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Abstract

The group Steiner problem is a classical network design
problem where we are given a graph and a collection
of groups of vertices, and want to build a min-cost
subgraph that connects the root vertex to at least one
vertex from each group. What if we wanted to build
a subgraph that two-edge-connects the root to each
group—that is, for every group g ⊆ V , the subgraph
should contain two edge-disjoint paths from the root
to some vertex in g? What if we wanted the two edge-
disjoint paths to end up at distinct vertices in the group,
so that the loss of a single member of the group would
not destroy connectivity?

In this paper, we investigate tree-embedding tech-
niques that can be used to solve these and other 2-edge-
connected network design problems. We illustrate the
potential of these techniques by giving poly-logarithmic
approximation algorithms for two-edge-connected ver-
sions of the group Steiner, connected facility location,
buy-at-bulk, and the k-MST problems.

1 Introduction

Edge survivability has long been a desired property in
network design, and problems enforcing higher edge-
connectivity have been well studied in the literature.
We now have very strong approximation results for
some of the basic problems, like the edge-survivable
(and element-survivable) network design problems [29,
19], which have been recently extended to the case of
vertex connectivity as well [12]. The techniques that
have proved useful for these results are primal-dual
algorithms (which were used for the first few results
here) and subsequently, iterative rounding, which gave
much stronger results.

However, higher-connectivity versions of several
other network design problems still lack good approxi-
mations: let us consider the group Steiner tree problem,
where given a rooted undirected graph, and subsets of
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vertices (called groups), the goal is to find a minimum
cost subgraph that contains paths from the root to at
least one vertex in each group. What if we wanted two
edge-disjoint paths to at least one vertex in each group?
A key difficulty in addressing this problem is that all
known solution methods for the singly-connected ver-
sion first reduce the given problem instance to one where
the graph is a tree which approximately preserves pair-
wise distances; one can then either write a LP relax-
ation and round it, or use a clever greedy algorithm
and dynamic programming, to obtain an approxima-
tion. In fact, it has been a long-standing open prob-
lem to obtain a logarithmic approximation guarantee in
polynomial time that does not use the method of tree-
approximations. Note that reducing to a tree instance
is bad for us when a 2-edge-connected graph is desired,
since we have lost the higher connectivity in the very
first (but crucial) step.

In earlier work [23] on online survivable network
design problems, we observed that approximating the
given graph by a random spanning tree [1], we need
not discard the non-tree edges, but can just raise their
lengths to match the distance along the tree between
their end-points. Hence the random tree-embedding can
now be viewed as a random embedding into a backboned
graph: one that has a “backbone” spanning tree such
that the cost of a non-tree edge is at least that of the
tree path between its end vertices. This enables us to
write linear programming relaxations as in the singly-
connected versions, and moreover, the modified costs on
non-tree edges gives us the additional structure we can
use to achieve 2-connectivity. Using this approach, in
Section 3, we give a O(log4 n)-approximation algorithm
for the 2-edge-connected group Steiner tree problem.

We show how similar ideas can be used to solve
other 2-edge-connectivity problems. In Section 4, we
consider the two-edge-connected version of the con-
nected facility location problem (2-CFL). As in facil-
ity location, we are given clients with demands in an
undirected network, and must open a set of facilities
(paying facility opening costs) and assign the clients to
some open facility (paying a connection cost equal to
the shortest-path distance between them). But we must
also build a two-edge-connected network (the “core”) on
the open facilities, paying M times the cost of the edges
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in this 2-connected core. The motivation is a commonly-
faced one for network designers: it is crucial to achieve
fault-tolerance in the core of the network. This prob-
lem has been studied when the network is a complete
graph and the costs satisfy the triangle inequality, but
nothing was known for the general graph case even for
the simple case M = 1 [45]. We use our general tech-
nique to reduce the problem to backboned networks,
where we give a constant approximation—hence giving
us an Õ(log n) approximation for general graphs. We
also give a poly-logarithmic approximation for the case
where the connection costs and the core network costs
are unrelated.

In Section 5, we give a O(log2 n)-approximation
algorithm for the 2-edge-connected buy-at-bulk problem
with concave scaling costs for buying cables. In this
problem, we are given a graph and a set of demand
pairs (si, ti) that require 2-edge-connectivity from si to
ti. A feasible solution is a collection of two edge-disjoint
paths for every (si, ti) pair, and the cost incurred by
an edge e in such a solution is c(e) · Φ(l(e)) where
c(e) is the length/distance of edge e, l(e) is the load
on edge e (the number of demand pairs using e), and
Φ(·) is a concave scaling function that models the
economies of scale phenomenon. The goal is then to
minimize the total cost on all the edges used. This
problem was first studied (in the more general 2-vertex-
connectivity setting) by Antonakopoulos et al. [2],where
they showed a O(log3 n)-approximation for the (single-
sink) buy-at-bulk problem, when there is only one cable
type. What we show is that the additional properties of
backboned graphs can be leveraged in order to separate
the problem into that of buying tree paths and covering
them appropriately. This structure enables us to get
our O(log2 n)-approximation algorithm for the 2-edge-
connectivity version of (multi-commodity) buy-at-bulk
under any concave scaling function.

Finally, in Section 6 we also show how essen-
tially the same techniques can be used to give a
poly-logarithmic approximation for the k-2EC problem,
which is a generalization of k-MST to higher connectiv-
ity. Here, we want to find a minimum-cost subgraph
of a given graph G that contains at least k nodes and
is 2-edge-connected. The first approximations to this
problem were given only recently by Lau et al. [38], and
improved by Chekuri and Korula [6] (whose solution
also works for the node-connected case). We show that
our framework also gives an Õ(log3 n)-approximation
for the k-2EC problem: while our guarantees are quan-
titatively worse than those in the previous results, our
proof shows how simple ideas can be used to obtain re-
sults in the same ballpark.

1.1 Related Work

1.1.1 Higher Connectivity problems. There is
a huge body of work on higher connectivity prob-
lems. A long stream of work has studied the 2-edge-
connected spanning subgraph problem: Frederickson
and Ja’Ja’ [20] gave the first 3-approximation algo-
rithm by augmenting a minimum spanning tree, show-
ing also in the process that the problem of augment-
ing any spanning tree to make it 2-edge-connected
can be approximated within a factor of 2. This was
subsequently improved by Khuller and Vishkin [33],
who showed a 2-approximation for the general k-
edge-connected spanning subgraph problem. Then,
primal dual algorithms [34, 49, 22] were used to
obtain O(log k) approximations for more general k-
connectivity problems. Jain [29] gave an iterative
rounding based 2-approximation algorithm for the gen-
eral edge-connectivity survivable network design prob-
lem. These techniques have also been employed recently
to obtain tight results for network design with degree
constraints [38, 40, 3]. The element-connectivity and
{0, 1, 2}-node connectivity versions were solved by Fleis-
cher et al. [18, 19]. The generalized vertex connectivity
problems are less well understood: [32, 9, 37, 17] give ap-
proximations for the k-vertex-connected spanning sub-
graph problem, while Cheriyan and Vetta [10] consider
the general problem on instances with a complete met-
ric. Recent papers [4, 7, 11, 43, 44] have shed more in-
sight into the subset k-node-connectivity case, and very
recently, Chuzhoy and Khanna [12] show that element
connectivity can be used as a black-box to give good
approximations for the generalized vertex-connectivity
version via an elegant sampling idea. From the inap-
proximability side, Kortsarz et al. [36] give Ω(2log1−ε n)
hardness for node-connected SNDP, and [4] give T ε

hardness for node-connecting T pairs.

1.1.2 Group Steiner Tree (GST). An LP round-
ing algorithm for the group Steiner problem with was
given by Garg et al. [21]; an alternate greedy algorithm
avoiding the LP rounding was given by Chekuri et al [5].
Similar poly-logarithmic approximations are also known
for the covering Steiner problem, a generalization of the
group Steiner tree problem where a requirement ri is
given with each group gi and we require a minimum
cost subgraph that (one-)connects at least ri terminals
from each group gi to the root [35, 26]. Note the cover-
ing Steiner problem does not solve the 2-ECGS problem
we consider here, since the paths from the root to two
nodes from a group may share edges. Poly-logarithmic
integrality gaps and hardness results are known for all
these group and covering Steiner problems [27, 28].
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Very recently and independent of our work, Khan-
dekar et al. [31] also consider the 2-connected group
Steiner problem and give O(k log2 n) approximations
for the 2-vertex-connectivity (and therefore for 2-edge-
connectivity) setting, when groups have size at most k.

1.1.3 Connected Facility Location (CFL). This
problem has been very widely studied in the approxi-
mation algorithms literature—here we want facilities to
be (singly-)connected together by a Steiner tree. Sev-
eral constant-factor approximations are known, based
on ideas like LP rounding [45, 24], reduction to classical
facility location [30], primal-dual methods [47], and ran-
dom sampling of facilities [25, 13, 14, 48, 15]. We note
that a special case of the 2-connected version we study
here (called the “ring-star” problem or “tour-CFL”) in
which the underlying graph is a complete graph and
the edge costs satisfy the triangle inequality was stud-
ied in [45]. The observation that an Euler tour can give
a TSP with cost twice the Steiner tree cost implies that
this is essentially equivalent to the 1-connected CFL.
This proof breaks down when the graph is not complete.

A different version of the two-connected CFL prob-
lem can also be formulated, where we have to pick
two edge-disjoint paths to connect each demand to its
facility, and also build a two-connected subgraph on
the facilities. A constant-factor approximation for this
problem can be obtained from previous random sam-
pling techniques; we give the details in the full version.
Again, these techniques do not seem to extend to our
case: loosely, this new version implies that demands are
cheaply two-connected to each other, and hence opening
up a subset of them may be a feasible solution; this is
certainly not the case for the 2-CFL problem we study.

1.1.4 The two-edge-connected buy-at-bulk
problem. Antonakapoulos et al. [2] first studied fault
tolerant versions of the single cable buy-at-bulk prob-
lem. They showed a constant approximation for the
single-sink case and a O(log3 n)-approximation for the
multi-commodity setting of 2-vertex-connected buy-
at-bulk Subsequently, Chekuri and Korula showed an
O(log |T |b)-approximation algorithm for the single-sink
2-vertex-connected buy-at-bulk problem with b cable
types and any set of T demand pairs. In this work,
we show an O(log2 n)-approximation algorithm for the
multiple cable multicommodity problem. However, we
should note that the previous approximations hold for
the more general setting of 2-vertex-connectivity, while
our algorithm solves the 2-edge-connectivity problem.

1.1.5 The k-two-edge-connected subgraph
problem. The k-2EC problem was first studied by

Lau et al. [38] who claimed an O(log3 k)-approximation
algorithm; this was corrected to an O(log n log k)-
approximation [39]. Independently, Chekuri and
Korula gave an O(log n log k)-approximation for the
2-node-connectivity version of the problem. At a high
level both these algorithms use the idea of finding
repeatedly dense subgraphs, and then pruning the
resulting graph to have the right number of terminals.
These ideas give better approximation guarantees than
we do, but require more machinery; we show how
simple ideas can give non-trivial approximations.

2 Backboned Graphs

In [23] we noted that the standard techniques used
for approximating graph metrics by distributions over
their subtrees implied that graphs could be well-
approximated by random graphs with “nice” structure,
which we called backboned graphs. While this is a triv-
ial observation, it opens up the possibility of leveraging
the added structure to design LP rounding algorithms,
much like tree embeddings have been used. In this sec-
tion, let us give the basic definitions we will use in the
rest of the paper.

2.1 Backboned Graphs and Tree Embeddings

Definition 2.1. ([23]) A graph G = (V, E) with edge
costs c : E → R≥0 is called a backboned graph if
there exists a spanning tree T = (V,E(T )) such that
all edges e = {u, v} 6∈ E(T ) have the property that
c(e) ≥ dT (u, v), where dT (u, v) is the distance between
u and v along T . In this case, T is called the base tree
of G.

The following result is a simple consequence of the
results of Elkin et al. and Abraham et al. [16, 1]. We
give the proof in Appendix A for completeness.

Theorem 2.1. Given a network-design problem Π
whose objective function is linear in the edge-costs,
any β-approximation algorithm for the problem Π on
backboned graphs implies a randomized β × Õ(log n)-
approximation algorithm for Π on general graphs.

Given this reduction, for the subsequent sections we will
assume that the input graph is a backboned graph, and
will use its properties to design our algorithms.

2.2 A Covering Lemma on Backboned Graphs
We begin with some notation. Let G be a backboned
graph with base tree T . For any non-tree edge f =
{u, v}, let PT (u, v) denote the base tree path from u
to v, and let Of denote the fundamental cycle with
respect to T ; i.e. Of = {f} ∪ PT (u, v). Because G
is backboned graph, observe that the cost of the cycle
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c(Of ) ≤ 2c(f), where c(A) =
∑

e∈A c(e). A subgraph
H is said to be cycle-closed if it satisfies the property
that f ∈ E(H) \E(T ) ⇔ Of ∈ E(H); i.e., if a non-tree
edge f is present in H, then the entire cycle Of is in H.

Observation 2.1. For any subgraph H, there exists a
cycle-closed subgraph H ′ such that H ⊆ H ′ and the cost
of H ′ is at most 2c(H).

Observation 2.2. For any two vertices u, v ∈ V , if a
cycle-closed subgraph H contains some u− v path, then
H also contains the base tree path PT (u, v).

The first observation is true because we can include
the entire cycle Of in H ′ for every non-tree edge f ∈ H,
and the cost at most doubles. The second observation
follows from the definition of cycle-closed subgraphs: for
any non-tree edge {x, y} ∈ H, we know that the path
PT (x, y) ⊆ O{x,y} ⊆ H. Hence, by transitivity, for any
u-v path in H, the path PT (u, v) ⊆ H.

We now prove a simple but crucial property of 2-
edge-connected subgraphs on backboned graphs.

Lemma 2.1. (Covering Lemma) Let H be any cycle-
closed subgraph that 2-edge-connects a vertex r with a
vertex v 6= r. Then for any edge e on the base tree
path PT (r, v), there exists an edge f = {x, y} ∈ E(H)
such that e ∈ Of . Therefore, r and v are connected in
(PT (r, v) ∪Of ) \ {e}.

Proof. Consider an edge e on the base tree path
PT (r, v). Removing the edge e would separate the base
tree T into two components, one containing r (which
we call Cr) and the other containing v (denoted by Cv).
Since r and v are 2-edge-connected in the subgraph H
and e is the only tree edge crossing Cr and Cv, there
must exist a non-tree edge f = {x, y} ∈ E(H) \ E(T )
such that one end vertex of f is in Cr and the other
is in Cv; otherwise e would be a cut edge separating r
and v in H. But then, since x and y are in different
components of T \ e, it follows that e ∈ PT (x, y) ⊆ Of .
This completes the proof.

3 2-Edge-Connected Group Steiner

In this section, we consider the 2-edge-connectivity
extension of the group Steiner problem, which we call
2-ECGS, and give an O(log3 n)-approximation algorithm
for instances with backboned graphs. Formally, we are
given a graph G = (V, E) with edge costs c : E → R,
a set of groups G = {g1, g2, . . . , gk} where gi ⊆ V , and
a designated root r ∈ V . The objective is to find a
minimum cost subgraph H and identify representatives
ri ∈ gi (for 1 ≤ i ≤ k) such that ri and r are connected

by two edge-disjoint paths in H. (One can consider a
variant of the problem where it is sufficient have two
edge-disjoint paths to the group gi, possibly to different
vertices: we consider this in Section 3.2.)

At a high level, our techniques for solving the
2-ECGS problem use the underlying base tree in the
backboned graph to set up a linear program using ideas
from the LP relaxations for group Steiner trees [21]
and the tree augmentation problem [8] (where non-
tree edges must be added to 2-edge-connect a tree).
Our LP identifies terminals that will be fractionally 1-
connected from the root along the base tree; the non-
tree edges then (fractionally) 2-connect these terminals,
which is enforced by tree augmentation constraints. Our
algorithm then employs the group Steiner rounding, and
follows this up with a second stage of choosing non-
tree edges to 2-connect the first stage subtree. The
crux of our analysis is to show that the expected cost
of the second stage solution is no more than an extra
logarithmic factor of the original LP cost, and this
argument uses the level structure of the group Steiner
LP rounding in a careful way.

3.1 An O(log3 n) Approximation for 2-ECGS on
Backboned Graphs. Consider the following linear
program (LP2GS) for a 2-ECGS instance I on a back-
boned graph G = (V, E) with edge costs c(·) and base
tree T . The variable xe is an indicator variable for
whether tree edge e is present in the solution or not,
and yf is an indicator for whether or not the edges of
the base cycle Of are included. Call a set S “valid” iff
there exists a group gi such that gi ⊆ S and r /∈ S. Let
∂S to denote the set of edges crossing the cut S, V \ S.

min
∑

e∈E(T )

c(e)xe +
∑

f∈E\E(T )

c(Of )yf(LP2GS)

s.t
∑

e∈∂S∩E(T )

xe ≥ 1 ∀ valid S ⊆ V(3.1)

∑

f | e∈Of

yf ≥ xe ∀ e ∈ E(T )(3.2)

xe, yf ∈ [0, 1] ∀ e ∈ E(T ), f ∈ E \ E(T )(3.3)

Though the above LP has exponentially many con-
straints, it can be solved near optimally in polynomial
time as there is an efficient min-cut based separation or-
acle to verify feasibility. It is also (almost) a relaxation:

Lemma 3.1. The cost of an optimal solution LPOpt of
the above linear program is at most 4c(Opt), where Opt
is a minimum cost solution to the 2-ECGS instance I.
Proof. Let Opt be some optimal solution for the given
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instance, and let ri be the representative from group gi

which is 2-edge-connected to the root r. From Obser-
vation 2.1, we can construct a cycle-closed subgraph
Opt′ such that c(Opt′) ≤ 2c(Opt) and Opt ⊆ Opt′.
Also, since Opt′ is cycle-closed , we know (from Observa-
tion 2.2) that Opt′ contains the base tree path PT (r, ri)
for all i ∈ [1, k]. Therefore, for any valid cut S, there is
a tree edge in Opt′ crossing it — this means that all con-
straints (3.1) would be satisfied by the integer solution
corresponding to Opt′.

Furthermore, the Covering Lemma ensures that any
edge e on the path PT (r, ri) has a “covering cycle”
Of ⊆ Opt′ such that e ∈ Of — this ensures that
constraints (3.2) would also be satisfied. As a result,
the solution corresponding to Opt′ is feasible to LP2GS.
As for the cost, the LP solution is charged c(e) for any
tree edge in e in Opt′ and is charged the cost of the
entire cycle Of corresponding to each non-tree edge in
Opt′. Therefore, the value of the objective function for
this solution is at most 2c(Opt′) ≤ 4c(Opt).

3.1.1 Rounding the LP solution. We first give the
overview of the rounding procedure and then present the
details in two stages.

• Firstly, constraints (3.1) ensure that the xe vari-
ables form a feasible solution to the group Steiner
LP on the base tree T , and so we round (in Stage 1)
the xe variables using one iteration of the Garg et
al. [21] randomized rounding for the group Steiner
problem (which we refer to as the GKR algorithm).
At the end of Stage 1, we show our partial solution
H1 would 1-connect roughly Ω(1/ log n)-fraction of
the groups to the root.

• In Stage 2, we need to pick covering cycles such
that each tree edge in the partial solution H1 is
covered by some cycle. To do this, we essentially
use algorithms for Set Cover to get a low-cost
collection of cycles covering all tree edges picked
in the first stage. This ensures that there are no
cut-edges in the subgraph H1, and therefore the
resulting subgraph 2-edge-connects all the groups
connected to the root in H1.

• Finally, we repeat these two stages independently
O(log2 n) times and output all the edges bought to
get a feasible solution 2-connecting all groups to
the root r with very high probability.

We now present the details of the two stages, as well
as the analysis of the algorithm.

It remains to explain how to obtain the 2-
approximate set cover in Step 3 (of Stage 2). The LP
relaxation (LPH1) of the set cover problem to cover all

Stage 1 - Picking Base Tree Edges
1: solve the linear program LP2GST; let (x∗, y∗) denote

an optimal solution.
2: round up each fractional x∗e variable to the nearest

power of 2. Then, set x∗e := 0 if x∗e ≤ 1
2n and scale

each non-zero x∗e to 2x∗e.
3: round the x∗ variables using one round of the GKR

rounding scheme.
4: let H1 denote the set of edges bought by the GKR

algorithm.

Stage 2 - Picking Covering Cycles
1: let H2 := ∅.
2: setup the following set cover instance:

2a: universe: there is an element for each edge
e ∈ H1.

2b: sets: there is a set Sf of cost c(Of ) for each
f ∈ E \ ET ,

2c: incidence: element/edge e is covered by a set
Sf if e ∈ Of .

3: obtain a set cover S whose cost is at most twice the
cost of the LP relaxation.

4: for each Sf ∈ S, include all edges of Of in H2.

edges in H1 is the following (with a variable yf ∈ [0, 1]
for non-tree edge each f).

min
∑

f∈E\E(T ) c(Of ) yf(LPH1)

s.t
∑

f | e∈Of

yf ≥ 1 ∀ e ∈ H1(3.4)

Consider a new instance obtained by replacing each non-
tree edge f = {u, v} with lca(u, v) = a by two edges
fl and fr, the former covering all edges on the path
PT (u, a) and the latter covering edges on PT (a, v), and
making both their costs equal c(Of ). Setting yfl

and
yfr

for the LP relaxation to this new instance equal to
yf in the old instance gives a solution of cost at most
twice the value of LPH1 . However, the constraint matrix
in the LP for this new instance is a network matrix [46,
Section 13.3], which is totally unimodular, and hence
all optimal basic solutions are integral; moreover, any
such integral solution is a 2-approximate set cover for
the original instance.

3.1.2 Analysis of the LP Rounding. We first
show that the subgraph H1∪H2 output by running both
stages above 2-connects any fixed group to the root with
non-trivial probability.

Lemma 3.2. (Success Probability) For each group
gi, the probability that a vertex from gi is 2-edge-
connected to r in H1 ∪H2 is Ω(1/ log n).
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Proof. To show this, we observe the following proper-
ties of the subgraphs H1 and H2.

(i) For each group gi, the probability that a vertex
from gi is connected to r in H1 is Ω(1/ log n).

(ii) For each edge e ∈ H1, there is an edge f ∈ H2

such that e ∈ Of ⊆ H2.
The first part is a direct consequence of one round
of the GKR group Steiner rounding algorithm. The
second part follows from the way H2 was obtained—
each element/edge e ∈ H1 has some set Sf ∈ S which
covers it, and in Step 4 of Stage 2, we ensure that H2

contains the entire cycle Of .
Therefore, consider a group gi which is connected to

r in H1. Let {u1 = r, u2}, {u2, u3}, . . . , {ul−1, ul = v}
denote the tree path PT (r, v) (which is contained in H1)
from r to some vertex v ∈ gi. Now, from property
(ii) above, we know that uj is 2-edge-connected to uj+1

in H1 ∪ H2 for all j ∈ [1, l − 1]. Therefore, from the
transitivity of edge-connectivity, we see that v is 2-edge-
connected to r in H1 ∪H2.

Now we analyze the total expected cost of the
subgraph H1 ∪ H2. To this end, consider the opti-
mal solution (x∗, y∗) to the linear program LP2GST.
Define LPOpte =

∑
e∈E(T ) c(e)x∗e and LPOptf =∑

f∈E\E(T ) c(Of )y∗f . LPOpte and LPOptf denote the
tree cost and the non-tree cost of the optimal fractional
solution respectively. Let LPOpt = LPOpte + LPOptf

denote the overall cost of the LP relaxation.

Lemma 3.3. (Stage 1 Cost) The expected cost of
subgraph H1 is at most O(1)LPOpte.

Proof. Because (x∗, y∗) is scaled by only a constant
factor in Step 2 of Stage 1, the proof of this lemma
follows directly from the properties of one round of the
GKR rounding algorithm [21, Theorem 3.2].

Lemma 3.4. (Stage 2 Cost) The expected cost of the
subgraph H2 is at most O(log n)LPOptf .

Proof. For any fixed outcome of H1, the cost of the
subgraph H2 is at most the cost of the set cover
solution S in Step 3 of Stage 2 (which, in turn, is
at most twice the cost of an optimal LP solution to
LPH1). Therefore, to prove the lemma, it would suffice
to exhibit a fractional solution to the linear program
LPH1 , whose expected cost is at most O(log n)LPOptf ,
the expectation being over the first stage randomization.

Consider a cycle Of with f = {u, v}, and let a be
the least common ancestor of u and v with respect to the
base tree T rooted at r (see Figure 3.1). If a is neither
u nor v, then PT (u, v) is a disjoint union of subpaths
PT (u, a) and PT (a, v). In this case, let e1 and e2 denote

a

u

v

e1

e2

f

Figure 3.1: e1 and e2 are the edges furthest (along base tree)

from a chosen in H1

the edges furthest from the root r (along the base tree)
on PT (a, u) and PT (a, v) that are included in H1 by the
rounding in Stage 1. We then set the value ỹf in the
following way:

- if e1 6= ∅, then set y1
f := y∗f/x∗e1

; set y1
f := 0

otherwise.
- if e2 6= ∅, then set y2

f := y∗f/x∗e2
; set y2

f := 0
otherwise.

- set ỹf := y1
f + y2

f .
On the other hand, if the lca a ∈ {u, v}, then let e
denote the edge furthest from the root r (along the base
tree) on PT (u, v) which is included in H1.

- if e 6= ∅, then set ỹf := y∗f/x∗e; set ỹf := 0
otherwise.

The fractional solution for the LP is then {ỹf , f ∈
E \ E(T )}.
Claim 3.1. (Feasibility) The fractional solution
{ỹf} is feasible to LPH1 .

Proof. Consider some edge e ∈ H1, and let f = {u, v}
be any non-tree edge such that e ∈ Of . Without loss of
generality, we assume that the least common ancestor a
of u and v is distinct from u and v, and that e ∈ PT (a, u)
(the proof for other cases is similar).

Now, recall that when we set the value of y1
f ,

we considered the edge e1 furthest from the root on
PT (a, u) that belonged to H1, and then defined y1

f =
y∗f/x∗e1

. But since the edge e is contained in H1 ∩
PT (a, u), this means e1 is further from r than e along
the base tree T (i.e., e1 is a descendant of e on T ).
Therefore, we have that x∗e1

≤ x∗e (from the structure of
the group Steiner LP, edges further from the root have
smaller xe values than their ancestors). Consequently,
ỹf ≥ y1

f ≥ y∗f/x∗e for any edge f such that e ∈ Of .
Now, since (x∗, y∗) is a feasible solution to (LP2GS),
constraint (3.2) ensures that

∑
f :e∈Of

y∗f ≥ x∗e for any
tree edge e. Therefore,

∑
f :e∈Of

ỹf ≥
∑

f :e∈Of
y∗f/x∗e ≥

1 and hence, the values {ỹf} comprise a feasible solution
to the second stage LP LPH1 .

Claim 3.2. (Expected Cost) The expected cost
E[

∑
f c(Of )ỹf ] of the fractional solution {ỹf} con-

1526 Copyright © by SIAM. 
Unauthorized reproduction of this article is prohibited.



structed above is O(log n)LPOptf , where the expectation
is taken over the randomization in Stage 1.

Proof. In the following, let parent(e) (or parent(v))
denote the parent edge of any given edge or vertex with
respect to the base tree, i.e. the edge incident on the
given edge or vertex that is closest to the root r. Also,
for any tree edge e, say that level(e) = l if x∗e = 2−l

(after the scaling in Step 2 of Stage 1).
Consider any non-tree edge f = {u, v}, and let a

denote the least common ancestor of u and v on the
base tree T . We focus on the case where a /∈ {u, v};
the other case when a ∈ {u, v} is similar. Moreover, in
order to bound the expected value of ỹf , it is sufficient
to analyze the expected value of y1

f ; the analysis for y2
f

is identical.
To this end, let PT (a, u) ≡ {e′1 = {a, u′1}, e′2 =

{u′1, u′2}, . . . , e′q = {u′q−1, u}}, with the edges ordered
such that parent(e′j) = e′j−1 for 2 ≤ j ≤ q. Also, let
P ′ = PT (a, u) \ {e′j | level(e′j+1) = level(e′j)}: i.e., if an
edge further from a along T has the same level as edge
e, then e is not included in P ′.

Let Ze denote the event that an edge e is the edge
furthest from r on the path PT (u, a) that was picked in
H1 by the Stage 1 algorithm. Then, we have

E
[
y1

f

]
=

∑

e∈{e′1,...,e′q}
E

[
y1

f | Ze

]
Pr [Ze]

=
∑

e∈P ′
E

[
y1

f | Ze

]
Pr [Ze]

=
∑

e∈P ′

y∗f
x∗e

Pr [Ze]

≤
∑

e∈P ′

y∗f
x∗e

x∗e

≤ log n · y∗f
Here, the second equality follows because if level(e′j) =
level(e′j+1), then whenever e′j is picked by the GKR
rounding, e′j+1 would also be selected (this is a property
of the GKR algorithm, and this is why we rounded the
xe values in Step 2 of Stage 1). Therefore, the event
Ze′j can never occur (i.e. Pr [Ze] = 0 for e /∈ P ′). In the
last-but-one inequality, we use Pr [Ze] ≤ x∗e because the
event Ze is dominated by the event that e is picked by
the GKR scheme, which happens with probability x∗e.
Finally, the last inequality holds because the edges in
P ′ all belong to distinct levels, and there are at most
log n levels.

We can bound the expected value of y2
f using a

symmetric argument, and therefore, by linearity of
expectation, we have E [ỹf ] ≤ (2 log n)y∗f . Hence,
the total expected cost of the fractional solution is

O(log n)LPOptf .

Now Claims 3.1 and 3.2 show that the expected cost
of a fractional solution to LPH1 is O(log n)LPOptf . Since
we find an integer solution which is a 2-approximation
to the LP cost, the proof of Lemma 3.4 is completed.

Lemmas 3.3 and 3.4 together show that the ex-
pected cost of the subgraph H1 ∪ H2 is at most
O(log n)LPOpt, and each group is 2-edge-connected to
the root with probability Ω(1/ log n). Therefore, if
we independently repeat this process O(log2 n) times,
we get 2-edge-connectivity to the root for all groups
with high probability, and the expected cost would be
O(log3 n)c(Opt). Thus we get the following theorem.

Theorem 3.1. (2-ECGS Theorem) 2-ECGS admits a
randomized O(log3 n)-approximation algorithm on back-
boned graphs, and hence a randomized Õ(log4 n)-
approximation on general graphs.

There are two more natural variants of the 2-ECGS
problem:

1. For each group gi, we want two distinct vertices vi1

and vi2 and edge-disjoint paths Pi1 and Pi2 going
from the root r to these two chosen vertices, and

2. For each group gi, we just want two edge-disjoint
paths Pi1 and Pi2 going from the root r to any two
vertices in gi, which may or may not be the same.

Since we can solve the case where we force the paths
to end up at the same vertex (Theorem 3.1), if we can
also solve the first case above where we require distinct
vertices also using an LP rounding approach, it is easy
to combine the two together to get an algorithm for
the second case above. (Indeed, instead of covering
a group to an extent of 1, we instead cover a group
instead an extent of αi1 using the single vertex LP from
Section 3.1, and to an extent of αi2 using the distinct
vertices LP, subject to the added constraint that the
sum αi1 + αi2 = 1. Since this constraint forces one
of these αi· values to be at least a half, it naturally
partitions the instance into two instances each of which
we know how to solve.) In the following section, we
show how we can solve the distinct vertices case.

3.2 2-ECGS with Distinct Vertices. For this prob-
lem, our LP (LP2GSd in Figure 3.2) is based on the fol-
lowing structural observation: for any group gi, the tree
path in the optimal solution from the root r follows a
single path PT (r, v) till some vertex v, and then forks
into two disjoint paths PT (v, v1) and PT (v, v2), where
v1, v2 ∈ gi. Also, it is sufficient that only the edges
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on PT (r, v) are covered by covering cycles to avoid any
cut-edges. With this in mind, we write the following
linear programming relaxation of a 2-ECGS instance I
on a backboned graph G. The variable xd

e is an indi-
cator variable for whether tree edge e is present on the
un-forked portion of the tree path(s) from the root to
some group: from the above discussion, only such edges
need to be covered by non-tree cycles. The variable xs

e

indicates whether tree edge e is on a forked branch to
some group representative. Finally, as always, yf is the
indicator variable for whether or not the base cycle Of

is included, and a set S is called “valid” iff there exists
a group gi such that gi ⊆ S and r /∈ S.

Lemma 3.5. The cost of an optimal solution LPOpt of
the above linear program is at most 4c(Opt), where Opt
is a minimum cost solution to the given instance I of
2-ECGS with distinct vertices.

Proof. Let Opt be some optimal solution for the given
instance, and let v1

i and v2
i be the representatives from

group gi that have edge-disjoint paths to the root r.
From Observation 2.1, we can construct a cycle-closed
subgraph Opt′ such that c(Opt′) ≤ 2c(Opt) and Opt ⊆
Opt′. Also, since Opt′ is cycle-closed , we know (from
Observation 2.2) that Opt′ contains the base tree paths
PT (r, v1

i ) and PT (r, v2
i ) for all i ∈ [1, k]. Let us create an

LP solution in the following manner: for any tree edge
e, if e ∈ PT (r, v1

i )∩PT (r, v2
i ) for some i ∈ [1, k], then set

xd
e = 1. Otherwise, if e ∈ PT (r, v1

i ) or e ∈ PT (r, v2
i ) for

some i, then set xs
e = 1. Set the yf variables according

to whether or not Of is present in Opt′. Now, consider
any valid cut S separating a group gi from r. If there are
2 tree edges in ∂S∩(PT (r, v1

i )∪PT (r, v2
i )), then it is clear

that constraint 3.5 is satisfied for this cut S. If only one
tree edge e crosses ∂S, then it must be on the common
prefix of PT (r, v1

i )∩PT (r, v2
i ), which means that xd

e was
set to 1, and therefore constraint 3.5 is satisfied for this
cut S in this case as well.

Furthermore, the Covering Lemma ensures that any
edge e on the path PT (r, v1

i )∩PT (r, v2
i ) has a “covering

cycle” Of ⊆ Opt′ such that e ∈ Of — otherwise
we would have a cut edge separating group gi from
r. This ensures that constraints (3.8) would also be
satisfied. Constraint 3.6 trivially holds in our solution
since no tree edge e has both xd

e and xs
e set to 1,

and constraint 3.7 holds because the common prefixes
PT (r, v1

i ) ∩ PT (r, v2
i ) are all tree (sub-)paths anchored

from the root, meaning that the set of variables with xd
e

set to 1 form a sub-tree rooted at r and are therefore
downward non-increasing. As a result, the LP solution
corresponding to Opt′ is feasible to LP2GSd, and incurs a
charge c(e) for any tree edge in e in Opt′ and the cost of
the entire cycle Of corresponding to each non-tree edge

in Opt′. Therefore, the value of the objective function
for this LP solution is at most 2c(Opt′) ≤ 4c(Opt).

We now present our rounding algorithm, which is
essentially two stages of GKR rounding followed by a
set covering phase.

Algorithm 3 2-ECGS with Distinct Vertices

1: run O(log2 n) independent rounds of the GKR
rounding scheme on variables x̃e = min(2xd

e +xs
e, 1).

If all groups are not connected to r, then stop; else
let H1 be the set of all edges bought in this step.

2: for each group gi, let vi ∈ gi be some vertex
connected to r in H1, and let ei be the edge closest
to r in the tree path PT (r, vi) with xd

e < 1/4.
3: create group g′i with those vertices in gi that do

not belong to the subtree subtended by ei.
4: run O(log2 n) independent rounds of GKR on vari-

ables x̂e = min( 4
3 (2xd

e +xs
e), 1) for the group Steiner

instance {g′1, g′2, . . . , g′k}. If all the (new) groups are
not connected to r, then stop; else let H2 be the
set of all edges bought in this step.

5: setup the following set cover instance:
5a: universe: for each edge e such that xd

e ≥ 1/4,
we have an element.

5b: sets: for each f ∈ E \ET , we have a set Sf , of
cost c(Of ).

5c: incidence: an element e is covered by a set
S{u,v} if e ∈ O{u,v}.

6: obtain a set cover S whose cost is at most twice
the cost of the LP relaxation.

7: for each Sf ∈ S, include all edges of Of in H3.
8: return H = H1 ∪H2 ∪H3.

The following lemma is a direct consequence of the
GKR rounding scheme.

Lemma 3.6. The expected cost of H1 is at most
O(log2 n)LPOpt. Furthermore, the algorithm stops after
Step 1 with very a small constant probability.

Lemma 3.7. The variables x̂e = 4
3 (2xd

e + xs
e) form

a feasible solution for the LP relaxation of the group
Steiner instance {g′1, g′2, . . . , g′k} created in Step 4.

Proof. Consider any cut S (with r /∈ S) separating
group g′i from root r. Create a new cut S′ = S ∪ Ti,
where Ti is the subtree induced by ei in T (ei is as
defined in Step 2). Since we include all vertices of Ti in
S′ and the root r is not contained in Ti ∪ S, the only
additional edge (if at all any) in δS′ ∩ E(T ) \ δS is ei.
Also, because the vertices in gi \ g′i are all contained
in in Ti, the cut S separates the entire group gi from
the root r. Therefore

∑
e∈δS′∩E(T )(2xd

e + xs
e) ≥ 2.

1528 Copyright © by SIAM. 
Unauthorized reproduction of this article is prohibited.



minimize
∑

e∈E(T )

c(e)(xd
e + xs

e) +
∑

f∈E\E(T )

c(Of )yf(LP2GSd)

subject to
∑

e∈∂S∩E(T )(2xd
e + xs

e) ≥ 2 ∀ valid S ⊆ V(3.5)

xd
e + xs

e ≤ 1 ∀ e ∈ E(T )(3.6)

xd
e ≤ xd

e′ ∀ e, e′ ∈ E(T ) s.t e′ ancestor of e(3.7)
∑

f | e∈Of
yf ≥ xd

e ∀ e ∈ E(T )(3.8)

xe, yf ∈ [0, 1] ∀ e ∈ E(T ), f ∈ E \ E(T )

Figure 3.2: LP Relaxation for 2-ECGS with Distinct Vertices

However, by the definition of ei, we know that xd
ei

< 1
4

and as a result, we have 2xd
ei

+ xs
ei

< 5
4 (since for any

edge e, xd
e + xs

e ≤ 1). Therefore
∑

e∈δS∩E(T )(2xd
e +

xs
e) ≥ ∑

e∈δS′∩E(T )\{ei}(2xd
e + xs

e) ≥ 3
4 , and thus∑

e∈δS∩E(T )
4
3 (2xd

e + xs
e) ≥ 1. The cut constraint in

the LP formulation for the group Steiner tree are all
satisfied, and this completes the proof.

The following lemma is also then a consequence of
the GKR scheme.

Lemma 3.8. The expected cost of H2 is at most
O(log2 n)LPOpt. Furthermore, the algorithm stops after
Step 4 with very a small constant probability.

Lemma 3.9. Let vi ∈ gi be the vertex connecting gi to
the root in H1, and let v′i ∈ g′i be any vertex connected
to the root in H2. Then, for any edge e ∈ PT (r, vi) ∩
PT (r, v′i), we have xd

e ≥ 1
4 .

Proof. Let vi ∈ gi be the vertex connecting gi to the
root in H1 (as chosen in Step 2), and let ei be the edge
closest to r on PT (r, vi) which has xd

e < 1/4. Then,
by the way we defined our group g′i, any vertex in g′i is
not contained under the subtree beneath ei. Therefore,
the maximal extent to which the path PT (r, v′i) (for any
v′i ∈ g′i) can overlap with PT (r, vi) is until the parent
edge e′ of ei (which has xd

e′ ≥ 1/4 by definition).

Lemma 3.10. The expected cost of H3 is O(1)LPOpt.

Proof. The set H3 is formed by solving a Set Cover
relaxation for covering edges whose xd

e value is at least
1/4. Therefore, the cost of a feasible solution to the
LP relaxation of the associated Set Cover problem is
O(1)LPOpt. Furthermore, we can make the constraint
matrix in the LP totally unimodular, like we did for the
2-ECGS algorithm (Section 3.1.1), which implies that
the cost of solution H3 is O(1)LPOpt.

From Lemma 3.9, we know that for any group, the
xd

e values on any edge e which belongs to the common
tree path until the fork is high (at least 1/4). But all
such edges are covered in H3 by cycles. Therefore, the
subgraph H1∪H2∪H3 is feasible to the given instance,
and Lemmas 3.6 ,3.8 and 3.10 bound the expected cost.

Theorem 3.2. The above algorithm is a randomized
O(log2 n) approximation algorithm to 2-ECGS with dis-
tinct vertices on backboned graphs, and an Õ(log3 n) ap-
proximation algorithm on general graphs.

4 2-Edge-Connected Facility Location

In the standard connected facility location (CFL) prob-
lem we are given a set of clients that we assign to
some facilities that we open, and then we connect these
opened facilities together by a Steiner tree (which can
be thought of as the core of the network). However,
the network designer would ideally like the core to be
resilient to edge failures, and hence it is desirable to
two-edge-connect the facilities together. In this sec-
tion we give a constant-factor approximation for the
2-edge-connected CFL problem (2-CFL) on backboned
networks, and hence an Õ(log n)-approximation for the
problem on general graphs.

Formally, an instance of 2-CFL is a graph G =
(V, E) with edge costs c : E → R, a set of demands
D ⊆ V , facility opening costs f : V → R, and a scaling
parameter M ≥ 1. The goal is to open a set of facilities
F ⊆ V , assign each demand u ∈ D to an open facility
σ(u) ∈ F , and buy a subgraph H that 2-edge-connects
the facilities in F . The cost of the solution is then
∑

v∈F f(v) + M
∑

e∈H c(e) +
∑

u∈D c(Pu,σ(u))

where Pu,σ(u) is a shortest path from u to σ(u) in G
under edge costs c(·). We refer to the three terms in the
above sum as the facility opening cost, the Steiner cost
and the client connection cost [15].
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4.1 2-CFL on Backboned Graphs. Let G be a
backboned graph with base tree T . As a first step
towards writing an LP relaxation, we guess a facility
which an optimal solution Opt opens and call it r.
Also, Observation 2.1 says that if H∗ is the Steiner
subgraph Opt builds to 2-edge-connect the facilities,
then there is a cycle-closed subgraph H ′ ⊇ H∗ with
cost c(H ′) ≤ 2c(H∗); hence we seek to build a Steiner
subgraph that is cycle-closed . The LP relaxation is then
given in Figure 4.3.

The variable xe is an indicator variable for whether
the tree edge e is included in the Steiner subgraph or
not, yf indicates the inclusion of the cycle Of , zuv indi-
cates if demand u is assigned to the facility at v, and z′v
corresponds to whether a facility is opened at v. Con-
straints (4.9) and (4.10) are the usual facility location
constraints ensuring that clients are (fractionally) con-
nected to some open facility, and (4.11) ensures that
the “root” facility r is opened. Constraint (4.12) en-
sures that open facilities are connected to the root along
the base tree: if some client is connected to facilities in
S ⊆ V \{r}, then we need to buy tree edges crossing the
cut ∂S (such a tree path exists because we seek cycle-
closed Steiner subgraphs). Finally, constraints (4.13)
ensure that tree edges bought are “covered” by funda-
mental cycles—note that this is a valid constraint be-
cause of the Covering Lemma 2.1).

Lemma 4.1. The cost of an optimal solution LPOpt of
the linear program LP2CFL is at most 4c(Opt), where Opt
is a minimum cost solution to the 2-CFL instance I.
Proof. Let Opt be some optimal solution for the given
instance and let demand ui ∈ D be connected to facility
vi. Create an LP solution in the following manner: set
zuivi = 1, and set zv to 1 if there is some demand
connecting to it. Clearly constraints 4.9-4.11 are then
satisfied by this assignment (recall we had guessed r
to be one open facility in Opt. Now consider the
Steiner subgraph H 2-edge-connecting the facilities in
Opt. From Observation 2.1, we can construct a cycle-
closed subgraph H ′ such that c(H ′) ≤ 2c(H) and
H ⊆ H ′. Also, since H ′ is cycle-closed , we know (from
Observation 2.2) that H ′ contains the base tree path
PT (r, vi) for all i ∈ [1, |D|]. Now set xe to 1 is e ∈ H ′

and yf to 1 if Of ∈ H ′. Therefore, since for any cut
S such that vi ∈ S and r /∈ S, there is a tree edge in
H ′ crossing it, constraint (4.12) is also satisfied by the
integer solution corresponding to Opt′.

Finally, the Covering Lemma ensures that any edge
e on the path PT (r, vi) has a “covering cycle” Of ⊆ Opt′

such that e ∈ Of — otherwise e would be a cut edge
separating vi from r. This ensures that constraints (3.2)
are also satisfied. As a result, the solution corresponding

to Opt′ is feasible to LP2CFL. As for the cost, the LP
solution is charged c(e) for any tree edge in e in Opt′ and
is charged the cost of the entire cycle Of corresponding
to each non-tree edge in Opt′. The facility opening and
connection costs are identical to that incurred by Opt′.
Therefore, the value of the objective function for this
solution is at most 2c(Opt′) ≤ 4c(Opt).

4.1.1 Rounding the LP Solution. The LP round-
ing algorithm works in four stages. We first filter the
solution to make sure that clients are not fractionally
connected to any distant facility. Then we identify dis-
joint balls that are within reasonable distance to all the
clients. In the third stage, we temporarily open a (pos-
sibly expensive) facility in each such ball and 2-edge-
connect it to the root. Finally, in the fourth phase, we
identify cheap facilities in each ball and 2-edge-connect
them to the nearby temporary facilities. Here are the
details.
Stage I. Filtering: Let (x∗, y∗, z∗) denote an optimal
LP solution. Filter on the client connection costs [41]
as follows: For u ∈ D, let C∗u :=

∑
v∈V c(u, v)z∗uv. Set

z∗uv = 0 if c(u, v) > 2C∗u, and “double” the resulting
solution (x∗, y∗, z∗). That is, set x∗e = min(2x∗e, 1),
y∗f = min(2y∗f , 1), z∗uv = min(2z∗uv, 1), and z′∗v =
min(2z′∗v , 1). As usual, this ensures that any client
fractionally connects only to facilities which are within
a distance at most twice the fractional connection cost
paid by the LP. (To avoid proliferation of notation, we
refer to the new solution also as (x∗, y∗, z∗).)
Stage II. Finding disjoint balls: In this step, we
identify disjoint balls which are reasonably close to all
clients. For each u ∈ D, let Bu = {v ∈ V | c(u, v) ≤
2C∗u} denote the ball of radius 2C∗u. Order the clients
u1, u2, · · · , ud such that C∗u1

≤ C∗u2
≤ · · · ≤ C∗ud

, and
create a subset VD ⊆ D in the following fashion: (i)
u1 ∈ VD, and (ii) for every subsequent i, ui is included
in VD if Bui

∩ Buj
= ∅ for all j < i s.t uj ∈ VD. Now,

observe that (a) Bu ∩ Bu′ = ∅ for u, u′ ∈ VD, and (b)
for any client u /∈ VD, there exists a client u′ ∈ VD s.t
c(u, u′) ≤ 2(C∗u + C∗u′) ≤ 4C∗u.

In the next stage, we will temporarily open some
facilities in each ball Bu and 2-edge-connect them to the
root. However, these facilities may be very expensive
compared to what the LP has fractionally opened. We
resolve this issue in the final step by actually opening
cheap facilities from each ball and 2-edge-connecting
them to the temporary facilities. The transitivity of
edge-connectivity ensures that the cheap facilities are 2-
edge-connected to the root. The crux of the argument
is in showing that these two steps can be successfully
done without blowing up the cost.
Stage III. Opening some facilities: For a set
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minimize M

( ∑

e∈E(T )

c(e)xe +
∑

f∈E\E(T )

c(Of )yf

)
+

∑

u∈D,v∈V

c(u, v)zuv +
∑

v∈V

f(v)z′v(LP2CFL)

subject to
∑

v∈V zuv ≥ 1 ∀u ∈ D(4.9)
zuv ≤ z′v ∀u ∈ D, v ∈ V(4.10)
z′r = 1(4.11) ∑

e∈∂S∩E(T ) xe ≥
∑

v∈S zuv ∀S ⊆ V \ {r}, u ∈ D(4.12)
∑

f |e∈Of
yf ≥ xe ∀ e ∈ E(T )(4.13)

xe, yf ∈ [0, 1] ∀ e ∈ E(T ), f ∈ E \ E(T )

Figure 4.3: LP Relaxation for 2-CFL

V ′ ⊆ V , let lca(V ′) denote their least common ancestor
in the base tree with respect to r. Consider the set
S = {lca(Bu) | u ∈ VD} and find the minimum cost
subgraph H (with edge costs scaled by M) which 2-
edge-connects the vertices in S ∪ {r}. Make H cycle-
closed by adding all edges of the cycle Of for any non-
tree edge f , and include H in the Steiner subgraph
bought.

In the above step, we crucially use the fact that for
any ball Bu, the vertex lca(Bu) is also contained in Bu.
To see why this is true, consider any vertex x ∈ Bu.
Since all shortest path distances are along the base tree
in a backboned graph, we know that all vertices in the
path PT (u, x) are also contained in Bu. Thus for any
pair of vertices in Bu, all the vertices in the tree path
PT (x, y) (an in particular, their lca) belongs to Bu.
Stage IV. Opening cheap facilities: In this final
stage, we identify cheap facilities inside these balls and
open those. For each u ∈ VD, choose a facility vu in
Bu that minimizes the sum of the facility cost f(vu)
and the cost (with edge-costs scaled by M) of 2-edge-
connecting vu to lca(Bu), assuming the edges in H are
already bought. Open a facility at vu and include the
subgraph Hu that 2-edge-connects vu to lca(Bu) in the
Steiner subgraph.

4.2 Analysis of the 2-CFL Rounding. In the fol-
lowing, let the value of the optimal LP solution be
LPOpt = C∗ + O∗ + E∗ + F ∗, where C∗ =

∑
u∈D C∗u

is the fractional connection cost, O∗ =
∑

v∈V f(v)z′∗v
be the fractional facility opening cost, E∗ = M ·∑

e∈T c(e)x∗e denote the fractional tree edge cost, and
F ∗ = M(

∑
f∈E\T c(Of )y∗f ) constitute the fractional cy-

cle cover cost. The following lemmas analyze the cost
incurred by the different stages of the algorithm.

Lemma 4.2. After Stage I, the modified solution
(x∗, y∗, z∗) is feasible to the LP, and the cost of the so-

lution is at most 2LPOpt. Further, if z∗uv > 0, then
c(u, v) ≤ 2C∗u.

Proof. From the definition of C∗u, it must be that∑
v′∈V | c(u,v′)≤2C∗u

z∗uv ≥ 1
2 . Therefore, setting z∗uv to

0 when c(u, v) > 2C∗u and scaling the solution by factor
2 would indeed be feasible to the LP and incur a cost of
at most 2LPOpt. In fact, the fractional client connection
cost, opening cost, and Steiner cost are all at most 2C∗,
2(E∗ + F ∗), and 2O∗ respectively.

Lemma 4.3. After Stage II, if we ensure that we open
a facility in Bu for each u ∈ VD, then the total client
connection cost is at most 6C∗.

Proof. If a client u belongs to VD, then it must be
that some facility is opened in Bu (in Stages III and
IV), which means that the client connection cost for
u is at most 2C∗u. If u /∈ VD, then by the way we
constructed VD, we know that there exists u′ ∈ VD such
that Bu ∩ Bu′ 6= ∅ and C∗u′ ≤ C∗u. Consequently, the
client u can connect to the facility opened in Bu′ and the
connection cost would be at most 2C∗u + 2C∗u′ + 2C∗u′ ≤
6C∗u. Therefore, the total client connection cost is at
most

∑
u 6C∗u = 6C∗.

Lemma 4.4. The cost of the subgraph H bought in
Stage III is 8(E∗ + F ∗).

Proof. Consider a client u ∈ VD. In the feasible LP
solution (x∗, y∗, z∗) obtained after the Stage I filtering,
u is fractionally connected only to facilities in Bu.
Hence (4.12) ensures that lca(Bu) can send unit flow
to the root along the base tree using the xe variables.
Moreover, constraint (4.13) ensures that each tree edge
on the path from lca(Bu) to r is fractionally covered
by fundamental cycles. Hence, for any u ∈ VD,
lca(Bu) is fractionally 2-edge-connected to the root r,
implying that the LP solution (x∗, y∗) (ignoring the
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facility opening component) is feasible to the problem of
2-edge-connecting the set of vertices S = {lca(Bu) |u ∈
VD} with the root, and the fractional cost is at most
2(E∗ + F ∗), the extra factor of 2 arising from doubling
the variables during filtering. Since the flow-based
LP formulation for edge-connectivity SNDP has an
integrality gap of 2 ([29]), we can use the approximation
algorithm of Jain [29] to build the subgraph H that
2-edge-connects r ∪ {lca(Bu) |u ∈ VD} incurs a cost
4(E∗ + F ∗). Furthermore, the cost of the subgraph H
at most doubles when we make it cycle-closed .

This brings us to the interesting part of the proof:
showing that we can open cheap facilities in each ball
and 2-connect them to previously opened facilities. For
any ball Bu, the LP solution (x∗, y∗, z∗) is fractionally
feasible to the problem of opening a facility in Bu

and 2-edge-connecting it to lca(Bu). Indeed, u is
fractionally connected to facilities in Bu that can send
unit flow (along tree edges) to lca(Bu), and the tree
edges are fractionally covered to an equal extent by the
fundamental cycles. Hence we can send 2 units of flow
from the fractionally opened facilities in Bu to their least
common ancestor—and if we chose one of these facilities
(say, at random), the cost incurred to 2-connect it to the
lca would be at most O(LPOpt). But we cannot do this
analysis independently for all the balls, since that may
cost LPOpt for each ball.

To resolve this problem, we now show that the
LP solution can be decomposed into disjoint parts
corresponding to the balls {Bu, u ∈ VD}. Consider a
ball Bu for u ∈ VD, and consider the LP relaxation
(given in Figure 4.4) for the problem Pu of opening a
facility in Bu and 2-edge-connecting it to lca(Bu) in the
cheapest possible way.

Claim 4.1. There exist feasible solu-
tions (x∗u, y∗u, z∗u) to LPu such that∑

u∈VD
cost(x∗u, y∗u, z∗u) ≤ 2LPOpt.

Proof. Consider some u ∈ VD. Say that a variable in
the solution (x∗, y∗, z∗) is critical for Bu if setting it to
0 would make the resulting solution infeasible for LPu.
The fractional solution (x∗u, y∗u, z∗u) is then formed
by taking all fractional variables critical for Bu (and
setting all other variables to 0). Clearly, from definition
of criticality, (x∗u, y∗u, z∗u) is feasible to LPu: we now
show that these solutions are (nearly) disjoint. In the
following, if a variable xe or yf is critical for Bu, we will
say that edges e or f are critical for Bu.

Since the balls Bu are all disjoint along the tree,
each tree variables xe can be critical only for the ball
containing it. Likewise, the facilities contained in Bu are
not in any other ball, so the zv variables are also critical

u1

u2

f

a1

a2

Bu1

Bu2

r

x

y

af

a

u

e

Bu

e′

Figure 4.5: Non-tree edge f is critical for at most 2 balls

for only one ball. Hence, the only shared variables in
the LP are the yf variables. Consider any non-tree edge
f = {x, y} which is critical for Bu, and let af = lca(x, y).
Clearly f contributes towards constraint 4.16 of LPu

only if Bu contains edges in PT (x, y) (see Figure 4.5
for an illustration). Let e be such a tree edge for
which constraint 4.16 in LPu needs help from f—i.e.,
f is critical for Bu because of edge e. Without loss of
generality, let e ∈ PT (af , x).

We now claim that the edge f is critical for e ∈ Bu

only if there is no other ball Bu1 closer to x than Bu such
that f is also critical for Bu1 . Indeed, suppose there were
such a ball, as in the figure. The fact that f is critical
for Bu1 means that there is an edge e′ ∈ PT (af , x) that
is contained in Bu1 . Hence, a1 = lca(Bu1) is an ancestor
of x on the base tree T , and lies on the path PT (af , x).
Now, since Bu′∩Bu = ∅, the edge e must be on the path
PT (a1, af ) ⊆ PT (a1, r). However, since the subgraph H
bought in Stage III 2-edge-connects a1 to r, there must
be a cycle Of ′ bought in H that contains e. Hence the
constraint 4.16 would not appear in LPu since e ∈ H.
This is a contradiction to the fact that f was critical for
Bu because of e. Therefore, any edge f can be critical
for at most 2 balls – the ones closest to the end vertices
of f . This completes the proof of Claim 4.1.

Claim 4.2. The integrality gap of the LP relaxation
LPu for problem Pu is O(1).

Proof. Consider a subproblem Pu and the correspond-
ing solution (x∗u, y∗u, z∗u) to the LP relaxation LPu.
We know that this solution is feasible to the prob-
lem of (fractionally) opening a facility and two-edge-
connecting it to lca(Bu), assuming H is already bought
in Stage III.

Now, suppose we simulate the facility opening com-
ponent at any vertex v by adding a vertex vf and in-
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minimize M

( ∑

e∈E(T )

c(e)xe +
∑

f∈E\E(T )

c(Of )yf

)
+

∑

v∈V

f(v)zv(LPu)

subject to
∑

v∈Bu
zv ≥ 1(4.14)

∑
e∈∂S∩E(T ) xe ≥

∑
v∈S zv ∀S ⊆ Bu \ {lca(Bu)}(4.15)

∑
f |e∈Of

yf ≥ xe ∀ e ∈ E(T ) \ E(H)(4.16)

xe, yf ∈ [0, 1] ∀ e ∈ E(T ), f ∈ E \ E(T )

Figure 4.4: LP Relaxation for subproblem Pu

cluding a tree edge {v, vf} of cost f(v)/2 and a cover-
ing non-tree edge {v, vf} of the same cost. It is easy to
check that the problem Pu is identical to that of finding
a minimum cost set of edges to augment to H to make
some vertex vf two-connected to lca(Bu). Also, the solu-
tion (x∗u, y∗u) is a feasible solution to the new instance
(when we set x∗u{v,vf} = y∗u{v,vf} = z∗uv ). But now, any
fractional solution can be thought of as a 2-flow from
lca(Bu) to the collection of facility-vertices {vf , v ∈ Bu}.
This can then be decomposed into a linear combination
of integral 2-flows from these facility-vertices to lca(Bu).
Hence by an averaging argument, there exists an inte-
gral 2-flow of cost at most c(x∗u, y∗u, z∗u).

The above two claims give us a bound the cost
of Stage IV (summarized in Lemma 4.5 below), and
combining Lemmas 4.2, 4.3, 4.4, and 4.5, we get the
following theorem.

Lemma 4.5. The total cost incurred by Stage IV in
opening a facility vu in each ball Bu (u ∈ VD) and 2-
edge-connecting vu to lca(Bu) is O(1)LPOpt.

Theorem 4.1. 2-CFL admits an O(1)-approximation
algorithm on backboned graphs and a randomized
O(log n)-approximation algorithm on general graphs.

5 2-Edge-Connected Buy-at-Bulk

We now consider the 2-connectivity generalization of
the buy-at-bulk problem. We are given a (backboned)
graph with costs on edges, a demand set D of si-ti
pairs, and a concave function Φ : Z → R+. The goal
is to identify a subgraph H and find 2-edge-disjoint
paths from each si to ti in H, such that the cost
cbab(H) =

∑
e∈E c(e) · Φ(l(e)) is minimized, where l(e)

denotes the load on edge e, i.e., the number of si-ti pairs
which use e as part of their 2-flow.

The idea behind our algorithm is simple: if we first
1-connect each demand pair via the tree path, then it
would suffice to buy covering cycles (to an appropriate
extent to match the load on the tree edges) so that

each si-ti pair has 2-edge-disjoint paths between its end
points. Therefore, with this in mind, let us for the
moment assume that the tree path between each si-ti
pair has already been bought, and that we only need
to buy the non-tree edges at bulk to cover these tree
edges. To this end, consider the following problem of
choosing non-tree edges (note that the constraints are
linear, but the objective function is non-linear):

min
∑

f∈E\E(T )

c(f)Φ(
∑

i

xi
f )(NLPBaB)

∑

f | e∈Of

xi
f ≥ 1 ∀ e ∈ PT (si, ti), ∀ i(5.17)

xi
f ∈ [0, 1] ∀ f ∈ E \ E(T )(5.18)

Lemma 5.1. The optimal solution of the optimization
problem NLPBaB has cost at most cbab(Opt), where Opt
is an optimal solution for the given buy-at-bulk instance
on a backboned graph.

Proof. Let us consider the optimal solution Opt, and
set xi

f to 1 whenever a non-tree edge f carries load
on behalf of si-ti. Clearly, this definition ensures that∑

i xi
f is exactly equal to the total load on any non-tree

edge f in Opt. Therefore, the total cost incurred by our
solution in NLPBaB is at most cbab(Opt).

To show that this is a feasible solution, suppose
one of the constraints (5.17), corresponding to edge
e and demand pair si-ti is violated. Now, removing
the edge e would separate the base tree T into two
components, one containing si (which we call Csi) and
the other containing ti (denoted by Cti). Since si and
ti are 2-edge-connected in Opt and e is the only tree
edge crossing Csi

and Cti
, there must exist a non-tree

edge f = {x, y} ∈ E(H) \ E(T ) carrying load for si-ti
such that one end vertex of f is in Csi and the other
is in Cti ; otherwise e would be a cut edge separating
si and ti in H. Therefore, our solution would have set
xi

f = 1, which contradicts the assumption that this was
a violated constraint.
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Lemma 5.2. Given an integer solution widetildex to
the optimization problem NLPBaB, we can find a so-
lution to the buy-at-bulk instance with cost at most
2 · c(f)Φ(

∑
i x̃i

f ), i.e., twice the objective function.

Proof. Let us incrementally create a subgraph H̃ in the
following manner: all edges begin with a load of 0. For
each non-tree edge f , for each i, if x̃i

f is 1, then increase
the load in H̃ on all edges of the cycle Of by 1 (all these
edges are made to carry load for si-ti).

When the process has been completed, what this
ensures is that for each si-ti, for any tree edge e ∈
PT (si, ti), there is a cycle Of containing e which carries
load for si-ti. Therefore, by applying transitivity of
edge-connectivity, it immediately follows that si and ti
are 2-edge-connected within the edges that carry load
for the demand pair si-ti.

We now compare the cost cbab(H̃) with the cost
of solution x̃. For this, consider the step in the
above process when non-tree edge f is being consid-
ered. Clearly, as the load on edge f increases from 0
to

∑
i x̃i

f , the load on each tree edge e also increases
by the same amount

∑
i x̃i

f . Therefore, if l′(·) denotes
the modified load on the edges (after f is completely
processed) and l(·) the original load (before process-
ing f), we have that the increase in cost of network
H̃ is at most

∑
e∈Of∩E(T ) c(e)(Φ(l′(e)) − Φ(l(e))) +

c(f)Φ(l′(f)). However, the concavity of the scaling
function Φ ensures that Φ(l′(e)) − Φ(l(e)) ≤ Φ(l′(f))
for any tree edge e ∈ Of . Therefore, the cost increment
is at most c(f)Φ(l′(f)) +

∑
e∈Of∩E(T ) c(e)(Φ(l′(e)) −

Φ(l(e))) ≤ c(f)Φ(l′(f)) +
∑

e∈Of∩E(T ) c(e)Φ(l′(f)) ≤
2 · c(f)Φ(

∑
i x̃i

f ). Therefore, the total cost cbab(H̃) is at
most twice the cost incurred by x̃ in NLPBaB.

Finally, it remains to show how we can get an
approximately optimal integral solution for the problem
NLPBaB, since we can then use Lemma 5.2 above to
convert it into a solution for buy-at-bulk. Since the
problem has a concave objective function, we first
convert it to one with a linear objective function via
the reduction given by Meyerson et al. ([42, Section
5.7]). In particular, using their reduction, we lose
a constant factor in the objective function, but get
T = |D| copies/cable-types of each edge f with cable
type t ∈ [1, T ] having a “fixed cost” of c(f) · At and
an “incremental cost” of c(f) · Bt. Now the following
problem of choosing the cables (i.e. setting Xi

f,t to 0/1
corresponding to selecting cable type t for edge f) is
identical to NLPBaB:
(i) constraints (5.17) are satisfied, and
(ii)

∑
f

∑
t c(f)

(
Af,t + Btf

∑
i Xi

f

)
is minimized.

Since this modified problem is now linear, we can
write an LP relaxation. In the following, we have a
variable zf,t for each edge/cable type which indicates
whether we buy cable type t on edge f . Variable xi

f,t

denotes whether edge f carries any load for si-ti (using
cable type t).

min
∑

f,t

c(f)
(
Atzf,t + Bt

∑

i

xi
f,t

)
(LPBaB)

∑

t,f | e∈Of

xi
f,t ≥ 1 ∀ e ∈ PT (si, ti), ∀ i(5.19)

xi
f,t ≤ zf,t ∀ f, ∀ i, ∀ t(5.20)

xi
f,t, zf,t ∈ [0, 1] ∀ f, ∀ i, ∀ t(5.21)

Finally, notice that this LP resembles that of the
standard group Steiner tree problem on a 2-level tree
(with the zf,t edges all connected to the root, and the
xi

f,t edges hanging off the zf,t edges) with the groups
appropriately defined based on each tree edge e needing
to be covered for every terminal pair si-ti such that
e ∈ PT (si, ti). Therefore, if we perform the GKR
rounding algorithm, we would get an integer solution
(to LPBaB and therefore to NLPBaB) of cost at most a
factor O(log n) of the optimal LP solution. This coupled
with Lemmas 5.1 and 5.2 gives us the following theorem.

Theorem 5.1. The above algorithm is a randomized
O(log n)-approximation algorithm for 2-edge-connected
buy-at-bulk on backboned graphs and consequently, an
Õ(log2 n)-approximation on general graphs.

6 The k-2EC problem

In the k-2EC problem, the goal is to find a minimum
cost set of edges that 2-edge-connects at least k of some
given set X ⊆ V of terminals to the designated root
vertex; Informally, this is the 2-connectivity variant of
the well-studied k-MST problem. In [38], Lau et al.
claimed a O(log3 n) approximation algorithm for this
problem, which was later shown to be incorrect. Sub-
sequently, Lau et al. [39] gave an improved algorithm
with approximation ratio O(log n log k), and Chekuri
and Korula [6] gave the same O(log n log k) approxima-
tion for the more general 2-vertex-connectivity version,
which implies an identical approximation for the k-2EC
problem as well. In this section, we point out that ap-
plying techniques very similar to those for the 2-ECGS
algorithm from Section 3 give us a simple algorithm for
k-2EC problem, though with a weaker approximation
guarantee of O(log3 n).

6.1 The LP Relaxation and its Rounding. We
write an LP similar to the covering Steiner tree problem
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(there is one universal group which contains all the
vertices and requires a connectivity of k) [26] along with
covering constraints for the tree edges. For the following
LP, we create a dummy leaf vertex lv (corresponding to
each vertex v) and connect it to v with an edge {v, lv}
of 0 cost. There is also a parallel covering edge {v, lv} of
0 cost (just to make sure there is a feasible solution to
2-edge-connect k of the dummy vertices). The group X
then comprises of the set {lv | v ∈ V }. In the following,
parent(v) denotes the parent edge of a vertex v along
the base tree T , and T (e) denotes all the vertices in the
subtree subtended beneath edge e.

min
∑

e∈E(T )

c(e)xe +
∑

f∈E\E(T )

c(Of )yf(LPk-2EC)

s.t
∑

v∈T (e)∩X xparent(v) ≤ k · xe ∀ e ∈ E(T )(6.22)

xe ≤ xparent(e) ∀ e ∈ E(T )(6.23) ∑
f | e∈Of

yf ≥ xe ∀ e ∈ E(T )(6.24)
∑

v∈X xparent(v) ≥ k(6.25)
xe, yf , zv ∈ [0, 1]

Constraint 6.22 requires that if an edge e is part of
the solution, there can be at most k terminals in the
subtree T (e) which require connectivity – this is triv-
ially true in integer solutions but is used to cut-off bad
fractional solutions (see [35, 26]). Constraint 6.23 re-
quires that the fractional solution be monotonically non-
increasing as we move down the tree T . Constraint 6.24
requires that any tree edge included also be covered by
a cycle – otherwise it would mean the solution has a
cut-edge and is therefore not feasible. Finally, con-
straint 6.25 simply says that there are at least k ter-
minals which are connected to r. Again, an argument
identical to that for Lemma 3.1 shows that an optimal
solution to this LP has cost O(Opt).

If we wanted to settle for a O(log2 n log k) approxi-
mation algorithm on backboned graphs, we could round
this LP exactly like in the 2-ECGS problem, except that
instead of O(log2 n) rounds of repetition, we repeat the
two stages of rounding O(log n log k) times—the reason
for this change is simple. An application of Janson’s
inequality tells us that after a single round of Stage 1,
at least k

2 vertices would be connected to the root by
the solution H1 with probability Ω( 1

log n ). (This proof
can be found in [35, Section 3.2], where it is shown that
the probability that we choose less than (1 − δ)k ver-
tices is at most 1 − δ2γ, with γ = Θ(1/ log n). Setting
δ = 1

2 , we get that we choose at least k/2 vertices with
probability at least γ/4.) Therefore, we only need to re-
peat the two stages of the rounding Ω(log n log k) times
to guarantee that we connect at least k terminals with
high probability.

However, we can incorporate techniques used in [26]
for the covering Steiner tree problem to get rid of a
logarithmic factor. Consider the following changes to
the rounding algorithm:

Case (1): If at least k/2 of the flow is reaching
vertices that each receive at least 1/4 units of flow:
Scaling up the fractional solution by a factor of 4 ensures
that at least k/2 nodes are connected deterministically
in the scaled solution. Also, the covering constraints
are satisfied completely for each edge bought entirely
in the fractional solution — there is a good fractional
solution to the set cover problem of covering each
tree edge by cycles, which implies that there is an
integral solution of at most twice the cost (recall from
Section 3.1.1 that such set cover instances have a totally
unimodular constraint matrix). Thus we can 2-edge-
connect k/2 terminals to the root paying at most
O(LPOpt). Therefore, since we halve the requirement
each time this case holds, there can be at most O(log k)
times this case applies. The total cost of the edges
bought whenever we execute this step is O(log k)c(Opt).

Case (2): Case (1) does not hold, but at least 3k/4
flow reaches vertices that each receive at least 1/ log n
units of flow: In this case, it must be that at least
(3k/4 − k/2) = k/4 units of flow reach vertices that
receive flow in the interval [1/16 log n, 1/4). But this
must mean that the number of such vertices is at least
k. So scaling up the solution by 16 log n will connect
them all deterministically; and again, the yf variables
are just scaled by O(log n). Therefore, at a cost of
O(log n)c(Opt), we have 2-edge connected k vertices to
the root.

Case (3): Neither of the above cases hold: In
this case at least k/4 of the flow reaches vertices that
receive at most 1/16 log n flow each. In this case,
we scale up the flow by O(log n), and do the GKR
randomized rounding. An argument similar to the
one in Case (2) of [26] shows that we hit at least k
vertices with constant probability. But in this case, the
cost of a feasible set cover solution could be as large
as O(log2 n)c(Opt) — the original solution was scaled
by O(log n), and furthermore, the expected cost of a
fractional set cover solution costs O(log n)LPOpt like in
the 2-ECGS case, because we do a GKR style rounding.
Therefore, in this case, we can cover k vertices at a cost
of O(log2 n)c(Opt).

Thus, the total cost in any case would be at
most O(log2 n)c(Opt). This gives us an O(log2 n)
approximation for backboned graphs and an Õ(log3 n)
approximation for general graphs.

Theorem 6.1. The above algorithm is an O(log2 n) ap-
proximation algorithm for k-2EC on backboned graphs,
and an Õ(log3 n) approximation algorithm on general
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A Proofs from Section 2

Proof of Theorem 2.1: Using the construction of [1],
we can draw a random spanning tree T = (V, E(T ) ⊆ E)
of G such that
• dT (x, y) ≥ dG(x, y) for all x, y ∈ V .
• For any x, y ∈ V , E[dT (x, y)] ≤ Õ(log n) · dG(x, y).

where the tree distance dT is the defined as usual: if
PT (u, v) is the unique u-v path in T , then dT (u, v) =∑

e∈PT (u,v) c(e). Now, suppose we consider the same
graph G, but with the following edge costs instead: (i)
tree edge e ∈ T has cost ĉT (e) = c(e), and (ii) non-tree
edge e ∈ E \E(T ) has cost ĉT (e) = max{c(e), dT (u, v)}.
Then, it is simple to verify that G with edge costs ĉT (.)
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is backboned.
Consider a problem Π, and let the optimal solu-

tion to the given instance on G with edge costs c(.)
be a subgraph H ⊆ G. Then, from the low-stretch
property of the random embedding, the expected cost
of H under the cost function ĉT is ET [

∑
e∈H ĉT (e)] ≤

Õ(log n)·∑e∈H c(e). Therefore the expected cost of any
optimal solution under edge costs ĉT is at most Õ(log n)·∑

e∈H c(e). Consequently, any β-approximation algo-
rithm for the problem Π on backboned graphs would
return a subgraph H ′ ⊆ G, with expected cost (with
respect to ĉT ) at most (β× Õ(log n)) ·∑e∈H c(e). Since
ĉ(e) ≥ c(e) for any edge e ∈ E(G), the expected cost of
the subgraph H ′ with respect to edge costs c(.) is also
at most (β×Õ(log n))·∑e∈H c(e) ≤ (β×Õ(log n))c(H).
Therefore, the solution H ′ is a randomized β×Õ(log n)-
approximate solution on the original edge costs c(.). ¥

B Proofs from Section 4

B.1 2-CFL on Non-Metric Instances We now con-
sider instances where the connection cost for the clients
is given by some distance function d(·, ·) which may it-
self not satisfy triangle inequality, and the edge costs
for building the 2-connected core is c(·).

We show how we can get poly-logarithmic approxi-
mations for the above “non-metric” 2-CFL problem us-
ing essentially the same techniques we used for 2-ECGS.
We first guess one facility which the optimal solution
opens and call it r. The LP is almost identical to the one
given for 2-CFL on general graphs, except for the client-
facility connection cost being some arbitrary function
d(·, ·) instead of the tree distances c(·). Here is a brief
overview of the rounding algorithm for 2-CFL. We skip
the details of the proofs as they are very similar to the
ones given in the earlier sections.

(i) Solve the LP relaxation optimally. Then fil-
ter the client connection costs: If we let
D∗

u =
∑

v∈V d(u, v)z∗uv, it must be that∑
v∈V | d(u,v)≤2D∗i

z∗uv ≥ 1
2 . Set z∗uv ← 0 if d(u, v) >

2D∗
i and scale the solution by factor 2.

(ii) For each u ∈ D, create a group gu = {v ∈ V | z∗uv 6=
0} of facilities associated with this client. It is
easy to check that the solution (x∗, y∗) is a feasible
solution for the 2-ECGS LP with these groups.

(iii) Perform Stage I and Stage II of the 2-ECGS algo-
rithm once; if a group gu is 2-connected to the root,
open a facility at the representative vertex vgi . Be-
cause the 2-ECGS algorithm ensures that Ω( 1

log n )
groups are 2-connected to the root, and we open
facilities for these groups, we know that Ω( 1

log n )
clients have a facility opened near them. A similar

analysis as the one for the 2-ECGS problem can be
used to see that the total cost spent in this step is
at most O(log n)LPOpt.

(iv) We can then repeat this process O(log2 n) times
and output the union of all previous partial solu-
tions to guarantee with high probability a feasible
solution to the 2-CFL problem.

Theorem B.1. Non-metric 2-CFL admits an O(log3 n)
approximation algorithm on backboned graphs, and an
O(log4 n) approximation algorithm for general graphs.
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