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A New System-Wide Diversity Measure for Recommendations with Efficient
Algorithms\ast 

Arda Antikacioglu\dagger , Tanvi Bajpai\ddagger , and R. Ravi\S 

Abstract. Recommender systems often operate on item catalogs clustered by genres and user bases that have
natural clusterings into user types by demographic or psychographic attributes. Prior work on
system-wide diversity has mainly focused on defining intent-aware metrics among such categories
and maximizing relevance of the resulting recommendations, but this work has not combined the
notions of diversity from the two points of view of items and users. In this work, we do the following:
(1) We introduce two new system-wide diversity metrics to simultaneously address the problems of
diversifying the categories of items that each user sees, diversifying the types of users that each item
is shown, and maintaining high recommendation quality. We model this as a subgraph selection
problem on the bipartite graph of candidate recommendations between users and items. (2) In
the case of disjoint item categories and user types, we show that the resulting problems can be
solved exactly in polynomial time, by a reduction to a minimum cost flow problem. (3) In the case
of nondisjoint categories and user types, we prove NP-completeness of the objective and present
efficient approximation algorithms using the submodularity of the objective. (4) Finally, we validate
the effectiveness of our algorithms on the MovieLens-1m dataset and show that algorithms designed
for our objective also perform well on sales diversity metrics and even on some intent-aware diversity
metrics. Our experimental results justify the validity of our new composite diversity metrics.
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1. Introduction. The goal in the design of traditional recommendation systems is the
accuracy of predictions as measured by the implied relevance of the recommended items.
Collaborative filtering (CF) recommender systems are prone to providing item recommen-
dations that are clustered in a filter-bubble [20] due to a rich-get-richer effect of commonly
seen and rated items [10]. One potential ``unsupervised"" approach to addressing this may be
to require expansion properties on the bipartite graph between users and the items that are
recommended to them. However, in prior work, the various methods that have been proposed
to diversify such recommendations typically focus on more targeted approaches, such as in-
creasing item exposure, reranking CF recommendations for diversity, or choosing appropriate
subgraphs that reflect diversity metrics.
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Often, such recommendation systems operate on item catalogs and user bases that have
natural clusterings of item categories and user types. This single-minded focus on relevance
fails to incorporate requirements of diversity of the recommendations among the item cate-
gories and user types. In this paper, we build on earlier targeted approaches for increasing
diversity and propose a new model to achieve a holistic trade-off between user- and item-
level diversity that also promotes system-level diversity. Our problem is motivated by three
different considerations in incorporating such diversity in the design of recommender systems.

First, there is a need for diversity in a user's recommendation lists in terms of both items
and categories to encourage serendipity [25] as well as to improve user satisfaction [18].

The second consideration we look at is item-level diversity; that is, we wish to show each
item to a diverse set of users. Item-level diversity allows for a more holistic dissemination
of items to users. User-level diversity fails to consider item-level diversity, since assigning
recommendations based on user satisfaction would still only show items to users who fall
within their traditional ``audience."" This would result in bad item-level diversity but could
still give a high user-level diversity if recommendations are diverse enough.

Finally, our third consideration is system-level diversity, which involves aggregating the
recommendations made to all users and studying the resulting distribution of recommenda-
tions. The platform running the recommender system often has concerns other than pure user
satisfaction or item-level diversity. Examples of such concerns include achieving good cover-
age of different categories in the item catalog and avoiding the perpetuation of biases across
the system, such as popularity bias or filter-bubbles among demographic or psychographic
clusters of users.

Typically, all three of these considerations are studied under the same ``diversity"" umbrella.
However, systems that optimize for user- or item-level diversity do not necessarily score well
in system-level diversity, motivating the need for a new objective that combines all of these
considerations.

One common problem with deliberately increasing the diversity of recommendation sys-
tems is that they can change user behavior, which then changes future estimates of relevance,
and hence eventually leads to polarization. We do not address this meta concern in any de-
tail, so our targeted approach will also suffer from the same problem. Nevertheless, targeting
holistic diversity is a first step in this direction. The ensuing changes will not necessarily be
biased toward either changing only user behavior or clustering values of item relevances but
will be some mixture of the two.

2. Related work and contributions. First, we survey previous work on category-aware
metrics for diversification, and then survey work on sales diversity measures that are system-
wide measures of diversification.

2.1. Category-aware metrics. Previous work used category information in defining met-
rics for measuring the diversity contained in user lists. In our work, we focus on three, each of
which informs one of the baseline algorithms we compare against in our experimental section.

Intralist Distance (ILD). We define a recommendation set's intralist distance as the av-
erage pairwise distance among items [7]. This is used to measure the diversity of an individual
user's recommendations and quantifies user novelty. The distance dist(vk, vj) between items
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we consider is measured using the cosine similarity between the items' category membership
vectors. Given a list L of recommendations, defined by item lists of length cu for user u, the
intralist distance is defined as follows (we use L to denote the left-hand side of the bipartite
graph representation representing the users, and N(ui) to represent the neighbors of user ui,
which are items in the right-hand side recommended to her):

ILD =
1

| L| 
\sum 
ui\in L

1

ci(ci  - 1)

\sum 
(vk,vj)\in N(ui)

dist(vk, vj).

Maximizing this objective enforces items in the recommendation list of a user to be dis-
similar, but ILD does not influence the resulting distribution of categories in the resulting
list. Furthermore, overrepresentation of certain categories is not explicitly punished by this
metric. The MMR method [7] approximately optimizes the ILD metric by greedily growing
a recommendation list S. The next item added to the recommendation list is the one cho-
sen to maximize the quantity \lambda rel(ui, vk) + (1 - \lambda )minvj\in S dist(vk, vj), where \lambda is a trade-off
parameter between 0 and 1, and rel(ui, vk) represents the relevance score of item vk to user ui.

Intent-Aware Expected Reciprocal Rank (ERR-IA). The ERR-IA metric is the
intent-aware version of the Expected Reciprocal Rank metric introduced by Chapelle et al. [9].
ERR-IA considers the sum of each item category's weighted marginal relevance. To do this,
we consider the quantity p(Ra), which is the probability that the desired recommendation
set's target category is Ra. Chapelle et al. [9] formally define ERR-IA for some u's given
recommendation set N(ui) = \{ vj\} cij=1 as follows (again, rel(vk) denotes the relevance of item
vk for this user): \sum 

Ra\in \scrR 
p(Ra)

ci\sum 
k=1

1

k
rel(vk)

k - 1\prod 
\ell =1

(1 - rel(v\ell )).

ERR-IA is a personalized metric and aims for good coverage of relevant categories in
the recommendation list. However, it does not explicitly penalize the overrepresentation of a
particular category provided that it is well-covered. This metric is optimized by the xQuAD
reranking strategy [23]. Similarly to the MMR method, xQuAD greedily optimizes for its
metric by greedily picking items which maximize the marginal change in the ERR-IA metric
plus a relevance term.

Binomial Diversity (BD). This diversity measure is due to Vargas et al. [27]; we omit
the complete description of this metric due to its intricacy. Roughly speaking, the authors
use a binomial distribution to model the coverage and redundancy of the categories based
on the items included in the recommendation list. Binomial diversity punishes both the
underrepresentation and overrepresentation of a given category in a user's list and strives for
a balance between coverage and nonredundancy. It can be optimized for in the same way
that xQuAD optimizes for the ERR-IA metric, and a thorough experimental evaluation of
this method is carried out in [27]. However, due to the complexity of the metric, no explicit
guarantees can be given for the performance of the algorithm.
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2.2. Sales diversity. In addition to adding diversity to a single user's recommendation
list, we are also interested in surfacing content for increased feedback from the users. Since it
is impossible for the users to give feedback on items that are not surfaced adequately by the
system, we measure our algorithms by two sales diversity measures. The first of these metrics
is aggregate diversity, which counts the number of items that are shown to at least one user
[3, 12, 2, 4]. Our thresholded item diversity objective can be thought of as a refinement of
aggregate diversity, where each item needs to be recommended to multiple users of different
types instead of just once to any user in the system. The second sales diversity measure we
employ in our experiments is theGini index, which is also widely employed in the recommender
system community [24, 12, 15, 21, 8]. The category-aware metrics surveyed above try to solve
the filter-bubble problem for the users, while the type information can be used to solve the
same problem for the business running the recommender system. In our work, we incorporate
aggregate information symmetrically from both item-category and user-type information in
our metrics to address this aspect.

2.3. Graph-theoretic approaches for recommender diversity. The first paper to use a
subgraph selection model for maximizing aggregate diversity was [3], where the authors re-
duced the problem to bipartite matching. Other recent papers [6, 5] have refined the notion
of using subgraph selection by formulating more involved diversity metrics, such as redundant
coverage of items, by minimizing the discrepancy from a target degree distribution on the
items, and by solving for them using network flow and greedy techniques. Our paper follows
this recent line of work.

2.4. Submodularity and NP-completeness. The problem of maximizing a submodular
set function has been extensively analyzed in the last 40 years, starting with Nemhauser,
Wolsey, and Fisher [19]. Many of the problems we pose reduce to maximizing such a function,
which is NP-hard even when the function is monotone increasing. Nonetheless, the problem
can be approximated using the greedy algorithm, which gives a (1 - 1/e)-approximation in the
simplest case. Moreover, the constraint of choosing a subset of a fixed size, which corresponds
to a uniform matroid constraint, can be replaced by any other matroid constraint without
affecting the approximation ratio [1]. Since the coverage-type objectives we define in this
paper are submodular, and our main type of constraint forms a partition matroid, we make
extensive use of results in this area. Other researchers considered the use of submodular
functions in diversifying recommendations but did so only over the set of a single user's
recommendation set [14, 17, 22].

2.5. Summary of contributions.
1. We introduce two new metrics for recommendation diversity that we call thresholded

item diversity (TIDiv) and thresholded user diversity (TUDiv) and that consider the
distribution of user types among an item's recommended user set and the distribution
of item categories in a user's recommendation item set, respectively. The objective
of TUDiv is similar to that of other category-aware diversity metrics, but TIDiv is
unique in its consideration of diversity among an item's recommendees. TIDiv can
be thought of as a sales diversity metric, and it explicitly addresses the need for a
business to collect feedback from different types of users.
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2. In the case of disjoint types and categories, we model the problem of maximizing type
diversity across all items and category diversity across all users as a subgraph selection
problem. We reduce the resulting problem to a minimum cost flow problem and obtain
exact polynomial time algorithms (Theorem 3.5 in section 3).

3. We address the case of nondisjoint types and categories in section 4, where we prove
that the problem of maximizing the same objectives mentioned above is NP-complete
(Theorem 4.1). While this rules out an exact polynomial time solution, we obtain
a (1  - 1/e)-approximation using the submodularity of our objectives. We also show
how to modify the algorithm to run in nearly linear time in the number of candidate
recommendations (Theorem 4.6), making it very efficient.

4. We conduct experiments using the MovieLens dataset that considers both disjoint
and overlapping item categories. Our experimental setup is described in section 5,
and the results are presented in section 6. We show that despite being flow based,
our algorithms for the disjoint case can easily handle problems involving millions of
candidate edges. We also show that the greedy algorithm we describe is competitive
in efficiency with the reranking approaches we compare against (subsection 6.1) and
competitive with our optimal flow based approach when used with disjoint categories
and types (subsection 6.2). Our algorithms perform better than the baselines across
the board on sales diversity metrics and obtain good values for the other intent-aware
metrics despite only optimizing for them by proxy.

3. Disjoint types and categories. We model the problem of making recommendations
as a subgraph selection problem on a bipartite graph G = (L \cup R,E), where the partition
L represents a set of users and partition R represents a set of items. For each user ui, we
have a space constraint ci, which is due to display space limitations on a given web page. For
each edge (ui, vj) between user ui and item vj in G, we are also given a real-valued relevance
rel(ui, vj) that is typically an actual rating or a predicted rating from a CF system. Often, the
graph G available for selection of recommendations is chosen by using a CF system's relevance
scores and only retaining edges that are higher than a minimum threshold relevance or quality
value. In this section, we model the case when the subgroups of users and items are disjoint.

We define a collection of subsets \scrL = \{ L1, L2, . . . , Ln\} on the user set L that represent
different types of users and are mutually disjoint. Similarly, we define a collection of subsets
\scrR = \{ R1, R2, . . . , Rm\} on the item catalog which partition R to represent different categories
or genres of items. This means there exist functions type : L \rightarrow \scrL , which maps users to
their designated type, and cat : R \rightarrow \scrR , which maps items to their corresponding category.
The edges between users and items in G represent possible recommendations that can be
made. We wish to output a subgraph H of recommendations, where each user ui has ci
recommendations. See Figure 1.

3.1. Global edgewise diversity. Consider a recommendation edge (ui, vj) in the subgraph
H. Let \delta Hi (cat(vj)) denote the number of neighbors user ui has in vj 's category, and let
\delta Hj (type(ui)) denote the number of neighbors vj has in ui's type in H. In order to achieve a
diverse set of recommendations, we would like each user to see a large number of categories,
while also showing each item to a large number of user types. To define a diversity metric that
takes both of these considerations into account, we consider assigning the following weight to
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Input: A relevance-weighted bipartite graph G(L,R,E), a vector of display constraints
\{ ci\} li=1, a collection of user types \scrL , a collection of item categories \scrR , real-valued parameters
\beta , \mu .
Output: A subgraph H \subseteq G, of maximum degree ci at each node ui \in L, and maximizing
the objective Div\beta ,\mu (H) + rel(H).

Figure 1. The definition of the MAX-Div\beta ,\mu problem.

each edge, where \beta and \mu are real-valued parameters:

wij =
\beta 

\delta Hi (cat(vj))
+

\mu 

\delta Hj (type(ui))
.

A weighting like this is natural, since we are assigning less weight to recommendations that
are not novel for either the user type or the item category that this recommendation serves.
For instance, a recommendation edge that gives the user the only item from a category, and
gives the item the only user from a type, will have a maximum weight of \beta + \mu . We can now
define the diversity of a solution subgraph H

Div\beta ,\mu (H) =
\sum 

uivj\in H
wij

and subsequently maximize this objective for a highly diverse set of recommendations.

Proposition 3.1. By the definition above, we have

Div\beta ,\mu (H) = \beta 
\sum 
ui\in L
| a : Ra \cap N(ui) \not = \emptyset | + \mu 

\sum 
vj\in R

| a : La \cap N(vj) \not = \emptyset | .

Proof. We can think of each edge weight as a user contributing a fractional value towards
the category the user is hitting as well as an item contributing a fractional value towards the
user type that hits the item. For example, if a user ui has four edges to some category, the
value of each \beta 

\delta Hi (cat(vj))
for every item v in that category that u is connected to is \beta 

4 . If some

item vj has three edges coming from the same user type, the value of \mu 
\delta Hj (type(ui))

for each user

that vj is connected to is \mu 
3 . This means that Div(H) gets a value of \beta for every category

that a user hits, and gets a value of \mu for every user type that an item hits:

Div\beta ,\mu (H) =
\sum 

uivj\in H

\beta 

\delta Hi (cat(vj))
+

\mu 

\delta Hj (type(ui))

=
\sum 
ui\in H

\sum 
Ra\cap N(ui)

\beta 

| Ra \cap N(ui)| 
+

\sum 
vj\in H

\sum 
Lb\cap N(vj)

\mu 

| Lb \cap N(vj)| 

= \beta 
\sum 
ui\in L
| a : Ra \cap N(ui) \not = \emptyset | + \mu 

\sum 
vj\in R

| a : La \cap N(vj) \not = \emptyset | .
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We can isolate both terms of this expression as their own objectives, which may be for-
malized as follows:

UserDiv(H) =
\sum 
ui\in L

\sum 
Ra

1[\exists vj \in Ra : uivj \in H],

ItemDiv(H) =
\sum 
vj\in R

\sum 
La

1[\exists ui \in La : uivj \in H].

Here, UserDiv(H) will give us a reward proportional to the number of categories hit for
each user, and ItemDiv(H) will give us a reward proportional to the number of user types
hit for each item.

Ignoring type information, we first show that UserDiv(H) can be optimized in polynomial
time, since this construction is simpler to formulate and solve in practice.

Theorem 3.2. The problem of maximizing Div\beta ,\mu can be reduced to a minimum cost flow
problem if the categories are disjoint, i.e., Ra \cap Rb = \emptyset for all a, b.

Proof. For each ui \in L, we set supplies of ci and a demand of
\sum 

ui\in L ci for a newly created
sink node t. For each user ui and category Ra such that \exists vj \in Ra such that uivj \in G, we
create nodes ni,a and n\prime 

i,a. We will create an arc of capacity 1 and cost  - 1 between every ui
and n\prime 

i,a. We will also add arcs of capacity 1 and cost 0 between every n\prime 
i,a and ni,a, and add

arcs of unbounded capacity and cost 0 between ui and ni,a. For each edge uivj in G where
vj \in Ra, we create an arc of capacity 1 and cost 0 between ni,a and vj . Finally, from each
vj \in R, we make an arc of unbounded capacity and cost 0 to the sink node t.

We let the solution subgraph H be the subgraph of G formed by using edges uivj for all
arcs of the form (ni,a,vj) used in the flow. Each node now gets to take one recommenda-
tion in each new category, for a cost of  - 1. Therefore, the cost of a flow defined by H is
 - 
\sum 

ui\in L
\sum 

Ra
1[\exists vj \in Ra : uivj \in H]. Minimizing this quantity is the same as maximizing

UserDiv(H), which proves the result.

Proposition 3.3. If every user is his/her own type, then, subject to display constraints,
Div\beta ,\mu (H) \propto UserDiv(H), and Div\beta ,\mu (H) can be maximized exactly in polynomial time.

Proof. If every user is his/her own type, then the quantity | a : La \cap N(vj) \not = \emptyset | simply
counts the number of edges incident on an item vj . Therefore, we obtain

Div\beta ,\mu (H) = \beta 
\sum 
ui\in L
| a : Ra \cap N(ui) \not = \emptyset | + \mu 

\sum 
vj\in R

\delta H(vj)

= \beta UserDiv(H) + \mu 
\sum 
ui\in L

\delta H(ui)

= \beta UserDiv(H) + \mu 
\sum 
ui\in L

ci.

Since the quantity on the right is constant, the result follows from Theorem 3.2.

Finally, we prove the theorem in the most general case by combining the objectives
UserDiv(H) and ItemDiv(H). In fact, this is possible while incorporating rating relevance
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into the objective. In particular, let rel(ui, vj) denote the relevance of item vj to user ui.
Then the relevance based quality of the entire recommender system can be computed as
rel(H) =

\sum 
(ui,vj)\in H rel(ui, vj). We can now state the main result of this section.

Theorem 3.4. The MAX-Div\beta ,\mu problem can be reduced to a minimum cost flow problem
if both user types and item categories are disjoint, i.e., Ra \cap Rb = \emptyset and La \cap Lb = \emptyset for all
a, b.

We omit the proof in favor of presenting a more general result in Theorem 3.5.

3.2. Diversity thresholds. While increasing user and item diversity is important, one
downfall of our method is that it fails to take into account that the relevance of each category
to a user may be different. It may not be beneficial for our recommender to show a user items
from every possible category, since that user may not be interested in some of those categories.
The same can be said for the item: item diversity may increase an item's popularity and help
it collect feedback; however, an item should be shown to users in its target audience more
than users outside its target audience.

To fix this and help guide our algorithm in selecting more relevant recommendations for
each user and item, we propose setting diversity thresholds for each user-category and item-
type pair. For categories that the user is interested in, we can increase this threshold, while
we set it to zero for those that the user is not interested in. Let \rho i(Ra) be user ui's threshold
for recommendations made to items in category Ra, and let \lambda j(Lb) be an item vj 's threshold
for recommendations made from users of type Lb. We now define two updated objectives that
take these thresholds into account:

TUDiv(H) =
\sum 
ui\in L

\sum 
Ra

min(\rho i(Ra), \delta 
H
i (Ra)),

T IDiv(H) =
\sum 
vj\in R

\sum 
Lb

min(\lambda j(Lb), \delta 
H
j (Lb)).

Notice that relative to UserDiv, for a user ui we are simply increasing the diversity gain
from seeing new items from a category Ra up to a threshold value of \rho i(Ra). If we set all the
\rho and \lambda values to 1 in the above expressions, we recover UserDiv and ItemDiv.

We can again consider these two objectives together to form a single objective that will
maximize the thresholded diversity of a solution subgraph H, where \beta and \mu are real-valued
parameters:

TDiv\beta ,\mu (H) = \beta \cdot TUDiv(H) + \mu \cdot TIDiv(H).

The main result of this section is that in the case where user types and item categories
are disjoint, TDiv(H) can still be optimized in polynomial time.

Theorem 3.5. The MAX-TDiv\beta ,\mu problem (see Figure 2) can be reduced to a minimum
cost network flow problem if both user types and item categories are disjoint, i.e., Ra\cap Rb = \emptyset 
and La \cap Lb = \emptyset for all a, b.

Proof. A diagram of the construction can be found in Figure 3. Our network will have
nodes for all users ui \in L and items vj \in R of G(L \cup R,E), and a sink node t. The supply
for each user ui will be its corresponding space constraint ci. For every category Ra that a
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Input: A weighted bipartite graph G(L,R,E), a vector of display constraints \{ ci\} li=1, a col-
lection of user types \scrL , a collection of item categories\scrR , user-category thresholds \{ \rho i(Ra)\} i,a,
item-type thresholds \{ \lambda j(Lb)\} j,b, real-valued parameters \beta , \mu .
Output: A subgraph H \subseteq G, of maximum degree ci at each node ui \in L, and maximizing
the objective TDiv\beta ,\mu (H) + rel(H).

Figure 2. The definition of the MAX-TDiv\beta ,\mu problem.

user ui's recommendations hit, we will create two nodes ni,a and n\prime 
i,a. Let there be an arc of

capacity \rho i(Ra) and cost  - \beta between ui and n\prime 
i,a, and an arc with capacity \rho i(Ra) and cost 0

between n\prime 
i,a and ni,a. There will also be an arc with unbounded capacity and cost 0 between

ui and ni,a. Similarly, for an item vj , we will create two nodes, mj,b and m\prime 
j,b, for each user

type Lb that its incoming edges are from. Let there be an arc of capacity \lambda j(Lb) and cost  - \mu 
between m\prime 

j,b and vj , and an arc of capacity \lambda j(Lb) and cost 0 between mj,b and m\prime 
j,b. We

will also add an arc of unbounded capacity and cost 0 between mj,b and v. For each edge
(ui, vj) \in E, where vj is in category Ra and ui is of type Lb, we will add an arc with cost
 - rel(ui, vj) and capacity 1 between ni,a and mj,b. Finally, there will be an arc from every
item vi to the sink t with unbounded capacity and cost 0.

We let the solution subgraph H be the subgraph of G formed by using edges (ui, vj) for all
arcs of the form (ni,a,mj,b) used in the flow. The cost of the flow induced by H will therefore
be

 - \beta 
\sum 
ui\in L

\sum 
Ra

min(\rho i(Ra), \delta 
H
i (Ra)) - \mu 

\sum 
vj\in R

\sum 
Lb

min(\lambda j(Lb), \delta 
H
j (Lb)) - rel(H)

since we may use the  - \beta cost arc for each user-category pair, and may use the  - \mu cost arc
item-type pair until they reach capacity. This quantity is simply

 - \beta TUDiv(H) - \mu TIDiv(H) - rel(H) =  - TDiv\beta ,\mu (H) - rel(H).

Therefore, minimizing this quantity will maximize TDiv\beta ,\mu (H) + rel(H).

Our results about disjoint categories and types are useful in applications, such as news
recommendations, where users are split into natural categories according to their political
alignment, and news articles and their publishers are split according to the same catego-
rization. However, these results can be applied without any modification to other domains,
such as retail, where the products (items) are split into natural retail categories according
to product ontologies, and where the users are split according to natural, mutually exclusive
demographic types, such as gender, age, and income bracket. However, the more general case,
which we turn to next, is when categories and items are not necessarily disjoint.

4. Overlapping types and categories. Although cases involving disjoint user types and
categories are solvable in polynomial time, in actual practice, categories of items are not
necessarily disjoint, and users may be assigned to more than one user type (see Figure 4). We
continue to use the notation from section 3, but now user types \scrL = \{ L1, L2, . . . , Ln\} on the
user set L, as well as item categories \scrR = \{ R1, R2, . . . , Rm\} on the catalog R, may overlap.
When item categories and user types are nondisjoint, maximizing TDiv(H) is NP-hard, which
can be seen in the following theorem (via a simple reduction from max-coverage).
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Figure 3. Construction of the flow problem in Theorem 3.5.

Theorem 4.1. Finding an optimal solution to maximize TDiv\beta ,\mu (H) with nondisjoint cat-
egories and types is NP-hard.

Proof. We fix \beta = \mu = 1, since proving the NP-hardness of a special case is sufficient.
We show that optimizing just TUDiv\beta ,\mu (H) with a single user is NP-hard with the following
reduction from the Max-Cover problem, a well known NP-hard problem: Given a set of
elements \{ 1, 2, 3, ..., n\} , a collection of m sets \scrS , and an integer k, we want to find the largest
number of elements covered by at most k sets.

We construct a bipartite graph G(L \cup R,E), where | L| = 1 and | R| = m, with the items
representing sets. The vertex u \in L has an out-degree of m, one for each vertex in R. We then
create subsets R1, R2, R3, . . . , Rn \subseteq R, with one such subset corresponding to each element
ei in \{ 1, 2, 3, . . . , n\} : the subset of vertices in Ri correspond to the sets in \scrS that contain the
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Figure 4. Left: Example showing disjoint user categories (by gender) and disjoint movie types (by produc-
tion company). Right: An example showing overlapping user categories by demographic features and overlapping
movie types by genre.

element ei. We also set \{ \rho 1(Ri)\} ni=1 = 1. We let c1 = k. An optimal solution for TUDiv(H)
would give an optimal solution to Max-Cover, since finding the maximum number of categories
hit with k edges out of L would find the maximum number of elements we can cover with k
sets.

Since finding the optimal solution to TUDiv\beta ,\mu (H) is NP-hard, and TUDiv(H) is a special
case of TDiv\beta ,\mu (H), we have shown that optimizing UserDiv(H) will also be NP-hard, thus
proving the desired result.

Since we are not able to maximize TDiv\beta ,\mu (H) optimally, we can make use of the fact
that TDiv\beta ,\mu (H) is both monotone and submodular, which will allow us to apply a greedy
algorithm which will yield a (1 - 1/e)-approximation ratio.

Proposition 4.2. TUDiv(H) is submodular.

Proof. Let X and Y be two sets of edges such that X \subseteq Y, and let e be an edge not in X
or Y . Consider the quantity TUDiv(X \cup \{ e\} )  - TUDiv(X). Observe that this is the num-
ber of categories Ra that e will saturate (not including categories that have already reached
their threshold). This will be at least as much as the number of categories e saturates in
Y , since Y could contain edges that have already saturated categories that e would satu-
rate. It follows that TUDiv(X \cup \{ e\} )  - TUDiv(X) \geq TUDiv(Y \cup \{ e\} )  - TUDiv(Y ). This
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Algorithm 4.1. The greedy algorithm for TIDiv and TUDiv maximization.

Data: A bipartite graph G = (L,R,E) and display constraint c
Result: A solution graph H maximizing TDiv\beta ,\mu (H) + rel(H)
while some vertex ui \in L has degH(ui) < ci do
(ui, vj) = e\leftarrow  - argmaxe\prime \in E TDiv\beta ,\mu (H \cup \{ e\prime \} ) - TDiv\beta ,\mu (H) + rel(e\prime )
if degH(ui) < c then
H \leftarrow H \cup \{ e\} 

end if
end while
return H;

satisfies the ``diminishing returns"" property of submodular functions. Therefore TUDiv(H)
is submodular.

We get the following from a symmetric argument.

Proposition 4.3. TIDiv(H) is submodular.

Corollary 4.4. TDiv\beta ,\mu (H) is submodular.

Corollary 4.5. The objective function rel(H) is submodular.

The monotonicity and the submodularity of the objective now allow us to write the greedy
algorithm given in Algorithm 4.1.

Stated in its current form, the greedy algorithm takes O(| E| 2) time to run. However, it is
possible to speed it up significantly by using better data structures.

Theorem 4.6. Let R1, . . . , Rk be the set of overlapping categories, and let L1, . . . , Lp be the
set of overlapping types for a TDiv maximization problem. Then the greedy algorithm can be
implemented to run in time, O((E +

\sum k
a=1Ra +

\sum p
b=1 Lb) log | E| ).

Proof. Let u \in L and v \in R, and let u, v \in G be a candidate recommendation. The
category contribution of this edge to a partial solution H is the number of categories Ri

that v belongs to, for which \rho (Ri) < \delta HL (Ri) is satisfied. Similarly, the type contribution of
this edge is the number of types Lj that u belongs to, for which \lambda (Lj) < \delta HR (Lj). While
constructing the solution, both of these quantities can only decrease. Furthermore, we are
only ever interested in the node with the highest marginal contribution.

Therefore, we can keep track of the potential contribution of each edge in a max-heap.
Initially, the priority of each edge is set to be the number of categories and number types it
covers. Each time an edge meets a category target, we decrease the priority of every unused
edge incident on that category by \beta . Similarly, when a user-type target is satisfied, we decrease
the priority of every unused edge incident on that type by \mu . Both operations take logarithmic
time using a heap which supports the decrease-key operation. This operation is performed at
most once for each type and category.

This means that we are maintaining a max-heap with | E| elements, removing the maximal
element | E| times, and decreasing the key of some edge by at most

\sum k
a=1Ra +

\sum p
b=1 Lb

times. Both of these operations can be done in O(log | E| ) time, which gives us the desired
runtime.
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5. Experimental setup.

5.1. Datasets. Category data: We use ratings data as well as type and category data
from the MovieLens 1M dataset, and use additional category data from the Internet Movie
Database (IMDb). For disjoint user types in the MovieLens dataset, we use three demographic
data points included in the data: age group (six different values), gender (two different values),
and occupation (19 different values), each of which partitions the user set.

Supergraph generation: We used the MovieLens 1M [13] rating dataset to generate the
graph that we fed to our algorithms. (The dataset can be downloaded from http://grouplens.
org/datasets/movielens/1m/.) We preprocessed the dataset to ensure that every user and
every item has an adequate amount of data on which to base predictions. This postprocessing
left the MovieLens 1M data with 5800 users and 3600 items. The use of this dataset is
standard in the recommender systems literature. In this work, we consider the rating data to
be triples of the form (user, item, rating), and we discard any extra information.

Each dataset was processed in two different ways: once for experiments involving disjoint
categories, and once for experiments involving overlapping categories. In each case, the full
dataset was filtered for items for which the category information was known. Each of these
were then split five ways into holdout test sets and training sets. Only users with more than
50 ratings were considered for inclusion in the test, and we denote this set of users by LT \subseteq L.
The training sets were then fed into a matrix factorization algorithm due to Hu, Koren, and
Volinsky [16] with 50 latent factors. We set the input confidence value parameter \alpha in their
method to the value of 40, as recommended by the authors, and performed a grid search for
the best regularization parameter \lambda using fivefold cross validation. Using the resulting user
and item factor matrices, for each user we predicted the ratings of all the items for which the
user did not provide feedback in the training test. Among these predicted ratings, we retained
the 250 highest rated items along with their predicted ratings to feed into our algorithms.

5.2. Quality evaluation. We measure the effectiveness of our and other authors' algo-
rithms along several orthogonal dimensions. For relevance, we report precision values, i.e.,
the fraction of items in the recommendation set that match items given in the test set. For-
mally, if we denote the set of recommendations given to a user in subgraph H as N(ui) and
the set of relevant held-out items for the user as T (ui), we define precision as follows:

P =
1

| LT | 
\sum 

ui\in LT

| N(ui) \cap T (ui)| 
ci

.

In this paper, a held-out item is considered to be relevant to a user in our evaluation if its
assigned rating was 3 or higher. We note, however, that this notion of precision is conditioned
on the inherent diversity already represented by the ratings in the MovieLens 1M database,
and hence may not be ideal. Therefore, in addition to relevance based metrics, we also report
two sales diversity metrics: aggregate diversity and the Gini index.

Aggregate diversity is simply the fraction of items in the catalog which have been rec-
ommended to at least one user, and it measures coverage. The Gini index measures how
inequitable the recommendation distribution is. More concretely, if the degree distribution of

http://grouplens.org/datasets/movielens/1m/
http://grouplens.org/datasets/movielens/1m/
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the items is given as a sorted list \{ di\} ri=1, then the Gini index is defined as follows:

G = 1 - 1

r

\biggl( 
r + 1 - 2

\sum r
i=1(r + 1 - i)di\sum r

i=1 di

\biggr) 
.

Finally, we report the objectives for which our methods explicitly optimize. These are
ERR-IA for the xQuAD reranker, ILD for the MMR reranker, and Binomial Diversity for the
Binomial Diversity reranker. Among these, only the Binomial Diversity reranking method
takes a parameter \alpha , which corresponds to a personalization parameter. Vargas et al. use
the value \alpha = 0.5 in their experimental evaluation [27], and we also use this setting. We
measure each of the above-mentioned metrics as well as our own TUDiv and TIDiv as ours
are measured among only the relevant items in the test set.

As mentioned in subsection 3.2, for the TUDiv and TIDiv metrics, we set the thresholds
using the training data. In particular, for the case of disjoint categories, we count the number
of times each category appears in a user's training set, normalize these values to sum to the
display constraint, and round to integer values. For the case of overlapping categories, we
perform the same operation but normalize the thresholds to sum to the display constraint
times the average number of categories for an item in the training set. In the case of disjoint
types, we again set the type thresholds proportional to the distribution of types found in the
training data, but we normalize the distribution to sum to 20\% of the average number of
recommendations an item would have received if every item were equally promoted by the
recommender system. This allows the measure to promote sales diversity among items while
respecting its interaction history with the users.

Note that setting the thresholds using the proportions in the training data inherently
biases the distribution to which we are targeting the final diversity, and makes it match the
distribution in the overall training set. Despite this, we chose these thresholds because they
match the precision measure that we use to evaluate the effectiveness of our methods. Note
that these thresholds can also be set by a designer who prefers to move the proportions of
different categories for different users in a different direction than is found in the training data
(and symmetrically for the items), but it would be difficult to evaluate the effectiveness of the
resulting lists against other methods.

In Tables 1--6, we abbreviate the names of these metrics as P for Precision, A for aggregate
diversity, G for the Gini index, BD for Binomial Diversity, and ILD for intralist distance.
The number next to each metric denotes the cutoff at which it was evaluated.

5.3. Baselines. We compare our method against three baselines methods: the Binomial
Diversity reranker due to Vargas et al. [27], the MMR reranker due to Carbonell and Goldstein
[7], and the xQuAD algorithm due to Santos [23]. Each method takes a parameter \lambda \in [0, 1],
which trades off relevance with the metric which is being optimized. For each of these methods,
we perform a grid search for the best trade-off parameter, and we report all the measurements
for the setting which produced the best results for the method's corresponding metric. Since
our algorithms have two trade-off parameters \mu and \beta in the objective rel(H) + TDiv\beta ,\mu 
corresponding to two different metrics, we perform a grid search along both dimensions and
report the two solutions which maximize TIDiv and TUDiv, respectively. Additionally, in
the rows labeled ``TOP"" we report the same metrics for the undiversified recommendation
lists provided by the matrix factorization method.
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5.4. Software. For the matrix factorization based recommender that we trained, we used
the implementation of Hu's matrix factorization method found in RankSys (see Vargas) [26].
The baseline methods that we compare against are also implemented in the same library. Our
methods and metrics were implemented so as to be compatible with the same library. Addi-
tionally, we used a minimum cost network flow optimizer written by Bertolini and Frangioni
(see Frangioni and Sanchez) [11]. The code that we used for our experiments can be found in
our repository at https://github.com/antikacioglu/salesdiversity/tree/master/Category.

6. Experiments. In this section we report our findings on diversifying recommendations
in MovieLens-derived recommendation problems. Our findings can be summarized as follows:

1. In the setting of overlapping item categories, the greedy algorithm leveraging the sub-
modularity of the TDiv objective obtains significant gains in the TIDiv and TUDiv
recommendation diversity metrics. Our algorithm preserves or improves the accuracy
of the baseline recommender system, while also increasing sales diversity metrics.

2. In the setting of disjoint item categories, we show that the flow based algorithm obtains
solutions which have higher predictive accuracy and higher sales diversity measure-
ments. However, the differences are small enough to enable the greedy algorithm to
make a suitable replacement for the more expensive, flow based optimization tech-
nique.

3. The greedy algorithm is faster than competing diversification techniques, making it
suitable for large-scale recommendation tasks, provided that the heap used in its im-
plementation can fit in memory.

6.1. Experiments on overlapping categories. First, we present our experiments for over-
lapping categories based on the artistic genre information for the movies, and for user types
based on age group, occupation, and gender, respectively. Our results are summarized in
Tables 1, 2, and 3. The relative performance of the methods that we tested for artistic genre
categories of the movies and genders of the users can be seen in Figure 5. As expected each di-
versification method is best at maximizing its own objectives. In the case of our methods, this
is true for both TIDiv and TUDiv. Among the metrics we tested, both our greedy algorithm
and the xQuAD algorithms made minor improvements to the precision of the recommenda-
tion lists, while under Binomial Diversity and MMR, precision values slightly deteriorated.
However, these differences are minor, and each algorithm was able to find a good trade-off
between relevance and diversity under suitable parameter settings.

Among the intent-aware metrics we have tested, our algorithms provide a very good proxy
for Binomial Diversity but perform poorly on the IntraList Distance and ERR-IA metrics.
This can be explained by the fact that Binomial Diversity, unlike the ERR-IA and ILD
metrics, explicitly penalizes redundancy. Our metric TUDiv is similar to Binomial Diversity
in the sense that it sets thresholds which implicitly penalize overredundancy by taking away
the reward for hitting new categories. However, the converse is not true, and the Binomial
Diversity reranking method achieves poor values for both the TIDiv and TUDiv metrics.

Among the methods we tested, the best proxy for our TUDiv metric was provided by the
xQuAD approach, and none of the algorithms we tested provided a good proxy for TIDiv.
While this deficiency can be excused, as none of these algorithms takes as input the various
user-type groupings we provide to our diversifiers, each of the other baselines also regressed
or did not significantly change the sales diversity metrics, such as the aggregate diversity.

https://github.com/antikacioglu/salesdiversity/tree/master/Category
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Figure 5. A radial graph showing the relative performance of the reranking methods tested for MovieLens
data with movie genre and gender based diversification.

This validates our hypothesis that TIDiv is best thought of as a sales diversity measure, and
that being category-aware in the user lists is not enough for a reranking algorithm to produce
diverse results for items.

6.2. Experiments on disjoint categories. In this section we present the diversification
results for disjoint item categories derived from movie studio information. These results
are intended to simulate the scenario in which a content aggregator would like to diversify
recommendations among different content providers (which are summarized in Tables 4--6).
Since we can apply both the greedy algorithm and the flow based algorithm in this case, we
report results for both. Our results for the top 10 recommendation diversification tasks are
summarized in Figure 6. We note that, once again, every reranker is best at optimizing its
own metric, with the exception of the xQuAD, whose objective is actually maximized by the
Binomial Diversity reranking method. We also note that the precision based effectiveness of
our greedy algorithm is reduced in this setting, while its effectiveness in the sales diversity
metrics is amplified.

Our flow based method and greedy algorithm show several notable differences in the
experimental evaluation. First, we find that the greedy algorithm actually performs better
than the flow based method in our intent-aware metrics TUDiv and TIDiv, although our
flow based methods produce more accurate recommendation lists. The solution produced
by each algorithm creates a different trade-off between the TUDiv term of the objective, the
TIDiv term of the objective, and the predicted relevance term of the objective. Both optimize
Binomial Diversity equally well, while the flow based method increases intralist distance and
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Figure 6. A radial graph showing the relative performance of the reranking methods we tested for MovieLens
data with movie studio and age group based diversification.

Table 7
Running time of the five different rerankers on the diversification task in Figure 6.

Method Greedy Flow MMR xQuAD BD

Runtime (s) 5.83 20.3 8.18 11.25 31.3

aggregate diversity better than the greedy algorithm. The two methods' overall results are
similar enough so that as long as precision is not as compelling a concern as intent-aware
diversification, the two algorithms can be used interchangeably.

This is a significant finding as our flow based algorithms, while more accurate, take more
time to run to completion. In particular, our greedy algorithms have runtime proportional to
O(| E| log(| E| )), where | E| is the number of candidate edges, while our flow based algorithms
have complexity at least O(| E| (| R| +| L| )) and significantly higher overheads. Moreover, greedy
is the fastest among the methods we tested, which can be seen in Table 7.

7. Conclusions and future work. We have presented a framework for the implementation
of a diversification framework that seeks to increase the exposure of every user to predefined
categories of items. The implementation of our framework in the case of disjoint categories of
items is completely novel and provides stronger theoretical guarantees on the quality of the
solution than the implementation of our framework with overlapping categories. Extending
our work to dynamic settings in which the new items or the users arrive and depart over time
is a rich avenue for future work.
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