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SAMPLING AND COST-SHARING: APPROXIMATION
ALGORITHMS FOR STOCHASTIC OPTIMIZATION PROBLEMS∗
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Abstract. We consider two- and multistage versions of stochastic combinatorial optimization
problems with recourse: in this framework, the instance for the combinatorial optimization problem
is drawn from a known probability distribution π and is only revealed to the algorithm over two
(or multiple) stages. At each stage, on receiving some more information about the instance, the
algorithm is allowed to build some partial solution. Since the costs of elements increase with each
passing stage, there is a natural tension between waiting for later stages, to gain more information
about the instance, and purchasing elements in earlier stages, to take advantages of lower costs. We
provide approximation algorithms for stochastic combinatorial optimization problems (such as the
Steiner tree problem, the Steiner network problem, and the vertex cover problem) by means of a
simple sampling-based algorithm. In every stage, our algorithm samples the probability distribution
of the requirements and constructs a partial solution to serve the resulting sample. We show that if
one can construct cost-sharing functions associated with the algorithms used to construct these partial
solutions, then this strategy results in provable approximation guarantees for the overall stochastic
optimization problem. We also extend this approach to provide an approximation algorithm for the
stochastic version of the uncapacitated facility location problem, a problem that does not fit into the
simpler framework of our main model.
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1. Introduction. Infrastructure planning and installation problems often have
to deal with the uncertainty caused by demand which evolves over time, without
deterministic knowledge characterizing this demand. For example, communication
network infrastructure has to be installed before the actual usage pattern is known,
albeit forecasts and estimates of the demand may be available. While there is a
tremendous amount of literature on deterministic optimization models, the preferable
(and indeed, more accurate) method for tackling such problems in the presence of
partial probabilistic information is the field of stochastic optimization.

In this paper, we consider several canonical combinatorial optimization problems
in a stochastic setting, such as Steiner tree and facility location. Observe that the
deterministic versions of these problems are themselves NP-hard, so that one must

∗Received by the editors August 5, 2008; accepted for publication (in revised form) May 13,
2011; published electronically September 27, 2011. Preliminary versions of the content of this paper
appeared in [18] and [19]. The work of the third and fourth authors was supported in part by NSF
grant CCR-0105548 and by ITR grant CCR-0122581 (the ALADDIN project).

http://www.siam.org/journals/sicomp/40-5/73225.html
†Department of Computer Science, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh,

PA 15213 (anupamg@cs.cmu.edu). This author’s work was supported in part by NSF CAREER
award CCF-0448095 and by an Alfred P. Sloan Fellowship.

‡Google, Inc., 76 9th Avenue, 4th Floor, New York, NY 10011 (martin@palenica.com). This
author’s work was supported in part by ONR grant N00014-98-1-0589 and by NSF grant EIA 02-
05116.

§Tepper School of Business, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA
15213 (ravi@cmu.edu).

¶Ross School of Business, University of Michigan, 701 Tappan Avenue, Ann Arbor, MI 48109
(amitabh@umich.edu).

1361



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1362 ANUPAM GUPTA, MARTIN PÁL, R. RAVI, AMITABH SINHA

sacrifice either generality and speed (if one uses exact algorithms such as integer
programming) or accuracy (if one uses fast heuristics and approximation algorithms).

Traditional stochastic optimization models [28, 4, 27] have chosen the former ap-
proach. These models suffer from the well-known problem of the curse of dimensional-
ity when applied to NP-hard problems such as the ones considered in this paper. Given
that the deterministic versions of these problems are already hard to solve exactly,
exact algorithms applied to the stochastic extensions often become insurmountably
slow due to this combinatorial explosion.

In contrast, the field of theoretical computer science has often used the frame-
work of approximation algorithms [47] to provide fast algorithms with provable guar-
antees on the quality of the solution. However, barring a few exceptions (detailed
in section 1.1), very few approximation algorithms have been proposed for stochastic
optimization problems. In this paper, we provide a general framework for converting
approximation algorithms for deterministic problems into those for their stochastic
counterparts.

The added ingredient allowing us to extend deterministic approximation algo-
rithms to the stochastic setting is the idea of cost-sharing functions [48]. These
functions allocate the overall cost of the solution to the clients receiving service. We
show that if the deterministic approximation algorithms can be associated with cost-
sharing functions which satisfy certain properties, then a very simple sampling-based
algorithm can be proved to be a good approximation.

Our algorithm relies on the simple but fundamental idea of sampling. Suppose one
could draw samples from an oracle of some kind which perfectly mimics the process
by which the actual demand is generated. One näıve strategy would be to draw a
sufficient number of samples and construct partial solutions based purely on these
samples. In this paper, we show that this strategy in fact works! In the presence
of algorithms with associated cost-sharing functions, one can construct the partial
solutions of earlier stages by simply drawing a certain number of samples and using
the deterministic algorithm to construct a solution for the resulting clients. Although
we focus on problems where the deterministic version is NP-hard, our approach may
also be applied to problems where the deterministic version is solvable in polynomial
time but the stochastic version is NP-hard (such as the shortest path problem [39]).

In the remainder of this section, we briefly review the literature and place our
results in the context of the existing work. In section 2, we describe our stochastic
optimization model in detail, while section 3 contains our definition of a cost-sharing
function along with the properties it needs to satisfy. Section 4 contains the main set
of theorems that describe how arbitrary stochastic optimization problems can be well-
approximated if approximation algorithms with cost-sharing functions are available.
In section 5, we construct such approximation algorithms and cost-sharing functions
for some classical combinatorial optimization problems. Although the uncapacitated
facility location problem does not fit directly into our main model, our overall ap-
proach of approximation using sampling does in fact work with some modifications;
the corresponding results are provided in section 6. Our results are summarized in Ta-
ble 1.1, with the precise definition of the model and cost-sharing functions appearing
in section 2.

1.1. Literature review. The study of stochastic optimization dates back to
the initial postwar days of linear programming, with early papers by Dantzig [7]
and Beale [3]. The field is now fairly well developed, and the interested reader is
referred to comprehensive texts by Birge and Louveaux [4], Kall and Wallace [27],
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Table 1.1

Summary of results. All our results are obtained in the “black box” model (section 2), and the
strictness definitions are provided in section 3. The approximation ratio of the first-stage algorithm
used is denoted α. The “Other work” column lists the best known approximation ratios for some ver-
sions of these problems, with the following abbreviations used to identify the model/algorithm: SAA
for two-stage sample average approximation, ID for two-stage independent decisions (section 4.1.2),
FS for two-stage finite scenario, and kSAA for k-stage sample average approximation. Hardness
results are for the deterministic versions.

Problem Strictness Stoch. This Hard- Other
theorem model paper ness work

Steiner tree α = 1.55, 2-strict Two-stage 3.55 96
95

[6] 12.6 (no root) [17]
α = 2, 1-superstrict k-stage 2k 6 (no root) [11]
cross-monotone

Steiner net. α = 4, 4-unistrict ID 8 96
95

[6] 5 (ID) [11]

Vertex α = 2, 1-unistrict ID 3 1.16 [21] 4 (SAA) [42],
cover α = 2, 2-strict Two-stage 4 2 (FS) [39]

3-superstrict 2 + ε (kSAA) [44]

Uncap. α = 3, 5.45-strict Two-stage 8.45 1.46 [15] 2.369 (FS) [44],
facility 1.7k − 0.2
location (kSAA) [45]

and Klein Haneveld and van der Vlerk [28]. While substantial progress has been
made on stochastic extensions of linear programming, only moderate progress has
been reported for general integer programs even for the two-stage case [41, 29].

In the field of scheduling, stochastic problems have been studied extensively in the
literature, since often jobs have to be scheduled without complete information about
their processing times or arrival times. Pinedo [37] is a recent text covering some of
this work, while other approximation algorithms for stochastic scheduling have been
provided for various types of problems by Kleinberg, Rabani, and Tardos [30], Goel
and Indyk [13], Möhring, Schulz, and Uetz [34], and Skutella and Uetz [43].

Within the past decade, there has been a surge of interest in approximation
algorithms for stochastic optimization problems. The earliest such work that we
are aware of is that of Dye, Stougie, and Tomasgard [9]. Initially, much of this
work was for two-stage models, including that of Ravi and Sinha [39], Immorlica et
al. [23], Shmoys and Swamy [42], and Gupta, Ravi, and Sinha [20]. Much of this
work is in the finite scenario model, wherein the second stage is specified by a list of
possible scenarios, each scenario completely specified by the requirements, costs, and
probability of occurrence. Since the papers above (with the exception of [42]) consider
each scenario explicitly, the running time is dependent on the number of scenarios.

In contrast, this paper assumes no restrictions on the number of scenarios but
relies on sampling access to the probability distribution of the subsequent stages. That
is, one can at any time efficiently generate a sample scenario for which the probability
of the scenario occurring is the same as the probability of generating that scenario in
our sample. Our algorithms require only sampling access to generate solutions whose
expected value is bounded compared to the expected value of the optimal solution.

There is another stream of literature which also uses only sampling access, using
the sample average approximation (SAA) algorithm to construct solutions. Concur-
rent with our work, Shmoys and Swamy [42] obtained approximation algorithms for
the two-stage model with sampling access (i.e., the black box model), and extended
it in [45] to multistage stochastic optimization problems, using the SAA method.
Their algorithm proceeds by sampling a large number of scenarios and constructing
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an integer programming (IP) formulation for the multistage problem that includes all
sampled scenarios. They show that an approximate solution to the linear relaxation of
this integer program can be computed efficiently, and if the underlying deterministic
problem admits an LP-rounding approximation algorithm, then the fractional solu-
tion to the multistage stochastic problem can also be rounded to an integer solution
with bounded cost.

An important ingredient in our algorithms is the usage of cost-sharing functions
to bound the costs of the solutions constructed. The notion of cost allocation is an
important concept in economics (surveyed, for example, by Young [48]), and lately
this idea has been making an appearance in approximation algorithms. Cost-sharing
functions have been used to study the relationship between games and algorithms, as
well as to devise better approximation algorithms, for both deterministic and stochas-
tic optimization problems. Some of the early work in this arena includes that of Jain
and Vazirani [25, 26] and Moulin and Shenker [35]. Many combinatorial optimiza-
tion problems can be formulated as integer linear programs, and cost shares can
sometimes be interpreted as feasible dual solutions to the linear relaxations of these
formulations [16, 26]. In this paper, although we do not define cost shares in terms
of dual solutions, our cost-sharing functions for some problems are derived from such
duals.

Gupta et al. [16] introduced the notion of strictness in cost-sharing functions,
which essentially ensures that the cost of the solution is split somewhat proportion-
ately among the clients requiring service. Strictness turns out to be a very powerful
concept, and Gupta et al. [16] use it to provide approximation algorithms for vari-
ous network design problems, including multicommodity rent-or-buy and Steiner tree.
Our work builds on [16]; we appropriately modify the definition of strictness and show
that strict cost-sharing functions can also be used for approximation algorithms for
stochastic optimization. Pál and Tardos [36] also use cost-sharing functions to develop
approximation algorithms for uncapacitated facility location, which we also extend to
provide an approximation algorithm for the stochastic version of uncapacitated facility
location in our model.

Preliminary versions of the ideas in this paper appeared in [18] and [19]. Subse-
quent to that, Hayrapetyan, Swamy, and Tardos [22] considered a variant of multi-
stage stochastic optimization for network design, and their proofs use some of the
cost-sharing ideas similar to the cost-shares we define for the stochastic Steiner tree
problem. Our version of the stochastic Steiner tree problem assumes that a root vertex
that is guaranteed to be a terminal in all scenarios is known in the first stage. Gupta
and Pál [17] and Fleischer et al. [11] considered stochastic optimization versions of the
Steiner tree problem (among other problems) without requiring a known root vertex
and were able to use cost-sharing functions to provide approximation algorithms with
approximation ratios of 12.6 and 6.

The literature on approximation algorithms for stochastic optimization problems
has also spawned other research with more complex models that combine features of
stochastic optimization and online algorithms. For instance, Anthony and Gupta [2]
consider a multistage environment where at every stage some demands need to be
served, but elements can be leased for fixed lengths as an alternative to purchasing
them for the entire horizon or renting them for a single stage. They reduce the prob-
lems to appropriate stochastic optimization problems and also provide approximation
algorithms for other problems in their framework. Garg et al. [12] study online al-
gorithms where the input arises from a known probability distribution (as opposed
to adversarially, which is the dominant model in research on online algorithms) and
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provide approximability results for some such problems.
We conclude this section with a brief discussion on inapproximability and lower

bounds. The survey by Swamy and Shmoys [46] describes some problems for which
approximating the multistage stochastic version is provably harder than for the de-
terministic counterpart. For instance, the shortest-paths problem is solvable in poly-
nomial time in the deterministic version, but its stochastic version is NP-hard. The
Steiner tree problem is approximable to a constant factor in the deterministic setting,
but the stochastic problem with general cost inflation is as hard to approximate as
the group Steiner tree problem. Linear programs are #P-hard to solve in the black-
box model [10], but the deterministic versions are in P. Of course, existing hardness
results for the deterministic versions automatically imply that the same hardness re-
sults hold for the stochastic versions; these are listed in Table 1.1. Since our theorems
bound the cost for each stage, individually, by the optimal cost, a lower bound of k
for k-stage problems holds for algorithms proceeding by our technique of specifying a
deterministic algorithm and a cost-sharing function.

There are also some lower bounds on how good these cost-sharing functions can
get: [11] provides a lower bound for cost-shares for the Steiner tree problem arising
from primal-dual-type algorithms, and [24] shows that, for the uncapacitated facility
location problem, cross-monotonic cost-shares that recover more than 1/3 of the cost
of a solution do not exist. Könemann et al. [32] prove that no cross-monotonic cost-
shares exist for the Steiner tree problem that recover more than 1/2 of the cost of
a solution. Note that these bounds on limitations of cost-sharing schemes provide
bounds on the applicability of our algorithms, but they do not necessarily prove
inapproximability of the stochastic problems themselves.

2. Model description. We begin by defining an abstract combinatorial opti-
mization problem Π, first in a deterministic setting. Let U be a universe of clients
or demands that need to be served, and X be the set of elements we can purchase
to serve a given set of clients. Each element e ∈ X has a nonnegative cost, given by
c(e) ∈ R

+. Given a set of clients S ⊆ U , let Sols(S) ⊆ 2X denote the set of feasible
solutions of S, or one that satisfies or meets the requirement of each client in S. For
an element set F ⊆ X , let c(F ) =

∑
e∈F c(e) denote the cost of F .

The deterministic combinatorial optimization problem is therefore specified by
the sets U,X, S, the cost function c(.), and the set of feasible solutions Sols(S). The
objective of the minimization problem is to find a minimum cost feasible solution; that
is, find F ∈ Sols(S) which minimizes c(F ). We let Det(Π) denote this deterministic
problem.

To illustrate this abstraction, consider the rooted Steiner tree problem on a graph
G = (V,E). In this problem, we are given a root node r ∈ V , a set of terminals R ⊆ V ,
and a cost function on the edges. The objective is to find a minimum cost tree which
spans r ∪ R. Here the universe of possible clients is U = V , the element set X is
the set of edges E, and the client set S is the set of terminals R. A client v ∈ R is
satisfied by a set of edges F ⊆ E if and only if F contains a path from v to r. The set
of feasible solutions Sols(S) is therefore the set of all subgraphs of G which contain a
connected component which includes all vertices in r ∪R.

We restrict our attention to problems which satisfy certain “well-behavedness”
properties. We call such problems subadditive, and define the requirements as follows.

Definition 2.1. A problem Π is subadditive if all of the following conditions
hold:

SA1. If S and S′ are two legal client sets for Π, then so is S ∪ S′.
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SA2. If F ∈ Sols(S) and F ⊆ F ′ ⊆ X, then F ′ ∈ Sols(S).
SA3. If S and S′ are two legal client sets for Π and F ∈ Sols(S) and F ′ ∈ Sols(S′),

then F ∪ F ′ ∈ Sols(S ∪ S′).
In the Steiner tree problem described above, subadditivity is ensured by the pres-

ence of the root: if Ti = (V,Ei) is a subgraph spanning Si ∪ {r}, then (V,∪iEi) is
a subgraph that spans ∪iSi ∪ {r}. As in some previous papers which give approxi-
mation algorithms for two-stage stochastic optimization problems [23, 39], we restrict
our attention to subadditive problems. Subadditivity is not essential for construct-
ing approximation algorithms for stochastic problems in general; for example, [17]
and [11] provide constant-factor approximation algorithms for the (nonsubadditive)
stochastic Steiner tree problem without a root vertex. In our work, subadditivity
plays two important roles: it ensures feasibility of the strategy of constructing partial
solutions for sampled client sets, and it helps bound the cost of the solution.

Often, we will denote a problem instance by simply specifying the element set
X and the client set S, where the other components of the problem (the universe
U , cost function c(), and set of feasible solutions) are clear from the context. Given
such a problem (X,S), we let OPT(X,S) denote the cost of an optimal solution to
the problem; that is, OPT(X,S) = minF∈Sols(S) c(F ). If an algorithm A is used to
compute a feasible solution for the problem (X,S), the cost of this solution is denoted
c(A(X,S)).

2.1. Stochastic versions of deterministic problems. The stochastic version
of a combinatorial optimization problem is obtained when we don’t know the client
set explicitly, and some set of decisions have to be made knowing only a distribution
π that the client sets are drawn from. In particular, we consider the model of k-stage
stochastic optimization with recourse, which we describe in the following. Initially,
only the universe U , the element set X , and the cost function c() are known, while a
probability distribution π gives us some information about the client set S. In each of
k stages, the probability distribution gets more refined, until the final stage when all
uncertainty is removed and the actual client set S is revealed. We can “purchase” ele-
ments of X at any stage in this process, though the elements get progressively costlier
as time passes. The objective is to compute a minimum cost solution which satisfies
S. However, since this is a stochastic problem and only probabilistic information is
known in the preliminary stages, the best one can hope for is a strategy for purchasing
elements that minimizes the expected cost of the solution while constructing a feasible
solution for S.

2.1.1. The two-stage problem. The two-stage problem Stoc(Π) corresponding
to the problem Π is particularly easy to describe: in the first stage, we assume that the
universe U , the element set X , the cost function c(), and the probability distribution π
are known, as is the inflation factor σ ≥ 1. The probability distribution π : 2X → [0, 1]
is over the possible client set S ⊆ V that can appear in the second stage. Given this
information, we are allowed to purchase a first-stage set F0 ⊆ U at cost c(F0).

In the second stage, a demand set S is drawn from the distribution π and revealed
to us, whence we can buy some more elements FS ⊆ U , at cost c(FS), such that
F0 ∪FS ∈ Sols(S). (We will use boldface to denote that S is a random variable.) Any
costs incurred in the second stage are inflated by a factor σ compared to those same
costs incurred in the first stage. The objective is to minimize the expected cost shown
below, where the expectation is taken over the distribution π:

Z = c(F0) +E[σ c(FS)].(2.1)
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1. The universe of clients U , set of elements X , cost function c(), and
inflation factors {σi} are specified. We are also given the set of feasible
solutions Sols(S) for any client set S ∈ 2U .

2. The first k − 1 stages occur, with the following occurring in stage i:
(a) The signal si is revealed; let the observed signal be si. The vector

of signals received so far is given by s = (s1, s2, . . . , si), and the
probability of the final client set being S is given by the conditional
distribution π[S|s].

(b) We purchase a set of elements Fi at a cost of c(Fi)
∏i

j=1 σi. El-
ements purchased in previous stages are retained and cannot be
discarded.

3. The final stage k occurs: in this stage, the actual client set S is revealed,
according to the probability distribution π[S|s]. We purchase a final set
of elements Fk so that ∪k

j=1Fj ∈ Sols(S). That is, the union of elements
purchased in stages 1 through k must be a feasible solution for S.

Fig. 2.1. Sequence of events for multistage stochastic optimization.

We will later show how to relax the assumption of a constant inflation factor
σ: we will show that we can obtain similar results even if the inflation factor σ is a
random variable arbitrarily correlated with the random client set S. Details on this
are given in section 4.3.

2.1.2. The general k-stage problem. The description of the k-stage problem
requires us to specify how we are given progressively more information about the final
client set S. We use the notion of signals to capture the information revealed in each
stage. Let si be a random variable denoting the signal received in stage i, and si
denote the actual signal received in stage i. These signals are correlated with the final
client set S in that, at any stage, the probability that S will be the client set revealed
at the end is a function of the signals received so far.

Furthermore, we now have an inflation parameter associated with each stage. At
each stage i, the cost function is multiplied by another factor of σi. Therefore the
cost of purchasing an element set F to serve a client set S in stage i is c(F )×

∏i
j=1 σi.

We will assume that these multipliers σi are also known up-front. We assume that
costs are nondecreasing, which corresponds to σi ≥ 1 for all i.

The precise sequence of events is laid out in Figure 2.1. We want an algorithm
which computes the set Fi in each stage so that the overall expected cost of the solution
is minimized. Formally, the objective function is Z = E[

∑k
i=1(

∏i
j=1 σi)c(Fi) ].

Note that the expectation is taken over the probability distribution π. For the
problem (and any algorithm) to make sense, we must have the conditional distri-
butions consistent with each other. This is specified as follows when the space of
possible signals is a discrete set; the analogous specification holds for continuous
sets. Let p(t|s) denote the probability of receiving signal t, given that the vector s
of signals has been received so far, and let s + t denote the vector obtained by con-
catenating the signal t to the end of the vector s. The probability distributions and
signals are consistent if the following holds for any vector of signals s and client set
S: π(S|s) =

∑
t π(S|s+ t)p(t|s).

It is also apparent that the first signal s1 and first inflation multiplier σ1 play no
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meaningful role. Nevertheless, we retain them for notational ease. We normalize them
so that s1 has unit support (it always takes the same value), and σ1 = 1. Furthermore,
the only information revealed in the last stage is the set of realized clients S. This can
also be modeled as a random variable S. For notational convenience, we sometimes
use the k-stage signal sk to refer to the random variable S and vice versa.

An alternate view of the k-stage process sometimes seen in the literature (e.g.,
[45]) is by means of a “scenario tree.” In this, the stochastic process is modeled as a
rooted tree with k levels of nodes, where a level indicates the number of edges from
the root. There is a single node at level 1, and each level i corresponds to stage
i of the stochastic process. From the unique level-1 node, traversing to one of its
children represents one realization of the second stage, so each second stage scenario
is represented by a distinct level-2 node. Continuing in this fashion, each level-i node
represents a stage-i scenario, the nodes in the path from the root to it indicate the
past history of realized scenarios, and the subtree rooted at this node represents the
conditional probability distribution given that we are in the scenario represented by
the node. A full evolution of the stochastic process is now interpreted as traversing a
unique root-leaf path. We mention this description to aid the reader, but we retain
our description because it allows for the possibility that the inflation factors σi have
continuous support, as will be the case in section 4.3.

2.2. Sampling model. While the sequence of events is laid out in Figure 2.1,
there is one additional channel of information available to our algorithm. We assume
that the conditional distribution π(.|.) can be sampled efficiently at any point of time.
That is, at any point of time, where s is the vector of signals received so far, we can
access an oracle which returns a client set S, where the probability of returning S
is precisely π(S|s). In other words, the oracle perfectly mimics the real probability
distribution π(.|.) and can be called upon to return independent samples from this
distribution as often as necessary. Furthermore, the time taken by this oracle is
polynomial in the size of the input. This oracle access is all that is required by our
algorithm; the probability distribution π(.|.) itself is never required. One may observe
that in Figure 2.1 the probability distribution π(.|.) is never revealed. In our analysis,
we will use only the fact that the oracle follows the distribution π(.|.).

The oracle is sometimes called a black box in the literature, and we use the two
terms interchangeably in this paper. We remark briefly on the implications of having
such oracle access. Note that the success of any stochastic optimization algorithm
critically depends on the accuracy of the information available. If one is optimizing
in the face of an uncertain future, the best one can do is limited by the availability of
forecasts or probability distributions about the future. That said, oracle access is the
minimum one can ask for in terms of how the forecasts are made available.

This is in contrast to previous work in the finite scenario model in the literature,
where one requires an explicit listing of all possible scenarios, along with their proba-
bilities. If the number of scenarios is too large, the computational complexity of the
resulting algorithms becomes prohibitive, since it may not even be possible to list all
the scenarios succinctly. The other stream of work in the stochastic optimization lit-
erature relies on explicit knowledge of the probability distribution π(.|.) at all points
of time. The oracle model, on the other hand, can handle an exponential number of
scenarios with arbitrarily complicated probability distributions so long as they can be
sampled efficiently.

This being said, there has been some recent exciting work on scenario reduction:
taking a distribution π given as a black box and obtaining a “small” number M of
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explicit scenarios such that any solution to the stochastic problem for these scenarios
is a good approximation to the original problem; see, e.g., [31, 5, 45] for some work
along these lines.

3. Cost-sharing functions. The primary analytic concept used in our analysis
is that of cost-sharing functions. We define these functions and elucidate their prop-
erties in this section. Loosely speaking, a cost-sharing function allocates the cost of
providing service to the recipients of the service. If we can compute the “willingness
to pay” of clients and use it as a lower bound, then the cost-sharing function allows
us to bound the overall cost of the solution.

Cost-sharing functions have long been used in game theory [48]; lately, they have
also been used in approximation algorithms. We will use a slight variant of a cost-
sharing function defined first by Gupta et al. [16]: in contrast to previous cost-sharing
functions, these are defined relative to a fixed approximation algorithm for the problem
Π.

Definition 3.1 (cost-sharing function). A cost-sharing function ξ assigns a
nonnegative real number denoted ξ(X,S, j) to each client j in a subset of clients S
when elements from X must be purchased to serve S.

We use ξ(X,S, S′) to denote
∑

j∈S′ ξ(X,S, j).
Definition 3.2 (cost-sharing algorithm). A cost-sharing algorithm A takes an

instance (X,S) of the problem Π and returns a feasible solution A(X,S) ⊆ Sols(S)
and a cost-sharing function ξ.

Clients which do not require service (i.e., are not in S) should not incur any cost.
In other words, only clients in S should be assigned nonnegative cost shares; ξ(X,S, j)
must be zero if j /∈ S. We require this for all our algorithms, and for the rest of the
paper we will work with this requirement without necessarily explicitly stating or
verifying it.

Definition 3.3 (competitiveness). A cost-sharing function ξ is competitive if
for every problem instance (X,S) we have ξ(X,S, S) ≤ OPT(X,S).

A competitive cost-sharing function thus serves as a lower bound on the cost of
the optimal solution. If we bound the cost of the solution found by an algorithm by
some multiple of the cost-sharing function, we obtain an approximation algorithm. In
the literature, competitiveness is sometimes called fairness. We also require all our
cost-sharing functions to be competitive, and this is assumed throughout the paper
without our explicitly mentioning it.

Recall that A is an α-approximation algorithm if c(A(X,S)) ≤ α OPT(X,S). For
the multistage problems, we will need the following stronger guarantee, which can be
thought of as being complementary to competitiveness.

Definition 3.4 (approximation w.r.t. ξ). A cost-sharing algorithm A (with cost-
sharing function ξ) is an α-approximation algorithm w.r.t. ξ if

(3.1) c(A(X,S)) ≤ α ξ(X,S, S).

In the literature (e.g., [8, 24]), the related definition of α-budget balance is some-
times used when the cost-sharing function is such that there exists a solution F (S)
with c(F (S)) ≤ αξ(X,S, S). Definition 3.4 requires the specification of an algorithm
A, and we use this definition in the rest of this paper. Note that if ξ is competitive,
then ξ(X,S, S) ≤ OPT(X,S), and thus an α-approximation algorithm w.r.t. ξ is also
simply an α-approximation algorithm.

3.1. Cross-monotonicity. Cost-sharing functions can be restricted to satisfy
several other properties, which aid in the analysis of some of the algorithms in this
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paper. We now define the relevant properties. Among the properties described below,
the specific properties required by each algorithm will be listed when the algorithm
is described.

Definition 3.5 (cross-monotone). A cost-sharing function ξ is cross-monotone
if for every pair of client sets S and T such that S ⊆ T and every client j ∈ S we
have ξ(X,T, j) ≤ ξ(X,S, j).

Cross-monotonicity models the fact that if the client set increases, the cost shares
of clients in the original client set should not go up. In other words, clients should not
be penalized if more clients need to be served; instead, since there are more clients to
share the cost of service, the cost to any individual client should possibly go down.
Cross-monotonicity is a property that we will not always be able to satisfy, but we
obtain interesting implications when cross-monotonicity is satisfied.

3.2. Strictness of cost-sharing functions. We now come to a notion that
will be crucial to our analyses; this is a slight extension of the notion of “strictness”
defined earlier in [16].1

Definition 3.6 (strict). A cost-sharing algorithm A (and its associated cost-
sharing function ξ) is called β-strict if for any sets of clients S and T ⊆ U \ S there
exists a solution FT ⊆ X constructable in polynomial time such that A(X,S) ∪ FT ∈
Sols(S ∪ T ) and

c(FT ) ≤ β × ξ(X,S ∪ T, T ).(3.2)

Loosely speaking, one should think of T as being the set of clients coming in a
second stage, and S as being some set of clients in the first stage, and the notion of
β-strictness as relating the cost of the recourse solution constructed to the share of the
cost to be borne by T had the clients in T been present in the first stage itself (which
is given by ξ(X,S ∪ T, T )). A formalization of this notion will appear in the proof
of Theorem 4.1. Usually, we will also specify an algorithm to compute the solution
FT guaranteed in the above theorem. This algorithm will be called the augmenting
algorithm and will be denoted by AugA.

For the case of independent decisions, we do not require the full power of strict-
ness, and the following definition will suffice.

Definition 3.7 (unistrict). A cost-sharing algorithm A (and its associated cost-
sharing function ξ) is called β-unistrict if for any set of clients S and singleton client
j ∈ U \ S there exists a solution Fj ⊆ X constructable in polynomial time such that
A(X,S) ∪ Fj ∈ Sols(S ∪ {j}) and c(Fj) ≤ β × ξ(X,S ∪ {j}, j).

Unistrictness is a weaker requirement than strictness, since it is equivalent to
strictness restricted so that only a single client is added at a time.

On the other hand, k-stage stochastic problems will require us to use the following
(slightly different) notion of strictness. Given a setX ′ ⊆ X with costs for each element
e ∈ X , let X/X ′ denote the same element set X with the costs of the elements in X ′

set to zero (i.e., with the elements in X ′ “contracted”).
Definition 3.8 (superstrict). A cost-sharing algorithm A (and its associated

cost-sharing function ξ) is called β-superstrict if for any sets of clients S and T ⊆ U\S
we have

ξ(X/A(X,S), T, T ) ≤ β × ξ(X,S ∪ T, T ).(3.3)

1The notion of strictness defined in [16] was the same as our definition restricted to the case
when |T | = 1. We use this notion in some cases as well, but call it “unistrictness”; see Definition 3.7.
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Let us quickly contrast superstrictness (Definition 3.8) to strictness (Definition
3.6). If F = A(X,S) is the solution output by A in the set S, and FT is the solution
constructed to serve the new second-stage clients T \S, then strictness required us (a)
to efficiently find a recourse solution FT to augment F and get a solution for S ∪ T ,
and (b) to charge the cost of FT to ξ(X,S ∪ T, T ) (up to a factor of β). Under the
new definition of superstrictness, we require that (a′) the solution FT be obtained by
setting the costs of elements in F to zero and running the same algorithm A on the
resulting “reduced” set X/F (i.e., the augmenting algorithm is defined as first setting
the costs of elements in F to zero and then running A), and (b′) the cost shares of T
in this run ξ(X/F, T, T ) be charged to cost shares ξ(X,S ∪ T, T ) of T in the original
run (up to a factor of β).

4. The transfer theorems. In this section, we show how we can obtain ap-
proximation algorithms for stochastic optimization problems from approximation al-
gorithms for their nonstochastic counterparts, using the essential ingredients men-
tioned above—sampling, signals, and cost-sharing algorithms. We will begin with the
special case of the two-stage model, giving our results both for general distributions
in the black-box setting (in section 4.1.1) and for the case of independent decisions
(in section 4.1.2). We then move on to the general k-stage case (in section 4.2) by
appropriately generalizing and extending the two-stage framework.

Our results in this section are described in terms of an abstract optimization
problem Π, for which we have an approximation algorithm A as well as an associated
cost-sharing function ξ and an augmenting algorithm AugA. We give details of the
specific algorithms and cost-shares for various problems in section 5.

4.1. Transfer theorems for two-stage problems. The simplest form of sto-
chastic optimization is over k = 2 stages. Recall the discussion in section 2, and
section 2.1.1 in particular. Since the only signal received is the null signal s1, it plays
no role in the two-stage model and is not discussed any further in this section. The
probability distribution π is also no longer a conditional distribution. Also, since the
only meaningful inflation factor is σ2, we just use σ to represent the second-stage
inflation factor.

Given an instance of a stochastic problem Stoc(Π), the goal of the first stage is to
buy the elements that will be useful for the unknown client set realized in the second
stage. Since our algorithm is not clairvoyant and hence cannot see the future, the
next best thing it can do is to sample from the distribution π and use the samples as
an indication of what the future holds. This simple idea is the basis of our method.

A näıve attempt would be to sample once from the distribution and use the set
obtained as our prediction for the future: however, this is not aggressive enough in
that it ignores the fact that the future is more expensive by a factor of σ. In fact,
as σ → ∞, the optimal solution would be to assume that every client in U will
be realized and must be accounted for in the first stage itself. Motivated by these
concerns, the algorithm for the problem Stoc(Π) is stated in Figure 4.1, in terms of
the α-approximation algorithm A (and its associated β-strict cost-sharing function ξ
and an augmenting algorithm AugA).

Our algorithm requires a number of samples that is linear in σ. Indeed, if all we
have is sampling access to the distribution π, it is not hard to see that Ω(σ) samples
are needed.

The algorithm (as well as the sequence of events) is described in Figure 4.1. We
name the algorithm Boost-and-Sample for obvious reasons: we build our first-stage
solution purely on the basis of a sample, except that the sample is “boosted” in the
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Algorithm Boost-and-Sample (Π).
Given: Problem Π, defined by universe of clients U , probability distri-

bution π, universe of elements X , cost function c(), and inflation
factor σ.

1. Draw 	σ
 independent samples S1, S2, . . . , S�σ� of clients by sam-
pling from the distribution π. Let D = ∪iSi.

2. Using the algorithm A, construct a first-stage solution F1 ∈
Sols(D). Algorithm A must be an α-approximation which includes
a β-strict cost-sharing function ξ and augmenting algorithm AugA.

Output: The first-stage solution F1.
3. The second stage occurs, and the client set S is realized. Using the

augmenting algorithm AugA on the client set S \D, compute the
second-stage solution F2 such that F2 ∈ Sols(S \D). By subaddi-
tivity, we will have F1 ∪ F2 ∈ Sols(S).

Output: The second-stage solution F2.

Fig. 4.1. Algorithm Boost-and-Sample for two-stage stochastic optimization.

sense that the number of client sets we obtain is equal to (the greatest integer no
more than) the inflation factor σ.

As stated in the description of the algorithm above, we require that A be an
α-approximation algorithm for the (deterministic) problem Det(Π). We also require
that ξ be β-strict and that there exist an algorithm AugA to compute the augmenting
solution FT . Note that, for the two-stage case, we do not require ξ to be cross-
monotone or superstrict.

4.1.1. Analysis of Boost-and-Sample for two-stage problems. We now
prove the first of our main results: the simple sampling-based algorithm Boost-and-
Sample provides an approximation algorithm for the stochastic optimization problem.

Theorem 4.1 (two-stage general theorem). Consider a subadditive combinato-
rial optimization problem Π. Let A be a cost-sharing algorithm for Π such that the
following hold: (i) A is an α-approximation algorithm for Det(Π); (ii) A is associated
with a β-strict competitive cost-sharing function ξ; and (iii) (A,ξ) is associated with
an augmenting algorithm AugA. Then Algorithm Boost-and-Sample is an (α + β)-
approximation algorithm for the two-stage problem Stoc(Π).

Proof. We will bound the expected costs of our first- and second-stage solutions
separately. The first-stage cost will be bounded by comparison with the optimal
cost directly, without using cost-shares. The cost-sharing function will be useful in
bounding the cost of the second-stage solution, by allowing us to compare the expected
cost of the augmentation with the cost of the optimal solution.

Let us fix an optimal solution, which buys the elements of F ∗
1 in the first stage and

buys the elements of F ∗
2 (S) in the second stage when S = S (i.e., the set of realized

clients is S). Note that F ∗
2 (S) needs to serve only the clients in S \ S∗

1 . Therefore,
the optimal cost is given by

(4.1) Z∗ = c(F ∗
1 ) +

∑
S∈2U

π(S)σc(F ∗
2 (S)).

Let us define Z∗
1 = c(F ∗

1 ) and Z
∗
2 =

∑
S∈2U π(S)σc(F

∗
2 (S)). To simplify the notation,

we shall assume that the inflation factor σ is an integer, that is, σ = 	σ
; since the



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SAMPLING AND COST-SHARING 1373

algorithm takes the floor of σ at the very outset, this is without loss of generality.
First stage. Recall that we take σ samples D1, D2, . . . , Dσ in the first stage

and build a solution on D = ∪σ
i=1Di. We claim that there exists a set of elements

F̃1 ∈ Sols(D) with expected cost E[ c(F̃1) ] ≤ Z∗. Indeed, define F̃1 = F ∗
1 ∪ F ∗

2 (D1) ∪
F ∗
2 (D2)∪· · ·∪F ∗

2 (Dσ). By the definition of the optimal solution, F ∗
1 ∪F ∗

2 (Di) must be

a solution to Di, and hence the subadditivity of Π implies that F̃1 ∈ Sols(D). In the
following, we treat the samples Di as random variables and compute the expectation
over them:

E[ c(F̃1) ] ≤ c(F ∗
1 ) +E

[
σ∑

i=1

c(F ∗
2 (Di))

]

= c(F ∗
1 ) +

σ∑
i=1

E[ c(F ∗
2 (Di)) ]

= c(F ∗
1 ) + σ

∑
S∈2U

π(S)c(F ∗
2 (S)) = Z∗,

where the penultimate equality follows from the fact that each of the Di’s is chosen
from the probability distribution π. Since A is an α-approximation for Det(Π), and we

know that the above solution F̃1 had expected cost at most Z∗, our solution F1 (output

by Boost-and-Sample in the first stage) satisfies E[ c(F1) ] ≤ αE[ c(F̃1) ] ≤ αZ∗, thus
bounding our expected first-stage cost by αZ∗.

Second stage. Let S be the set of realized clients, and let F2(S) be the result of
algorithm AugA on the client set S \ D such that F1 ∪ F2(S) ∈ Sols(S). We need
to bound our expected second-stage cost σE[ c(F2(S)) ]; note the factor of σ due to
second-stage inflation.

Recall the definition of β-strictness; our hypothesis that the algorithm A is asso-
ciated with a β-strict cost-sharing function ξ implies that

c(F2(S)) ≤ β ξ(X,D ∪ S, S \D).(4.2)

In the rest of the proof, we will bound from above the expected value of the cost-share
on the right-hand side in the above expression.

To this end, consider the following alternative probabilistic process to generate
the sets Di and the set S. Draw σ+1 independent samples D̂1, D̂2, . . . , D̂σ+1 from the
distribution π. Now choose a random valueK uniformly at random from {1, 2, . . . , σ+
1}, and let S = D̂K and D = ∪i�=KD̂i. This process is distributed identically to the
original process, since we assume that our black box outputs an independent random
sample from π. Let D̂ be the union of all Di’s, and let D̂−i be the union ∪l �=iD̂l of

all the sets except D̂i. Since the cost sharing function ξ is competitive, we have

σ+1∑
i=1

ξ(X, D̂, D̂i \ D̂−i) ≤ OPT(D̂).(4.3)

Moreover, since K is chosen uniformly at random from a set of size σ + 1, we get

E[ ξ(X, D̂, D̂K \ D̂−K) ] ≤ 1

σ + 1
OPT(D̂).(4.4)

Finally, since the alternate process is probabilistically identical to the one we used to



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1374 ANUPAM GUPTA, MARTIN PÁL, R. RAVI, AMITABH SINHA

pick D and S,

E[ ξ(X,D ∪ S, S \D) ] = E[ ξ(X, D̂, D̂K \ D̂−K) ]

≤ 1

σ + 1
E[OPT(D̂) ].(4.5)

To complete the argument, we now show that E[OPT(D̂) ] ≤ σ+1
σ Z∗. To derive a

feasible solution to D̂, define F̃2 = F ∗
1 ∪ F ∗

2 (D̂1) ∪ F ∗
2 (D̂2) ∪ · · · ∪ F ∗

2 (D̂σ+1). Again,
the fact that F̃2 ∈ Sols(D̂) follows from the subadditivity of Π. Thus we have

E[OPT(D̂) ] ≤ c(F ∗
1 ) +

σ+1∑
i=1

E[ c(F ∗
2 (D̂i)) ]

≤ Z∗
1 +

(σ + 1)Z∗
2

σ

≤ σ + 1

σ
(Z∗

1 + Z∗
2 ) =

σ + 1

σ
Z∗.(4.6)

Finally, chaining together (4.2), (4.5), and (4.6), we get the following: E[ c(F2) ] ≤
βE[ ξ(X,D ∪ S, S \D) ] ≤ β

σZ
∗. Since each element is costlier in the second stage

by a factor of σ, we infer that our expected second-stage cost is E[σc(F2) ] ≤ βZ∗.
Now putting together the first- and second-stage costs gives the bound claimed in the
theorem.

It is natural to conjecture that tighter results may be obtained by choosing some
number other than 	σ
 for the number of samples used in constructing the first-stage
solution. We believe that while small and problem-specific improvements might be
possible, sampling 	σ
 times is the best possible for Theorem 4.1. Sampling fewer
than 	σ
 times does not improve the bound on the first-stage cost since the optimal
solution might have a large first-stage component; it hurts the second-stage cost since
the proportionate cost of the second stage is now much larger. Sampling greater than
σ times clearly hurts the first-stage cost while offering no improvement in the second-
stage cost guarantee (for example, when all scenarios require disjoint solutions).

We also point out that, in general, Theorem 4.1 cannot yield an approximation
ratio of better than min{α + β, 2α}, as the following example shows. Consider an
instance of the stochastic Steiner tree problem on the following graph and probability
distribution. The graph G consists of several subgraphs, H1, H2, . . . , Hn, none of
whom share a vertex, where n � 1. There is also a distinct root vertex r. The
shortest path between any two subgraphs Hi and Hj goes through the root. Each
scenario consists of a set of terminals all contained within a single subgraph Hi. Let
σ = 1. The optimal solution, therefore, is to wait for the second stage to realize, and
then use an existing Steiner tree approximation algorithm to construct a solution for
the realized subgraph (scenario). Our algorithm will first sample, which yields a single
Hi, and construct an approximate Steiner tree for this first-stage sampled scenario.
Then, in the second stage, with high probability a distinct subgraph Hj will be the
realized scenario. Our algorithm will then construct a second approximate Steiner
tree for Hj . Thus, our algorithm approximately constructs two distinct Steiner trees,
each with approximation ratio α, resulting in an overall approximation ratio of 2α. If
a cost-sharing algorithm had been used in the second stage, the overall approximation
ratio would be α + β. In general, there is no opportunity to save costs between the
solutions of the two stages—as is seen in the proof of Theorem 4.1, the cost of each
stage is bounded by the overall optimal cost, and there are very few inequalities that
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offer any opportunity for additional savings. Similar examples can be constructed
for all the stochastic models that we consider in the paper, so the approximation
ratios proved in this paper do not offer much opportunity for improvement unless the
underlying algorithm is significantly changed.

4.1.2. The special case of independent decisions. Within the context of
two-stage stochastic optimization, we now consider a specific model for the second
stage, which we call the independent-decisions model. In this model, each client
j ∈ U has a probability πj of requiring service independent of all other clients.

For this special case, we show that unistrict cost-sharing functions are sufficient to
obtain algorithms for stochastic problems. Recall from Definition 3.7 that unistrict-
ness is a weaker condition than the requirement of strictness that was used in Theo-
rem 4.1. Unistrictness allows us to obtain approximation algorithms for a wider set of
problems, while also obtaining stronger results than can be obtained via strictness for
some problems. Given a problem Π, we use Ind(Π) to denote the stochastic extension
of Π in this independent-decisions model.

Our algorithm for this special case is a minor modification from Figure 4.1. The
sample D is generated by selecting each element j ∈ U with probability min{1, σπj}.
We assume that we have a cost-sharing algorithm A, with an associated β-unistrict
cost-sharing function ξ and augmenting algorithm AugA.

We refer to this algorithm also as Boost-and-Sample, since we discuss it only
in this section and the fundamental idea of sampling more often remains the crux
of the algorithm. Note that the algorithm can be implemented in polynomial time
regardless of the magnitude of σ. We prove an analogous version of Theorem 4.1 for
the independent-decisions model. We note that the argument used to bound the cost
of the second-stage solution bears some resemblance to the proof of the performance
guarantee for the multicommodity rent-or-buy problem studied in [16]. While the
problem studied in [16] is a single-stage problem, the analysis technique extends to
our stochastic setting and allows for generalization in that if appropriate cost-sharing
functions can be found for any other problem, then our result allows its stochastic
version to be well-approximated.

Theorem 4.2 (two-stage independent decisions). Consider a subadditive com-
binatorial optimization problem Π. Let A be a cost-sharing algorithm for Π such
that the following hold: (i) A is an α-approximation algorithm for Det(Π); (ii) A is
associated with a β-unistrict competitive cost-sharing function ξ; and (iii) (A,ξ) is
associated with an augmenting algorithm AugA. Then Algorithm Boost-and-Sample is
an (α+ β)-approximation algorithm for the two-stage problem Stoc(Π).

Proof. While it is possible to prove this result by closely following the lines of the
proof for Theorem 4.1, we give a slightly different proof here. First, some notation:
let π(S) =

∏
j∈S πj

∏
j �∈S(1−πj). Let F ∗

1 be the first-stage component of the optimal
solution, with S∗

1 defined as before as the set of clients chosen for service in the first
stage of the optimal solution. Let F ∗

2 (S) be the second-stage component if the set of
realized clients is S, and let Z∗ be defined as in (4.1).

First stage. Again, we claim that there is F̂1 ∈ Sols(D) such that E[ c(F̂1) ] ≤ Z∗;
the proof in this case is by a slightly simpler “coupling” argument. As a thought
experiment, let us throw elements of D into σ sets D1, . . . , Dσ independently and
uniformly at random. Now, since D was picked by sampling each element j ∈ U at
rate min{1, σ πj}, each Di is distributed as though we sampled element j ∈ U with
probability at most πj . (The contents of different Di’s are correlated negatively, but
we will use only linearity of expectations.)
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Define F̂2 = F ∗
1 ∪ F ∗

2 (D1) ∪ F ∗
2 (D2) ∪ · · · ∪ F ∗

2 (Dσ). Again, F̂2 ∈ Sols(D) from
subadditivity, and

E[ c(F̂2) ] ≤ c(F ∗
1 ) +E

[
σ∑

i=1

c(F ∗
2 (Di))

]

= c(F ∗
1 ) +

σ∑
i=1

E[ c(F ∗
2 (Di)) ]

≤ c(F ∗
1 ) + σ

∑
S

π(S) c(F ∗
2 (S)) = Z∗.

Now an α-approximation algorithm for Det(Π) gives us a solution F1 with E[ c(F1) ] ≤
αc(F̂2) ≤ αZ∗, bounding our first-stage costs.

Second stage. Let S be the set of realized clients, and let F2(S) =
⋃

j∈S\D F2({j}),
where F2({j}) is the result of our augmentation algorithm AugA on the individual
client j. Note that for all j ∈ S \D we have F1 ∪ F2({j}) ∈ Sols(D ∪ {j}); thus by
subadditivity, F1 ∪ F2(S) ∈ Sols(S). We need to bound our expected second-stage
cost, which is σE[ c(F2(S)) ], which we will bound by the expected first-stage cost.

Define φj for an element j to be the random variable φj = ξ(X,D, j) if j ∈ D, and
0 otherwise. Likewise, define ψj for j ∈ S \D to be the cost c(F2({j})) of augmenting
a solution for D to include j as well; otherwise, ψj = 0. Let Xj = σψj − β φj . Now
let us condition on all the first-stage coin-tosses T in U except for j’s toss. That is,
we condition on the random variables governing whether each of the clients in U \ {j}
is selected in the first stage or not. Let DT be all the clients picked according to T
(which does not include j), and consider the expected value of Xj over the first-stage
toss for j and the tosses of the realized set S:

E[σ ψj | T ] = σ × πj × c(F2({j}))× (1−min{1, σπj}) and(4.7)

E[β φj | T ] = β ×min{1, σπj} × ξ(X,DT � {j}, j).(4.8)

By unistrictness of A, it follows that (4.8) is at least (4.7), and hence E[Xj | T ] ≤ 0.
Since this holds for all T , we have that E[Xj ] ≤ 0 unconditionally, and thus

(4.9) E[ψj ] ≤
β

σ
E[φj ].

Using the fact that positive cost shares are only assigned to clients requiring service
and that the cost-sharing function is competitive, we have

∑
j∈U

E[φj ] =
∑
j∈U

E[ ξ(X,D, j) ] = E

⎡⎣∑
j∈D

ξ(X,D, j)

⎤⎦(4.10)

≤ E[OPT(D) ] ≤ Z∗.(4.11)

Furthermore, E[ c(F2(S)) ] ≤
∑

j E[ψj ] by subadditivity; using this, (4.9), and (4.10),
we get that the expected second-stage cost σE[ c(F2(S)) ] ≤ β Z∗, thus proving the
result.

4.2. Transfer theorem for multistage problems. We now consider the case
of multistage stochastic optimization problems. Recall the set-up and sequence of
events from section 2.1 and Figure 2.1. Briefly, there are k stages labeled 1 through k;
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Procedure Recur-Sample (Π, stage i, vector of signals s).

1. (Base case) If i = k, draw one sample set of clients Sk from the condi-
tional distribution π(.|s). Return the set Sk.

2. (New samples) If i < k, draw 	σi+1
 samples of the signal si+1 from the
conditional distribution p(.|s). Let s1, s2, . . . , sn be the sampled signals,
where n = 	σi+1
.

3. (Recursive calls) For each sample signal sj , recursively call Recur-Sample
(Π, i+ 1, s+ sj) to obtain a sample set of clients Sj .

4. Return the set Si = ∪n
j=1S

j .

Fig. 4.2. The recursive sampling procedure for multistage stochastic optimization.

the final client set is revealed only in stage k, while in each stage we get a signal si and
elements are costlier by a factor σi compared to the previous stage. The conditional
distribution π(.|s) can be sampled from at any point, where s is the vector of signals
received so far.

Once again, we show how to extend an algorithm for the deterministic problem
Det(Π) to handle the multistage stochastic version of Π. As before, we require an α-
approximation algorithm A with respect to a cost-sharing function ξ for the problem
Det(Π). We also require that ξ be β-superstrict and cross-monotone. We also need an
augmenting algorithm AugA; since ξ is superstrict, the augmenting algorithm AugA is
the original algorithm A, where the costs of elements already purchased is set to zero.
Note that the requirements of superstrictness and cross-monotonicity are stronger
than the requirements for two-stage problems.

Let us first outline the key idea of the algorithm, which is a natural extension of
the two-stage algorithm. In the two-stage algorithm outlined in Figure 4.1, the first
stage involved simulating σ = σ1 independent runs of the second stage and building
a solution that satisfied the union of these simulations. We use the same basic idea
for the k-stage problem: in each stage i, we sample σi “copies” of the remaining
(k− i)-stage stochastic process. Each copy provides us with a random set of clients to
satisfy, and we build a solution that satisfies the union of all these clients. The “base
case” of this recursive idea is the final stage, where we get a set S of clients and just
build the required solution for S. The recursive sampling procedure is described in
Figure 4.2.

Our algorithm, in each stage i (except the final, kth stage), uses the recursive
sampling procedure described in Figure 4.2 to emulate σi+1 copies of itself on the
remaining k − i stages. Having obtained a collection of sampled sets of clients, it
then augments the current partial solution to a feasible solution for these sampled
sets. Finally, in the kth stage it performs the ultimate augmentation to obtain a
feasible solution for the revealed sets of demands. The expected number of calls to
the sampling black box in stage i is

∏k
j=i+1 σj .

The new algorithm is calledMulti-Boost-and-Sample and is described in Figure 4.3.
Formally, in the first stage, we call Algorithm Multi-Boost-and-Sample (Det(Π), 1,
∅, ∅, ∅). This returns a set of elements F1, which are purchased as the first-stage partial
solution. In stage i, having already observed the signal-vector s so far and having
purchased elements Bi to serve clients Si, we call Algorithm Multi-Boost-and-Sample
(Det(Π), i, s, Bi, Si) and purchase the set of elements Fi returned by the algorithm. In
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the final stage k, the algorithm automatically purchases a set of elements Fk generated
by the cost-sharing algorithm A to serve any new unserved elements S \ Sk.

Algorithm Multi-Boost-and-Sample (Π, i, s, Bi, Si).
Given: Problem Π, defined by universe of clients U , probability distri-

bution π, universe of elements X , cost function c(), and inflation
vector σ = (σ1 = 1, σ2, . . . , σk).
Stage i.
Set of signals s received so far, which allows the construction of the
conditional distribution π(.|s).
Set of elements Bi purchased so far.
Set of clients Si served so far.

Input: If the current stage i < k, observe the signal si, and let s = s+ si.
If this is the final stage i = k, observe the required set of clients S
instead.

1. If i < k, use Procedure Recur-Sample (Π, i, s) to obtain a sample
set of clients Di. Else if i = k, let Dk = S.

2. Set the cost of elements e ∈ Bi to zero. Using algorithm A, find a
set of elements Fi ⊆ X \Bi to buy so that Fi ∈ Sols(Di \ Si).

3. Update Bi+1 = Bi ∪ Fi and Si+1 = Si ∪Di.
Output: The i-stage solution Fi and set of new clients served Di \ Si.

Fig. 4.3. Algorithm Multi-Boost-and-Sample for multistage stochastic optimization.

As a side note, recall that in the two-stage model, we had distinct algorithms for
the first and second stages (A and AugA, respectively). If, in the two-stage model,
the augmenting algorithm AugA was identical to running A with the costs of the
first-stage elements set to zero, then the resulting two-stage algorithm is identical to
running Multi-Boost-and-Sample with k = 2.

4.2.1. Analysis of Multi-Boost-and-Sample for multistage problems.
We will now show that Algorithm Multi-Boost-and-Sample can be used to translate
an approximation algorithm A for the deterministic version Det(Π) of a problem Π
into its k-stage stochastic version Stock(Π). The quality of this translation depends
on the approximation guarantee of A with respect to some superstrict cost-sharing
function. The main result of this section is the following.

Theorem 4.3 (k-stage general theorem). Given a problem Π, if A is an α-
approximation algorithm w.r.t. a β-superstrict competitive cross-monotone cost-sharing
function ξ, then Multi-Boost-and-Sample is an α ·

∑k−1
i=0 β

i-approximation algorithm
for the k-stage stochastic problem Stock(Π).

Before we prove Theorem 4.3, we set the stage for the proof by providing a brief
overview of the proof technique and proving a couple of lemmas which provide useful
bounds. A näıve attempt to prove this result along the lines of Theorem 4.1 does
not succeed, since we have to move back and forth between the cost-shares and the
actual cost of the solutions Fi, which causes us to lose factors of ≈ α at each step.
Instead, in our proof below, we bound all costs incurred in terms of the ξ’s: we first
argue that the expected sum of cost-shares from the first stage is no more than the
optimum total expected cost Z∗. We then bound the expected sum of cost-shares in
each consecutive stage in terms of the expected cost-shares from the previous stage
(with a loss of a factor of β at each stage). Finally, we bound the actual cost of the
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partial solution constructed at stage i by α times the expected cost-shares for that
stage, which gives us the geometric sum claimed in the theorem.

Thus, in the k-stage stochastic problem, we are placing a stronger requirement
on the algorithm A by requiring it to be an α-approximation with respect to the cost-
sharing function ξ; the two-stage algorithm required A to be an α-approximation,
but not necessarily w.r.t. ξ. Indeed, the stronger requirement here leads to a weaker
bound: running Multi-Boost-and-Sample with k = 2 yields an α(1+β)-approximation,
which is (weakly) worse than the (α + β)-approximation obtained for the two-stage
problem (Theorem 4.1).

Let F ∗ be an optimal solution to the given instance of Stock(Π). We denote by
F ∗
i the partial solution built in stage i; recall that F ∗

i = F ∗
i (s1, s2, . . . , si) is a function

of the set of all possible i-tuples of signals that could be observed before stage i. The
expected cost of this solution can be expressed as

Z∗ = σ1E[ c(F ∗
1 (s1)) ] + σ1σ2E[ c(F

∗
2 (s1, s2)) ] + · · ·+ σ1 · · ·σnE[ c(F ∗

k (s1, s2, . . . , sk)) ].
(4.12)

For the proof of this theorem, we will assume that all the inflation factors σi are
positive integers.

The first ingredient of the proof is to show that the cost-shares from stage 1 are
not too large; this is similar to the beginning of the proof of Theorem 4.1, except
that we are interested in a bound on the cost-shares and not the actual cost of the
solution.

Lemma 4.4. The expected cost-share E[ ξ(X,D1, D1) ] is at most the total opti-
mum cost Z∗.

Proof. Consider D1, the sample set of clients returned by Recur-Sample (Π, 1, s1).

We claim there is a solution F̂ (D1) such that E[ c(F̂ (D1)) ] ≤ Z∗ (the expectation is
over all sample paths in the execution of the procedure Recur-Sample). To construct

the solution F̂ (D1), we consider the tree of recursive calls of the procedure Recur-
Sample. For each recursive call Recur-Sample (Π, i, s), we add the set of elements F ∗

i (s)

to F̂ (D1). Using subadditivity, we establish that (1) F̂ (D1) is a feasible solution for

the set D1 and (2) the expected cost E[ c(F̂ (D1)) ] ≤ E[
∑k

i=1

(∏
j≤i σj

)
c(F ∗

i ) ] = Z∗.
Since the expected cost of a feasible solution for D1 is bounded above by Z∗, the
competitiveness of ξ implies that this bound must hold for the sum of cost-shares as
well.

We now show that the total cost-shares from the (i + 1)th stage can be related
to the cost shares from the ith stage.

Lemma 4.5. Let F̂ = F1 ∪ · · · ∪ Fi−1 be the solution constructed in a particular
execution of the first i − 1 stages, and let si be the signal observed in stage i. Let
Di and Di+1 be the random variables denoting the samples returned by the procedure
Recur-Sample in Stages i and i + 1, and let Fi be the (random) solution constructed
by A for the set of clients Di \ Si, where Si is the set of clients served in stages prior
to i (therefore, Si+1 = Si ∪Di). Then,

E[ ξ(X/(F̂ ∪ Fi), Di+1 \ Si+1, Di+1 \ Si+1) ] ≤
β

σi+1
· E[ ξ(X/F̂ ,Di \ Si, Di \ Si) ].

(4.13)

Proof. Recall that the sampling procedure Recur-Sample (Π, i, s) gets 	 = 	σi+1

independent samples s1, s2, . . . , s� of the signal si+1 from the distribution π condi-
tioned on s = s1, . . . , si, and then for each sampled signal calls itself recursively to
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obtain the 	 sets S1, . . . , S�. Note that the set Di =
⋃�

j=1 S
j is simply the union of

these 	 sets. On the other hand, the set Di+1 is obtained by observing the signal
si+1 (which is assumed to come from the same distribution π(.|s)) and then calling
Recur-Sample with the observed value of si+1.

We now consider an alternate, probabilistically equivalent, view of this process,
very similar to the proof of Theorem 4.1. We first take 	 + 1 samples s1, . . . , s�+1 of
the signal si+1 from the distribution π(.|s). Call the procedure Recur-Sample (Π, i+1,
s+ sj) for each sj to obtain sets S1, . . . , S�+1. Pick an index j uniformly at random
from the set of integers 1, . . . , 	 + 1. Let Di+1 = Sj , and let Di be the union of the
remaining 	 sets. This process of randomly constructing a pair of sets (Di, Di+1) is

clearly equivalent to the original process. Note that Di ∪Di+1 =
⋃�+1

l=1 S
l.

To simplify notation, let us denote the set of elements X/F̂ by X̂ . By the defi-
nition of β-superstrictness and the fact that Fi is the solution constructed for the set
Di \ Si, we first get

ξ(X̂/Fi, Di+1 \ Si+1, Di+1 \ Si+1) ≤ β · ξ(X̂, (Di ∪Di+1) \ Si, Di+1 \ Si+1).(4.14)

By definition, we have ξ(X̂, (Di ∪Di+1) \ Si, (Di ∪Di+1) \ Si)) = ξ(X̂, (Di ∪Di+1) \
Si, Di\Si))+ξ(X̂, (Di∪Di+1)\Si, Di+1\Si+1); this equation also holds in expectation.
Now we use the facts that the actual set of clients Di+1 has the same distribution as
the set Sj which is sampled uniformly from 	 + 1 choices in the equivalent process
above, and that Di is the union of the remaining 	 sets. This gives us that

E[ ξ(X̂, (Di ∪Di+1) \ Si, Di+1 \ Si+1) ]

≤ E

[
1

	+ 1
× ξ(X̂, (Di ∪Di+1) \ Si, (Di ∪Di+1) \ Si)

]
.

(4.15)

The two inequalities above yield the following:

E[ ξ(X̂, (Di ∪Di+1) \ Si, Di+1 \ Si+1) ] ≤ E

[
1

	
× ξ(X̂, (Di ∪Di+1) \ Si, Di \ Si)

]
.

(4.16)

Finally, we use cross-monotonicity of the cost-shares ξ, which says that the cost-share
of clients in Di \ Si does not increase when the elements of Di+1 \ Si join the fray.
This implies that

E[ ξ(X̂, (Di ∪Di+1) \ Si, Di \ Si) ] ≤ E[ ξ(X̂,Di \ Si, Di \ Si) ].(4.17)

Chaining the above inequalities (4.14), (4.16), and (4.17) proves the lemma.
Having proved the main supporting lemmas (that the cost-shares of the first stage

are at most Z∗, and that the total cost-shares of each subsequent stage can be related
to those from the previous stage), we now turn to bounding the approximation ratio
for Multi-Boost-and-Sample.

Proof of Theorem 4.3. Recall that the expected cost of the solution given by
Algorithm Multi-Boost-and-Sample (Π) is

E[Z ] = E

⎡⎣ k∑
i=1

⎛⎝ i∏
j=1

σj

⎞⎠ c(Fi)

⎤⎦ .(4.18)
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In the above expression, recall that the ith-stage solution Fi = A(X/Bi, Di \ Si),
where Bi = ∪j<iFj is the set of elements already purchased, Di is the sampled set of
demands, and Si is the set of clients already served. Since A is an α-approximation
algorithm w.r.t. the β-superstrict cost-sharing function ξ, we get that

c(Fi) ≤ α ξ(X/Bi, Di \ Si, Di \ Si).(4.19)

Now using Lemma 4.5 inductively on ξ(X/Bi, Di \ Si, Di \ Si), we find that

(4.20) E[ ξ(X/Bi, Di \ Si, Di \ Si) ] ≤ E

[
βi−1∏i
j=1 σj

ξ(X,D1, D1)

]
.

Using this inequality with (4.18) and (4.19) yields

(4.21) E[Z ] ≤ αE

[
k∑

i=1

βi−1 ξ(X,D1, D1)

]
.

Lemma 4.4 bounds E[ ξ(X,D1, D1) ] from above by Z∗. Using this bound in inequal-
ity (4.21) above completes the proof of Theorem 4.3.

4.3. Correlated inflation factors. In the model and the results proved above,
we have assumed that the inflation factors are fixed constants specified in advance to
the algorithm. This is a fairly restrictive assumption in general, since the inflation
parameters are very likely to be correlated with the set of clients that materializes in
the second stage. Indeed, one may imagine that a large set of clients may be related
to a booming economy and thus to higher costs, etc. In this section, we show that
the Boost-and-Sample algorithm for the two-stage problem can easily be extended to
situations where the inflation factor is correlated to the client set.

4.3.1. The model with correlated costs. To model correlated costs, we as-
sume that our probability distribution π : R≥1 × 2V → [0, 1] is not merely over client
sets but over tuples (inflation, client set); here π(σ, S) is the probability that the
client set S arrives with an inflation factor of σ. Again, we assume that we are given
the distribution π as a black box from which we can draw independent samples. More-
over, we need one more assumption: we need an upper bound M on the value of the
random variable σσσ. This need not be a tight upper bound: choosing a pessimistically
high value of M will only increase the running time of the algorithm but will not
affect the approximation ratio.

A näıve attempt to extend Algorithm Boost-and-Sample in the two-stage case
would be to obtain E[σσσ] samples to compute the first-stage solution. Unfortunately,
this is clearly a poor algorithm, as the following easy example shows. Consider the
case where with probability 1/2, inflation factor σ = M � 1, and S = ∅, and there
are several other nonempty client sets S, each with σ ≈ 1 and whose probabilities of
realization sum to 1/2. The expected value of σσσ is approximately M/2, and hence
Algorithm Boost-and-Sample will almost surely obtain a large number of nonempty
samples and construct an expensive first-stage solution, whereas the optimal solution
is to defer purchasing elements to the second stage.

4.3.2. The algorithm for correlated costs. The algorithm Boost-and-Sample-
Correlated with correlated inflation factors is presented in Figure 4.4. Loosely, the
algorithm takes a suitably large number of samples of (inflation factor, client set)
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Algorithm Boost-and-Sample-Correlated (Π).
Given: Problem Π, defined by universe of clients U , probability distribu-

tion π′, universe of elements X , cost function c(), and upper bound
M on inflation factors.

1. Draw M independent samples from the joint distribution π′ of
(σσσ,S). Let (σ1, S1), (σ2, S2), . . . , (σM , SM ) denote this collection
of samples.

2. (Rejection sampling) For i = 1, . . . ,M , accept sample Si with prob-
ability σi/M . Let Si1 , Si2 , . . . , Sik be the accepted samples, and let
D = ∪jSij .

3. Using the algorithm A, construct a first-stage solution F1 ∈
Sols(D). Algorithm A must be an α-approximation algorithm
which includes a β-strict cost-sharing function ξ and augmenting
algorithm AugA.

Output: The first-stage solution F1 and the set of clients served D.
4. The second stage occurs, and the client set S is realized. Using the

augmenting algorithm AugA, compute the second-stage solution F2

such that F2 ∈ Sols(S \D).
Output: The second-stage solution F2.

Fig. 4.4. Algorithm Boost-and-Sample-Correlated for two-stage stochastic optimization with
random inflation factors.

tuples, but rejects samples having smaller inflation factors with a larger probability.
To get some intuition for the new step of rejection sampling, observe that if we sample
a pair (σi, Si) where the sampled inflation factor σi is large, the cost of waiting to
serve the set Si in the second stage is higher, and we ought to handle the associated
Si in the first stage—and indeed, the sample is more likely to be accepted. On the
other hand, if the inflation factor σi is low, there is smaller penalty for waiting until
the second stage, and thus we reject the sample with a larger probability.

Note that Algorithm Boost-and-Sample-Correlated is identical to Algorithm Boost-
and-Sample if the inflation factor is deterministic (i.e., if the random variable σσσ takes
on value σ with probability 1). Observe also that the expected number of times a
scenario (σ, S) is sampled is σπ′

σ,S , which is the factor that multiplies the second-stage
cost incurred if this scenario occurs. This mirrors Algorithm Boost-and-Sample, and
therefore a similar analysis allows us to bound the cost of the solution.

In order to obtain an approximation algorithm for the two-stage stochastic version
of our routine, the requirements are the same as in Algorithm Boost-and-Sample: an
α-approximation algorithm with a β-strict cost-sharing function and an augmenting
algorithm AugA. The following theorem shows that the rejection probabilities chosen
for the algorithm are the correct quantitative choices, and establishes the main result
with correlated inflation factors.

Theorem 4.6 (two-stage general theorem with correlated costs). Consider a
subadditive combinatorial optimization problem Π. Let A be a cost-sharing algorithm
for Π such that the following hold: (i) A is an α-approximation algorithm for Det(Π);
(ii) A is associated with a β-strict competitive cost-sharing function ξ; and (iii) (A,
ξ) is associated with an augmenting algorithm AugA. Then Algorithm Boost-and-
Sample-Correlated is an (α + β)-approximation algorithm for the two-stage problem



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SAMPLING AND COST-SHARING 1383

Stoc(Π).
Proof. Let us transform the “random inflation” stochastic problem instance

(X, π′) to one with a fixed inflation factor as follows: the distribution π̂(σ, S) =
π′(σ, S) × (σ/M); note that this ensures that

∑
σ,S π̂(σ, S) ≤ 1, and hence we can

increase the probability π̂(1, ∅) so that the sum becomes exactly 1 and π̂ is a well-
defined probability distribution. The inflation factor for this new instance is set to
M , and hence the σ output by π̂ is only for expositional ease.

Now the objective function for this new problem is to minimize the expected cost
under this new distribution, which is c(F1) +

∑
σ,S π̂(σ, S)Mc(Fσ,S) = c(F1, D) +∑

σ,S π
′(σ, S)(σ/M)Mc(Fσ,S), which is the same as the original objective function.

Hence the two problems are identical, and running Boost-and-Sample on the new
distribution π̂ with inflation parameter M would give us an (α + β)-approximation
using Theorem 4.1.

Finally, note that one can implement the distribution π̂, given sampling access to
the distribution π′, by just rejecting any sample (σ, S) with probability σ/M . This is
precisely what is done in the rejection sampling stage of Algorithm Boost-and-Sample-
Correlated and is the link between this algorithm and Algorithm Boost-and-Sample.
This completes the proof of the theorem.

While allowing the inflation factor σσσ to be a random variable generalizes our
model somewhat, we still require that the relative costs of elements remain the same
in every scenario. A more general model would be one where the costs of individual
elements change arbitrarily in different scenarios, and costs of elements in different
scenarios are not necessarily proportional. Naturally, this creates some additional
complications, in some cases making the problem much harder; e.g., one can show
that the Steiner tree problem with nonproportional inflation parameters is at least as
hard to approximate as the group Steiner tree problem [39, Theorem 2].

In principle, it ought to be possible to construct an algorithm using the ingredients
in this paper for a multistage stochastic problem with correlated costs. The key would
be to construct a sampling procedure that balances the probabilities of scenarios with
their corresponding cost inflation factors, as is done in the two-stage case with the
rejection sampling step. Whether or not this can be done, and what conditions may
be required for it, is left open for future research.

5. Strictness theorems. We now show the applicability of our framework by
considering some concrete combinatorial optimization problems. In this section,
we consider three problems: Steiner tree, Steiner network, and vertex cover. For
each problem, we consider various stochastic models (e.g., two-stage, multistage,
independent-decisions, etc.) and show the existence of appropriate approximation
algorithms and cost-sharing functions that allow us to use the results of the previous
section to obtain approximation algorithms for the stochastic versions.

In the next section, we also consider the uncapacitated facility location problem.
As discussed there, the problem does not fit naturally into our model of section 2.
Nevertheless, the main ideas of our algorithm can be applied, and we analyze this in
detail in section 6.

5.1. Steiner tree. In the classical (deterministic) Steiner tree problem, we are
given a complete graph G = (V,E), where the edge costs ce satisfy the triangle
inequality. (This assumption is without loss of generality, since we can take the
metric completion of the graph instead.) We are also given a set of terminals R ⊆ V ;
we say that a set of edges E′ spans R if all the terminals in R lie in the same connected
component of E′. The goal of the Steiner tree problem is to find a minimum cost set
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of edges that spans R. Let us cast this problem in our framework: the universe of
clients U is simply the vertex set V , while the set of elements X which provide service
is the edge set E. A client set S now corresponds to a set R of terminals, since the
terminals are those vertices which need to be connected. The set Sols(S) is simply
the set of all subgraphs which span S (or R).

Observe that, as specified above, the Steiner tree problem is not subadditive.
Indeed, consider two disjoint sets of terminals R1 and R2: while their union R1 ∪R2

is a valid set of terminals, the union of two Steiner trees T1 and T2 (which span R1

and R2, respectively) may not form a single connected component and hence may
not be a solution for the union of the terminals. This violates condition (SA2) of
Definition 2.1. In order to make the problem subadditive, we restrict ourselves to
the rooted version of the Steiner tree problem. In this version, a vertex r ∈ V is
designated to be the root, and the set of terminals R is restricted to those subsets of
V which include r. It is easy to see that this makes the problem subadditive. In the
deterministic version of the problem, the rooted Steiner tree problem is identical to
the unrooted one, but the same is not true for the stochastic version of the problem.
And indeed, the subadditivity allows us to use our framework to obtain approximation
algorithms for the stochastic versions of the Steiner tree problem.

Formally, the deterministic Steiner tree problem Det(ST) that we consider is de-
fined according to the specification in section 2 as follows. We are given a complete
graph G = (V,E), a designated root vertex r ∈ V , and an edge cost function c.

• Universe U := V \ {r}.
• Element set X := E.
• Cost function c(e) = ce.
• Given client set S, the set of feasible solutions Sols(S) is the set of all sub-
graphs that contain a path between each vertex in S and r.

5.1.1. Two-stage problem: Strictness theorem. The two-stage stochastic
optimization version of the Steiner tree problem is described fairly simply. In the
first stage, given the graph G = (V,E), the edge costs ce, the root r ∈ V , and the
inflation factor σ, we want to purchase some set of edges F1 and choose to serve the
set D of all nodes which have a path in F1 from the root r. Then in the second stage,
the actual set of terminals S ⊆ V is revealed. We now need to purchase a (possibly
empty) set of additional edges F2 such that F1 ∪F2 spans the set of vertices S ∪ {r}.
However, the cost of purchasing an edge e in the second stage (i.e., as a part of F2)
is σce. Hence, the problem is to compute a set of edges F1 to purchase in the first
stage which minimizes the expected total cost, given by c(F1)+ σE[ c(F2) ]. As noted
in section 2.1, the signal plays no role in a two-stage model and is ignored.

In order to approximate the two-stage stochastic Steiner tree problem using The-
orem 4.1, we need to specify a first-stage algorithm A, a cost-sharing function ξ, and
an associated augmentation algorithm AugA. These are specified below, following
which we prove the competitiveness and strictness of the cost-sharing function.
The algorithm A: The approximation algorithm A for Steiner tree that we use is

the minimum spanning tree (MST) heuristic; given a set of terminals D, it
ignores the vertices not in D ∪ {r} and builds a minimum spanning tree on
D ∪ {r}. (We can use any MST algorithm here, e.g., Prim’s algorithm [38].)
It is well known that the cost c(A(D ∪ {r})) of any MST is within a factor
of 2 of the cost of the optimal Steiner tree OPT(D ∪ {r}) [47]; hence A is an
approximation algorithm with α = 2.
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The cost-sharing function ξ: Given an MST A(D) on the set of terminalsD∪{r},
root it at r and define the parent edge of any vertex j ∈ D (where j �= r)
to be the edge incident on j lying on the unique simple path from j to r
in the tree A(D). We denote the parent edge of j �= r by p(j) and define
ξPrim(E,D, j) = 1

2c(p(j)): the cost-share of vertex j is half the cost of its
parent edge in the tree A(D). The cost-share of the root r is ξPrim(E,D, r) =
0. (These cost-shares are often referred to as Prim cost-shares.)

The augmentation algorithm AugA: The augmenting algorithm AugA merely ze-
ros out the cost of the edges in A(D∪{r}) (essentially contracting them) and
runs the MST heuristic on the resulting graph.

Lemma 5.1. The cost-shares ξPrim are competitive and are 2-strict for the Steiner
tree algorithm used in the augmentation, AugA.

Proof. By definition,
∑

j∈D ξPrim(E,D, j) = 1
2c(A(D)); since the MST is a 2-

approximation to the Steiner tree problem, we have 1
2 c(A(D)) ≤ c(OPT(D)), proving

the competitiveness of ξPrim.
To prove 2-strictness, consider two disjoint sets of terminals S and T , and let

D′ = S ∪ T . If p′(j) is the parent edge of node j ∈ D′ in the minimum spanning
tree MST(D′ ∪ {r}), then recall that ξPrim(E,D′, T ) =

∑
j∈T c(p

′(j)). Note that if
we consider the graph after we collapse the nodes of S to r, then adding the parent
edges in ∪j∈T p

′(j) would create a spanning tree for the set T ∪{r} in this contracted
graph. However, we defined the augmenting algorithm AugA to find a spanning tree
of minimum cost in this contracted graph, and hence the cost of the augmentation is
at most the cost of ∪j∈T p

′(j). This is at most 2
∑

j∈T ξPrim(E,D′, j), which proves
the 2-strictness.

Theorem 5.2. The two-stage stochastic Steiner tree problem can be approximated
to a factor of 4.

Proof. Lemma 5.1 shows that the cost-sharing function is 2-strict and is associ-
ated with the first-stage algorithm A and augmenting algorithm AugA. Furthermore,
the discussion preceding the theorem indicates that A is a 2-approximation for the
problem. Hence, Theorem 4.1 implies that Algorithm Boost-and-Sample results in a
4-approximation for the two-stage stochastic Steiner tree problem.

The best approximation for the Steiner tree problem is a 1.55 approximation due
to Robins and Zelikovsky [40]; setting A to be this algorithm results in the following
corollary.

Corollary 5.3. There is a 1.55-approximation algorithm A for the Steiner tree
problem along with a cost-sharing function ξPrim that is 2-strict with respect to A.
Hence, there is a 3.55-approximation algorithm for the two-stage stochastic version of
the Steiner tree problem.

Clearly, the above corollary also implies a 3.55-approximation to the problem
Ind(Steiner tree) with independent coin-tosses. We do not know whether we can
obtain a better approximation for this case by finding a unistrict cost-sharing function
with strictness better than 2. (For some problems such as vertex cover, discussed
in section 5.3, we will indeed be able to show unistrict cost-sharing functions with
strictness strictly better than for the general strict cost-sharing functions, and hence
will obtain tighter guarantees for the independent coin-flips version of such problems.)

5.1.2. Multistage stochastic Steiner tree: Using superstrictness. We
now go on to consider a multistage stochastic version of the Steiner tree problem.
Recall the k-stage stochastic model described in section 2.1 (as well as briefly in
section 4.2). Initially, only the graph G and edge costs c : E → R are known,
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along with a probability distribution π about the eventual set of terminals S. This
probability distribution is specified as a black box which we will use to generate our
samples. In each stage, we observe a signal which refines the probability distribution
of the terminal set. Furthermore, in each stage, we can purchase some edges. The
cost of purchasing edges in stage i is c(e)Πi

j=1σj , where the multipliers σj are also
known in advance.

Recall the Multi-Boost-and-Sample algorithm described in Figure 4.3, which works
as follows. In each stage i = 1, 2, . . . , k − 1, we generate a sample set of terminals
Di by calling the recursive sampling procedure Recur-Sample, described in Figure 4.2.
Note that Recur-Sample must also be fed the vector of all signals received so far
(s1, s2, . . . , si). Once we have the set of terminals Di, we use the algorithm A to
extend the partial solution constructed so far (if any) to also serve the clients in Di.
Once the final set of terminals Dk is revealed (in stage k), we again use A to extend
the partial solution to cover any uncovered elements in Dk.

Observe that in multistage problems the algorithms used in all stages are the same:
there is no distinction between an initial algorithm A and an augmenting algorithm
AugA. Indeed, AugA is obtained by contracting the edges bought in the previous
stages (which is equivalent to zeroing out the costs of these edges) and running A on
the resulting instance. Hence the cost-sharing function ξ (as defined in Definition 3.8)
and the transfer theorem (Theorem 4.3) are in terms of a single algorithm A and the
superstrictness of this cost-sharing function ξ.

It remains to specify an algorithm A and an associated cost-sharing function ξ
that meet the requirements of Theorem 4.3. For the case of the Steiner tree problem,
we can indeed find a cost-sharing function which is provably superstrict and cross-
monotone, so that we can use Theorem 4.3 to obtain our approximation guarantee.
The algorithm A: Once again, the approximation algorithm A that we use is the

MST heuristic. As discussed in section 5.1.1, this is a 2-approximation al-
gorithm for the Steiner tree problem. In fact, the MST heuristic returns a
solution that is a 2-approximation w.r.t. the cost-sharing function defined
below, as shown in [25], a fact we need in order to apply Theorem 4.3.

The cost-sharing function ξ: Since it is known that the Prim cost-shares ξPrim

used in section 5.1.1 are not cross-monotone, we have to use a more sophis-
ticated construction than that in section 5.1.1. The cost-sharing function we
use in this section is one given by Jain and Vazirani [25]. Briefly, it can be
described as follows. The underlying algorithm to generate the cost-sharing
functions is a primal-dual algorithm for Steiner tree [1, 14], which we only
sketch here for brevity. Given a set of terminals D, one may view the primal-
dual algorithm as a continuous-time process which grows dual “moats” around
each node in D∪{r} (as is indeed done in [1, 14, 25]); as these moats collide,
they merge to form a new moat that keeps growing. Let tj denote the time at
which vertex j lies in the same moat as the root. At any time t < tj , let nj(t)
be the number of vertices sharing a moat with j. The cost-sharing function
is then defined as follows: ξ(E,D, j) =

∫ tj
0

1
nj(t)

dt. This dual process has

an associated primal process as well, which builds a forest: it maintains the
invariant that the terminals in each moat lie in a single connected component,
and hence whenever two moats collide and merge, the primal process buys
edges to connect the trees associated with these moats. Interestingly enough,
this primal process when run on a set D of terminals, along with the root
r, terminates with the MST on the set D ∪ {r}, provided the edge lengths
satisfy the triangle inequality.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SAMPLING AND COST-SHARING 1387

In the moat-growing process above observe that, at any time t that is at most
the stopping time of vertex j in the run with a larger terminal set, the moat of
j contains more terminals than in the run with a smaller terminal set. Therefore,
increasing the terminal set would only cause j to share a moat with the root sooner,
and cross-monotonicity of the cost-sharing function follows. Moreover, one can view
the moats as feasible duals for an LP relaxation of the Steiner tree problem, which
proves that the cost-shares are competitive. There is one small difference between
our moat-growing process and that in [25]: we grow a moat around the root node as
well, whereas this is not necessary in [25]. Nevertheless, the following result from [25]
holds.

Lemma 5.4 (Jain and Vazirani [25, Theorem 3 and Corollary 4]). The cost-
sharing function ξ is cross-monotone and competitive.

It remains to verify the superstrictness of ξ.
Lemma 5.5. The cost-sharing function ξ defined above is 1-superstrict w.r.t. the

algorithm A.
Proof. In order to verify the 1-superstrictness, we consider two sets of clients S

and T and compare two different values: the cost-shares ξ(E, S ∪ T, T \ S) allocated
to T \S in the original graph (V,E) when both S and T need to be connected (we call
this run R1 of the algorithm), and the cost-shares ξ(E/A(S), T \ S, T \ S) allocated
to T when a solution to the terminals in S has already been built and can be used for
no extra charge (run R2). It will be most convenient to view all the edges of A(S)
as having been contracted, and hence all the vertices in A(S) are co-located with the
root.

To compare these two values, consider any terminal j ∈ T \ S, and let taj and tbj
be the times when j belongs to the root’s moat in R1 and R2, respectively. First,
observe that taj ≥ tbj ; i.e., the tj value in R2 is no more than in R1, for the following

reason. In R2, a tree connecting S to the root has already been built, and tbj records
the time when j collides with a moat containing the root via some node in A(S).
In contrast, taj records the time a moat containing j collides with a moat containing
{r}, possibly by first sharing moats with some nodes in S which then collide with the
root’s moat.

Second, we claim that for any t < tbj the value of nj(t) is equal in both executions:
this is because for such time t the terminals in j’s moat consist only of terminals in
T \ S, and hence j’s moat in both runs is the same at time t. From the definition of
ξ, it now follows that ξ(E/A(S), T \S, j) ≤ ξ(E, S ∪T, j) for any j ∈ T \S. Summing
over all j ∈ T \ S yields the lemma.

This allows us to prove the following theorem about the k-stage stochastic opti-
mization version of the Steiner tree problem.

Theorem 5.6. Algorithm Multi-Boost-and-Sample is a 2k-approximation algo-
rithm for the k-stage stochastic optimization version of the Steiner tree problem.

Proof. This follows from Lemmas 5.4 and 5.5 and Theorem 4.3.

5.2. Steiner network. The Steiner network problem is a generalization of the
Steiner tree problem and is defined over an edge-weighted graph as in section 5.1.
Formally, given a graph G = (V,E) with edge weights ce, the deterministic problem
Det(SN) is defined as follows:

• Universe U := {V ′ ⊆ V : |V ′| = 2}.
• Element set X := E.
• Cost function c(e) = ce.
• Given client set S, the set of feasible solutions Sols(S) is the set of all sub-
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graphs such that there is a path between the two vertices in every vertex-pair
in S.

The problem is easily verified to be subadditive. The following result is due to
Gupta et al. [16] and allows us to use Theorem 4.2 for the two-stage independent
coin-flips stochastic version of the problem.

Theorem 5.7 (see [16]). There is a 4-approximation algorithm for the Steiner
network problem which admits a 4-unistrict cost-sharing function.

Theorem 5.8. The two-stage stochastic Steiner network problem under the
independent-decisions model can be approximated to within a factor of 8.

Proof. This follows from Theorems 5.7 and 4.2 above.

5.3. Vertex cover. In the vertex cover problem, we are given a graph G =
(V,E) with costs cv on vertices. The clients are the edges, and our goal is to choose a
subset V ′ of the vertices so that each edge is covered; i.e., at least one of its adjacent
vertices is chosen. Formally, the deterministic vertex cover problem Det(VC) is defined
as follows, given a graph G = (V,E) and a vertex cost function c:

• Universe U := E.
• Element set X := V .
• Cost function c(v) = cv.
• Given client set S, the set of feasible solutions Sols(S) is the set of all vertex
subsets V ′ such that at least one end-point of each edge in S is included in
V ′.

In the stochastic version, as before, the actual set of clients that need coverage is
revealed only in the last stage, while vertex costs increase by σi in stage i. We will
show in this section that the vertex cover problem has a 2-approximation algorithm
with respect to an associated 2-strict cost-sharing function ξ. We will also show
that the cost-sharing function is 3-superstrict, thus allowing us to approximate the
multistage stochastic version of the problem as well.

We do this by considering a different version of Stoc(VC), which we call the
relaxed stochastic vertex cover problem. In this relaxed version, we are allowed to make
payments to a vertex in all the stages. In particular, the k-stage relaxed Stoc(VC)
problem is defined as follows. The universe, element set, and cost function remain the
same as in Det(VC) defined above. There is also a payment vector p : 1, 2, . . . , k×V →
R

+, where pi(v) specifies the payment made to vertex v in stage i. At any stage j, a
vertex v is considered “purchased” if the inflation-adjusted partial payments made to
vertex v so far equal (or exceed) its cost:

∑j
i=1 p

i(v)/(
∏j

i=1 σi) ≥ c(v). The algorithm
is thus required to define the payment vector pj , once stage j is realized. After the
last-stage payment vector pk has been defined, we can construct the set of purchased
vertices Vk; this is required to be a feasible vertex cover for the final client set Sk.
Note that we are relaxing the way the k-stage problem is defined; such a relaxation
is valid for any problem Det(Π) considered in our formulation.

In this analysis, we restrict our attention to a two-stage model, since that is
sufficient for defining the cost-sharing function. As stated above, let p1(v) and p2(v)
be the payments made in the first and second stages, respectively, and as in the two-
stage models, we use σ to represent the factor by which costs are inflated in the second
stage. Now, vertex v is chosen (purchased) if and only if p1(v)+p2(v)/σ ≥ cv. Again,
given a set of realized edges S, the set of chosen vertices must form a feasible vertex
cover for S. The cost of our solution in this two-stage model is defined to be just the
sum of payments, i.e.,

∑
v∈V p

1(v) + p2(v), and the goal is to minimize the expected
cost.
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Note that by requiring that p1(v) ∈ {0, cv} and p2(v) ∈ {0, σcv}, we get back
to our usual stochastic framework, and hence the relaxed problem allows us to make
partial commitments to vertices in the first stage. However, it turns out that we
can convert any algorithm A for the relaxed problem into an algorithm A′ for the
unrelaxed version with the same expected cost. Indeed, if p1(v) is the amount of
money placed on vertex v by A in the first stage, the algorithm A′ picks the vertex
v in the first stage with probability min{p1(v)/cv, 1}. In the second stage, A′ selects
the vertex v if v was selected by A (that is, p1(v) + p2(v)/σ ≥ cv) and if A′ has not
already selected it in the first stage. By linearity of expectations, the expected cost
incurred by A′ in each stage is at most the cost incurred by A in that stage. Thus
it suffices to give an algorithm and a cost-sharing function for relaxed vertex cover,
which we do next.
The algorithm A: We use a standard primal-dual 2-approximation algorithm A for

vertex cover. Let S ⊆ E be the set of edges in the instance. For each edge
e, we have a dual variable ye, initially set to 0. We simultaneously raise all
dual variables at a uniform rate. A vertex v becomes tight when the duals
of edges adjacent to it can pay its cost, i.e., when

∑
e∈δ(v) ye = cv. When a

vertex v becomes tight, we freeze all edges adjacent to it; i.e., we stop raising
their dual variables. We continue raising the dual variables of all unfrozen
edges until all edges become frozen.
The output of the algorithm is as follows. The algorithm places payments
p(v) =

∑
e∈δ(v) ye on each vertex v ∈ V . Since each edge is adjacent to

some tight vertex v, it has been paid cv and hence bought outright; thus the
solution is feasible for S.

The cost-sharing function ξ: Define ξ(V, S, e) = ye; since each edge pays both
its end-points, it holds that

∑
v∈V p(v) = 2

∑
e∈S ye. Furthermore,∑

e∈S ξ(V, S, e) is just the LP dual value, and hence at most OPT(S).
Clearly, the algorithm A is a 2-approximation for the vertex cover problem
w.r.t. the cost-sharing function ξ. We will prove below that ξ is a 2-strict
cost-sharing function. Let T be another subset of edges, and we specify below
how A(X,S) can be augmented using AugA with FT so that A(X,S)∪FT ∈
Sols(S ∪ T ).

The augmentation algorithm AugA: Define the reduced cost of each vertex v as
c′v = cv − p(v). First run the original algorithm A on the edge set S ∪T with
costs {cv}; let p1(v) be the payment made to vertex v in this run. Define
p̃(v) = max{0, p1(v) − p(v)}. Purchase all vertices where p̃(v) = c′v. Note
that a vertex is considered purchased if the payment made in this stage, p̃(v),
is sufficient to pay for the reduced cost of the vertex, c′v. Therefore, the total
cost of the augmentation stage is defined as c(FT ) =

∑
v∈FT

p̃(v).
Lemma 5.9. The augmenting algorithm AugA described above produces a feasible

solution for the second stage in the relaxed vertex cover problem.
Proof. This follows from the observation that for any vertex v ∈ V we have

cv − p(v) − p̃(v) ≤ cv − p1(v), and since p1 is feasible for the instance with edge set
S ∪ T and costs c, we also have p1 feasible for the edge set T with costs c.

In order to prove strictness with β = 2, we need to show that c(FT ) ≤ 2ξ(V, S ∪
T, T ). To this end, we compare several runs of A on different related inputs:

• Run R1: This is the run of A with original costs cv on the set S ∪ T .
Let y1e be the duals produced. Define payments p1S(v) =

∑
e∈δ(v)∩S y

1
e and

p1T (v) =
∑

e∈δ(v)∩T y
1
e . Note that p

1 = p1S∪T = p1S+p
1
T is exactly the payment
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function computed by A. Furthermore, this is the run that computes the
cost-shares ξ(V, S ∪ T, T ), wherein ξ(V, S ∪ T, e) = y1e for each e ∈ T .

• Run RS : The run RS is the run of A on the set of edges S, but with costs
cS = c − p1T (i.e., reduced by the payments of T in R1). The corresponding
duals and payments are labeled ySe and pS(v), respectively.

• Run RT : Similar to RS , the run RT is on the edges T , with reduced costs
cT = c − p1S . The corresponding duals and payments are labeled yTe and
pT (v), respectively.

• Run R2: This is the run of Algorithm A on the edge set S, with original
costs c, and hence corresponds to the actual run of the first stage. Let y2e be
the duals and p2(v) the payments computed.

• Run R3: This is the run of Algorithm A on the edge set T , with reduced costs
c3 = c−p2. The corresponding payments are labeled p3; this run corresponds
to the actual augmentation after run R2 constructs a first-stage solution.

By the definition of RS , the freezing time of all edges e ∈ S in the two runs RS

and R1 is the same; hence the dual yS is just the dual y1 restricted to the set S, and
p1S = pS. Similarly, the dual yT from the run RT is identical to the dual y1 restricted
to T , and p1T = pT . Before we prove the 2-strictness of ξ, we prove a technical lemma
to aid in the analysis.

Lemma 5.10 (Lipschitz continuity). Consider two runs R and R̂ of A with the
same edge set S on two different cost vectors c and ĉ, and let p and p̂ be the two
vectors of payments computed. If we define Δ so that (p − p̂) = (c − ĉ) + Δ, then
||Δ||1 ≤ ||c− ĉ||1.

Proof. Consider the two runs R and R̂ of A on the two cost vectors c and ĉ
being executed in parallel. Let pt(v) and p̂t(v) be the payments towards vertex v
accumulated in the respective runs until time t. We claim that the quantity Φ(t) =∑

v∈V |(c(v)− pt(v))− (ĉ(v)− p̂t(v))| never increases as a function of t. Since Φ(0) =
||c− ĉ||1 and Φ(∞) = ||(p− p̂)− (c− ĉ)||1 = ||Δ||1, this will prove the lemma.

Consider any edge e = (u, v) at time t in both runs. If e is not frozen in either
run, it causes both p(u) and p̂(u) to increase at unit rate; the same arguments hold
for v. Since u is not tight in either run, c(u) − pt(u) > 0 and ĉ(u) − p̂t(u) > 0, and
edge e contributes to both terms equally; hence it is currently contributing at rate
zero to the difference (c(u) − pt(u)) − (ĉ(u) − p̂t(u)). If e is frozen in both runs, its
current rate of contribution is zero as well.

Now suppose that e is frozen in only one of the runs; say, it is frozen in the run R
but not in the run R̂ (the other case is symmetric). That means one of its end-points
must be tight in R; w.l.o.g., assume the tight vertex is u. Thus c(u)− pt(u) = 0. In
the run R̂, the contribution of e makes the term ĉ(u)− p̂t(u) = |(c(u)−pt(u))−(ĉ(u)−
p̂t(u))| decrease at unit rate. However, its contribution towards v, and hence towards
the term |c(v) − pt(v) − (ĉ(v) − p̂t(v))|, increases at a rate of at most 1. Hence, the
quantity Φ never increases, and the lemma holds.

Lemma 5.11. If FT is the second-stage solution produced by AugA as described
above and ξ is the cost-sharing function defined by R1, then c(FT ) ≤ 2ξ(V, S ∪T, T ).

Proof. We begin by comparing the runs RS and R2 described above: define Δ1

so that p2 − p1S = c − (c − p1T ) + Δ1 = p1T + Δ1. Lemma 5.10 now implies that
||Δ1||1 ≤ ||p1T ||1. Now observe that c(FT ) = ||p̃||1 ≤ ||Δ1||1. According to the
description of the run R1 above, we also have ||p1T ||1 = 2ξ(V, S ∪ T, T ). The lemma
follows by combining these three inequalities.

We now have our main result for the relaxed vertex cover problem.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SAMPLING AND COST-SHARING 1391

Theorem 5.12. The relaxed vertex cover problem admits a 2-approximation
algorithm w.r.t. an associated 2-strict cost-sharing function.

Proof. The primal-dual algorithm is well known to be a 2-approximation [47], and
Lemma 5.11 proves the 2-strictness of the cost-sharing function ξ described in Run
R1.

Theorem 5.13. The two-stage stochastic vertex cover problem can be approxi-
mated to within a factor of 4.

Proof. This follows from Theorems 5.12 and 4.1 above.
In order to obtain an approximation guarantee for the multistage stochastic

version of the vertex cover problem via Theorem 4.3, we need to show that the cost-
sharing function is superstrict and cross-monotone. We are able to prove superstrict-
ness below. Unfortunately, as [24] showed, there does not exist a cost-sharing function
for the vertex cover problem that is cross-monotone, competitive, and recovers more
than O(n−1/3) of the cost, thus rendering Theorem 4.3 inapplicable.

In [19], it was claimed that the k-stage problem can be approximated even in the
absence of cross-monotone cost-sharing functions. As stated in the Acknowledgments
section of this paper, that result is incorrect. At this point, it is an open question
whether superstrict cost-sharing functions which are not cross-monotone can be used
to approximate general multistage stochastic problems under our model, or even to
approximate just the multistage version of vertex cover. Nevertheless, although ap-
proximating multistage stochastic vertex cover remains open, we provide the lemma
proving superstrictness below because it may be of independent interest and also per-
haps helpful in settling the question of approximability of multistage stochastic vertex
cover.

Lemma 5.14. The cost-sharing function ξ is 3-superstrict.
Proof. We prove superstrictness by comparing runs R3 and RT . Observe that the

payments in these two runs are p3 and p1T , respectively, while the costs are c− p2 and
c− p1S . Define Δ2 to be such that p3 − p1T = (c− p2)− (c− p1S) + Δ2. As in Lemma
5.11, we have p1S − p2 = −(p1T +Δ1), and this yields

(5.1) p3 − p1T = (−p1T +Δ1) + Δ2.

Using Lemma 5.10, we now have ||Δ2||1 ≤ ||p1T + Δ1||1 ≤ ||p1T ||1 + ||Δ1||1 ≤
2||p1T ||1, where the last inequality was established in Lemma 5.11. Equation (5.1) also
implies that p3 = Δ1 +Δ2, so that ||p3||1 ≤ ||Δ1||1 + ||Δ2||1 ≤ 3||p1T ||. Observe now
that ξ(X/A(X,S), T, T ) = 1

2 ||p3||1 and ξ(X,S ∪ T, T ) = 1
2 ||p1T ||1, and the lemma is

proved.

5.3.1. Unistrict cost-sharing function for vertex cover. The same con-
structions and algorithms also provide a stronger unistrict cost-sharing function. Once
again, we consider relaxed vertex cover without loss of generality.

Theorem 5.15. There is a 2-approximation algorithm A for relaxed vertex cover
that admits a 1-unistrict cost-sharing function ξ. Hence, the two-stage stochastic ver-
tex cover problem under the independent-decisions model admits a 3-approximation.

Proof. The algorithm A, as well as the cost-shares ξ, are the same as for The-
orem 5.12. To augment a solution A(S) on the addition of the edge e = (u, v), the
augmentation procedure AugA opens the end-point whose reduced cost is less. That
is, if the payments in A(S) are denoted by p, we pay δ = min(cu−p(u), cv−p(v)) to the
vertex from {u, v} that achieves this minimum and purchase it. Proving unistrictness
is now equivalent to proving that δ ≤ ξ(V, S ∪ {e}, e).

Indeed, consider the runs A(S) and A(S∪{e}). Both runs behave identically until
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some end-point of e, say u, goes tight in the latter run. At that point, the payment
made by other edges to u in A(S ∪ {e}) is exactly cu − ξ(V, S ∪ {e}, e). Since the
two runs were identical until now, u has received this payment in A(S) as well, and
hence p(u) ≥ cu − ξ(V, S ∪ {e}, e). Hence, ξ(V, S ∪ {e}, e) ≥ cu − p(u) ≥ δ, proving
the theorem.

Finally, applying Theorem 4.2 with α = 2 and β = 1 yields the 3-approximation
and completes the proof.

6. Extension: Uncapacitated facility location. The uncapacitated facility
location problem (UFL) is one of the most well-studied combinatorial optimization
problems, and one that lends itself naturally to being considered in a multistage
stochastic context. However, the problem does not fit into the class of combinatorial
optimization problems defined in section 2. As a resultant, the results of section 4
cannot be used to construct approximation algorithms for Stoc(UFL). Nevertheless,
it is possible to define a stochastic version of UFL and to construct an approximation
algorithm for it using the main ideas of this paper: using sampling to generate client
sets and using approximation algorithms to construct partial solutions for them where
the costs of the partial solutions are bounded by cost shares. In this section, we
provide an approximation algorithm for a two-stage stochastic version of UFL, by
suitably adapting some of the results above.

We begin by defining the deterministic problemDet(UFL). An instance ofDet(UFL)
is given by a set of facilities F and a set of clients U . The distances c(i,j) between
any pair of points i, j from F ∪ U form a metric. Each facility p has an opening cost
fp; the goal is to open a subset of facilities F ′ to minimize the opening costs plus
the sum of distances from each client to its open facility. That is, if we let c(j, F ′)
represent the distance from client j to the nearest facility in F ′, then the objective is
to minimize

∑
p∈F ′

fp +
∑
j∈U

c(j, F ′).(6.1)

Notice that the cost function has two components. The first component,
∑

p∈F ′ fp,
is the cost of the facilities opened, while the second,

∑
j∈S c(j, F

′), is the cost of serving
clients from opened facilities. Let us examine how this relates to the model framework
described in section 2. In order to fit Det(UFL) into that model, we must define the set
of elements X that can be purchased to serve clients, wherein a solution consists of a
subset of elements that satisfy the client set chosen. Therefore, the element set must
consist of both the facility set F and the set of all possible facility-client connections
F × U . That is, X = F ∪ (F × U). In such a case, if we used Algorithm Boost-
and-Sample, a first-stage solution would be required to not only open some facilities,
but also buy some edges connecting these facilities to some potential clients. If we
consider the practical context of the facility location problem, such a requirement
is a little unrealistic—while it does make sense to preemptively build facilities in a
stochastic context in anticipation of future demand, it often does not make sense to
pay for service costs in advance for clients who may not even materialize.

Consequently, the literature on stochastic versions of the UFL [45, 42, 39] has
focused on a different stochastic model. In this model, in the first stage, only some
facilities are purchased (call this set F1). In the second stage, after the clients have
been realized, a second set of facilities (F2) may be purchased (at an inflated cost),
and the service cost is incurred for serving each client from its nearest facility in the
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set F1 ∪ F2. That is, the service cost is incurred only in the second stage and only
for realized clients. We adopt this definition of Stoc(UFL) for the rest of this section.
We will also modify the cost-sharing function: ξ will now help to pay a portion of the
client’s connection cost to the facility serving it, plus possibly a portion of the cost
of the facility. We will not define strictness for the cost-sharing function; instead, we
will directly use its construction to bound the expected second-stage cost.

Because Stoc(UFL) now does not fit into the model of 2, we will suitably adapt
the notation and terminology in such a way as to reuse results from section 4 where
possible, and prove other necessary results here. This will enable us to provide a
constant factor approximation algorithm for the two-stage version of Stoc(UFL) using
the same techniques as are used in the rest of this paper.

Formally, the two-stage stochastic UFL Stoc(UFL) is defined as follows. As in
Det(UFL) above, we are given a set of facilities F , a set of clients U , a distance metric
c : F × U → R

+, and a facility cost function f : F → R
+. Additionally, we have a

known cost inflation factor σ, and the known probability distribution π : 2S → [0, 1]
that defines the probability of client sets to realize in the second stage. As in Det(UFL),
let c(j, F ′) be defined as mini∈F ′ c(i, j) for any F ′ ⊆ F .

In the first stage, we are required to purchase a set of facilities F1 ⊆ F . In the
second stage, after the client set S is revealed to be S, a second set of facilities F2(S)
is purchased. Additionally, a service cost of cs(S, F1 ∪F2(S)) =

∑
j∈S c(j, F1∪F2(S))

is incurred. The objective is then to minimize the total expected cost, where the
expectation is taken over π:

(6.2) Z =
∑
i∈F1

fi +E

⎡⎣σ ∑
i∈F2(S)

fi + c(F1 ∪ F2(S),S)

⎤⎦ .
As before, in order to provide an approximation algorithm for Stoc(UFL), we

will begin with an approximation algorithm A for Det(UFL), along with an associ-
ated cost-sharing function ξ and an augmenting algorithm AugA. Given these, the
corresponding boosted sampling algorithm for Stoc(UFL) is described in Figure 6.1
and labeled SUFL-Boost-and-Sample. There are two key differences from Boost-and-
Sample: (i) SUFL-Boost-and-Sample does not construct a partial solution in the first
stage—it only purchases a set of facilities—and (ii) SUFL-Boost-and-Sample pays for
the service costs of all clients in the second stage, instead of only the new clients
considered by Boost-and-Sample.

We now describe the first-stage algorithm A, the augmentation algorithm AugA,
and the cost-sharing function. Subsequently, we will prove the approximation ratio
for SUFL-Boost-and-Sample directly, without invoking Theorem 4.1. As will be seen,
the key ideas of the proof are the same as in Theorem 4.1; we only have to make
appropriate modifications to allow for the service cost component that renders direct
applicability of Theorem 4.1 impossible.

Neither our algorithm nor our cost-sharing function is new; however, the fact
that the cost-shares can be used to bound the cost of the solution constructed by the
algorithm is new and hence proved here.
The algorithm A: Our first-stage algorithm A is a slight modification of the one

developed by Mettu and Plaxton [33], which we sometimes refer to as the
“MP” algorithm. Intuitively, all clients are progressively asked to pay in-
creasing amounts towards constructing a solution. Facilities are considered
for opening if the clients they serve are able to pay enough to cover the cost
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Algorithm SUFL-Boost-and-Sample.
Given: An instance of Stoc(UFL), defined by universe of clients U , prob-

ability distribution π, facility set F , cost functions f and c, and
inflation factor σ.

1. Draw 	σ
 independent samples D1, D2, . . . , D�σ� of clients by sam-
pling from the distribution π. Let D = ∪iDi.

2. Using the algorithm A, purchase a first-stage set of facilities F1 ⊆
F . Algorithm A is an α-approximation which includes a cost-
sharing function ξ and augmenting algorithm AugA.

Output: The first-stage set of facilities F1.
3. The second stage occurs, and the client set S is realized. Using

the augmenting algorithm AugA on the client set S, compute the
second-stage set of facilities F2(S). Each client j ∈ S is assigned
to their nearest facility from the set F1 ∪ F2(S).

Output: The second-stage solution F2(S).

Fig. 6.1. Algorithm SUFL-Boost-and-Sample for two-stage Stoc(UFL).

of the facility as well as the sum of distances from the facility to all the
clients it serves. Complications arise because the same client may be asked
to pay for multiple facilities, and this is what results in the algorithm being
an approximation (as opposed to an exact one), as will become clear when
the details are perused. The algorithm proceeds by considering facilities in
the order in which they can be paid for, provided the clients are able to pay
for a sufficient fraction of the facilities. Other clients are connected to their
nearest open facility, even if they haven’t paid for the cost of opening it. The
details are provided in the rest of this section.

The augmentation algorithm AugA: In the algorithm A, open facilities get fund-
ing from clients in S∩D (realized clients already sampled in the first stage) as
well as T = S \D (new clients that arrive in the second stage). If a sufficient
fraction of the funding is from clients in T , the facility is called T -heavy. The
augmentation algorithm proceeds in a fashion similar to that of the original
algorithm: it progressively considers T -heavy facilities in the order in which
they can be paid for, and opens them if the clients in S are able to pay a
significant fraction of the facility cost. Remaining clients are again simply
assigned to their nearest open facility.

The cost-sharing function ξ: The cost-sharing function is that developed by Pál
and Tardos [36]. It allocates a portion of the total (facility opening and
service) cost of the solution to the clients. In terms of the algorithm A, the
cost-share of a client is either the amount it was asked to pay to open a
facility or the distance to a facility serving it if the client did not pay towards
opening any facility.

We now provide the technical details of the algorithms and cost-sharing function.
For a facility p, let B(p, τ) be a ball with center p and radius τ . We define the opening
time tp(S) of a facility p w.r.t. the client set S to be the unique radius τ such that

(6.3) fp =
∑

j∈B(p,τ)∩S

(τ − c(j, p)).
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Let the set Cp(S) = {j ∈ S : c(j, p) < tp(S)} be called the contributing set for p.
Note that if we charge each client in Cp(S) the amount tp(S), we exactly recover the
facility cost of p plus the cost of assigning clients in Cp(S) to p. We drop the set of
clients from the notation and say F2, tp, and Cp instead of F2(S), tp(S), and Cp(S),
respectively, when there is no danger of confusion. The cost-shares of clients are then
defined as

(6.4) ξ(F, S, j) = min
p∈F

{max(tp(S), c(j, p))}.

This is the same cost-sharing function defined in [36], where competitiveness was
also proved (Theorem 2.2). Intuitively, the contribution of user j towards the facility
p should be either tp if j ∈ Cp or the connection cost c(j, p) if j /∈ Cp. The client can
(and does) choose to contribute only to the least demanding facility; the facility p for
which this minimum is attained is called the primary facility of j (in the run on S).
A facility p is said to be well-funded if ξ(F, S, j) ≥ tp(S)/3 for all j ∈ Cp.

The algorithm A that we use is, superficially, a slight modification of the general
MP algorithm; given a set of clients S, the algorithm A considers all the well-funded
facilities p in order of increasing opening time tp(S). For each such (well-funded)
facility p, the algorithm declares it open if there are no previously opened facilities
within a radius 2tp(S) around p. (The general MP algorithm considers all facilities p
as candidates for opening, but ends up opening only those that are well-funded.)

For each open facility p, the algorithm A assigns all clients in Cp to p. (By
construction, the sets Cp for open facilities p are disjoint.) It then assigns each client
not lying in any Cp to its closest open facility. The following facts can be derived
from arguments in [33] and [36]:

1. For each open facility p, the cost-shares ξ(F, S, Cp) of the clients in Cp pay
1/3 of fp plus their assignment cost. (See [36, Lemma 2.4] and the preceding
discussion therein.)

2. For each facility p, there exists a well-funded facility q (possibly p = q) such
that c(p, q) ≤ 2(tp − tq). (Note that it must be that tq ≤ tp.) That is, either
p itself is well-funded, or there is a well-funded facility q fairly close to p.

3. For each facility p, there exists an open facility q within a distance of 2tp.
Hence, if p is a primary facility for some client j, then c(j, q) ≤ 3ξ(F, S, j).

The following theorem was proved in [33, 36].
Theorem 6.1. The algorithm A is a 3-approximation for UFL.
We now proceed to define the augmentation algorithm and bound the cost of the

overall solution using the cost-sharing function. To this end, consider a set of new
clients T with D∩T = ∅. In the following, let Cp = Cp(D∪T ) denote the contributor
set of a facility p in the run A(D). Similarly, when we say a facility p is well-funded,
we mean that p is well-funded in the run A(D). A facility p is called T-heavy if
|Cp ∩ T | ≥ b|Cp| (where the parameter b ∈ (0, 1) will be specified later), and is called
T-light otherwise. Note that a T -light facility must have |Cp ∩D| ≥ (1− b)|Cp|.

We now define the augmentation procedure AugA. To augment A(D) to cover T
as well, we pick a subset of well-funded T -heavy facilities to open greedily in a manner
very similar to that in A(D): we consider all well-funded T -heavy facilities in order
of increasing tp(D ∪ T ), and open a facility p if there is no facility q already open
within a radius 2tp(D ∪ T ) of p. (Note that q may have been opened either in A(D)
or in the augmenting stage before p was considered.) We never open any T -light or
non–well-funded facilities. At the end of this procedure, for a client j ∈ Cp whose p
is open, we assign j to p; else we assign j to the closest open facility. For the purpose
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of the analysis of the algorithm, clients in S ∩ D = S \ T are assigned to the same
facilities that they were assigned to in the first stage. Of course, these clients can be
reassigned to their nearest open facilities after the second stage, resulting only in a
decrease in costs.

Before we proceed any further, we prove a technical lemma.
Lemma 6.2. If p is a T -light facility, then

tp(D) ≤ 1

1− b
tp(D ∪ T )− 1

|Cp ∩D|
∑

j∈Cp∩T

c(j, p).(6.5)

Proof. Consider the set Cp = {j ∈ D ∪ T : c(j, p) < tp}; by definition (6.3),

fp +
∑
j∈Cp

c(j, p) = |Cp|tp(D ∪ T ).(6.6)

Since p is T -light, |Cp ∩D| ≥ (1− b)|Cp|. Therefore,

fp +
∑

j∈Cp∩D

c(j, p)(6.7)

= |Cp|tp(D ∪ T )−
∑

j∈Cp∩T

c(j, p) ≤ |Cp ∩D| tp(D ∪ T )
1− b

−
∑

j∈Cp∩T

c(j, p).

Also observe that tp(D ∪ T )/(1− b)−
∑

j∈Cp∩T c(j, p)/|Cp ∩D| ≥ tp(D ∪ T ), so
all clients in Cp ∩D are still contributing to the facility p at time tp(D ∪T )/(1− b)−∑

j∈Cp∩T c(j, p)/|Cp ∩D|. So, at time tp(D ∪ T )/(1− b)−
∑

j∈Cp∩T c(j, p)/|Cp ∩D|,
facility p was already paid for in the run A(D), proving the lemma.

We now prove that Algorithm SUFL-Boost-and-Sample results in a solution of cost
no more than 8.45 times the optimum. Consider an optimal solution, where F ∗

1 is the
set of facilities opened in the first stage and F ∗

2 (S) is the set of facilities opened in the
second stage if client set S is realized. Any optimal solution always serves all clients
using their nearest open facility. Therefore, the optimum cost Z∗ can be written as

(6.8) Z∗ = c(F ∗
1 ) +

∑
S∈2U

π(S)
[
σc(F ∗

2 (S)) + cs(S, F
∗
1 ∪ F ∗

2 (S))
]
.

In order to bound the cost of the solution produced by Algorithm SUFL-Boost-
and-Sample, we proceed as follows. Recall that facilities are purchased in both stages,
while the service cost is incurred only in the second stage. In the following, we will
first bound the cost of the first-stage facilities plus the service cost of all realized
clients who also appeared in the first-stage sample. Next, we will bound the cost of
second-stage facilities in addition to the service costs of all new clients. That is, for
the purpose of bounding the service costs, we will partition the realized client set
into two sets: those that appeared in the first-stage sample and those that are new.
The service cost of the former will be bounded along with the first-stage facility costs,
while the service cost of the latter will be bounded along with the second-stage facility
costs.

Recall that D is the set of clients sampled in the first stage. So, the expected
first-stage cost is given by E[ c(F1) + cs(D ∩ S, F1) ]. We bound this quantity with
respect to Z∗ below, along the same lines as the bound on the first-stage costs in
Theorem 4.1.
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Lemma 6.3. E[ c(F1) + cs(D ∩ S, F1) ] ≤ 3Z∗.
Proof. Recall that the optimal cost is given by

(6.9) Z∗ = c(F ∗
1 ) +

∑
S∈2U

π(S)
[
σc(F ∗

S ) + cs(S, F
∗
1 ∪ F ∗

S)
]
.

As in the proof of Theorem 4.1, we assume that σ is an integer. Given the set of clients
D sampled in the first stage, we define F̃1 = F ∗

1 ∪ F ∗
2 (D1) ∪ F ∗

2 (D2) ∪ · · · ∪ F ∗
2 (Dσ).

The following inequality then follows exactly as in the proof of Theorem 4.1:

(6.10) E[ c(F̃1) + cs(D, F̃1) ] ≤ Z∗.

Observe now that F̃1 is a feasible solution for the Det(UFL) problem, given client
set D. The lemma now follows because Algorithm A is a 3-approximation for the
Det(UFL) problem.

We now consider the facilities opened in the second stage, as well as the service
costs for clients who were not sampled in the first stage. Recall that T denotes the
set of new clients revealed in the second stage. Let b ∈ (0, 1) be a constant whose
value will be specified later.

Lemma 6.4. The service cost of the augmentation is bounded as follows: cs(T, F1∪
F2) ≤ (1 + 2

1−b )ξ(F,D ∪ T, T ).
Proof. First, consider any well-funded T -heavy facility p. Since p is T -heavy,

the share of each client in Cp ∩ T can pay for its own connection cost. Hence we
must consider clients in j whose primary facility p is either not well-funded or not
T -heavy. We claim that in both cases there must be a facility close to p opened either
by A(D) (the first stage) or in the augmenting stage. Note that, by the properties of
the algorithm A, there is a well-funded facility q such that tq(D∪T ) ≤ tp(D∪T ) and
c(p, q) ≤ 2(tp(D ∪ T )− tq(D ∪ T )).

Now, if q is T -heavy, by the properties of our augmentation procedure, there must
be a facility r that was open in the augmentation step such that c(q, r) ≤ 2tq(D∪T ).
On the other hand, if q is T -light, we have that tq(D) ≤ tq(D ∪ T )/(1 − b) by
Lemma 6.2 above. Thus, in the run A(D), there must be an open facility r such that
c(q, r) ≤ 2tq(D) ≤ (2/(1− b))tq(D ∪ T ).

In both cases, the assignment cost of the client j is bounded by

c(j, r) ≤ c(j, p) + c(p, q) + c(q, r)

≤ c(j, p) + 2(tp(D ∪ T )− tq(D ∪ T )) + (2/(1− b))tq(D ∪ T )
≤ c(j, p) + (2/(1− b))tp(D ∪ T )(6.11)

≤ (1 + 2/(1− b))ξ(F,D ∪ T, j).

Summing over all clients j ∈ T yields the lemma.
We can now bound the expected service cost of the new clients as follows.
Lemma 6.5. The expected service cost of the augmentation is bounded as follows:

E[ cs(T, F1 ∪ F2) ] ≤ (1 + 2
1−b )Z

∗.
Proof. The lemma follows from the competitiveness of the cost-sharing function ξ

and by taking expectations on both sides of the inequality proved in Lemma 6.4.
All that remains is to bound the expected facility costs of the new facilities,

E[ c(F2(S)) ].
Lemma 6.6. The expected facility installation cost of the augmentation is bounded

as follows: σE[ c(F2) ] ≤ 3
bZ

∗.
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Proof. Because the augmentation algorithm opens only well-funded T -heavy facil-
ities, we have the following: c(F2) ≤ 3

b ξ(F, S, T ). However, facility costs are inflated
by a factor of σ in the second stage, so the actual cost incurred by our algorithm is
σc(F2). To bound this cost, we appeal to an argument similar to that of Theorem 4.1.

As in Theorem 4.1, consider an alternate probabilistic process to generate the
sets Di and the set S: draw σ + 1 independent samples D̂1, D̂2, . . . , D̂σ+1 from the
distribution π. Now choose K uniformly at random from {1, 2, . . . , σ + 1}, and let
S = D̂K and D = ∪i�=KD̂i. This process is distributed identically to the original

process, as before. Let D̂ = ∪σ+1
i=1 D̂i and D̂−i = D̂ \ D̂i. It follows from the definition

of this alternate probabilistic process that

(6.12) E[ ξ(F, D̂, D̂K \ D̂−K) ] ≤ 1

σ
E[ ξ(F, D̂, D̂−K) ].

Since D̂, D̂−K , and D̂K \ D̂−K are identically distributed as D ∪ T,D, and T ,
respectively, we have

(6.13) E[ ξ(F,D ∪ T, T ) ] ≤ 1

σ
E[ ξ(F,D ∪ T,D) ].

We note that the cost-sharing function ξ is cross-monotone, because for any client
sets S and T and any facility p it is always the case that tp(S ∪ T ) ≤ tp(S). This
results in ξ(F,D ∪ T,D) ≤ ξ(F,D,D). Next, competitiveness of the cost-sharing
function yields ξ(F,D,D) ≤ c(OPT(D)). As in the proof of Lemma 6.3, we also have
c(OPT(D)) ≤ Z∗. Chaining these inequalities and applying expectations, we conclude
that E[σc(F2) ] ≤ 3

bZ
∗.

We now have our main result for this section.
Theorem 6.7. The two-stage stochastic UFL can be approximated to a factor of

8.45.
Proof. Lemma 6.3 bounds the expected cost of the first-stage solution by 3Z∗.

Lemmas 6.5 and 6.6 bound the second-stage service and facility costs, respectively,
by (1 + 2

1−b )Z
∗ and 3

bZ
∗. Their sum is minimized at b = 3 −

√
6, yielding a second-

stage approximation ratio of 3 +
√
6 and an overall approximation ratio of 6 +

√
6 ≈

8.45.
We conjecture that the independent-decisions and multistage versions of stochas-

tic UFL can also be approximated by techniques similar to those in this paper. We
do not pursue those results here, because they would add tedium while not providing
much in the way of insight. We do point out, however, that the stochastic UFL result
demonstrates the applicability of our algorithm and its analysis to problems that do
not necessarily fall naturally into the framework of section 2.

7. Conclusion. In this paper, we have provided a general framework for con-
verting approximation algorithms for deterministic problems into those for k-stage
stochastic versions. Our algorithms rely on the presence of cost-sharing functions with
strictness properties, but we demonstrate the existence of such cost-sharing functions
for several canonical combinatorial optimization problems.

Despite our progress, several open questions in this area remain. There are several
deterministic combinatorial optimization problems for which cost-sharing functions
are not readily available. Apart from obtaining these for other problems, one is also
interested in characterization of the types of problems for which one may (or may
not) be able to construct cost-sharing functions.

Our results for k-stage stochastic optimization are also somewhat weak, because
they require the cost-sharing function to be cross-monotone and superstrict, properties
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we are able to establish only for the Steiner tree problem. It would be of interest to
construct approximation algorithms without such strong requirements on the cost-
sharing functions, or provide superstrict cross-monotone cost-sharing functions for
other problems. Another natural question is whether we can avoid the linear loss in
the number of stages and hence develop o(k)-approximation algorithms for k-stage
stochastic optimization.
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