the root vertex r. In Figure 2, E01 is the union of solid edges and the thick edges.
Now, for every shrunk node corresponding to B(ti, C

σi
), we connect each tree edge

incident to B(ti, C
σi

) to terminal ti using a shortest path; these edges are shown as
dotted lines in Figure 2 and are denoted by E02. Our first stage solution is the Steiner
tree E0 = E01 ∪ E02.

Lemma 3.2. The cost of E0 is at most 1.55α
α−1 times c(E∗

0 ), the first stage cost of the
optimal connected solution.

Proof. We know that the optimal first stage tree, E∗
0 connects some vertex in the ball

B(ti, C
σi

) to the root r for every ti ∈ R0, for otherwise the maximum second stage cost
of OPT would be more than C. Thus, E∗

0 induces a Steiner tree on the shrunk nodes in
G′. We build a Steiner tree on the shrunk nodes as terminals using the algorithm due to
Robins and Zelikovsky [18]. Thus,

c(E01) ≤ 1.55 c(E∗
0 ) (3.6)

Now, consider edges in E02. Consider a path q ∈ E02 connecting some edge incident
to B(ti, C

σi
) to ti. Since q is the shortest path between its end points, we have c(q) ≤ C

σi
.

Now, consider a path from terminal ti along q until it reaches B(ti, α·C
σi

) and label the



214 D. Golovin, V. Goyal, and R. Ravi

portion between B(ti, C
σi

) and B(ti, α·C
σi

) as p(q). By construction, we have c(p(q)) ≥
(α−1)·C

σi
, so c(q) ≤ 1

α−1 · c(p(q)).
For any two paths q1, q2 ∈ E02, the paths p(q1) and p(q2) are edge-disjoint. Clearly,

if q1 and q2 are incident to distinct terminals of R0, then p(q1) and p(q2) are contained
in disjoint balls and thus are edge-disjoint. If q1 and q2 are incident to the same terminal,
then it is impossible that p(q1)∩p(q2) 
= φ as E01 is a tree on the shrunk graph. Hence,
we have

∑

e∈E02

c(e) =
∑

q∈E02

c(q) ≤
∑

q∈E02

1
α − 1

· c(p(q)) ≤
∑

e∈E01

1
α − 1

· c(e) (3.7)

where the last inequality is due to edge-disjointness of p(q1) and p(q2) for any two paths
q1, q2 ∈ E02. Thus, c(E0) = c(E01)+c(E02) ≤ c(E01)+ 1

α−1 ·c(E01) ≤ 1.55α
α−1 ·c(E∗

0 ),
where the last inequality follows from (3.6). �

Second Stage. The second stage solution for each scenario is quite straightforward.
For any terminal ti, Ei is the shortest path from ti to the closest node in E0.

Lemma 3.3. The maximum second stage cost for any scenario is at most 2α · C.

Proof. We need to consider the following cases:

1. ti ∈ R0: Since the first stage tree E0 connects ti to r, Ei = φ. Thus, c(Ei) = 0.
2. ti ∈ V ′ \ R0: By Proposition 3.1, there exists a representative terminal tj ∈ R0

such that Bi ∩Bj 
= φ and σj ≥ σi. Therefore, distc(ti, tj) ≤ α·C
σi

+ α·C
σj

≤ 2α·C
σi

.
We know that tj is connected to r in E0. Thus, the closest node to ti in the first
stage tree is at a distance at most 2α·C

σi
. Hence, σi · c(Ei) ≤ 2α · C.

3. ti /∈ V ′: Then the shortest path from ti to r with respect to cost c is at most 2α·C
σi

.

Hence, the closest node to ti in the first stage tree is at a distance at most 2α·C
σi

and
σi · c(Ei) ≤ 2α · C. �

Proof of Theorem 1.2. From Lemma 3.2, we get that c(E0) ≤ 1.55α
α−1 c(E∗

0 ). From
Lemma 3.3, we get that the second stage cost is at most 2α · C. Choose α = 3.55

2 =
1.775. Thus, we get c(E0) ≤ (3.55)·c(E∗

0 ) and maxk
i=1{σi ·c(Ei)} ≤ (3.55)·C. From

Lemma 3.1 we know that c(E∗
0 ) + C ≤ 2 · OPT, where OPT is the cost of optimal

solution to the robust shortest path instance. Together the previous three inequalities
imply c(E0) + maxk

i=1{σi · c(Ei)} ≤ (7.1) · OPT �

4 Extensions to Hitting Versions

In this problem, we introduce generalizations of demand-robust min-cut and shortest
path problems that are closely related to Steiner multicut and group Steiner tree, re-
spectively. In a Steiner multicut instance, we are given a graph G = (V, E) and k sets
of vertices X1, X2, . . . , Xk and our goal is to find the cheapest set of edges S whose
removal separates each Xi, i.e. no Xi lies entirely within one connected component of
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(V, E \ S). If
⋂k

i=1 Xi 
= ∅, we call the instance restricted. In a group Steiner tree in-
stance, we are given a graph G = (V, E), a root r, and k sets of vertices X1, X2, . . . , Xk

and our goal is to find a minimum cost set of edges S that connects at least one vertex in
each Xi, i = 1, . . . , k to the root r. We show how approximation algorithms for these
problems can be combined with our techniques to yield approximation algorithms for
“hitting versions” of demand-robust min-cut and shortest path problems.

In the hitting version of robust min-cut (resp. shortest path), each scenario i is spec-
ified by an inflation factor σi and a set of nodes Ti ⊂ V (rather than a single node).
A feasible solution is a collection of edge sets {E0, E1, . . . , Ek} such that for each
scenario i, E0 ∪ Ei contains an root-t cut (resp. path) for some t ∈ Ti. The goal is to
minimize c(E0) + maxi{σi · c(Ei)}.

4.1 Robust Hitting Cuts

Robust hitting cut is Ω(log k)-hard, where k is the number of scenarios, even when
the graph is a star. In fact, if we restrict ourselves to inputs in which the graph is a
star, the root is the center of the star, and σ = ∞ for all scenarios, then robust hitting
cut on these instances is exactly the hitting set problem. In contrast, we can obtain an
O(log k) approximation for robust hitting cut on trees, and O(log n · log k) in general
using results of Nagarajan and Ravi [15] in conjunction with the following theorem.

Theorem 4.1. If for some class of graphs there is a ρ-approximation for Steiner multi-
cut on restricted instances, then for that class of graphs there is a (ρ+2)-approximation
for robust hitting cut. Conversely, if there is a ρ-approximation for robust hitting cut then
there is a ρ-approximation for Steiner multicut on restricted instances.

Algorithm: Let α = 1
2 (ρ+1+

√
ρ2 + 6ρ + 1) and let C be the cost that some optimal

solution pays in the second stage. For each terminal t in some group, compute the cost of
a minimum root-t cut, denoted mcut(t). Let T ′ := {Ti : ∀t ∈ Ti, σi ·mcut(t) > α·C}.
Note that there are only k +1 possibilities, as in the robust min-cut algorithm. For each
terminal set Ti ∈ T ′, separate at least one terminal in Ti from the root in the first stage
using an ρ-approximation algorithm for Steiner Multicut [10, 15].

Proof of Theorem 4.1. We first show that a ρ-approximation for robust hitting cut
implies a ρ-approximation for Steiner multicut on restricted instances. Given a restricted
instance of Steiner multicut (G, X1, X2, . . . , Xk) build a robust hitting cut instance as
follows: use the same graph and costs, set the root r to be any element of

⋂
i Xi, and

create scenarios Ti = Xi \ r with σi = ∞ for each i. Note that solutions to this
instance correspond exactly to Steiner multicuts of the same cost. Thus robust hitting
cut generalizes Steiner multicut on restricted instances.

We now show the approximate converse, that a ρ-approximation for Steiner multicut
on restricted instances implies a (ρ + 2)-approximation for robust hitting cut. Let OPT
be an optimal solution, and let E∗

0 be the edge set it buys in stage one, and let C1 and
C2 be the amount it pays in the first and second stage, respectively. Note we can handle
every Ti /∈ T ′ while paying at most α · C2.

We prove that the first stage edges E0 ⊂ E[G] given by our algorithm satisfy all
scenarios in T ′, and have cost c(E0) ≤ ρ(1 + 2

α−1 )C1. Thus, the total solution cost is
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at most ρ(1 + 2
α−1 )C1 + α · C2. Compared to the optimal cost, C1 + C2, we obtain

a max{α, ρ(1 + 2
α−1 )}-approximation. Setting α = 1

2 (ρ + 1 +
√

ρ2 + 6ρ + 1) then
yields the claimed (ρ + 2) approximation ratio.

A cut is called a T ′-cut if it separates at least one terminal in each T ∈ T ′ from
the root. There exists a T ′-cut of cost at most (1 + 2

α−1 )C1, by the same argument
as in the proof of Theorem 1.1. Suppose OPT cuts away t∗i when scenario Ti occurs.
Then OPT is also an optimal solution to the robust min-cut instance on the same graph
with terminals {t∗i | i = 1, 2, . . . , k} as k scenarios. Since, for all t ∈ T such that
T ∈ T ′, we have σt · mcut(t) > α · C, we can construct a root-{t∗i | i = 1, 2, . . . , k}
cut of cost at most (1 + 2

α−1 )C1. Thus, the cost of an optimal T ′-cut is at most (1 +
2

α−1 )C1. Now apply the ρ-approximation for Steiner multicut on restricted instances.
To build the Steiner multicut instance, we use the same graph and edge costs, and create
a groups Xi = Ti ∪ {root} for each Ti ∈ T ′. Clearly, the instance is restricted. Note
that every solution to this instance is a T ′-cut of the same cost, and vice-versa. Thus a
ρ-approximation for for Steiner multicut on restricted instances yields a T ′-cut of cost
at most ρ(1 + 2

α−1 )C1. �

Corollary 4.1. There is a polynomial time O(log n · log k)-approximation algorithm
for robust hitting cut on instances with k scenarios and n nodes, and an O(log k)-
approximation algorithm for robust hitting cut on trees.

4.2 Robust Hitting Paths

Theorem 4.2. If there is a ρ-approximation for group Steiner tree then there is a 2ρ-
approximation for robust hitting path. If there is a ρ-approximation for robust hitting
path, then there is a ρ-approximation for group Steiner tree.

Proof. Note that robust hitting path generalizes group Steiner tree (given a GST instance
with graph G, root r and groups X1, X2, . . . , Xk, use the same graph and root, make
each group a scenario, and set σi = ∞ for all scenarios i). Thus a ρ-approximation for
robust hitting path immediately yields a ρ-approximation for group Steiner tree.

Now suppose we have an ρ-approximation for group Steiner tree. Lemma 3.1 guar-
antees that there exists a solution {E0, E1, . . . , Ek} of cost at most 2OPT whose first
stage edges, E0, are a tree containing root r.

The algorithm is as follows. Guess C := maxi{σic(Ei)}. Note that for each scenario
i the tree E0 must touch one of the balls in {B(t, C/σi)|t ∈ Ti}, where B(v, x) :=
{u| distc(v, u) ≤ x}. Thus we can construct groups Xi :=

⋃
t∈Ti

B(t, C/σi) for each
scenario i and use the ρ-approximation for group Steiner tree on these groups to obtain
a set of edges E′

0 to buy in the first stage.
Note that c(E′

0) ≤ ρc(E0) and any scenario i has a terminal t ∈ Ti that is within
distance C/σi of some vertex incident on an edge of tree E′

0. We conclude that the total
cost is at most ρc(E0) + C ≤ 2ρ · OPT. �

5 Conclusion

In this paper we give improved approximation algorithms for robust min-cut and short-
est path problems and extend our results to an interesting ”hitting-set” variant. It would
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be interesting to use the techniques introduced in this paper to obtain better approxima-
tions for robust minimum multicut and Steiner tree problems. The technique of guessing
and pruning crucially uses the fact that each scenario can pay up to the maximum sec-
ond stage cost without worsening the optimal cost. However, this is not true for the
stochastic optimization problems and hence our technique doesn’t extend to stochastic
versions in a straightforward way. It would be interesting to adapt this idea for stochastic
optimization.
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