
Finding Effective Support-Tree Preconditioners∗

Bruce M. Maggs

Computer Science Dept.

Carnegie Mellon University

Pittsburgh, PA 15213

bmm@cs.cmu.edu

Gary L. Miller

Computer Science Dept.

Carnegie Mellon University

Pittsburgh, PA 15213

glmiller@cs.cmu.edu

Ojas Parekh

Department of Mathematics

and Computer Science

Emory University

Atlanta, GA 30322

ojas@mathcs.emory.edu

R. Ravi

Tepper School of Business

Carnegie Mellon University

Pittsburgh, PA 15213

ravi@cmu.edu

Shan Leung Maverick Woo

Computer Science Dept.

Carnegie Mellon University

Pittsburgh, PA 15213

maverick@cs.cmu.edu

ABSTRACT
In 1995, Gremban, Miller, and Zagha introduced support-
tree preconditioners and a parallel algorithm called support-
tree conjugate gradient (STCG) for solving linear systems
of the form Ax = b, where A is an n × n Laplacian matrix.
A Laplacian is a symmetric matrix in which the off-diagonal
entries are non-positive, and the row and column sums are
zero. A Laplacian A with 2m off-diagonal non-zeros can
be interpreted as an undirected positively-weighted graph G
with n vertices and m edges, where there is an edge between
two vertices i and j with weight c((i, j)) = −Ai,j = −Aj,i

if Ai,j = Aj,i < 0. Gremban et al. showed experimen-
tally that STCG performs well on several classes of graphs
commonly used in scientific computations. In his thesis,
Gremban also proved upper bounds on the number of iter-
ations required for STCG to converge for certain classes of
graphs. In this paper, we present an algorithm for finding
a preconditioner for an arbitrary graph G = (V, E) with n
vertices, m edges, and a weight function c > 0 on the edges,
where w.l.o.g., mine∈E c(e) = 1. Equipped with this precon-

ditioner, STCG requires O(log4 n ·�Δ/α) iterations, where
α = minU⊂V,|U|≤|V |/2 c(U, V \U)/|U | is the minimum edge
expansion of the graph, and Δ = maxv∈V c(v) is the maxi-
mum incident weight on any vertex. Each iteration requires

∗This work was supported in part by the National
Science Foundation under grants CCR-9902091, CCR-
9706572, ACI 0086093, CCR-0205523, CCR-9625297 and
CCR-9900304 and also through the Aladdin Center
(www.aladdin.cs.cmu.edu) under grants CCR-0085982 and
CCR-0122581. The first and second authors are also affil-
iated with Akamai Technologies and the third author was
also affiliated with Carnegie Mellon University and Sandia
National Laboratories during part of this research.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’05, July 18–20, 2005, Las Vegas, Nevada, USA.
Copyright 2005 ACM 1-58113-986-1/05/0007 ...$5.00.

O(m) work and can be implemented in O(log n) steps in par-
allel, using only O(m) space. Our results generalize to ma-
trices that are symmetric and diagonally-dominant (SDD).

Categories and Subject Descriptors
F.2.1 [Numerical Algorithms and Problems]: Compu-
tations on Matrices; G.1.3 [Numerical Linear Algebra]:
Sparse, Structured, and Very Large Systems (Direct and
Iterative Methods); E.1 [Data Structures]: Graphs and
Networks

General Terms
Algorithms, Theory

Keywords
Combinatorial Preconditioner, Iterative Solver, Linear Sys-
tems

1. INTRODUCTION
Perhaps the most common and time consuming task that

arises in scientific computing applications is to solve a large
linear system of the form Ax = b, where A is a known n×n
matrix, b is a known n × 1 vector in the column space of
A, and x is an unknown n × 1 vector. These systems arise,
for example, during the discretization of differential or inte-
gral equations describing some physical system. The matrix
A typically represents the structure of the physical system,
while the vector b represents some boundary condition. It
is not uncommon for a single application to solve many lin-
ear systems involving the same matrix A, but with different
boundary conditions b. Hence, a distinction can be made
between the time spent preprocessing the matrix A, and
the time solving linear systems involving A. Our objective
is to minimize the time to solve such a system while also
minimizing the time required for preprocessing.

The matrices that arise in describing physical systems
are generally not arbitrary but are often sparse and display
structural properties (mirroring structures in physical sys-
tems) that can be exploited. The classic textbook by Golub
and Van Loan [13] provides examples in many contexts. The
theory community has focused on developing approaches for

176

structured systems, such as Laplacians, which are described
below, in the context of two general approaches, direct and
iterative.

Direct approaches include a class of algorithms known as
nested-dissection. The work in this area was pioneered by
Lipton, Rose, and Tarjan [19]. Nested dissection works well
for graphs with small separators, such as trees and pla-
nar graphs. Lipton et al. [19], for example, showed that
any n-vertex planar system can be solved in O(n1.5) time.
General-purpose direct methods are typically not attractive,
however, for solving systems based on sparse but highly con-
nected graphs like expanders.

An important sub-class of matrices is the class that are
symmetric and diagonally-dominant (SDD); our notion of
diagonal-dominance is that each diagonal entry is at least as
large as the sum of the magnitudes of the off-diagonal entries
in the corresponding row or column. SDD matrices arise in
many natural applications (see [3, 23]). Iterative methods
such as conjugate gradient can be applied to these systems.
Our goal is to address this class of matrices; however, we re-
strict our attention to Laplacians since Gremban [14] showed
that an SDD system can be solved by solving a Laplacian
system twice as large. A Laplacian can be interpreted as
a weighted adjacency matrix of an undirected graph with
nonnegative edge weights (see Section 2.2).

Our approach is to design preconditioners for accelerating
the convergence of iterative methods like conjugate gradient
for solving systems involving Laplacians. The notion of a
preconditioner is described in detail in Section 2.1. As we
shall see, the number of iterations required to solve such
a system using a preconditioned iterative method can be
as low as polylogarithmic, where each iteration can be im-
plemented in logarithmic time using linear work and space.
This is the case, for example, for approximately-uniformly-
weighted expander graphs. There has already been extensive
work in the area of preconditioning as described below.

1.1 Related Work
We state the following results in terms of preconditioners

for the Laplacian of a graph with n vertices and m edges. As
mentioned in the previous section, the results also hold for
SDD systems. Strictly speaking, the bounds to follow apply
to finding a solution x such that ‖Ax−b‖ ≤ ε‖b‖, at the cost
of an additional multiplicative factor of O(log((p log n)/ε))
(where each entry in A is specified with p bits of precision),
which we have omitted for simplicity.

In seminal work, Vaidya [26, 9, 10] showed how to use
combinatorial techniques to construct preconditioners based
on sparse spanning subgraphs of the underlying graph of the
matrix. Vaidya’s preconditioners allow a Laplacian system
to be solved with at most O(n1.75) work for any bounded-
degree weighted graph and O(n1.2) work for any weighted
planar graph. Reif [22] then analyzed a recursive variant
proposed by Vaidya and improved the bound on work for
sparse graphs. Boman et al. [6] analyzed an extension pro-
posed by Vaidya [26] of his preconditioners to all SDD sys-
tems. More recently, Boman and Hendrickson [7] demon-
strated that the low-average-stretch spanning trees designed
by Alon et al. [1] result in preconditioners with a work bound

of O(m1.5+o(1)) for any weighted graph. Although we do not
state it this way, the algorithm described in this paper has a
work bound of O(mn1/2) times polylogarithmic factors, and
hence can be viewed as an improvement on [7].

Gremban, Miller, and Zagha [15] and Gremban [14] con-
sidered a different kind of graph-based preconditioner. They
demonstrated that the support graph of a good subgraph
preconditioner need not be subgraphs of the graph repre-
sented by A. Gremban and Miller presented a way to an-
alyze such extended subgraph preconditioners which have
additional nodes. They called these support tree precon-
ditioners. In particular, they designed support tree pre-
conditioners for the Laplacians of meshes (solving systems
based on regular uniform-weight d-dimensional meshes in

O(m
�

dn1/d log n) time), such that the leaves of the sup-
port trees correspond precisely to the nodes of the original
graph. In order to approximate the topology of the graph,
their trees are hierarchically constructed by recursively par-
titioning the graph. Promising experimentally results are
described in [15]. Recently Miller and Richter [20] proved
a near-linear lowerbound on the condition number between
a square mesh and any of its spanning subgraphs. This
provides further theoretical justification to the support tree
approach.

All of the work described above has been superseded by
two papers by Spielman and Teng [24, 25] and a paper by
Emek, Elkin, Spielman, and Teng [12]. The first paper
[24] shows that building preconditioners by adding edges
to the Alon et al. trees, and using recursion, results in a
method that requires O(m1.31) work (times polylogarithmic
factors). The second paper [25] introduces techniques for
“sparsifying” a graph that can be used to reduce the size
of the preconditioner, reducing the total work to O(m +

n2O(
√

log n log log n)) times polylogarithmic factors. Finally,
the third paper [12] introduces a new construction of low-
average-stretch spanning trees. Replacing the trees of Alon
et al. [1] with the new trees improves the performance of the
algorithm in the second paper to O(m) work (times poly-
logarithmic factors). The algorithm in [12] can also be par-
allelized, and as there is a lower bound of Ω(m) on work,
cannot be improved much asymptotically.

1.2 Our Results
The results in this paper are not an improvement on the

results of [12], and indeed only match their results in spe-
cial cases. Written in terms of m and n, our work bound
is inferior. Nevertheless, we believe that the paper makes a
contribution by presenting the first algorithm and analysis
for arbitrary Laplacians based on the support-tree precon-
ditioner approach of Gremban et al. [15], which is the only
approach to introduce nodes in the preconditioner that are
not present in the graph. We also point out an interest-
ing connection between preconditioners and the hierarchical
decomposition trees of weighted undirected graphs, recently
introduced by Räcke [21] and Bienkowski, Korzeniowski and
Räcke [5]. In particular, we show that these trees can be
used directly as preconditioners.

Our main result is that any Laplacian system with n ver-
tices and m edges and weight function c can be solved in
O(log4 n ·�Δ/α) iterations, where α = minU⊂V,|U|≤|V |/2
c(U,V \U)

|U| is the minimum edge expansion of the graph, Δ =

maxv∈V c(v) is the maximum incident weight on any vertex,
and w.l.o.g., mine∈E c(e) = 1. Each iteration requires O(m)
work and can be implemented in O(log n) steps in parallel,
using only O(m) space. As mentioned above, the bound on
the number of iterations can also be written as O(

√
n log4 n).

177

One caveat about our work is that all of the previous re-
sults cited above include the cost of constructing the precon-
ditioner in the bound on work required to solve the system.
Our bound does not. A preconditioner, however, needs only
be constructed once to solve a system, Ax = b for differ-
ent values of b, and, as noted in the introduction, this is a
problem of practical interest.

The present paper analyzes the effectiveness of the decom-
position trees by Bienkowski, Korzeniowski and Räcke [5]
as preconditioners, assuming the maximum edge weight is
polynomially bounded. Previously we have also applied our
techniques to an earlier proposal by Räcke [21]. If his de-
composition trees are used, the iteration count improves by a
log factor and the requirement on the maximum edge weight
can also be lifted. However, unlike the decomposition trees
by Bienkowski et al., there is currently no polynomial time
algorithm to compute the trees in [21]. Finally, we note that
Harrelson, Hildrum, and Rao [17] have also shown how to
build decomposition trees comparable to Bienkowski et al.
in polynomial time. However, we have not tried to apply
our techniques to their decomposition trees.

2. BACKGROUND
Let us first develop the background material and context

in which we will present our work. The reader familiar with
iterative methods and support theory may choose to consult
this section on demand.

2.1 Preconditioners
Suppose we are solving the system Ax = b. When A is

sparse, iterative methods are preferable to direct ones be-
cause direct methods have difficulty exploiting the sparsity
of A in general. An iterative method is one that produces a
sequence of iterates, or guesses, {x(i) } that converges to a
solution x. Typically there are two components to design-
ing such an approach, (1) providing an update step which

maps x(i) to x(i+1) and (2) a proof that the iterates indeed
converge (rapidly).

2.1.0.1 Example: The RF Method.
The basis of iterative methods is the RF method [16],

which illustrates the idea behind such approaches very well.
For the sake of exposition, we assume we are dealing with
nonsingular matrices1; however, this is not a requirement
imposed by iterative methods.

The update step for the RF method is simply x(i+1) :=
x(i) − (Ax(i) − b). The intuition behind is that Ax(i) − b
represents some notion of error. Indeed, it is desirable to re-
duce error. However, one may notice that the RF method’s
implementation of this idea has a shortcoming—thinking of
A as a linear mapping, the error Ax(i) − b lies in the range
of A, whereas the iterates x(i) are sought in the domain of
A. Preconditioning is an attempt to address this discrep-
ancy, and it does so by providing a mapping back from the
range space to the iterate space. Thus a preconditioned RF
update step becomes x(i+1) := x(i)−B−1(Ax(i)−b), where
B−1 is a preconditioner for the system Ax = b.

We may also interpret preconditioning as solving the sys-

1In fact, Laplacians are always singular matrices since the
row sums are all zero. However, this very particular kind of
singularity can be handled with a little care. See Gremban
[14] for the details.

tem B−1Ax = B−1b rather than Ax = b. Intuitively, we
would like our preconditioner B−1 to approximate A−1 well,
and we see that setting B−1 := A−1 immediately renders a
solution to the system. Of course, this is impractical as it
requires inverting A—an operation which we are trying to
avoid in the first place. (A−1 may not be sparse.)

In choosing a preconditioner B−1 for the system Ax = b,
our goal is to strike a balance between the total number of it-
erations and the time required per iteration. Note that each
update step requires us to compute x(i)−B−1(Ax(i)−b). As
we may precompute B−1b, the computation time is domi-
nated by the time required for the sparse matrix-vector mul-
tiplication c := Ax(i) and determining z = B−1c, which we
may re-state as finding a solution z of the system Bz = c.
In fact, this is all we require of B, hence B need not be
invertible; in the sequel we refer to either B or B−1 as a
preconditioner for A. In particular, if we can solve the sys-
tem Bz = c in O(n) time, then each iteration takes a total
of O(n + m) time. On the other hand, bounds on the total
iteration count depend on the particular iterative method
used. We postpone a more detailed discussion of bounding
the iteration count, except to remark that the bound we
employ roughly measure how well B−1 approximates A−1.

In what follows, we first present our notation and state
some preliminary definitions. We then review results on
convergence bounds for preconditioned iterative methods.
We will close this section by presenting some techniques for
bounding these convergence rates.

2.2 Notation and Preliminary Definitions
For typographic clarity, the vectors in this paper are type-

set in boldface, e.g., x. The i-th coordinate of x is specified
as xi. Similarly, subscripts are also used to specify elements
of a matrix, e.g., Ai,j .

The edge-vertex incidence matrix of a graph G = (V, E)
is a |E|×|V | matrix Γ of elements {−1, 0, 1 }. For each edge
e = (u, v), we set Γe,u to -1 and Γe,v to 1 (the ordering of u
and v can be arbitrarily fixed). All other entries are set to 0.
When G is weighted, let c(e) be the weight of an edge e. We
introduce a |E|×|E| diagonal matrix W , where We,e = c(e).
The Laplacian of G is defined to be ΓTWΓ.

Let A be ΓTWΓ. Clearly, A is a square matrix of size
|V | × |V |. Since A can be decomposed into the form ΓTWΓ,
A is symmetric positive semidefinite (SPSD). It is not hard
to verify that Ai,j = Aj,i = −Wij,ij for i �= j, and that the
rows and columns of A sum to 0.

For convenience, we use G to refer to the Laplacian of a
graph G, relying upon the context for differentiation. We
also define the incident weight of a vertex u ∈ V to be
c(u) =

�
(u,v)∈E c((u, v)) and also generalize this to a set

of vertices. Finally, we use {m⊗n} as a shorthand for
{ (i, j) | i ∈ { 1, . . . , m }, j ∈ { 1, . . . , n } }.
2.3 Support Theory

In this section, we present the definitions and concepts
necessary to link the task of bounding the iteration count
of an iterative method to the design of a (combinatorial)
preconditioner. Note that A and B have the same size within
this subsection.

Definition 2.1. The support required by a matrix B for
a matrix A is defined as

σ(A/B) := min{ τ ∈ R | ∀x, xT(τB − A)x ≥ 0 }.

178

We say that σ(A/B) is ∞ or −∞ in the cases when the
minimum is taken over an empty set or is unbounded re-
spectively. To avoid such complications, we assume that
both A and B are positive semidefinite (PSD) and that
null(A) = null(B), which is certainly true for graph Lapla-
cians.

The notion of support has several interpretations related
to electrical networks, graph embeddings, and graph con-
nectivity to which we will appeal through the course of this
paper. Support numbers enjoy many nice properties which
are proven and catalogued in Boman and Hendrickson [8].

Lemma 2.2 (Transitivity).

σ(A/C) ≤ σ(A/B) · σ(B/C)

Definition 2.3. The generalized condition number of a
pair of psd matrices (A,B) such that null(A) = null(B) is
defined to be κ(A, B) := σ(A/B) · σ(B/A).

We acknowledge that this is not that standard definition
of κ(A,B) (say, as in [16]); however, given our restrictions
on A and B, this is an equivalent one. It is well-known
that Preconditioned Conjugate Gradient (PCG) on a sys-
tem Ax = b with the preconditioner B requires at most�

κ(A, B) log(1/ε) iterations [16] to find a solution x such
that ‖Ax − b‖ ≤ ε‖b‖.

We conclude this section by presenting the main combina-
torial tool upon which both Vaidya [26] and Gremban and
Miller [14] relied. An embedding of a guest graph G into a
host graph H is a mapping, P from the edges of G to simple
paths in H . For an edge g ∈ E(G), |P(g)| refers to the num-
ber of edges in the path P(g). This quantity is often called
the dilation of g, or dil(g). For an edge h ∈ E(H), we call
cong(h) :=

�
{ g∈E(G) | h∈P(g) } wG(g)/wH(h) the congestion

of h.

Lemma 2.4 (Congestion-Dilation). Given an embed-
ding P from G to H,

σ(L(G)/L(H)) ≤
�

max
h∈E(H)

cong(h)

��
max

g∈E(G)
dil(g)

�
.

We note that a proof of the Congestion-Dilation Lemma
is given by Bern et al. [4]. A more detailed and general
account of the material here can also be found in Boman
and Hendrickson [8] or Gremban [14].

2.4 Support Tree Conjugate Gradient
Since a support tree preconditioner is defined over a po-

tentially larger graph than the one for which it is created, we
need tools that are capable of analyzing the support between
matrices of different sizes.

Let A and B =

�
T U
UT W

�
be SDD matrices such that T

is nonsingular and both A and W are n×n matrices. A case
of particular interest is when both A and B are Laplacians,
and B corresponds to that of a tree with T representing the
connectivity among the internal nodes of the tree, U repre-
senting the connectivity between the internal nodes and the
leaves, and W a diagonal matrix representing the degrees
of the leaves, which are identified with the vertices of A.
In this case we say B is a support tree for A. Gremban’s
thesis describes an extension of PCG, called Support Tree
Conjugate Gradient (STCG), which is designed to handle

the case in which we seek to precondition A with the poten-
tially larger matrix B [14]. In particular, he demonstrated
the following.

Lemma 2.5. Given A and B as defined above, if Q =
W −UTT−1U then STCG on A using B as a preconditioner
takes at most

�
κ(A, Q) log(1/ε) iterations.

By convention, Q is called the Schur complement of B
(with respect to W). Viewed as a graph, Q represents the
connectivity among the vertices of W in B. But as a matrix,
it can have a much higher density than B. STCG is in fact
designed to efficiently simulate invoking PCG with Q as a
preconditioner. The latter requires solving a system of the
form Qx = b for x during each iteration, whereas STCG

solves for x by solving B

�
y
x

�
=

�
0
b

�
and simply discarding

y.

Proposition 2.6. If B

�
y
x

�
=

�
0
b

�
, then Qx = b.

Since B is a tree, the system in Proposition 2.6 can be
directly solved in both time and space linear to the number
of leaves.. By Lemma 2.5 we may bound the convergence
rate of STCG on A and B by bounding σ(A/Q) · σ(Q/A);
however, in our analysis we will find it more convenient to
refer directly to the structure of larger Laplacian B, so we
introduce the following definitions.

Let A and B be defined as above, and let Ā =

�
0 0
0 A

�
be the same size as B. The matrix Ā allows us to compare
A and B and leads to a natural definition of σ(A/B).

Definition 2.7. The support of B for A, denoted σ(A/B),
is σ(Ā/B).

The proposition below, which follows from Proposition 6.1
in Boman and Hendrickson [8], demonstrates that the above
definition is consistent.

Proposition 2.8. Given the definitions above, if T is
nonsingular then σ(Ā/B) = σ(A/Q).

We may also think of Ā as a Laplacian, albeit one whose
graph has isolated vertices, which gives us an analogue of
Lemma 2.4 that we can use to directly bound σ(A/B).

Corollary 2.9 (Extended Congestion-Dilation).

Given an embedding P of the edges of A as paths in a po-
tentially larger graph B, we have

σ(A/B) ≤ (max
h∈E(B)

congP(h)) · (max
g∈E(A)

dilP(g)).

We must take a slightly different approach in defining
σ(B/A) due to a disparity in the null spaces of Ā and B.

Definition 2.10. The support of A for B, σ(B/A) is

min{τ | ∀x, τ ·xTAx ≥
�

y
x

�
TB

�
y
x

�
, where y = −T−1Ux}.

Although the definition above may not seem as natural as
Definition 2.7, it does capture the notion of supporting Q
with A.

Proposition 2.11. We have σ(B/A) = σ(Q/A).

179

3. LAPLACIANS AS CIRCUITS
The lack of techniques to cleanly analyze the support re-

quired for a Laplacian by a smaller Laplacian has been a
major difficulty in the past and have restricted researchers
to analyze only same-sized support graph preconditioners.2

Here we will explore the interpretation of a Laplacian as an
electrical circuit and relate the support bounds presented in
the previous sections to power dissipation, which will prove
to be useful in our analysis of the decomposition trees by
Bienkowski et al. as preconditioners. For a more thorough
account of this interpretation, one ought to consult Doyle
and Snell [11] or Gremban [14], where one can find some of
the results to follow.

3.1 Current and Power
We can view an edge-weighted graph G as a resistive net-

work by replacing the edges with wires and interpreting the
weight of each edge as the conductance—the reciprocal of
the resistance—of the corresponding wire. A vertex in G
will then correspond to either an internal junction or an ex-
ternal terminal. When the distinction is not important, we
will refer to both of these as nodes for simplicity.

Lemma 3.1 and Theorem 3.2 establish the electrical in-
terpretation of Laplacians (as defined in Section 2.2), which
allows us to switch between a weighted graph and its equiv-
alent resistive network to make our theory more intuitive.
Their proofs are in the Appendix.

Lemma 3.1 (Net Current Flow). Suppose an n×n
matrix A is the Laplacian of a resistive network G with n
nodes. If y is the n-vector specifying the voltage at each node
of G, then Ay is the n-vector representing the net current
flow at each node.

Theorem 3.2 (Power Dissipation). Suppose an n ×
n matrix A is the Laplacian of a resistive network G with n
nodes. If y is a n-vector specifying the voltage on each node,
then yTAy is the total power dissipated by G.

3.2 Power and Support
Given the interpretation in the previous section, we may

think of σ(A/B) in a new light.

Proposition 3.3. The support of a Laplacian B for a
Laplacian A, σ(A/B), is the minimum number such that for
all τ ≥ σ(A/B), the circuit τB dissipates as much power as
the circuit A under any voltage settings on the nodes.

Proof Definition 2.1 implies σ(A/B) = min{τ | ∀x, τ ·
xTBx ≥ xTAx}, where by the previous section we may in-
terpret x as voltage settings and xTMx as the power dissi-
pated by a circuit M under the settings x. �

We may also extend this interpretation to the results of
Section 2.4, in which we compare two circuits with different
numbers of nodes. In particular, we will be interested in
the case when we wish to support a circuit represented by

B =

�
T U
UT W

�
with a smaller circuit A, where the nodes

of A are identified with those of W , the terminals of B.

2Bern et al. [4] have also identified this difficulty and pro-
posed new tools. The line of work by Spielman and Teng [24,
25] and the most recent development of Elkin et al. [12] all
use subgraphs and so the Laplacians are of the same size.

For any voltage settings at the terminals of B, Kirch-
hoff’s Laws dictate a set of naturally occurring voltages for
the junctions such that they have a net current flow of 0.
Definition 2.10 yields the following.

Corollary 3.4. If the circuit τA dissipates at least as
much power as the circuit B under any voltage setting in
which the terminal voltages in B match the voltages in A
and the internal voltages in B are determined by Kirchhoff’s
Laws, then σ(B/A) ≤ τ .

Proof Let x be the voltage settings applied at the ter-
minals of B and let the voltages at the junctions be deter-
mined by Kirchhoff’s Laws. Since the net current flow at
each of the junctions must be 0 (conservation of current),

by Lemma 3.1, we have B

�
y
x

�
=

�
0
b

�
where b specifies

the current flow at the terminals. Therefore, y = −T−1Ux
and the result now follows from Definition 2.10. �

We finish the section with a new tool that will be useful in
applying the above to our analysis of Räcke’s decomposition
tree as a Support Tree.

Lemma 3.5 (Power Charging). Consider a complete
(m, n) bipartite conductive network G containing conductors
ci,j for (i, j) ∈ {m⊗n}. Let the conductance of ci,j be αi ·βj

such that
�m

i=1 αi = δ =
�n

j=1 βj with nonnegative αi’s and
βj ’s. Also, let v and w be any m-vector and n-vector respec-
tively. When applying voltages v and w on the left and right
hand side of G respectively, the total power consumed by G
is no less than a unit conductor across voltages

�m
i=1 αivi

and
�n

j=1 βjwj . Mathematically,� m�
i=1

αivi −
n�

j=1

βjwj

�2

≤
�

(i,j)∈{m⊗n}
αiβj(vi − wj)

2

4. ANALYZING THE DECOMPOSITION
TREES BY BIENKOWSKI ET AL.

The focus of our paper is on analyzing the decomposition
trees introduced by Bienkowski, Korzeniowski and Räcke [5]
for oblivious routing and proving that they work well as
preconditioners for graph Laplacians.

Let G be the n-vertex graph Laplacian for which a pre-
conditioner is sought. Bienkowski et al. described how a
decomposition tree T can be constructed from G. To an-
alyze the performance of STCG on G preconditioned with
T , from Lemma 2.5, we know that this amounts to bound-
ing κ(G, T). Our attempt to bound κ(G, T) involves several
steps, which are shown in the “table of content” in Figure 1.
Each step will be explained in the referred subsection. (Ex-
pressions RC(T) and F (G) in Figure 1 will be defined in
Sections 4.3 and 4.5 respectively.)

4.1 The Decomposition Trees
We first review the tree construction of Bienkowski et al.

and summarize the relevant notations.
Laminar. Given a graph G = (V, E), the decomposition
tree T = (VT , ET) introduced by Bienkowski et al. corre-
sponds to a laminar decomposition of G. Each node vt ∈ VT

corresponds to a cluster U ⊆ V in G to be denoted Svt .
The root node of T corresponds to the whole vertex set V ,
whereas each leaf of T corresponds to a single vertex in G.

180

κ(G, T) =
Def. 2.3

�
��������	
�������

σ(G/T) ≤
Cor. 2.9

�� congestion ≤ 1

dilation = O(log n)

σ(T/G) ≤
Lem. 2.2

�
���	
��

σ(T/RC(T)) ≤ 1 by electrical argument

σ(RC(T)/G) ≤
Lem. 2.4

�� congestion = O(log4 n)

dilation = O(F (G) log2 n)

Section 4.2

Section 4.2

Section 4.4

Section 4.6

Section 4.6

Figure 1: The Five Steps to Theorem 4.7

To be a laminar decomposition, we further require that there
is a leaf for each vertex in G and that the tree node vt is
a child of ut iff the cluster Svt is contained within Sut and
not any other cluster Swt that is also contained within Sut .

By first building T using G and then computing a ran-
domized embedding of T back into G, a routing algorithm
can simply route the requests on T instead. The intermedi-
ate locations of the actual path to be taken on G is specified
by the randomized embedding, whereas the route between
intermediate locations are specified by the solutions to a set
of concurrent multicommodity flow problems (CMCFPs).
Note that T can be computed using G alone and hence it is
computed only once. Each CMCFP in turn depends on T
only and can also be solved in a preprocessing stage.
Color. The decomposition trees of Bienkowski et al. have
a very particular form. First take any laminar decomposi-
tion tree T and label all its nodes red. We denote the color
of a node by its superscript as in vr

t . Then for each non-
root (red) node vr

t , introduce a new blue node vb
t . For every

edge (ur
t , v

r
t) with ur

t being the parent, let vb
t be the blue

node associated with Svr
t
. Replace the edge (ur

t , v
r
t) by two

new edges (ur
t , v

b
t) and (vb

t , v
r
t). (In our notation, the parent

node of a tree edge (ut, vt) will always be ut. Also, the color
of a node will be dropped when both colors are applicable.)
Notice that vr

t is the only child of vb
t and Svr

t
and Svb

t
refer

to the same cluster.
Level. The level of a node is defined to be the number of
red nodes on the root-to-node path, not counting the root
itself. For example, each of the children (blue) of the root
node and its only child (red) are both on level 1. The level
of a cluster is defined to be the level of its associated red
node. Note that the root is at level 0. Let V l

t denote all
the nodes in T at level l. The level l-decomposition of G
corresponds to the clusters specified by the nodes in V l

t .
Weight. Let cap(X, Y) =

�
{ (x,y)∈E | x∈X,y∈Y } c((x, y))

be the capacity between the set X ⊆ V and Y ⊆ V . We
will use out(X) as a shorthand for cap(X, V \X). Let vt be
a level l node and ut be its parent. The weight of (ut, vt)
is not explicitly specified by Bienkowski et al. since their
proofs are based on analyzing the competitive ratio of their
algorithm to the optimal offline algorithm. For our purpose
(and it is also implicit in their proofs), we will make the
following definition.

Definition 4.1. Consider a non-root node vt in the de-
composition tree. The weight of the edge connecting vt to its
parent is defined to be out(Svt).

Furthermore, with respect to a fixed T , we define the weight
function wl(X) to be cap(X, V)−�vt∈V l

t
cap(X ∩Svt , Svt)

for X ⊆ V .
Connectivity Characteristics. Let γ denote the max-
imum possible ratio between the throughput fraction of a

CMCFP and the sparsity of an approximate sparsest cut on
G. Note that γ is a function of three things: the CMCFP,
the graph G, and the algorithm used to approximate the
cut. For instance, using the algorithm by Aumann and Ra-
bani [2] on a k-commodities CMCFP on a general graph, we
have γ = O(log k). Bienkowski et al. defined two expres-
sions based on γ.

Definition 4.2. Define λ = 64γ log n and qmin = 1/(24γλ).

Using γ, the following two characteristics are defined. Let
S be a level l cluster. We say that S fulfills the throughput
property if the solution to the CMCFP in S has a throughput
fraction of at least qmin. Notice that qmin = Ω(1/ log3 n)
since all the CMCFPs in this section have at most O(n2)
commodities. Also, we say that S fulfills the precondition if

max
|U|≤ 3

4 |S|

wl(U)

cap(U, S\U)
≤ λ. (4.1)

Among other things, Bienkowski et al. proved the follow-
ing theorem.

Theorem 4.3 (Lemma 4, [5]). Let G be a graph with
n vertices. There exists a polynomial time algorithm to com-
pute decomposition tree T from G such that every cluster in
the decomposition satisfies both the throughput property and
the precondition. Moreover, the height of tree is O(log n).

4.2 Bounding σ(G/T)

To bound σ(G/T), it suffices to inspect the embedding of
G into T . The dilation is bounded by O(log n) since this is
the diameter of T as in Theorem 4.3. As for the congestion,
consider an edge (x, y) ∈ E. It corresponds to a particular
leaf-to-leaf path in T that only uses the parent edge of a
node vt iff (x, y) is a boundary edge of Svt . Now consider
each of the tree edge (ut, vt) on this path. Let ut be the
parent node. The weight assigned to (ut, vt) is out(Svt) as
in Definition 4.1. Therefore, (ut, vt) has sufficient weight
reserved for (x, y) and the congestion on it cannot exceed 1.
By Corollary 2.9, we have

σ(G/T) = O(log n). (4.2)

4.3 The Räcke Complement
In an initialization phase, Bienkowski et al. constructs a

CMCFP in Sut for each ut in T . Suppose ut is a level (l−1)
node with d children vt1, . . . , vtd. (Note that d is 1 when ut

is blue.) In the CMCFP for ut, there are |Sut |2 commodities
fu,v for each pair of u, v ∈ Sut . The source and the sink of
fu,v are u and v respectively and the demand is

wl(u) · wl(v)

wl(Sut)
. (4.3)

The flows are required to stay within Sut and must respect
the edge weights as link capacities.

181

Let q be the throughput fraction of a solution to the CM-
CFP, i.e., q is the minimum, over all commodities, of the
fraction of the commodity’s demand that is actually met by
the solution. An optimal solution maximizes q.

We view the CMCFP corresponding to ut as a complete
graph Kut on the vertex set Sut where the weight of each
edge (u, v) inside Sut is the demand that will be sent between
u and v, i.e., du,v + dv,u. (Although these two terms have
the same value in the construction of Bienkowski et al., later
it will be more intuitive to consider these two terms sepa-
rately.) We call the overlapping of the |VT | complete graphs
Kuts the Räcke complement3 of T , denoted RC(T).

Definition 4.4. The Räcke complement of T is a com-
plete graph on the vertex set V . The weight of an edge (u, v)
is the sum of its weight in each of the Kut containing it.

4.4 Bounding σ(T/RC(T))

The reason we introduced the analytical tools based on
electrical networks in Section 3 is because we need a man-
ageable way to bound the support required for a matrix by
a smaller matrix (T by RC(T)). We now use Corollary 3.4
to show that σ(T/RC(T)) ≤ 1.

First fix an arbitrary n-vector x. We apply x as the volt-
ages at the terminals of T and let the voltages at the junc-
tions be the naturally-occurring voltages as determined by
Kirchhoff’s Laws. We would like to bound the power dissi-
pation of T under these voltage settings by that of RC(T)
under x. However, we do not have a clean method to di-
rectly obtain a bound for the former. Our solution is to
pick the voltages at the junctions at our choice. Apply the
Dirichlet Principle (see [11, p. 64]), which says that enforc-
ing any junction voltages other than the naturally-occurring
ones can only increase total power dissipation of T , this pro-
vides us with an upperbound.

The actual choice of voltages is inspired by the construc-
tion of Bienkowski et al.. Let vt be a node at level l and u be
a vertex in Svt . If vt is blue, then in their construction vt will
be simulated by a vertex u with probability wl(u)/wl(Svt).
If vt is red, then the probability is wl+1(u)/wl+1(Svt). In
our analysis, we set the voltage of vt to the weighted sum
of the voltages of the leaves that will simulate vt. More
precisely,

voltage(vt) =

��
u∈Svt

wl(u)
wl(Svt)

xu if vt is blue, or�
u∈Svt

wl+1(u)

wl+1(Svt)
xu if vt is red.

(4.4)
At this point, we can verify that the voltages at all the
junctions (x) and terminals (our choices) are all specified.

Let ur
t be a level (l − 1) red node with d blue children

vb
t1, v

b
t2, . . . , v

b
td. Notice that these blue children are at level l

and they each have exactly one red child, also at level l.
Further let the red child of vb

ti be vr
ti for i = 1, 2, . . . , d. We

will bound the power dissipation of the (ur
t , v

b
ti) edges (a star

centered at ur
t spanning its d blue children) and (vb

ti, v
r
ti)

edges (d parallel edges from a blue parent to a red child)
as two groups separately. Recall from circuit theory that
C = 1/R (conductance) and P = C ·V 2 (power dissipation).

3See Section 5 for the reason behind this naming.

Group 1: (ur
t , v

b
ti) edges

The total power dissipation on these edges is

�d
i=1

�C: conductance of (ur
t , vb

ti) �� �
out(Svb

ti
) ×

�� V : voltage difference across (ur
t , vb

ti) �� ��
v∈S

vb
ti

wl(v)

wl(Svb
ti

)
xv

�
−
� �

u∈Sur
t

wl(u)

wl(Sur
t
)

xu

��2�
.

We can verify that the two fractions above are both proba-
bilities (sum to 1). By Lemma 3.5 (δ = 1), this is at most

d�
i=1

�
out(Svb

ti
)×

�
u∈Sur

t
,v∈S

vb
ti

�
wl(v)

wl(Svb
ti

)
· wl(u)

wl(Sur
t
)

�
(xv−xu)2

�
.

Since the Svb
ti

’s form a partition of Sur
t
, there are exactly

|Sur
t
|2 terms when we expand the sum and we get

�
u∈Sur

t
,v∈Sur

t

�
wl(v)

wl(Svb
tv

)
· out(Svb

tv
) · wl(u)

wl(Sur
t
)

�
(xv − xu)2

where Svb
tv

denotes the level l cluster Svb
ti

that contains v.

Observe that wl(Svb
tv

) is actually out(Svb
tv

) and so they can-

cel each other. Using (4.3), this simplifies to
�

u,v∈Sur
t

(du,v ·
(xv − xu)2), which is exactly the power dissipated in Kur

t

when the voltage settings are specified by the corresponding
coordinates of x.
Group 2: (vb

ti, v
r
ti) edges

The total power dissipation on these edges is

�d
i=1

�C: conductance of (vb
ti, vr

ti) �� �
out(Svr

ti
) ×

�� V : voltage difference across (vb
ti, vr

ti) �� ��
v∈Svr

ti

wl+1(v)

wl+1(Svr
ti

)
xv

�
−
� �

u∈S
vb

ti

wl(u)

wl(Svb
ti

)
xu

��2�
.

We can verify that the two fractions are both probabilities.
By Lemma 3.5 (δ = 1), this is at most

d�
i=1

�
out(Svr

ti
)×

�
u∈S

vb
ti

,v∈Svr
ti

�
wl+1(v)

wl+1(Svr
ti

)
· wl(u)

wl(Svb
ti

)

�
(xv−xu)2

�
.

Observe that Svr
ti

and Svb
ti

are in fact the same cluster.

Hence wl(Svb
ti

) equals to out(Svr
ti

) and they cancel each

other. Furthermore, we can check that wl(u) ≤ wl+1(u).
Combining these observations, this is at most

d�
i=1

� �
u,v∈S

vb
ti

�
wl+1(v) · wl+1(u)

wl+1(Svr
ti

)

�
(xv − xu)2

�
.

Consider each of these d sums individually. Using (4.3),
each sum corresponds to

�
u,v∈S

vb
ti

(du,v ·(xv −xu)2), which

is exactly the power dissipated in Kvb
ti

when the voltage

settings are specified by the corresponding coordinates of x.

182

Combining the results from the two groups, we conclude

σ(T/RC(T)) ≤ 1. (4.5)

4.5 Flow Shortening
We now specify and analyze the embedding of RC(T) into

G, both of which are on the same set of vertices. The vertex
sets are embedded straightforwardly, and it remains to show
how an edge (u, v) in RC(T) can be embedded into G.

In Definition 4.4, the weight of (u, v) in RC(T) is the
sum of the demands between u and v, summing over the
CMCFPs inside the clusters containing them. Naturally we
embed (u, v) into the overlapping of the flow paths in the
solutions to these CMCFPs. Notice that the length of the
longest flow path corresponds to the dilation of this embed-
ding. It is straightforward to bound this by n, but we seek
a tighter analysis. We will use a recent result by Kolman
and Scheideler [18] to achieve this.

First we need two definitions. In a product multicommod-
ity flow problem (PMFP) on G, a nonnegative weight π(u)
is associated with each vertex u. There is a commodity for
each ordered pair of nodes (u, v) with demand π(u)π(v).

Let I0 be the PMFP on G in which π(u) = c(u)/
�

c(V) for
each u. The flow number of G, denoted F (G), is defined
as the minimum, taken over all feasible solutions S of I0, of
the maximum of the congestion and the dilation of S. The
following theorem was proved in [18]:

Theorem 4.5 (part of Lemma 9, [18]). Given a graph
with flow number F . For any ε ∈ (0, 1] and for any feasible
solution S to an instance of CMCFP with a throughput frac-
tion of q, there exists a feasible solution with throughput frac-
tion q/(1 + ε) that uses paths of length at most 2F (1 + 1/ε).

For our purpose, we will fix ε to be 1. Theorem 4.5 allows
us to half the throughput fraction of any flow solution and
obtain a bound on the path lengths that can be a lot tighter
than O(n). The flow numbers for several common graphs
are as follows [18]: F (line) = Θ(n), F (mesh) = Θ(

√
n),

F (hypercube) = Θ(log n), F (expander) = Θ(log(n)). In
general, the following theorem holds:

Theorem 4.6 (Theorem 4, [18]). Consider a graph

G = (V, E). Let α(G) = minU⊂V,|U|≤|V |/2
out(U)
|U| be the ex-

pansion of G and let Δ(G) = maxv∈V c(v) be the total in-
cident weight of the heaviest vertex in G. The flow num-
ber of G satisfies F (G) = Ω(α−1(G)) and also F (G) =
O(α−1(G)Δ(G) log n).

4.6 Bounding σ(RC(T)/G)

To analyze the embedding of RC(T) into G, we will con-
sider the embedding of each Kvt individually. Recall that
Kvt is a complete graph on Svt and the weight of an edge
between two vertices is the total demand between them.

By Theorem 4.3, the cluster Svt satisfies the through-
put property, which states that states that the CMCFP set
up inside it has a throughput fraction of at least qmin =
Ω(1/ log3 n). Since all the clusters corresponding to red
nodes on level l form a partition of V , their flows can be
routed simultaneously without affecting each other. Simi-
larly, this also holds for the flows in the blue clusters. Apply-
ing the flow shortening lemma only lower the fraction by a
constant. By Theorem 4.3, there are O(log n) levels. There-
fore, the congestion on any edge in G when fully routing the
demands in all the CMCFPs simultaneously is O(log4 n).

We now bound the length of the (already shortened) flow
paths in the CMCFP in Svt using Theorem 4.6. First, note
that Δ(G) is an upperbound on Δ(Svt). Then, observe that
even though α(Svt) can be smaller than α(G), they are re-
lated by the bandwidth ratio λvt as follows. Let Svt be
on level l. The precondition states that for each subset U
up to 3/4 of the size Svt , λ is an upperbound on the ra-

tio wl(U)
cap(U,Svt\U)

. We can manipulate this ratio to allow us

to relate α(Svt) to α(G) as follows. Consider the following
inequality:

1 + λ ≥ 1 +
wl(U)

cap(U, Svt\U)

=
cap(U,Svt\U) + wl(U)

cap(U, Svt\U)
=

out(U)

cap(U, Svt\U)

Observe that cap(U, Svt\U) is in fact out(U) within Svt .
By applying the definition of λ in Definition 4.2, we have
α(Svt) = Ω((1 + λ)α(G)) = Ω(α(G)/ log2 n). Therefore, we
conclude the dilation of any edge in RC(T) is O(α−1(G)Δ(G)
log3 n) and with Lemma 2.4 we obtain

σ(RC(T)/G) ≤ O(α−1(G)Δ(G) log7 n). (4.6)

4.7 Our Bound on κ(G, T)

Combining the bounds in (4.2), (4.5), (4.6) using Defi-
nition 2.3, Lemma 2.2, Lemma 2.4 and Corollary 2.9, our
bound on κ(G, T) is as follows.

Theorem 4.7. Let T be the decomposition tree constructed
by the algorithm of Bienkowski et al. [5] on G. Then

κ(T, G) = O(α−1(G)Δ(G) log8 n).

Finally, let’s consider a
√

n×√
n square mesh M with unit

edge weights as an example application. It can be verified
that α(M) is O(1/

√
n). Our bound will then be κ(M, TM) =

O(
√

n log8 n).

5. CONCLUDING REMARKS
In an earlier version of this paper, our analysis focused

on the decomposition trees by Räcke [21]. Later on, Bi-
enkowski, Korzeniowski and Räcke [5] introduced the de-
composition trees used in the present paper. Our techniques
were in fact developed using the earlier paper ([21]) and as
such our techniques can also be used to analyze the decom-
position trees in the earlier paper with very little adaption
to cope with the differences between the two constructions.
(This also explains the naming of Räcke complement in Sec-
tion 4.3. We feel that this is still appropriate since our idea
was inspired by the earlier construction.)

Furthermore, as Bienkowski et al. have pointed out in
their paper, if an exponential time algorithm is used for com-
puting the sparsest cuts in their construction exactly instead
of approximately, then the quality of their decomposition
trees will match that of Räcke’s [21] and the proofs in the
later paper are simpler. This quality improvement can be
carried over to Theorem 4.7 using our proof techniques. In
particular, two logarithmic factors can be shaved in (4.6)—
one in the congestion and the other in the dilation—and the
exponent in Theorem 4.7 will drop from 8 to 6. We note
that this in fact matches our result in the analysis of the
decomposition trees in Räcke’s earlier paper.

183

Acknowledgements
We would like to thank Eduardo Laber, Harald Räcke and
Andrea Richa for fruitful discussions. We also thank the
anonymous referees who reviewed this paper and the previ-
ous versions for providing helpful feedback.

6. REFERENCES

[1] N. Alon, R. Karp, D. Peleg, and D. West. A graph-theoretic
game and its application to the k-server problem. SIAM J.
Comput., 24(1):78–100, 1995.

[2] Y. Aumann and Y. Rabani. An O(log k) approximate
min-cut max-flow theorem and approximation algorithm.
SIAM Journal on Computing, 27(1):291–301, 1998.

[3] O. Axelsson. Iterative Solution Methods. Cambridge
University Press, 1996.

[4] M. Bern, J. R. Gilbert, B. Hendrickson, N. Nguyen, and
S. Toledo. Support-graph preconditioners. SIAM Journal on
Matrix Analysis and Applications, 2002. Submitted.

[5] M. Bienkowski, M. Korzeniowski, and H. Räcke. A practical
algorithm for constructing oblivious routing schemes. In
Proceedings of the 15th Annual ACM Symposium on
Parallel Algorithms and Architectures, 2003.

[6] E. Boman, D. Chen, B. Hendrickson, and S. Toledo.
Maximum-weight-basis preconditioners. Numerical Linear
Algebra and Applications, 2002. Submitted.

[7] E. Boman and B. Hendrickson, 2002. Personal
communication.

[8] E. Boman and B. Hendrickson. Support theory for
preconditioning. SIAM Journal on Matrix Analysis and
Applications, 2002. Submitted.

[9] D. Chen. Analysis, implementation, and evaluation of
Vaidya’s preconditioners. Master’s thesis, School of
Mathematical Sciences, Tel-Aviv University, 2001.

[10] D. Chen and S. Toledo. Implementation and evaluation of
Vaidya’s preconditioners. In Preconditioning 2001, Tahoe
City, CA, 2001.

[11] P. G. Doyle and J. L. Snell. Random Walks and Electric
Networks, volume 22 of Carus Mathematical Monographs.
Mathematical Association of America, 1984.

[12] M. Elkin, Y. Emek, D. A. Spielman, and S. Teng.
Lower-stretch spanning trees. In Proceedings of the
Thirty-Seventh Annual ACM Symposium on Theory of
Computing, pages 494–503, 2005.

[13] G. H. Golub and C. F. Van Loan. Matrix Computations.
Johns Hopkins University Press, 3 edition, 1996.

[14] K. Gremban. Combinatorial Preconditioners for Sparse,
Symmetric, Diagonally Dominant Linear Systems. PhD
thesis, Carnegie Mellon University, Pittsburgh, October
1996. CMU CS Tech Report CMU-CS-96-123.

[15] K. D. Gremban, G. L. Miller, and M. Zagha. Performance
evaluation of a new parallel preconditioner. In Proceedings of
the Ninth International Parallel Processing Symposium,
pages 65–69, Santa Barbara, Apr. 1995.

[16] L. A. Hageman and D. M. Young. Applied Iterative
Methods. Computer Science and Applied Methematics.
Academic Press, Inc, San Diego and London, 1981.

[17] C. Harrelson, K. Hildrum, and S. Rao. A polynomial-time
tree decomposition to minimize congestion. In Proceedings of
the 15th Annual ACM Symposium on Parallel Algorithms
and Architectures, 2003.

[18] P. Kolman and C. Scheideler. Improved bounds for the
unsplittable flow problem. In Proceedings of the Thirteenth
Annual ACM–SIAM Symposium on Discrete Algorithms,
pages 184–193, 2002.

[19] R. J. Lipton, D. J. Rose, and R. E. Tarjan. Generalized
nested dissection. SIAM J. on Numerical Analysis,
16:346–358, 1979.

[20] G. L. Miller and P. C. Richter. Lower bounds for graph
embeddings and combinatorial preconditioners. In

Proceedings of the Sixteenth ACM Symposium on Parallel
Algorithms and Architectures, pages 112–119, 2004.

[21] H. Räcke. Minimizing congestion in general networks. In
Proceedings of the 43rd Symposium on Foundations of
Computer Science, pages 43–52. IEEE, 2002.

[22] J. Reif. Efficient approximate solution of sparse linear
systems. Computers and Mathematics, with Applications,
36, 1998.

[23] Y. Saad. Iterative Methods for Sparse Linear Systems.
PWS Publishing Company, 1996.

[24] D. A. Spielman and S. Teng. Solving SSPDD linear systems
in time O(m1.31). In Proceedings of the Forty-Forth Annual
Symposium on Foundations of Computer Science, pages
416–427, 2003.

[25] D. A. Spielman and S. Teng. Nearly-linear time algorithms
for graph paritioning, graph sparsification, and solving linear
systems. In Proceedings of the Thirty-Sixth Annual ACM
Symposium on Theory of Computing, pages 81–90, 2004.

[26] P. Vaidya. Solving linear equations with symmetric
diagonally dominant matrices by constructing good
preconditioners. A talk based on an unpublished manuscript,
October 1991.

APPENDIX

A. EXTENSIONS
In this section we present an extension of good preconditioning

techniques for Laplacians to solving any real symmetric diagonally-
dominant system with a nonnegative diagonal. First we consider
matrices M that can be written as L + D, where L is a Lapla-
cian and D is a nonnegative diagonal matrix. Then we present a
technique presented in Gremban [14] for handling matrices with
positive off-diagonal elements. Composing the two gives us the
class of all symmetric diagonally-dominant real matrices.

A.1 Strict Diagonal-Dominance
Suppose we are given a matrix A = L+D, where L is a Lapla-

cian and D is a nonnegative diagonal matrix, for which we seek
to construct a preconditioner. A simple approach, which we con-
sider folklore, is to construct a good preconditioner, P for L and
then use P + D as a preconditioner for A. We must slightly
modify this approach since our preconditioners are Support Tree
Preconditioners.

We may construct a Support Tree Preconditioner, B =

�
T U
UT W

�

for L and to use B′ =

�
T U
UT W + D

�
as a preconditioner for A.

If we let Q = W − UTT−1U , by Lemma 2.5 it suffices to bound
σ(A/Q + D) and σ(Q + D/A).

Proposition A.1. If X, Y , and Z are SPSD matrices of the
same size then σ(X + Z/Y + Z) ≤ max{σ(X/Y), 1}.

Proof We have σ(X+Z/Y +Z) = min{τ | ∀x, τ ·xT(Y +Z)x ≥
xT(X +Z)x} = min{τ | ∀x, (τ −1) ·xTZx+τ ·xTY x ≥ xTXx} ≤
max{1, σ(X/Y)}. �

Corollary A.2. If σ(L, Q), σ(Q, L) ≥ 1 then κ(A, Q + D) =
κ(L + D, Q + D) ≤ κ(L, Q).

Thus our bounds for Laplacians also hold for symmetric diagonally-
dominant matrices with non-positive off-diagonals.

A.2 Positive Off-Diagonals
In this section we present a technique of Gremban for solving

(symmetric) systems with positive off-diagonals by invoking any
method for solving (symmetric) systems with non-positive off-
diagonals on an expanded system.

Suppose we seek to solve Ax = b. If A contains positive off-
diagonal elements, we can decompose it as N + P , where P con-
tains precisely the positive off-diagonal elements of A, and N con-
tains the diagonal and negative off-diagonal elements of A. Note

184

that the matrix A′ =

�
N −P
−P N

�
contains only non-positive

off-diagonals while preserving any symmetry in A.

We may instead simply solve the system A′
�

u
v

�
=

�
b
−b

�
,

since

A

�
u− v

2

�
=

Nu− Pv

2
− Nv − Pu

2
= b.

As stated this is simply a preprocessing trick; however, one can
convert a preconditioner, B′, for A′ into one for A with no worse
a generalized condition bound. If B′ satisfies some additional
symmetry constraints, then one can also solve systems over B in
linear time, which would allow one to directly apply STCG to A
using B as a preconditioner.

B. PROOFS FOR VIEWING LAPLACIANS
AS ELECTRIC CIRCUITS

This appendix contains the proofs omitted in Section 3.

Lemma B.1. When u �= v, Au,v equals to the negated weight
of the edge (u, v). Otherwise, Av,v is the sum of the weights of
the edges incident on the vertex v. Therefore, A is diagonally
dominant.

Lemma B.2. The signs on the two entries defining an edge
in an edge-vertex incidence matrix Γ can be arbitrary, as long as
they differ, and yet this still results in the same Laplacian matrix
A = ΓTWΓ.

Proof of Lemma 3.1:
By Lemma B.1, we have

(Ay)i = −
i−1�
j=1

cjyj +
n�

j=1
j �=i

cjyi −
n�

j=i+1

cjyj =
n�

j=1
j �=i

cj(yi − yj).

This is precisely the net current flow into the i-th node of G. (The
net current flow into a node is the sum, over all incident wires, of
the product between the conductance the wire and the potential
difference across the wire.) �

Proof of Theorem 3.2:
By Lemma B.2, w.l.o.g. let every wire in G be oriented in such

a way that each wire starts at the vertex with the larger index
and ends at the vertex with the smaller index. (So the vertex
with the smaller index will correspond to a “+1” in Γ.)

Consider a wire ei = (via, vib) ∈ E. Observe that Γy =�n
j=1 yjΓ(j) and thus

(Γy)i =
n�

j=1

yjΓi,j .

By our orientation assumption and the fact that only two entries
are nonzero in each row of Γ, we can simplify this to

(Γy)i = yia − yib

for some indices ia and ib. Using the following identity that holds
for arbitrary m × m matrix M and m-vector x,

xTMx =
m�

i=1

xi

� m�
j=1

xjMi,j

�
=

�
(i,j)∈{m⊗m}

xixjMi,j ,

we have

yTAy = (Γy)TW (Γy) =
�

(i,j)∈{|E|⊗|E|}
(yia−yib)(yjc−yjd)Wi,j .

Since Wi,j = 0 for i �= j, this yields

|E|�
i=1

(yia − yib)
2Wi,i,

which is precisely summing the power dissipated over all wires in
G. (The power dissipated by a wire is the square of the voltage
difference between the two end-points multiplied by the conduc-
tance of the wire.) �

Proof of Lemma 3.5:

RHS − LHS

=
�

(i,j)∈{m⊗n}
αiβjv2

i −
�

(i,j)∈{m⊗n}
2αiβjviwj

+
�

(i,j)∈{m⊗n}
αiβjw2

j −
� m�

i=1

αivi

�2

+ 2

� m�
i=1

αivi

�� n�
j=1

βjwj

�
−
� n�

j=1

βjwj

�2

(cancelling the second term with the fifth term)

=
�

(i,j)∈{m⊗n}
αiβjv2

i −
� m�

i=1

αivi

�2

+
�

(i,j)∈{m⊗n}
αiβjw2

j −
� n�

j=1

βjwj

�2

=
m�

i=1

αiv
2
i

� n�
j=1

βj

�
−
� m�

i=1

αivi

�2

+
n�

j=1

βjw2
j

� m�
i=1

αi

�
−
� n�

j=1

βjwj

�2

(α’s and β’s both sum to δ)

= δ
m�

i=1

αiv
2
i −
� m�

i=1

αivi

�2

+ δ
n�

j=1

βjw2
j −
� n�

j=1

βjwj

�2

= δ
m�

i=1

αiv
2
i −
� m�

i=1

α2
i v2

i +
�

(i,j)∈{m⊗m}
i�=j

αiαjvivj

�

+ δ
n�

j=1

βjw2
j −
� n�

j=1

β2
j w2

j +
�

(i,j)∈{n⊗n}
i�=j

βiβjwiwj

�

=
m�

i=1

αi(δ − αi)v
2
i −

�
(i,j)∈{m⊗m}

i�=j

αiαjvivj

+
n�

j=1

βj(δ − βj)w
2
j −

�
(i,j)∈{n⊗n}

i�=j

βiβjwiwj

(α’s and β’s both sum to δ)

=
�

(i,j)∈{m⊗m}
i�=j

αiαj(v
2
i − vivj) +

�
(i,j)∈{n⊗n}

i�=j

βiβj(w
2
i − wiwj)

(grouping (i, j) and (j, i) terms together)

=
�

(i,j)∈{m⊗m}
i<j

αiαj(vi − vj)
2 +

�
(i,j)∈{n⊗n}

i<j

βiβj(wi − wj)
2

(αi’s and βj ’s are nonnegative)

≥ 0 �

185

