
LAST but not Least: Online Spanners for Buy-at-Bulk∗

Anupam Gupta† R. Ravi‡ Kunal Talwar§ Seeun William Umboh¶

Abstract

The online (uniform) buy-at-bulk network design prob-
lem asks us to design a network, where the edge-costs
exhibit economy-of-scale. Previous approaches to this
problem used tree-embeddings, giving us randomized
algorithms. Moreover, the optimal results with a log-
arithmic competitive ratio requires the metric on which
the network is being built to be known up-front; the
competitive ratios then depend on the size of this met-
ric (which could be much larger than the number of
terminals that arrive).

We consider the buy-at-bulk problem in the least
restrictive model where the metric is not known in ad-
vance, but revealed in parts along with the demand
points seeking connectivity arriving online. For the sin-
gle sink buy-at-bulk problem, we give a deterministic
online algorithm with competitive ratio that is logarith-
mic in k, the number of terminals that have arrived,
matching the lower bound known even for the online
Steiner tree problem. In the oblivious case when the
buy-at-bulk function used to compute the edge-costs of
the network is not known in advance (but is the same
across all edges), we give a deterministic algorithm with
competitive ratio polylogarithmic in k, the number of
terminals.

At the heart of our algorithms are optimal construc-
tions for online Light Approximate Shortest-path Trees
(LASTs) and spanners, and their variants. We give con-
structions that have optimal trade-offs in terms of cost

∗The full version of this paper can be found at: https:

//arxiv.org/abs/1611.00052
†Computer Science Department, Carnegie Mellon University,

Pittsburgh, PA 15213, USA. Research partly supported by NSF
awards CCF-1319811, CCF-1540541 and CCF-1617790.
‡Tepper School of Business, Carnegie Mellon University, USA,

ravi@cmu.edu; This material is based upon research supported in

part by the U. S. Office of Naval Research under award number
N00014-12-1-1001, and the U. S. National Science Foundation

under award number CCF-1527032.
§Google Research
¶Department of Mathematics and Computer Science,

Eindhoven University of Technology, Netherlands. Email:

seeun.umboh@gmail.com. This work was supported in part by
ERC consolidator grant 617951 and NSF grant CCF-1320854.

Part of this work was done while a student at the University of

Wisconsin - Madison, and while visiting the Simons Institute for
the Theory of Computing.

and stretch. We also define and give constructions for
a new notion of LASTs where the set of roots (in ad-
dition to the points) expands over time. We expect
these techniques will find applications in other online
network-design problems.

1 Introduction

The model of (uniform) buy-at-bulk network design
captures economies-of-scale in routing problems. Given
an undirected graph G = (V,E) with edge lengths
d : E → R≥0—we can assume the lengths form a
metric—the cost of sending xe flow over any edge e
is d(e) · f(xe) where f is some concave cost function.
The total cost is the sum over all edges of the per-
edge cost. Given some traffic matrix (a.k.a. demand),
the goal is now to find a routing for the demand to
minimize the total cost. This model is well studied
both in the operations research and approximation
algorithms communities, both in the offline and online
settings. In the offline setting, an early result was an
O(log k)-approximation due to Awerbuch and Azar, one
of the first uses of tree embeddings in approximation
algorithms [AA97]—here k is the number of demands.
For the single-sink case, the first O(1)-approximation
was given by [GMM09]. In fact, one can get a constant-
factor even for the “oblivious” single-sink case where
the demands are given, but the actual concave function
f is known only after the network is built [GP12].

The problem is just as interesting in the online
context : in the online single-sink problem, new demand
locations (called terminals) are added over time, and
these must be connected to the central root node as
they arrive. This captures an increasing demand for
telecommunication services as new customers arrive,
and must be connected via access networks to a central
core of nodes already provisioned for high bandwidth.
The Awerbuch-Azar approach of embedding G into
a tree metric T with O(log n) expected stretch (say
using [FRT04]), and then routing on this tree, gives an
O(log n)-competitive randomized algorithm even in the
online case. But this requires that the metric is known
in advance, and the dependence is on n, the number of
nodes in the metric, and not on the number of terminals
k! This may be undesirable in situations when n � k;
for example, when the terminals come from a Euclidean

589 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

05
/1

5/
17

 to
 1

28
.2

.9
2.

19
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

https://arxiv.org/abs/1611.00052
https://arxiv.org/abs/1611.00052

space Rd for some large d. Moreover, we only get
a randomized algorithm (competitive against oblivious
adversaries).1

In this paper, we study the Buy-at-Bulk (BaB)
problem in the online setting, in the least restrictive
model where the metric is not known in advance, so
the distance from some point to the previous points is
revealed only when the point arrives. This forces us to
focus on the problem structure, since we cannot rely
on powerful general techniques like tree embeddings.
Moreover, we aim for deterministic algorithms for the
problem. Our first main result is an asymptotically
optimal deterministic online algorithm for single-sink
buy-at-bulk.

Theorem 1.1. (Deterministic BaB) There exists a
deterministic O(log k)-competitive algorithm for online
single-sink buy-at-bulk, where k is the number of termi-
nals.

Note that the guarantee is best possible, since it
matches the lower bound [IW91] for the special case
of a single cable type encoding the online Steiner tree
problem.

En route, we consider a generalization of the Light
Approximate Shortest-path Trees (LASTs). Given a set
of “sources” and a sink, a LAST is a tree of weight close
to the minimum spanning tree (MST) on the sources
and the sink, such that the tree distance from any
source to the sink is close to the shortest-path distance.
Khuller, Raghavachari, and Young [KRY95] defined and
studied LASTs in the offline setting and showed that
one can get constant stretch with cost constant times
the MST. Ever since their work, LASTs have proved
very versatile in network design applications. We give
(in the full version) a simple construction of LASTs in
the online setting where terminals arrive online. We get
constant stretch, and cost at most O(log k) times the
MST, which is the best possible in the online case.

For our algorithms, we extend the notion of LASTs
to the setting of MLASTs (Multi-sink LASTs) where
both sources and sinks arrive over time. We have to
maintain a set of edges so that every source preserves
its distance to the closest sink arriving before it, at
minimum total cost. We provide a tight deterministic
online algorithm also for MLASTs, which we think is of

1The tree embeddings of Bartal [Bar96] can indeed be done on-

line with O(log k log ∆) expected stretch, where ∆ is the ratio of

maximum to minimum distances in the metric. Essentially, this is
because the probabilistic partitions used to construct the embed-

ding can be computed online. This gives an O(log2 k)-competitive

randomized algorithm, alas sub-optimal by a logarithmic factor,
and still randomized.

independent interest. This construction appears in §3.
Then we use MLASTs to prove Theorem 1.1 in §4.

Oblivious Buy-at-Bulk. We then change our fo-
cus to the oblivious problem. Here we are given neither
the terminals nor the buy-at-bulk function f in advance.
When the terminals arrive, we have to choose paths for
them to the root, so that for every concave cost func-
tion f , the chosen routes are competitive to the optimal
solution for f . Our first result for this problem is the
following:

Theorem 1.2. (Oblivious BaB, Randomized)
There exists a randomized online algorithm for the
buy-at-bulk problem that produces a routing P such that
for all concave functions f ,

E
[

costf (P)
]
≤ O(log2 k) OPTf .

This randomized algorithm has the same approxi-
mation guarantee as one obtained using Bartal’s tree-
embedding technique. The benefit of this result, how-
ever, is in the ideas behind it. We give constructions of
low-stretch spanners in the online setting. Like LASTs,
spanners have been very widely studied in the offline
case; here we show how to maintain light low-stretch
spanners in the online setting. Then we use the span-
ners to prove the above theorem. Moreover, building
on these ideas, we give a deterministic algorithm. (We
defer our spanner construction and oblivious algorithms
to the full version.)

Theorem 1.3. (Oblivious BaB, Deterministic)
There exists a deterministic online algorithm for the
buy-at-bulk problem that produces a routing P such that
for all concave functions f ,

costf (P) ≤ O(log2.5 k) OPTf .

A question that remains open is whether there is an
O(log k)-competitive algorithm for this problem. The
only other deterministic oblivious algorithm we know
for the buy-at-bulk problem is a derandomization of
the oblivious network design algorithm from [GHR06],
which requires the metric to be given in advance.

LASTs and Spanners. A central contribution
of our work is to demonstrate the utility of online
spanners in building networks exploiting economies-
of-scale. We record the following two theorems on
maintaining LASTs and spanners in an online setting,
since they are of broader interest. These results are
near-optimal, as we discuss in the respective sections
(in the full version).

Theorem 1.4. (Online LAST) There exists a deter-
ministic online algorithm for maintaining a tree with
cost O(log k) times the MST, and a stretch of 7 for dis-
tances from terminals to the sink.

590 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

05
/1

5/
17

 to
 1

28
.2

.9
2.

19
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

https://arxiv.org/abs/1611.00052
https://arxiv.org/abs/1611.00052

Theorem 1.5. (Online Spanner) There exists a de-
terministic online algorithm that given k pairs of ter-
minals, maintains a forest with cost O(log k) times the
Steiner forest on the pairs, and a stretch of O(log k) for
distances between all given pairs of terminals. More-
over, the total number of edges in the forest is O(k),
i.e. linear in the number of terminals.

Our results on online LAST and multicommodity
spanners give us an optimal O(log k)-competitive deter-
ministic algorithms for the “single cable version” of the
buy-at-bulk problems, where the function is a single-
piece affine concave function [MP98].

1.1 Our Techniques We now outline some of the
ideas behind our algorithms and the role of spanner con-
structions in them. All our algorithms share the same
high-level framework: (1) each terminal v is assigned
an integer type τ(v); (2) it is then routed through a se-
quence of terminals with increasing types; (3) the routes
are chosen using a spanner-type construction. In par-
ticular, each algorithm is specified by a type-selection
rule, the sequence of terminals to route through, and
whether to use a spanner or MLAST.

The analysis for our deterministic algorithms also
has a common thread: while these algorithms are
not based on tree-embeddings, the analysis uses tree-
embeddings crucially. Both analyses are based on the
analysis framework of [Umb15] and follow the same
template: we fix an HST embedding T of the metric,
and charge the cost of the algorithm to the cost of
the optimal solution on this tree (losing some factor
α). Since HSTs can approximate general metrics to
within a factor of O(log k), this gives us an O(α log k)-
competitive algorithm.

Functions vs. Cables. As is common with buy-
at-bulk algorithms, we represent the function f(x) as
the minimum of affine functions mini{σi + βix}. And
when we route a path, we even specify which of the
linear functions we use on each edge of this path. Each
i is called a “cable type”, since one can think of putting
down cable-i with an up-front cost of σi, and then
paying βi for every unit of flow over it.

Non-oblivious algorithm. In the non-oblivious
setting where we know the function f , we will want to
route each terminal v through a path P (v) with non-
decreasing cable types. So τ(v) should simply be the
cable of lowest type that we will install on P (v)—how
should we choose this value? It makes sense to choose
τ(v) based on the number of other terminals close to
v. Intuitively, the more terminals that are nearby, the
larger the flow that can be aggregated at v, making it
natural to select a larger type for v.

Once we have chosen the type, the route selection

is straightforward: first we route v’s demand to the
nearest terminal of higher type using cable type τ(v).
Then we iterate: while v’s demand is at a terminal w
(which is not the root r), we route it to a terminal w′

of type higher than τ(w) that nearest to w, using cable
type τ(w).

Finally, how do we select the path when routing
v’s demand from w to w′? This is where our Multi-
sink LAST (MLAST) construction comes in handy. We
want that for each cable type i, the set of edges Hi on
which we install cable type i has a small total cost while
ensuring that each terminal of type i has a short path
to its nearest terminal of higher type. We can achieve
these properties by having Hi be an MLAST with the
sources being the terminals of type exactly i, and the
sinks being terminals of type higher than i.

Randomized Oblivious Algorithm. While de-
signing oblivious algorithms seems like a big challenge
because we have to be simultaneously competitive for all
concave cost functions, Goel and Estrin [GE05] showed
that functions of the form gi(x) = min{x, 2i} form a
“basis” and hence we just have to be good against all
these so-called “rent-or-buy” functions. This is precisely
our goal.

Note that the optimum solution for the cost func-
tion g0 is the optimal Steiner tree, and that for the cost
function gM , for M � k, is the shortest path tree rooted
at the sink. Thus being competitive against g0 and gM
already requires us to build a LAST. Thus it is not sur-
prising that our online spanner algorithm is a crucial
ingredient in our algorithm.

There are two key ideas. The first is that to
approximate a given rent-or-buy function, it suffices
to figure out which terminals should be connected to
the root via “buy” edges—i.e., via edges of cost 2i

regardless of the load on them—these terminals we
call the “buy” terminals. The rest of the terminals
are simply connected to the buy terminals via shortest
paths. One way to choose a good set of buy terminals is
by random sampling: if we wanted to be competitive
against function gi, we could choose each terminal
to be a “buy” terminal with probability 2−i. (See,
e.g., [AAB04].) Since in the oblivious case we don’t
know which function gi we are facing, we have to hedge
our bets. Hence we choose each terminal v to have
τ(v) = i with probability 2−i. Thus terminal v is a
good buy terminal for all gi with i ≤ τ(v).

Next, we need to ensure that the path P (v) we
choose for v simultaneously approximates the shortest
path from v to the set of terminals with type at least i
for all i. This is where our online spanner construction
comes in handy. For each type i, we will build a spanner
Fi on terminals of type at least i.

591 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

05
/1

5/
17

 to
 1

28
.2

.9
2.

19
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Deterministic Oblivious Algorithm. To obtain
our deterministic oblivious algorithm, we make two
further modifications. First, we remove the need for
randomness by using the deterministic type selection
rule of the non-oblivious algorithm. This modification
already yields an O(log3 k)-competitive algorithm. A
technical difficulty that arises is that our type-classes
are no longer nested. Thus it is not obvious how to
route from a node of type i to one of a higher type,
as these nodes may not belong to a common spanner.
Adding nodes to multiple spanners can remedy this,
but leads to a higher buy cost; being stingy in adding
nodes to spanners can lead to higher rent cost. By
carefully balancing these two effects and using a more
sophisticated routing scheme, we are able to improve
the competitive ratio to O(log2.5 k).

1.2 Other Related Work Offline approximation al-
gorithms for the (uniform) buy-at-bulk network design
problem were initiated in [SCRS97]—here uniform de-
notes the fact that all edges have the same cost function
f(·), up to scaling by the length of the edge. Early re-
sults for approximation algorithms for buy-at-bulk net-
work design [MP98, AA97] already observed the re-
lationship to spanners, and tree embeddings. Using
the notion of probabilistic embedding of arbitrary met-
rics into tree metrics [AKPW95, Bar96, Bar98, Bar04,
FRT04], logarithmic factor approximations are readily
derived for the buy-at-bulk problem in the offline set-
ting. A hardness result of O(log

1/4−ε n) shows we cannot
do much better in the worst case [And04].

For the offline single-sink case, new techniques
were developed to get O(1)-approximations [GMM09],
as well as to prove O(1)-integrality gaps for natural
LP formulation [GKK+01, Tal02]; other algorithms
have been given by [GKR03, GI06, JR09]. Apart
from its inherent interest, the single-sink buy-at-bulk
problem can also be used to solve other network design
problems [GRS11]. The oblivious single-sink version
was first studied in [GE05], and O(1)-approximations
for this very general version was derived in [GP12].

In the setting of online algorithms, the Steiner
tree and generalized Steiner forest problems have tight
O(log k)-competitive algorithms [BC97, IW91], where
k is the number of terminals. These algorithms
work in the model where new terminals only reveal
their distances to previous terminals when they ar-
rive, and the metric is not known a priori. It is
well-known that the tree-embedding result of Bar-
tal [Bar96] can be implemented online to give an
O(log k·min(log ∆, log k))-competitive algorithm for the
online single-sink oblivious buy-at-bulk problem, where
∆ is the ratio of maximum to minimum distances in the

metric. For online rent-or-buy, Awerbuch, Azar, and
Bartal [AAB04] gave an O(log2 k)-deterministic and an
O(log k)-randomized algorithm; recently, [Umb15] gave
an O(log k)-deterministic algorithm.

If the metric is known a priori, the results depend on
n, the size of the metric, and not on k, the number of ter-
minals.2 E.g., tree-embedding results of [FRT04] give a
randomized O(log n)-competitive algorithm, or a deran-
domization of oblivious network design from [GHR06]
gives an O(log2 n)-competitive algorithm.

A generalization which we do not study here is the
non-uniform buy-at-bulk problem, where we can specify
a different concave function on each edge. A poly-
logarithmic approximation for this problem was recently
given by Ene et al. [ECKP15]; see the references therein
for the rich body of prior work.

2 Preliminaries

Formally, in the online buy-at-bulk problem, we have
a complete graph G = (V,E), and edge lengths d(e)
satisfying the triangle inequality. In other words, we
can treat (V, d) as a metric. We have M cable types.
The i-th cable type has fixed cost σi and incremental
cost βi, with σi > σi−1 and βi < βi−1. Routing x units
of demand through cable type i on some edge e costs
(σi + βix)d(e).

In the single-sink version, we are given a root
vertex r ∈ V . Initially, no cables are installed on
any edges. When a terminal v arrives, we install
some cables on some edges and choose a path P (v)
on which to route v’s unit demand. (This routing has
to be unsplittable, i.e., along a single path.) We are
allowed to install multiple cables on the same edge;
if e ∈ P (v) has multiple cables installed on it, v’s
demand is routed on the one with highest type, i.e.,
the one with least incremental cost. The choice of
P (v) and cable installations are irrevocable. Given
a routing solution, if loadi(e) is the total amount of
demand routed through cable type i on edge e, the total
cost is

∑
e∈E

[∑
i:loadi(e)>0 σi+βi loadi(e)

]
d(e). We call∑

e∈E
∑
i:loadi(e)>0 σid(e) the fixed cost of the solution

and
∑
e∈E

∑
i:loadi(e)>0 βi loadi(e)d(e) the incremental

cost of the solution.
Let OPT denote the cost of the optimal solution.

We assume the cable costs satisfy the conditions of the
following Lemma 2.1.

Lemma 2.1. [GMM09] We can prune the set of cables
such that for all the retained cable types i, (a) σi ≥
3σi−1, and (b) βi ≤ (1/32)βi−1, so that the cost of any

2Note that k is at most n, and it can be much smaller.

592 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

05
/1

5/
17

 to
 1

28
.2

.9
2.

19
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

solution using only the pruned cable types increases only
by an O(1) factor.

2.1 HST embeddings Let (X, d) be a metric over a
set of points X with distances d at least 1.

Definition 2.1. (HST embeddings [Bar96]) A hi-
erarchically separated tree (HST) embedding T
of metric (X, d) is a rooted tree with height
dlog2(maxu,v∈X d(u, v))e and edge lengths that are pow-
ers of 2 satisfying:

a. The leaves of T are exactly X.
b. The length of the edge from any node to each of its

children is the same.
c. The edge lengths decrease by a factor of 2 as one

moves along any root-to-leaf path.
For e ∈ T , we use T (e) to denote the length of e and
say that e is a level-j edge if T (e) = 2j. Furthermore,
we write T (u, v) to denote the distance between u and
v in T . We also use L(e) denote the leaves that are
“downstream” of e, i.e. they are the leaves that are
separated from the root of T when e is removed from
T .

The crucial property of HST embeddings that we
will exploit in our analyses is the following proposition,
which follows directly from Properties (2) and (3) of
Definition 2.1.

Proposition 2.1. Let T be a HST embedding T of
(X, d). For any level-j edge e ∈ T , we have d(u, v) < 2j

for any u, v ∈ L(e).

Corollary 2.1. ([AA97, FRT04]) For any online
buy-at-bulk instance with k terminals X and distances
d, there exists a HST embedding T of (X, d) such that
OPT(T) ≤ O(log k) OPT, where OPT(T) is the cost of
the optimal solution for online buy-at-bulk with termi-
nals X in the tree T .

2.2 Decomposition into rent-or-buy instances
Since buy-at-bulk functions can be complicated, it will
be useful to deal with simpler rent-or-buy functions
where to route a load of x on an edge, we can either
buy the cable for unlimited use at its buy cost, or pay
the rental cost times the amount x. Given a buy-
at-bulk instance as above, for each i, define the rent-
or-buy instance with the rent-or-buy function fi(x) =
min{σi, βi−1x}. Let OPTi to be the cost of the optimum
solution with respect to this function fi. Note that
under this function when the load aggregates up to
σi

βi−1
, it becomes advantageous to switch from renting

to buying.
The following lemma will prove very useful, since

we can charge different parts of our cost to different

OPTi(T)s for some HST T , and then sum them up to
argue that the total cost is O(1) OPT(T), and hence
O(log k) OPT using Corollary 2.1.

Lemma 2.2. (OPT Decomposition on Trees) For
every tree T , we have

∑
i OPTi(T) ≤ O(1) OPT(T).

Proof. For an edge e ∈ T , let φ∗i (e) and φ∗(e) be the
costs incurred by OPTi(T), and OPT(T) respectively,
on e. We will show that for every edge e ∈ T , we
have

∑
i φ
∗
i (e) ≤ O(1)φ∗(e). Let X(e) be the set of

terminal-pairs whose tree paths (in the single-sink case,
terminals whose paths to r) in T include e, and T (e)
denote the length of the tree edge e. So, φ∗i (e) =
T (e) ·min{σi, βi−1|X(e)|} and φ∗(e) = T (e) ·mini{σi +
βi|X(e)|}. For any fixed j, we have∑

i

min{σi, βi−1|X(e)|} ≤
∑
i≤j

σi +
∑
i>j

βi−1|X(e)|

≤ O(1)(σj + βj |X(e)|),

where the last inequality follows from the fact that the
fixed costs σi increase geometrically with i and the
incremental costs βi decrease geometrically with i, as
assumed in Lemma 2.1.

Thus,
∑
i φ
∗
i (e) ≤ O(1)φ∗(e) for every edge e ∈ T

and so
∑
i OPTi(T) ≤ O(1) OPT(T). 2

The next lemma proves that the rent-or-buy func-
tions form a “basis” for buy-at-bulk functions. For i ∈
Z≥0, define the rent-or-buy function gi(x) = min{x, 2i}.
(See, e.g., [GP12, Section 2].)

Lemma 2.3. (Basis of Rent-or-Buy Functions)
Fix some routing of demands. If for every i, the cost
of this routing under gi is within a factor of ρ of the
optimal routing for gi, then for any monotone, concave
function f with f(0) = 0, the cost of the routing under
f is within O(ρ) of the optimal cost of routing under f .

3 Multi-Sink LASTs

Recall that LASTs were Light Approximate-Shortest-
path Trees, i.e., trees where we maintain the shortest-
path distance of sources to a sink, using a light tree.
(This was traditionally done offline, though the reader
is not required to know the offline construction for this
section.) In this section, we are interested in the multi-
sink LAST (MLAST) problem. The input is a sequence
of terminals in the underlying metric G, each of which
is either a source or a sink (we assume the first terminal
is always a sink), and our algorithm has to maintain a
subgraph H such that (a) the distance of any source
to its closest sink in H should be comparable to the
distance of that source to its closest sink in G, and
moreover (b) the cost d(H) should not be “too large”.

593 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

05
/1

5/
17

 to
 1

28
.2

.9
2.

19
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Note that when a new sink s arrives, it may be
close to many sources, and hence we may need to
add “shortcut” edges to reduce their distance to s.
Moreover, what does it mean for the cost of H to not
be “too large”, since the distance from a source to
its closest sink can fall dramatically over time. Our
notion is the following. Note that when a source v
arrives, it has to pay at least the distance to its closest
terminal (source or sink) at that time, just to maintain
connectivity. Loosely, we want our cost d(H) to be not
much more than the sum of these distances. (N.b.: this
is the intuition, formally we will pay O(2class(v)) which
will be defined soon.)

3.1 The Algorithm The first terminal to arrive is a
sink we denote as s?. We use R and S to denote the sets
of sources and sinks that have arrived. For a terminal u,
let R(u) and S(u) be the sources and sinks that arrived
strictly before u. Our algorithm Mlast-Alg maintains
a subgraph H that consists of two parts: a forest F
which is a “backbone” connecting each source to some
sink cheaply, and an edge set A which “augments” F to
ensure that each source is not too far from the sinks in
H = A ∪ F .

The forest F is constructed using nets which we
define now. Let ∆ > 0 be some distance scale. Then, a
∆-net Z is a subset of terminals (called net points) such
that every terminal v has d(v, Z) < ∆ and for every pair
of net points u, v ∈ Z, we have d(u, v) ≥ ∆. Initially,
both F and A are empty. The algorithm maintains a 2j-
net Zj on the entire set of terminals, for each distance
scale j ∈ Z. When a terminal v arrives, for every
distance scale j, it is added to Zj if d(u, Zj) ≥ 2j . The
class of v is defined to be class(v) := max{j : v ∈ Zj},
i.e., class(v) is the largest distance scale such that v
belongs to the net of that scale. Hence the class of the
first terminal s? is ∞.

Let u be the nearest terminal in
⋃
j:j>class(v) Zj ,

i.e., u is the nearest net-point lying in any net at a
higher scale. If the current vertex v is a source, then
the edge (u, v) is added to F ; otherwise, F is left
untouched. Next, the algorithm goes through every
source u (including v if it is also a source), checks if
dA∪F (u, S) ≤ 3d(u, S), and otherwise adds the edge
(u, u′) to A where u′ ∈ S is the nearest sink to u. (See
Algorithm 1.)

High-Level Idea of the Analysis. We defer the
proofs to the full version. Here, are the main properties
we will use in the remainder of the paper.

Lemma 3.1. Given an online sequence of sources R
and sinks S, the algorithm Mlast-Alg maintains a
subgraph H and assigns classes to terminals such that

Algorithm 1 Mlast-Alg(R,S)

1: Zj ← ∅ for all j, A← ∅, F ← ∅, ∆ = 0;
2: while terminal v arrives do
3: If d(v, S(v)) > ∆, set ∆← d(v, S(v))
4: for all j ∈ Z do
5: if d(v, Zj) ≥ 2j then
6: Add v to Zj
7: class(v)← max{j : v ∈ Zj}
8: if v ∈ R then
9: Add edge (u, v) to F where u is a terminal of

higher class nearest to v
10: for x ∈ R do
11: if dA∪F (x, S) > 3d(x, S) then
12: Add (x, x′) to A where x′ is the terminal in

S nearest to u

a. d(H) ≤ O(1)
∑
v∈R 2class(v),

b. dH(u, S) ≤ 3d(u, S) for every u ∈ R,
c. if class(u) = class(v) = j, then d(u, v) ≥ 2j,
d. d(u,R(u) ∪ S(u)) ≤ 2class(u) ≤ d(u, s?) for every

u ∈ R, where s? is the first terminal that arrived,
and R(u) and S(u) are the sources and sinks that
arrived before u.

Property (a) is the formal bound on the cost of the
MLAST. One should think of 2class(v) as being the ra-
dius of some “dual” ball around source v, that we will
later use to give lower bounds on our buy-at-bulk in-
stances. Property (b) guarantees distance preservation.
Properties (c) and (d) ensure that terminals of the same
class are well-separated, and that class(u) is not too
large. Out of these, property (a) is the most non-trivial
one to prove. The cost of F is easy to bound, since
each source v adds in a single edge of length at most
O(2class(v)). For the cost of edges in A, the argument
at a high level is that the sources adding two different
edges of the same length must be far from each other in
H (compared to the length of the edges added) else the
later one could use a path to the earlier one, and then
the added edge, to fulfill the distance guarantee.

4 Non-Oblivious Buy at Bulk

In this section we prove our main result for online buy-
at-bulk for the case when the function f is known.

Theorem 4.1. (Deterministic BaB) There exists a
deterministic O(log k)-competitive algorithm for online
single-sink buy-at-bulk, where k is the number of termi-
nals.

For a high-level intuition behind the algorithm, see
the discussion in §1.1. Here we explain precisely how to
assign types, update layers and route demands.

594 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

05
/1

5/
17

 to
 1

28
.2

.9
2.

19
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Type assignment. Consider a terminal v. At the
time of its arrival, for each type i, let di(v) be the
distance to the nearest type-i terminal, and define the
ball Bi(v) := {u : d(u, v) ≤ di(v)/23}. Let ni(v) :=
|Bi(v)| be the number of terminals in this ball. Terminal
v is assigned type

τ(v) := max
{
i : ni(v) ≥ σi

βi−1

}
.

To make sense of this, observe that the threshold for
being of a certain type is the same as the threshold
for the load at which it is advantageous to buy rather
than rent for that type. This means vertices assigned a
certain type can collect enough “witnesses” whose paths
to the root in the optimal solution can be used to pay
for edges constructed by v in the online solution.

Layers. Let Ri be the current set of terminals of
type exactly i, and Xi := ∪i′≥iRi′ be the current set
of terminals of type at least i. Let Xi(v) (resp., Ri(v))
be the set of terminals of type at least (resp., exactly)
i that arrived strictly before v. Layer Hi is maintained
by running the online algorithm Mlast-Alg with Ri
as sources and Xi+1 as sinks. This ensures that every
u ∈ Ri has dHi(u,Xi+1(v)) ≤ 3d(u,Xi+1(v)).

Routing. We route v’s demand to the root on path
P (v) that is constructed as follows. The path P (v)
is constructed iteratively and consists of M different
segments Pi(v), one per type. Initially, v’s demand is
located at v and the segments are all empty. While
the current terminal w containing v’s demand is not
the root, choose w′ to be the terminal in Hτ(w) with
τ(w′) > τ(w) nearest to w (nearest in terms of distances
in Hτ(w)) and route v’s demand to w′ along the shortest
path between w and w′ in Hτ(w).

This completes the description of the algorithm. See
Algorithm 2 for a summary.

4.1 Analysis Let us now consider the cost of the
algorithm’s solution due to each cable type. The fixed
cost due to cables of type i is σid(Hi) since they are
installed on layer Hi. For each terminal v of type
τ(v) ≤ i, Pi(v) is the segment of its routing path
consisting of type i cables. Hence the total cost of the
algorithm’s solution is

ALG :=
∑
i

(
σid(Hi) +

∑
v:τ(v)≤i

βid(Pi(v))

)
.(4.1)

Proof outline. We want to show that ALG ≤
OPT(T) for any HST embedding T , since Corollary 2.1
would then imply that ALG ≤ O(log k) OPT. The
key is to decompose OPT on trees as follows: in
§2.2 we defined the rent-or-buy functions fi(x) :=
min{σi, βi−1}, and defined OPTi to be the cost of

Algorithm 2 Online Algorithm for Single-Sink Buy-
at-Bulk

1: τ(r)←∞
2: Hi ← ∅ for all i
3: while terminal v arrives do
4: // Determine type of v
5: Let di(v) = d(v,Xi), Bi(v) = {u : d(u, v) ≤

di(v)/23}, and ni(v) = |Bi(v)| for 1 ≤ i ≤ M

6: τ(v)← max{i : ni(v) ≥ σi

βi−1
}

7: // Update layers Hi

8: for i ≤ τ(v) do
9: Update Hi using Mlast-Alg with Ri(v) as

sources and Xi+1(v) as sinks
10: Install cable of type i on new edges of Hi

11: // Find routing path P (v) to route v’s demand to
the root

12: Pi(v)← ∅ for all i; P (v)← ∅
13: while v’s demand is not yet at r do
14: Let w be the terminal containing v’s demand

and i = τ(w)
15: Let Pi(v) ⊆ Hi be the shortest path from w to

Xi+1(v) in Hi

16: Route v’s demand from w to Xi+1(v) along the
path Pi(v)

the optimal solution with respect to fi. Our proof
(specifically Lemmas 4.3 and 4.2) will use the structure
of the HST to give a charging argument showing that

(4.2) σid(Hi) +
∑

v:τ(v)<i

βi−1di(v) ≤ O(1) OPTi(T).

Roughly speaking, we argue that d(Hi) can be charged
to the optimal cost of the witnesses of the terminals
of type exactly i, and moreover, the type selection rule
forces terminals of type less than i to be spread out.

Thus, if we could prove that d(Pi(v)) ≤
O(1)di+1(v), then we would be done, because we could
decompose the expression for ALG in (4.1) as follows:

ALG ≤ O(1) ·
∑
i

(
σid(Hi) +

∑
v:τ(v)<i

βi−1di(v)

)
.

(4.3)

Inequality (4.2) and Lemma 2.2 would imply that
ALG ≤ O(1) OPT(T) for any HST embedding T , as
desired.

However, d(Pi(v)) can be much larger than di+1(v).
This is because of the “selfishness” of the routing
scheme: when a terminal w receives v’s demand, it
simply routes it to the terminal w′ of higher type

595 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

05
/1

5/
17

 to
 1

28
.2

.9
2.

19
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

nearest to w, without any regard as to how far w′

is from v. Fortunately, the fact that the incremental
costs βi are geometrically decreasing allows us to show
that the total incremental cost incurred over all seg-
ments Pi(v) are bounded. In particular, we show that∑
v:τ(v)≤i βid(Pi(v)) ≤ O(1)

∑
i

∑
v:τ(v)≤i βidi+1(v).

The rest of the proof will follow this general outline.
Bounding incremental cost. We begin by prov-

ing the above bound on the incremental cost.

Lemma 4.1.∑
i

∑
v:τ(v)≤i

βid(Pi(v)) ≤ O(1)
∑
i

∑
v:τ(v)≤i

βidi+1(v).

Proof. For terminal v, suppose its type-i segment Pi(v)
is non-empty: let wi be the starting terminal of
the segment. Since Pi(v) starts with a terminal of
type i and ends with a terminal of type at least
i + 1, so τ(wi) = i. Now since Pi(v) is a short-
est path in Hi from wi to Xi+1(v), Lemma 3.1(b)
gives us d(Pi(v)) ≤ 3 · d(wi, Xi+1(v)). Since di+1(v)
is the distance from v to Xi+1(v), d(wi, Xi+1(v)) ≤
d(wi, v) + di+1(v). Moreover, the segments Pi′(v) for
i′ < i form a path from v to wi, so d(wi, v) ≤∑
i′<i d(Pi′(v)). Combining these inequalities, we get

d(Pi(v)) ≤ 3
(
di+1(v) +

∑
i′<i d(Pi′(v))

)
. Unrolling the

recursion, this gives d(Pi(v)) ≤
∑
i′≤i 3i−i

′+1di′+1(v).
Hence, we get the following bound on the incremental
cost of v:∑

i≥τ(v)

βi · d(Pi(v)) ≤
∑
i≥τ(v)

βi ·
∑
i′≤i

3i−i
′+1di′+1(v)

=
∑
i≥τ(v)

di+1(v) ·
∑
i′≥i

3i
′−i+1βi′ ,

where the equality follows from rearranging the sums.
But the βis decrease geometrically by a factor of 32,
so the last sum is dominated by the first term, and is
O(βi). Hence the proof. 2

Lemma 4.1 implies Inequality (4.3). Define ALGi =
σid(Hi) +

∑
v:τ(v)<i βi−1di(v). The rest of this section

will show that on any HST embedding T , ALGi ≤
O(1) OPTi(T) for every i. Lemma 2.2 then implies that
ALG ≤ O(1) OPT(T) for any HST embedding T and so
ALG ≤ O(log k) OPT by Corollary 2.1.

Charging to HST embeddings. For the follow-
ing, fix an HST embedding T . Recall that for edge
e ∈ T , L(e) denotes the leaves below e, T (e) the length
of e, and T (u, v) the distance between u and v in T .
Also, observe that an edge e such that r /∈ L(e), the
terminals in L(e) either have to buy the edge at cost
σiT (e), or rent it at cost βi−1|L(e)|T (e). We record

this lower bound for later.

(4.4) OPTi(T) ≥
∑

e∈T :r/∈L(e)

T (e) min{σi, βi−1|L(e)|}.

To upper-bound ALGi, we bound both σid(Hi) and∑
v:τ(v)<i βi−1di(v) separately by OPTi(T). In each

case, we proceed by developing an appropriate charging
scheme that charges to the edges of T and then arguing
that the total charge received by each edge e ∈ T is
at most a constant times its contribution to the lower
bound of OPTi(T) in Inequality 4.4.

First, we bound
∑
v:τ(v)<i βi−1di(v). The charging

scheme is as follows: for each terminal v, charge βi−1
to an edge in T whose length is proportional to di(v)
and which contains v as a leaf. Then we argue that
no edge is overcharged; in particular, for every edge
e ∈ T , the total number of terminals that can charge
e is at most σi/βi−1. Finally, we use the fact that
terminals charging to e are close together (by the
bounded diameter property of HSTs), so if there were
more than σi/βi−1 terminals charging e, then the one
that arrived last would have been assigned a type of at
least i.

Lemma 4.2.
∑
v:τ(v)<i βi−1di(v) ≤ O(1) OPTi(T).

Proof. Consider the following charging scheme. For
each terminal v with type τ(v) < i, if di(v) ∈ [2j , 2j+1),
charge 2j+1βi−1 to the length 2j−4 edge e ∈ T whose
leaves L(e) contain v but not r. Such an edge must exist
since otherwise di(v) ≤ d(v, r) < 2j . The total charge
received by the edges of T is at least

∑
v:τ(v)<i βi−1di(v),

and only edges e with r /∈ L(e) were charged.
Consider an edge e ∈ T of length 2j−4. Let

C(e) ⊆ L(e) be the set of terminals charging e. We
claim that |C(e)| ≤ σi/βi−1. Note that the total charge
received by e is

2j+1βi−1|C(e)| = 25 T (e)βi−1|C(e)|
≤ 25 T (e) min{σi, βi−1|L(e)|}.

By (4.4), this proves the lemma.
Now to prove the claim. Suppose for a contradic-

tion, that |C(e)| > σi/βi−1. Let v be the last-arriving
terminal of C(e). Since e is a length 2j−4 edge and v
charged e, we have di(v) ≥ 2j and τ(v) < i. Moreover,
since C(e) ⊆ L(e), we have that diam(C(e)) < 2j−3 ≤
di(v)/23. Thus, every terminal u ∈ C(e) is within dis-
tance di(v)/23 from v so C(e) ⊆ Bi(v). This implies
that |Bi(v)| ≥ |C(e)| ≥ σi/βi−1 so v should have been
assigned a type that is at least i, contradicting the fact
that τ(v) < i. Therefore, |C(e)| ≤ σi/βi−1, as desired.
2

596 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

05
/1

5/
17

 to
 1

28
.2

.9
2.

19
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Bounding the Fixed Cost of Hi. There are
three steps to the proof. The first step is to use Lemma
3.1 to charge the fixed cost to the terminals of type i.
The second is to argue that since each terminal v of
type i has at least σi/βi−1 witnesses nearby, v can use
the cost incurred by OPTi(T) in routing its witnesses to
pay off the charge it accumulated. Finally, we use the
fact that terminals of type i that accumulate similar
charges must be far apart to argue that no witness is
overcharged.

Lemma 4.3. σid(Hi) ≤ O(1) OPTi(T).

Proof. The layerHi is an MLAST whose set of sources is
Ri (the terminals of type exactly i) and sinks Si = Xi+1,
the terminals of higher type. Let classi(v) be the class
assigned by this MLAST algorithm to terminal v. By
Lemma 3.1, we have σid(Hi) ≤ O(1)

∑
v∈Ri

σi2
classi(v).

Define Ri(j) = {v ∈ Ri : classi(v) = j}. Let Ej be the
set of length 2j−4 edges of T . To prove the lemma, we
will show that for each j,

(4.5) σi|Ri(j)| ≤
∑

e∈Ej :r/∈L(e)

min{σi, βi−1|L(e)|}.

This would then imply that

σid(Hi)

≤ O(1)
∑
v∈Ri

σi2
classi(v)

≤ O(1)
∑
j

2jσi|Ri(j)|

≤ O(1)
∑
j

2j−4
∑

e∈Ej :r/∈L(e)

min{σi, βi−1|L(e)|}.

But T (e) = 2j−4 for edges e ∈ Ej , so (4.4) bounds the
cost by O(1) OPTi(T) to complete the proof.

Now to prove (4.5). We will show that for each
v ∈ Ri(j) (i.e., having type i, and class j in the MLAST
Hi corresponding to type-i terminals), every terminal u
in its ball Bi(v) has to be routed on some level-j edge
e ∈ Ej with r /∈ L(e), and that the level-j edges used
by Bi(v) is disjoint from the edges used by Bi(v

′) for
any other v′ ∈ Ri(j). More formally, for each terminal
v, define ej(v) to be the unique edge of Ej such that
v ∈ L(ej(v)) and define Ej(v) := {ej(u) : u ∈ Bi(v)}.
We need the following claims.

Claim 4.1. For every v ∈ Ri(j) and u ∈ Bi(v), we
have d(u, v) ≤ 2j−3.

Proof. By definition of Bi(v), we have the following
bound: d(u, v) ≤ di(v)/23 = d(v,Xi(v))/23. Now

observe that Xi(v) = Ri(v) ∪ Si(v), where Ri(v) and
Si(v) are the sources and sinks that arrived before v in
the MLAST for type i. By Lemma 3.1(d), d(v,Xi(v)) ≤
2classi(v) = 2j . Combining this with the above bound on
d(u, v) gives us d(u, v) ≤ 2j−3, as desired. 2

Claim 4.2. For every v ∈ Ri(j), we have⋃
e∈Ej(v):r/∈L(e) L(e) ⊇ Bi(v). Moreover,

Ej(v) ∩ Ej(v′) = ∅ for distinct v, v′ ∈ Ri(j).

Proof. To prove the first part of the claim, observe that
by definition of Ej(v), we have

⋃
e∈Ej(v)

L(e) ⊇ Bi(v).

Thus, it suffices to show that for every v ∈ Ri(j) and
each terminal u ∈ Bi(v), the edge ej(v) does not contain
r as a leaf. Suppose, towards a contradiction, that there
exists u ∈ Bi(v) such that r ∈ L(ej(u)). Since ej(u) has
length 2j−4, we have diam(L(ej(u)) ≤ 2j−3; moreover,
r, u ∈ L(ej(u)) and so d(u, r) ≤ 2j−3. Now, Claim
4.1 implies that d(u, v) ≤ 2j−3. Therefore, d(v, r) ≤
d(u, v)+d(u, r) < 2j . However, this contradicts Lemma
3.1(d), which implies that d(v, r) ≥ 2j . Thus, r /∈
L(ej(u)).

To prove the second part of the claim, suppose
towards a contradiction, that there exist v, v′ ∈ Ri(j)
and u ∈ Bi(v) and u′ ∈ Bi(v′) such that ej(u) = ej(u

′).
By triangle inequality, d(v, v′) ≤ d(u, v) + d(u, u′) +
d(u′, v′). Claim 4.1 implies that d(u, v), d(u′, v′) ≤ 2j−3.
Since u, u′ are leaves of the same edge of length 2j−4,
we get d(u, u′) ≤ 2j−3. Therefore, d(v, v′) < 2j . On the
other hand, Lemma 3.1(c) says that d(v, v′) ≥ 2j . This
gives us our desired contradiction. 2

With these claims in hand, we have∑
e∈Ej :r/∈L(e)

min{σi, βi−1|L(e)|}

≥
∑

v∈Ri(j)

∑
e∈Ej(v):r/∈L(e)

min{σi, βi−1|L(e)|}

≥
∑

v∈Ri(j)

min{σi, βi−1
∑

e∈Ej(v):r/∈L(e)

|L(e)|}

≥
∑

v∈Ri(j)

min{σi, βi−1|Bi(v)|}

≥
∑

v∈Ri(j)

σi = σi|Ri(j)|,

where the first inequality follows from the second part of
Claim 4.2, the third inequality from the first part, and
the last inequality from the fact that |Bi(v)| ≥ σi/βi−1.
2

Having proved these two lemmas, we have that
for every HST embedding T and every i, we have

597 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

05
/1

5/
17

 to
 1

28
.2

.9
2.

19
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

ALGi ≤ O(1) OPTi(T). Summing over all i and using
Lemma 2.2, we have ALG ≤ O(1) OPT(T) for any
HST embedding T , and so ALG ≤ O(log k) OPT. This
proves Theorem 1.1.

5 Conclusions

We defer the results on oblivious buy-at-bulk to the full
version. It also contains our results for online LASTs
and online low-stretch spanners, which are used in these
results. Several open questions remain: can we do
better than O(log2 k) for the oblivious randomized case,
and O(log2.5 k) for the oblivious deterministic case?
Can we get online constructions of tree embeddings with
stretch better than O(log k log ∆)?

References

[AA97] Baruch Awerbuch and Yossi Azar. Buy-at-bulk net-
work design. In 38th Annual Symposium on Founda-
tions of Computer Science, FOCS ’97, Miami Beach,
Florida, USA, October 19-22, 1997, pages 542–547,
1997.

[AAB04] Baruch Awerbuch, Yossi Azar, and Yair Bartal.
On-line generalized steiner problem. Theor. Comput.
Sci., 324(2-3):313–324, 2004.

[AKPW95] Noga Alon, Richard M. Karp, David Peleg,
and Douglas West. A graph-theoretic game and its
application to the k-server problem. SIAM J. Comput.,
24(1):78–100, 1995.

[And04] Matthew Andrews. Hardness of buy-at-bulk net-
work design. In 45th Symposium on Foundations of
Computer Science (FOCS 2004), 17-19 October 2004,
Rome, Italy, Proceedings, pages 115–124, 2004.

[Bar96] Yair Bartal. Probabilistic approximations of metric
spaces and its algorithmic applications. In 37th An-
nual Symposium on Foundations of Computer Science,
FOCS ’96, Burlington, Vermont, USA, 14-16 October,
1996, pages 184–193, 1996.

[Bar98] Yair Bartal. On approximating arbitrary metrices
by tree metrics. In Proceedings of the Thirtieth Annual
ACM Symposium on the Theory of Computing, Dallas,
Texas, USA, May 23-26, 1998, pages 161–168, 1998.

[Bar04] Yair Bartal. Graph decomposition lemmas and
their role in metric embedding methods. In Algo-
rithms - ESA 2004, 12th Annual European Symposium,
Bergen, Norway, September 14-17, 2004, Proceedings,
pages 89–97, 2004.

[BC97] Piotr Berman and Chris Coulston. On-line algo-
rithms for steiner tree problems (extended abstract).
In Proceedings of the Twenty-Ninth Annual ACM Sym-
posium on the Theory of Computing, El Paso, Texas,
USA, May 4-6, 1997, pages 344–353, 1997.

[Bol04] Béla Bollobas. Extremal Graph Theory. Dover
Publications, Incorporated, 2004.

[ECKP15] Alina Ene, Deeparnab Chakrabarty, Ravishankar
Krishnaswamy, and Debmalya Panigrahi. Online buy-

at-bulk network design. In IEEE 56th Annual Sym-
posium on Foundations of Computer Science, FOCS
2015, Berkeley, CA, USA, 17-20 October, 2015, pages
545–562, 2015.

[FRT04] Jittat Fakcharoenphol, Satish Rao, and Kunal Tal-
war. A tight bound on approximating arbitrary metrics
by tree metrics. J. Comput. Syst. Sci., 69(3):485–497,
2004.

[GE05] Ashish Goel and Deborah Estrin. Simultaneous
optimization for concave costs: Single sink aggregation
or single source buy-at-bulk. Algorithmica, 43(1-2):5–
15, 2005.

[GHR06] Anupam Gupta, Mohammad Taghi Hajiaghayi,
and Harald Räcke. Oblivious network design. In Pro-
ceedings of the Seventeenth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA 2006, Miami,
Florida, USA, January 22-26, 2006, pages 970–979,
2006.

[GI06] Fabrizio Grandoni and Giuseppe F. Italiano. Im-
proved approximation for single-sink buy-at-bulk. In
Algorithms and Computation, 17th International Sym-
posium, ISAAC 2006, Kolkata, India, December 18-20,
2006, Proceedings, pages 111–120, 2006.

[GKK+01] Naveen Garg, Rohit Khandekar, Goran Kon-
jevod, R. Ravi, F. Sibel Salman, and Amitabh Sinha
II. On the integrality gap of a natural formulation
of the single-sink buy-at-bulk network design problem.
In Integer Programming and Combinatorial Optimiza-
tion, 8th International IPCO Conference, Utrecht, The
Netherlands, June 13-15, 2001, Proceedings, pages 170–
184, 2001.

[GKR03] Anupam Gupta, Amit Kumar, and Tim Rough-
garden. Simpler and better approximation algorithms
for network design. In 35th STOC, pages 365–372,
2003.

[GMM09] Sudipto Guha, Adam Meyerson, and Kamesh
Munagala. A constant factor approximation for the
single sink edge installation problem. SIAM J. Com-
put., 38(6):2426–2442, 2009.

[GP12] Ashish Goel and Ian Post. One tree suffices: A
simultaneous o(1)-approximation for single-sink buy-
at-bulk. Theory of Computing, 8(1):351–368, 2012.

[GRS11] Fabrizio Grandoni, Thomas Rothvoss, and Laura
Sanità. From uncertainty to nonlinearity: Solving
virtual private network via single-sink buy-at-bulk.
Mathematics of Operations Research, 36(2):185–204,
2011.

[IW91] Makoto Imase and Bernard M. Waxman. Dy-
namic steiner tree problem. SIAM J. Discrete Math.,
4(3):369–384, 1991.

[JR09] Raja Jothi and Balaji Raghavachari. Improved
approximation algorithms for the single-sink buy-at-
bulk network design problems. J. Discrete Algorithms,
7(2):249–255, 2009.

[KRY95] Samir Khuller, Balaji Raghavachari, and Neal E.
Young. Balancing minimum spanning trees and
shortest-path trees. Algorithmica, 14(4):305–321, 1995.

[LPS88] Alexander Lubotzky, Ralph Phillips, and Peter

598 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

05
/1

5/
17

 to
 1

28
.2

.9
2.

19
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

https://arxiv.org/abs/1611.00052
https://arxiv.org/abs/1611.00052

Sarnak. Ramanujan graphs. Combinatorica, 8(3):261–
277, 1988.

[MP98] Yishay Mansour and David Peleg. An approxi-
mation algorithm for minimum-cost network design.
In Robust Communication Networks: Interconnection
and Survivability, Proceedings of a DIMACS Workshop,
New Brunswick, New Jersey, USA, November 18-20,
1998, pages 97–106, 1998.

[SCRS97] F. Sibel Salman, Joseph Cheriyan, R. Ravi, and
S. Subramanian. Buy-at-bulk network design: Approx-
imating the single-sink edge installation problem. In
Proceedings of the Eighth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, 5-7 January 1997, New
Orleans, Louisiana., pages 619–628, 1997.

[Tal02] Kunal Talwar. The single-sink buy-at-bulk LP has
constant integrality gap. In Integer Programming and
Combinatorial Optimization, 9th International IPCO
Conference, Cambridge, MA, USA, May 27-29, 2002,
Proceedings, pages 475–486, 2002.

[Umb15] Seeun Umboh. Online network design algorithms
via hierarchical decompositions. In Proceedings of
the Twenty-Sixth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2015, San Diego, CA,
USA, January 4-6, 2015, pages 1373–1387, 2015.

599 Copyright © by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

05
/1

5/
17

 to
 1

28
.2

.9
2.

19
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

	Introduction
	Our Techniques
	Other Related Work

	Preliminaries
	HST embeddings
	Decomposition into rent-or-buy instances

	Multi-Sink LASTs
	The Algorithm

	Non-Oblivious Buy at Bulk
	Analysis

	Conclusions

