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ONLINE AND STOCHASTIC SURVIVABLE NETWORK DESIGN∗
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Abstract. Consider the edge-connectivity survivable network design problem (SNDP): given
a graph G = (V, E) with edge-costs, and edge-connectivity requirements rij ∈ Z≥0 for every pair
of vertices i, j ∈ V , find an (approximately) minimum-cost network that provides the required
connectivity. While this problem is known to admit good approximation algorithms in the offline
case, no algorithms were known for this problem in the online setting. In this paper, we give a
randomized Õ(rmax log3 n)-competitive online algorithm for this edge-connectivity network design
problem that runs in time O(mrmax ), where rmax = maxij rij . Our algorithms use the standard
embeddings of graphs into random subtrees (i.e., into singly connected subgraphs) as an intermediate
step to get algorithms for higher connectivity. As a consequence of using these random embeddings,
our algorithms are competitive only against oblivious adversaries. Our results for the online problem
give us approximation algorithms that admit strict cost-shares with the same strictness value. This,
in turn, implies approximation algorithms for (a) the rent-or-buy version and (b) the (two-stage)
stochastic version of the edge-connected network design problem with independent arrivals. If we
are in the case when the underlying graph is complete and the edge-costs are metric (i.e., the triangle
inequality is satisfied), we improve on our results to give an O(logn)-competitive deterministic online
algorithm for the rooted version of the problem, and constant-factor approximation algorithms for
the rent-or-buy and stochastic variants of SNDP.

Key words. online algorithms, approximation algorithms, stochastic optimization, survivable
network design

AMS subject classifications. 05C85, 68W25, 68W27

DOI. 10.1137/09076725X

1. Introduction. We consider the edge-connectivity version of the survivable
network design problem (SNDP): given a graph G = (V,E) with nonnegative edge-
costs c(e) and edge-connectivity requirements rij ∈ Z≥0 for every pair of vertices
i, j ∈ V , the goal is to find a subgraph H = (V,E′) with minimum cost

∑
e∈E′ c(e)

such that H contains rij edge-disjoint paths between i and j. The problem is of
much interest in the network design community, since it seeks to build graphs which
are resilient to edge failures. Since the problem is NP-hard (it contains the Steiner
tree problem as a special case), it has been widely studied from the viewpoint of
approximation algorithms (refer to [25] for a survey of results). In fact, these con-
nectivity problems were one of the earliest applications of the primal-dual method in
this area which led, over a sequence of papers, to the development of an O(log rmax)-
approximation algorithm [23]. Subsequently, one of the first uses of iterative rounding
in approximation algorithms led to a 2-approximation for this problem (and for the
general problem of network design with weakly supermodular functions) [31].

In this paper we extend the study of survivable network design problems in two
different directions. First, we study these problems in the online setting: we are given
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1650 A. GUPTA, R. KRISHNASWAMY, AND R. RAVI

a graph with edge-costs and an upper bound rmax on the connectivity demand.1 A
sequence of vertex pairs {i, j} ∈ V × V is presented to us over time, each with some
edge-connectivity demand rij—at this point we may need to buy some edges to ensure
that all the edges bought by the algorithm provide an edge-connectivity of rij between
vertices i and j. The goal is to remain competitive with the optimal offline solution
of the current demand set. To the best of our knowledge, no online algorithms were
previously known for this problem even for the online rooted 2-connectivity problem
(i.e., for the case where all the vertex pairs share a root vertex r and the connectivity
requirement is 2 for all pairs)—in fact, in Appendix A, we show a lower bound of
Ω(min{|D|, logn}) on the competitive ratio for this special case, where D is the set
of terminal pairs given to the algorithm. This is in contrast to the case of online 1-
connectivity (i.e., online Steiner forest) where the best online algorithm is Θ(log |D|)-
competitive [8].

Theorem 1.1. For the edge-connected survivable network design problem, there
is an α = O(rmax log

3 n)-competitive randomized online algorithm against oblivious
adversaries.

A somewhat surprising ingredient of our proof is that we use distance-preserving
embeddings into random trees (i.e., into singly connected structures) to get algorithms
for higher connectivity. In our work, these embeddings allow us to simplify the cost
structure of the network and to abstract out a latent set cover-type problem, where
the cuts are the sets and we want to cover them using edges. We should point out that
the use of such randomized embeddings also implies that our algorithm is competitive
only against oblivious adversaries, who are not aware of the algorithm’s random coin
tosses. We also note that while computational aspects are often brushed aside in online
analysis, our online algorithm can be implemented in time O(mrmax) and hence runs
in polynomial time only for constant rmax. Refer to section 2 for a high-level overview
of our techniques.

Stochastic and rent-or-buy problems. Another direction to extend the edge-
connectivity problem is the stochastic case when the instance is drawn according to a
probability distribution. In this paper we consider the case when we have a product
distribution: for each pair i, j of vertices we are given a probability pij and are
guaranteed that tomorrow each pair will flip their coins independently, and if the
coin turns up heads, they would demand k-connectivity. (For simplicity we assume
that all pairs have the the same connectivity requirement of k.) We can buy some
edges today at cost c(·), but if we wait for the actual set D, the edges will cost λc(·)
tomorrow, for a prespecified inflation parameter λ ≥ 1; the goal is to minimize the
sum of the cost of edges bought today and the expected cost of augmentation edges
bought tomorrow (at the inflated price). Given an α-approximation algorithm for the
basic k-edge-connectivity problem that admits β-strict cost-shares (see section 1.2
for a definition of cost-sharing schemes), it is known that one can get a randomized
algorithm which is an (α+ β)-approximation for the stochastic version [28].

A similar result holds for the rent-or-buy version of k-connectivity, where we are
given a set of {si, ti} pairs, and the goal is to define k-edge-disjoint paths between
each si-ti. If ne different pairs use an edge e, the cost of edge e is defined to be c(e)×
min{ne,M} for some threshold M , capturing the fact that there is some incremental
cost for different pairs using the same edge, but at some point this cost tapers off (and

1We can remove this assumption of knowing rmax upfront by losing another log rmax in our
approximation guarantee by using a standard doubling argument used in online algorithms.
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we “buy” the edge). Again, an α-approximation for k-edge-connectivity with β-strict
cost-shares gives an (α+ β)-approximation [26].

Theorem 1.2. For constant k, the online algorithm for k-edge-connectivity is
a polynomial-time α-approximation algorithm with α-strict cost-shares. Hence, the
problems of rent-or-buy and two-stage stochastic k-edge-connectivity with independent
decisions admit 2α = O(k log3 n)-approximations.

The only previous results known for these versions of higher connectivity prob-
lems were O(1)-strict cost-shares implicitly given by Chuzhoy and Khanna [16], and
independently (but explicitly) by Chekuri et al. [12] for the special case of rooted con-
nectivity, where all pairs seek k-connectivity to a single source r (and hence to each
other).

Metric costs. Finally, we improve on these results for the special case when the
underlying graph is complete and the costs satisfy the triangle inequality. First, we
extend the O(log n)-competitive algorithm for online Steiner tree to get an O(log n)-
competitive online algorithm for the rooted version of the k-EC-ND problem where
all terminals require k-edge-connectivity to a prespecified root vertex. Then, for the
stochastic and rent-or-buy versions of SNDP, we obtain constant factor approxima-
tions by designing O(1)-approximation algorithms that admit O(1)-strict cost-shares.
At a high level, our ideas are derived from the strict cost-shares for Steiner forest [22]
and the metric k-connectivity algorithms of Cheriyan and Vetta [15].

1.1. Related work. Steiner network problems have received considerable atten-
tion in the approximation algorithms literature in the past. Agrawal, Klein, and Ravi
[2] and Goemans and Williamson [24] used primal-dual methods to design approxi-
mation algorithms for Steiner forests and other 1-connectivity problems (and some
higher connectivity problems where multiple copies of edges could be used). Klein and
Ravi [33] gave an algorithm for the 2-connectivity problem, which was extended by
Williamson et al. [40] and Goemans et al. [23] to higher connectivity problems, yielding
O(log k)-approximation algorithms for k-connectivity, all using primal-dual methods.
Jain [31] gave an iterative rounding technique to obtain a 2-approximation algorithm
for the most general problem of SNDP. These techniques have recently been employed
to obtain tight results (assuming P �= NP) for network design with degree constraints
[36, 37, 6]. Vertex connectivity problems are less well understood: [14, 35, 19] con-
sidered problems of spanning k-connectivity and provided approximation algorithms
with varying guarantees depending on k. Fleischer, Jain, and Williamson [21] gave a
2-approximation for vertex connectivity when all rij ∈ {0, 1, 2}. Recently, improved
approximation algorithms have been given for the problem of single-source k-vertex
connectivity [10, 13], culminating in a simple greedy O(k logn) algorithm [16]. In
fact, the papers [13, 16] also implicitly gave O(k)-strict cost-shares for the single-
source vertex-connectivity problem. As far as we can see, their techniques do not
apply to the case of general survivable network design where vertex pairs do not
share a common root, nor do they imply online algorithms with adversarial inputs.
Very recently, Chuzhoy and Khanna [17] gave a very simple O(k3 logn)-approximation
algorithm for the k-vertex-connectivity network design problem via an elegant ran-
domized reduction to a collection of element-connectivity network design problems.
Again, we do not see how these can be made online, or made to admit good cost-
sharing schemes. When the edges have metric costs, there are, quite expectedly,
better approximation algorithms for vertex connectivity. Khuller and Raghavachari
[32] gave O(1)-approximations for k-vertex-connected spanning subgraphs. Cheriyan
and Vetta [15] later gave O(1)-approximations for the single-source k-connected prob-
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1652 A. GUPTA, R. KRISHNASWAMY, AND R. RAVI

lem and an O(log rmax)-approximation for metric vertex-connected SNDP. Recently,
Chan et al. [11] give constant factor approximations for several degree bounded prob-
lems on metric graphs. As for inapproximability, Kortsarz, Krauthgamer, and Lee
[34] gave 2log

1−ε n hardness results for the vertex-connected SNDP.
Imase and Waxman [29] first considered the online Steiner tree problem and gave

a tight Θ(log |D|)-competitive algorithm. Awerbuch, Azar, and Bartal [5] general-
ized these results for the online Steiner forest problem, and subsequently Berman and
Coulston [8] gave the same Θ(log |D|) guarantee. However, we do not see how to use
these ideas for the general problem with higher connectivity. In this paper, we use the
results of Alon et al. [3] for the online (weighted) set cover problem; the ideas used in
this paper have been extended by Alon et al. [4] and Buchbinder and Naor [9] to get on-
line primal-dual based algorithms for fractional generalized network design. We note
that while we can solve the fractional version of the online k-connectivity problems
using these techniques, we do not know how to round this fractional solution online.

The use of strict cost-shares to get algorithms for rent-or-buy network design
appears in [27]. Approximation algorithms for two-stage stochastic problems were
studied in [30, 38], and some general techniques were given by [28, 39]; in particular,
using strict cost-shares to obtain approximation algorithms for stochastic optimization
problems appears in [28].

1.2. Preliminaries.

1.2.1. The k-EC-ND problem. For most of the paper, we will present our
results in the form of the k-edge-connected network design (k-EC-ND) problem, which
is survivable network design where rij ∈ {0, k}—this is just for simplicity; our results
extend to the more general survivable network design problem while incurring small
additional losses in our competitiveness and approximation guarantees.

1.2.2. Notation. Consider the k-EC-ND problem, and let D ⊆
(
V
2

)
denote the

set of demand pairs that require k-connectivity. For the rest of the paper, we shall
refer to demand pairs by using curly brackets, e.g., {s, t}, and use regular brackets to
denote edges following standard convention, like (u, v).

1.2.3. Strict cost-sharing schemes. An α-approximation algorithm Alg is
said to be β-strict for the k-EC-ND problem if, for each {si, ti} ∈ D, there exist
cost-shares ξ({si, ti}) such that the following properties hold:

•
∑

{si,ti}∈D ξ({si, ti}) ≤ c(OPT), where OPT is an optimal solution which
k-edge-connects all terminal pairs in D.
• There is an efficient augmenting procedure Augment (which takes as input
a terminal pair and outputs a set of edges) such that si and ti are k-edge-
connected in Augment({si, ti}) ∪ Alg(D \ {si, ti}).
• For each {si, ti} ∈ D, the total cost of edges output by Augment({si, ti}) is
at most β ξ({si, ti}).

As mentioned in the introduction, it is known that if we have an α-approximation
algorithm for a problem that admits β-strict cost-shares, we can then get randomized
(α+β)-approximation algorithms for the two-stage stochastic and rent-or-buy versions
of the problem [28, 26].

1.2.4. Cost-shares from online algorithms. Given an α-competitive online
algorithm Alg for k-EC-ND, order all possible vertex pairs in some universal canonical
ordering and feed the actual demands D in the induced ordering to Alg. Then for any
{si, ti} ∈ D, define the cost-share ξ({si, ti}) to be 1

α times the increase in total cost
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incurred by the online algorithm. By the α-competitiveness of the online algorithm,
we have

∑
i ξ({si, ti}) ≤ 1

α · αOPT = OPT. Moreover, the fixed ordering of the
demands means that the augmentation cost for a demand pair si-ti to Alg(D\{si, ti})
is at most the online algorithm’s cost increase when we had presented si-ti to it, i.e.,
α · ξ({si, ti}).

2. The basic idea, at a high level. Imagine we want to convert the connec-
tivity augmentation problem into a hitting set problem: we are given a subgraph H
of G that has l-edge-connected a demand pair si-ti (where l < k), and we want to
(l + 1)-edge-connect them. If we think of the si-ti cuts as sets, then we would like
to “hit” all of these si-ti cuts with edges. This is clearly doomed, since there are
M = 2n−1 cuts, and an O(logM)-approximation for hitting set will be useless.

We could do better by noting that each minimal si-ti cut in H is given by only
l edges. While this bounds the number of cuts in H by M =

(
m
l

)
, the subgraph H

might contain only a small fraction of G, and there may be many more cuts in G
corresponding to the same cut in H—even an exponential number, and we are back
to square one. Alternately, we could try to overcome this by hitting the cuts by paths
connecting two nodes in H (instead of hitting the cuts by edges in G), but there could
be exponentially many such paths, and this seems like another bad idea.

What the results in section 3 show is that this is not a bad idea at all if we are
slightly careful. Loosely speaking, if we take a random distance-preserving spanning
subtree T ⊆ G, then we show that we can augment the connectivity using only the
fundamental cycles (the cycle formed by any nontree edge (u, v) along with the tree
path between u and v) with respect to (w.r.t.) this spanning tree T . Interestingly, the
(random) distance-preserving property allows us to control the cost of these connectiv-
ity augmentations. Furthermore, there are only at most m such fundamental cycles,
and this enables us to get a compact hitting set instance. Of course, this high-level
view oversimplifies things a bit; read on for the complete details. In sections 3.1–3.3
we show how we can hit cuts by a small number of cycles/paths, and then sections 3.4
and 3.5 use these ideas to develop our algorithms.

3. Online k-EC-ND on general graphs. In this section, we present an online
algorithm with competitive ratio Õ(k log2 m logn) for the k-EC-ND problem on general
graphs with demand set D ⊆

(
V
2

)
. We show how this also gives us Õ(k log2 m logn)-

strict cost-shares, and hence implies polylogarithmic approximation (for constant val-
ues of k) guarantees for the rent-or-buy and stochastic k-EC-ND problems (see sec-
tion 1.2).

3.1. Embedding into backboned graphs. One of the major advantages of
network design problems which only sought 1-edge-connectivity is that one can embed
the underlying metric space into random trees [7, 20, 18, 1], where the problems are
easier to (approximately) solve. Such a reduction seems impossible even for 2-edge-
connectivity as the problem is trivially infeasible on a tree. However, the simple but
crucial observation is to not ignore these ideas, as we show below.

Given a graph G = (V,E) with edge lengths/costs c(e), probabilistically embed it
into a spanning subtree (which we call the base tree) using the results of Elkin et al.
[18] and Abraham, Bartal, and Neiman [1]. Formally, this gives a random spanning
tree T = (V,ET ⊆ E) of G with edge lengths ĉT , such that for all x, y ∈ V ,

• ĉT (e) = c(e) for all edges e ∈ ET , and hence dT (x, y) ≥ dG(x, y); and
• E[dT (x, y)] ≤ Õ(log n) · dG(x, y), where dG is the graph metric according to
the edge lengths c(e).
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The distance dT is defined in the obvious way: if PT (u, v) is the unique u-v path in
T , then dT (u, v) =

∑
e∈PT (u,v) ĉT (e).

Now instead of throwing away nontree edges, imagine each nontree edge e =
(u, v) ∈ E \ ET being given a new weight ĉT (e) = max{c(e), dT (u, v)}. This suggests
the following definition.

Definition 3.1. A graph G = (V,E) with edge-costs c : E → R is called a
backboned graph if there exists a spanning tree T = (V,ET ) with ET ⊆ E such that
all edges e = (u, v) �∈ ET have the property that c(e) ≥ dT (u, v). In this case, T is
called the base tree of G.

Note that the embeddings of [18, 1] probabilistically embed graphs into a distri-
bution T over backboned graphs (indexed by their base trees) with small expected

stretch, i.e., ET∼T [ĉT (e)] ≤ Õ(logn)c(e) for all e ∈ G. This shows that for any sub-

graph H , the expected cost ET∼T [ĉT (H)] ≤ Õ(logn)c(H). Finally, since ĉT (e) ≥ c(e)
for all e ∈ E, T ∈ T , we can bound the cost of any subgraph H ′ w.r.t. edge costs c by
the corresponding cost ĉT (H

′). We then get the following theorem.
Theorem 3.2. A β-competitive online algorithm for k-EC-ND on backboned

graphs implies a randomized β× Õ(logn)-competitive algorithm for k-EC-ND on gen-
eral graphs (against oblivious adversaries). Also, β-approximation algorithms for
k-EC-ND on backboned graphs imply randomized β × Õ(logn)-approximation algo-
rithms on general graphs.

Hence, for the subsequent sections (except those for the metric instances) we will
assume that the input graph is a backboned graph and will use its properties to design
online and “cost-sharing” approximation algorithms.

3.2. Online 2-edge-connectivity. As a warm-up, consider the special case of
k-EC-ND on a backboned graph G = (V,E), when the connectivity requirement is
k = 2 for all demand pairs, and, furthermore, the problem instance is rooted, i.e., all
demand pairs are of the form {r, ti} for some fixed root r ∈ V . A natural approach
for this problem would be to first 1-edge-connect the root with the terminal which
has arrived, and then augment connectivity in the next phase. Because the graph
is backboned, it is easy to see that the optimal offline subgraph which just 1-edge-
connects a set of terminals T = {t1, t2, . . . , tl} with root r is the collection of base tree
paths ∪li=1PT (r, tl). Therefore, the online 1-connectivity problem becomes trivial on
backboned graphs—when a new terminal ti arrives, we simply buy the base tree path
PT (r, ti), and this is optimal.

We now see how we can augment edges to 2-connect the terminals with the
root, in an online fashion. Consider the stage in the online algorithm when a ter-
minal ti has arrived. As a first step, like mentioned above, we 1-edge-connect ti
to the root r by buying the path PT (r, ti). Now if ti is not 2-edge-connected to r
in the current subgraph, then there must exist a cut-edge e = (x, y) on the path
PT (r, ti). Removing the edge e also cuts the base tree T into 2 components—we
will refer to the one containing the root as Cr, and the other containing the ter-
minal ti as Cti . Since e is the only tree edge crossing this cut, there must exist a
nontree edge f = (u, v) in OPT (an optimal offline solution which 2-edge-connects
the current set of terminals with r) such that f crosses the cut (Cr, Cti) (and as
a consequence, observe that the edge e would be contained in the base tree path
PT (u, v)).

The crucial observation now is the following: if we were to include the entire
cycle O(u,v) = PT (u, v) ∪ (u, v) to our current subgraph, then e would no longer be a
cut-edge separating r from ti (because there is now an alternate path from x to y in
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O(u,v)). Furthermore, we can use the backbone property of G and in fact charge the
cost of the entire cycle to the single edge f that OPT bought.

At a high level, this motivates modeling the augmentation problem as the follow-
ing online set cover instance, where (i) the elements are the tree edges, (ii) the sets Suv

correspond to the cycles O(u,v), and (iii) an element/tree edge e is “covered” by a set
Suv if and only if e ∈ O(u,v). By the preceding arguments, we can see that the cost of
an optimal offline solution to cover all the cut-edges on the paths PT (r, ti) is 2OPT.
Hence, by the polylogarithmic competitiveness of the online set cover algorithm of
Alon et al. [3], we would get an online 2-edge-connectivity algorithm with polyloga-
rithmic guarantees. In what follows, we formalize this intuition and generalize it to
the setting of k-EC-ND.

3.3. A small collection of covering cycles. In this section, we show how we
can augment connectivity (from, say, l to l+1) for a demand pair {si, ti} by showing
that all its minimal cuts can be covered by a small collection of fundamental cycles
(w.r.t. the base tree T ) of low cost. For the case when l = 1, this is just the set cover
instance outlined in the previous section. Before we state our cut cover theorem, we
begin with some notation that will be useful for the rest of this section.

Notation. Base cycles. Let G be a backboned graph that is an instance of the
k-EC-ND problem with demand set D, and let T be the base tree in G. For any edge
e = (u, v) �∈ ET , define the base cycle Oe to be the fundamental cycle {e} ∪ PT (u, v)
of e w.r.t. T .

Now, let H be a subgraph which l-edge-connects (for some l < k) the vertices si
and ti for some demand pair {si, ti} ∈ D, and suppose H also contains the base tree
path PT (si, ti). The l-edge-connectivity assumption implies there are l edge-disjoint
paths from si to ti in H : denote this set of edge-disjoint paths by Pi. Clearly, any
l-cut (a set of l edges which would separate si and ti in H if removed) in H must pick
exactly one edge from each path in Pi: we define violH(i) to be the set of all such
l-cuts.

Labeling. Consider any cut Q ∈ violH(i). Since Q is a minimal l-cut for the
demand pair si-ti in H , it must be that any end vertex of a cut edge is reachable from
one of si or ti in H \ Q. We label each end vertex v reachable from si in H \ Q by
L (i.e., we set label(v) = L), and each end vertex v reachable from ti by R (we set
label(v) = R). Every other vertex in V (G) has a label U ; hence all but at most 2|Q|
nodes are labeled U , which we denote by a “trivial label.” Note that the labeling of
the end vertices of a cut Q depends on the subgraph H and not just the set of edges
in Q.

Theorem 3.3 (cut cover theorem). Consider a k-EC-ND instance I, and let
OPT denote any optimal solution. Let H ⊆ G be any subgraph that l-edge-connects
terminal pair {si, ti} for some l < k, such that the base tree path PT (si, ti) ⊆ H. Then
for any l-cut Q ∈ violH(i), given the labeling of the endpoints of Q as described above,
we can find an edge e = (u, v) ∈ E(OPT) such that Oe \Q connects some L-vertex to
some R-vertex. This ensures that si and ti are connected in (H ∪Oe) \Q.

Note that the algorithms in sections 3.4 and 3.5 depend only on the statement of
the above cut cover theorem, so readers strapped for time can jump straight to the
algorithms.

Proof outline. The proof is by contradiction and assumes that there is no edge
e such that the base cycle Oe can cover this cut. We first give the outline of the proof,
which would help in following the sequence of Lemmas 3.4–3.7. Suppose we delete all
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si

ti

L

L L

L

L

L

L

L

R

R

R

R

R

R

R

R

R

C1

C2

C3

C4 C5

C6

C7

C8

C9

C10

L

Fig. 3.1. Example of the portal graph: circles are components, the dashed edges are portal
edges, and dotted edges are other base tree edges.

the edges of some minimal cut Q ∈ violH(i) from the current subgraph H . Such a cut
(in particular, removing the edges Q∩ T ) will separate the base tree into |Q ∩ T |+ 1
components (denoted by C), with si and ti belonging to different components (see
Figure 3.1 for an illustration where the different circles are the tree components).

First, observe that every component C ∈ C will have at least one vertex with
a nontrivial label (a vertex with a label not U) since it has at least one edge from
Q ∩ T in its boundary. To get the main intuition behind the proof, let us make the
simplifying assumption that each component contains vertices of only one nontrivial
label. If a component has its only nontrivial labels as L-vertices, we refer to it as an
L-component, and likewise R-components only contain R-vertices.

Now, since OPT can (l+1)-edge-connect si and ti, it means that there must exist
a path P ∗, the inclusion of which would connect these 2 vertices in H . We focus on
this path and traverse it edge by edge, starting from si. Suppose we are considering
the jth edge on this path, and suppose it begins from an L-component. Then, in
Lemma 3.4, we show that this edge must also end in an L-component—otherwise,
its base cycle would cover this cut Q. This then lets us inductively proceed and
show that each edge will always terminate in an L-component, since we begin from
si and it belongs to an L-component. Hence we would never reach ti (contained in
an R-component), which gives us the desired contradiction.

In general, it may not be the case that a component has only L- or R-vertices.
To handle this, we extract a subset of edges of the path P ∗ (called the canonical
sequence) and argue that the tree edges in Q∩T which are induced by the base cycles
w.r.t. the canonical sequence will satisfy this “consistency” property (Lemma 3.6).
This is sufficient to push the induction through, and we would arrive at the same
contradiction. We now present the complete details.

Proof. Consider a cut Q ∈ violH(i). Note that Q∩T �= ∅, since by our assumption
the base tree path PT (si, ti) ⊆ H and hence the cut Q must contain some edge on
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it. Let the edges Q ∩ T separate the base tree into t ≤ l + 1 components C =
{C1, C2, . . . , Ct}. The terminals si and ti must belong to different components: let
C(si) and C(ti) denote the components containing them. In general, let C(v) denote
the component containing vertex v. A component C ∈ C is called a star component if
it contains some vertex from PT (si, ti). We refer to the edges in Q∩T as portal edges.
For every component C �= C(ti) ∈ C, let the parent edge head(C) be the first portal
edge on the base tree path from any vertex in C to ti; note that the component C(ti)
does not have a parent edge. Also note that for nonstar components, head(C) also
happens to be the first portal edge on the base tree path from any vertex in C to si.

For example, in Figure 3.1, the dashed edges are the portal edges, head(C2) is the
portal edge between C2 and C1, head(C6) is the portal edge between C6 and C5, and
C1, C4, C5, C10 are the star components.

Since each edge in Q belongs to a distinct path in Pi (Q is a minimal l-cut
separating si from ti), the end vertices of any portal edge—and indeed of any edge in
Q—have distinct labels from the set {L,R}. For a portal edge e, say its L-vertex is
its unique endpoint labeled L, and its other endpoint is its R-vertex.

To prove Theorem 3.3, we will show that there exists an edge e = (u, v) /∈ Q which
lies in an optimal solution such that Oe \Q contains a path between an L-vertex and
an R-vertex in Q; in turn, this will ensure that si and ti are connected in (H∪Oe)\Q,
completing the proof. For the remainder of the proof, an edge (u, v) which satisfies
this property is said to cover the cut Q.

The Canonical Sequence. Since si and ti can be k-edge-connected in G,
there must be an si-ti path P ∗ contained in the optimal k-edge-connected subgraph
with P ∗ ∩Q = ∅. We first eliminate some “redundant” edges from P ∗ and show that
among the other edges there is one that covers Q. First remove all edges from P ∗

that are internal to some component in C. Now consider a new undirected graph—the
component graph—whose vertex set is the collection C of components, and there is an
edge (Ci, Cj) when there is an edge (u, v) ∈ P ∗ such that u ∈ Ci and v ∈ Cj . The
edges in P ∗ now correspond to a path (not necessarily simple) between C(si) and C(ti)
in the component graph. We then remove edges from P ∗ that correspond to cycles in
the component graph and are left with a set of edges P ∗ corresponding to a simple
path between C(si) and C(ti) in the component graph. Say the edges of P ∗ in this
order are 〈e1 = (u1, v1), e2 = (u2, v2), . . . , ep = (up, vp)〉. Note that C(ui) = C(vi−1)
for 2 ≤ i ≤ p; however, ui need not be the same as vi−1 in general. We refer to this
resulting sequence of edges also as P ∗ and call it the canonical sequence, and all the
components C(uj) the canonical components.

For a contradiction, suppose there is no edge (u, v) ∈ P ∗ that covers the cut
Q. We now prove a set of lemmas about the canonical sequence and the labeling of
the portal edges to show that this cannot happen. Recall that each portal edge has
different labels from {L,R} on its endpoints. When tracing some u-v path in the base
tree T , we say some portal edge is crossed with signature (L → R) if the endpoint
labeled L is closer to u than to v in the base tree T . Clearly, the signature of the
portal edge depends on the starting vertex u and ending vertex v of the path.

Lemma 3.4 (alternating paths lemma). Suppose none of the edges (u′, v′) ∈ P ∗

covers Q. For any edge (u, v) ∈ P ∗, if the first portal edge on PT (u, v) is crossed with
signature (L → R), then the final portal edge on PT (u, v) is crossed with signature
(R → L). Also, the portal edges crossed along the way have alternating signatures
(L → R), (R → L), . . . , (L → R), (R → L). An analogous statement is true in the
case the first portal edge is crossed with signature (R→ L).
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x

u

vy
R

R R L

e ∈ P ∗

L

L

(a) Alternating paths lemma.

u1v1

u2

v2

C

entry(e1)entry(e2)

exit(e2)

e1

e2

R

L

L
L

R R

exit(e1)

(b) (u1, v1) and (u2, v2) transit C.

Fig. 3.2. Illustrative figures for the proof. Again, the dashed edges are portal edges, dotted
edges are other base tree edges, and solid edges belong to P ∗.

Proof. If the u-v base tree path PT (u, v) first crosses a portal edge with signature
(L → R) and also ends by crossing a portal edge with signature (L → R), the base
cycle O(u,v) would connect the first L-vertex in C(u) to the final R-vertex in C(v).
Moreover, the portions of O(u,v) within C(u) and C(v) are disjoint from Q, and hence
O(u,v)\Q would connect these L- and R-vertices, contradicting the fact that (u, v) does
not cover Q. For example, in Figure 3.2(a) we see that x and y would be connected
in O(u,v) \Q.

Likewise, if the path PT (u, v) enters some component C through a portal edge
signed (L → R) and also exits C through an (L → R) edge, the portion of O(u,v)

within the component C would connect the entry vertex labeled R and exit vertex
labeled L in O(u,v) \Q; as a result, including the edges of O(u,v) to H would connect
si and ti (even if the edges Q are deleted) by the definition of L- and R-vertices. This
is also a contradiction, completing the proof.

Lemma 3.5 (star-path lemma). Suppose no (u′, v′) ∈ P ∗ covers Q. Consider the
portal edges e′1, e

′
2, . . . , e

′
s when traversing the si-ti path PT (si, ti) on the base tree T .

Then the signatures of these edges alternate (L→ R), (R→ L), . . . , (L→ R).
Proof. If we have two consecutive portal edges e′j and e′j+1 that are signed

(L → R), then we would have an L-vertex and an R-vertex, both of which lie on
the path PT (si, ti), belonging to the same (star) component C. Since we assume
that H contains PT (si, ti), these two vertices would be connected in H \ Q, thus
contradicting the fact that Q is itself a violated cut separating si from ti.

Lemma 3.6 (consistency lemma). Suppose no (u′, v′) ∈ P ∗ covers Q. Consider
a component C �= C(ti) such that head(C)’s L-vertex belongs to C. Then, for any
(u, v) ∈ P ∗, if PT (u, v) intersects the component C, the portal edge PT (u, v) takes
when entering C (if any) has its L-vertex in C. The same is true for the portal edge
PT (u, v) takes when exiting C (if any). An analogous statement holds if head(C)’s
R-vertex is contained in C.

Proof. Let entry(u, v) and exit(u, v) denote the portal edges used by PT (u, v)
to enter and exit C, respectively, if we traverse PT (u, v) from u to v. For an edge
(x, y) ∈ P ∗, we say (x, y) transits a component C if PT (x, y) intersects C, but neither
x nor y belong to C (see Figure 3.2(b) for an example).

We first consider the case when C is not a star component and is a canonical
component; the proof for the C not being canonical is simpler, and we later consider
C being a star component.
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Let 〈e′1, e′2, . . . , e′a〉 ⊆ P ∗ be the edges in P ∗ which transit C (in that order) before
some edge e1 ∈ P ∗ has an endpoint in C. (Such an edge e1 exists because we have
assumed that C is a canonical component.) The subsequent edge e2 ∈ P ∗ exits C,
and let 〈e′′1 , e′′2 , . . . , e′′b 〉 ⊆ P ∗ be the following edges that transit C. Since C is not
a star component, entry(e′1) and exit(e′′b ) must be the edge head(C), which by the
assumption of the lemma has its L-vertex in C. This is because if we shrink all the
components and trace the path taken by P ∗ along the tree formed by just the portal
edges in Q∩ T , the first time we visit C has to be via its head edge, by the definition
of head edges. Likewise, the final edge to visit C must leave along the same head
edge, since eventually this path ends up in ti. Furthermore, by Lemma 3.4, exit(e′1)
must have its L-vertex in C as well.

Moreover, since the base path traversals are all done along the tree T , it is not hard
to see that entry(e′j+1) = exit(e′j) for 1 ≤ j < a. Inductively applying the alternating
paths lemma, all the portal edges entry(e′j) and exit(e′j) have their L-vertices in C.
Since entry(e1) = exit(e′a), we also get that entry(e1) has its L-vertex in C. The same
inductive argument applied starting with e′′b and working backwards shows that the
entry and exit edges used by e′′j for all j and by e2 all have their L-vertices in C.
For the case when C is not a canonical component, the argument is simpler, since we
would not have the edges e1 and e2 and have only a set of transiting edges.

Finally, when C is a star component, it is no longer true that the edge entry(e′1)
is the same as head(C). However, either C = C(si) (in which case the proof is the
same as above without any edges e′j or e1), or else entry(e′1) must be the head edge
for the previous star component Cprev on the si-ti path. Hence, since head(C) has its
L-vertex in C, the star-path lemma (Lemma 3.5) implies that entry(e′1) = head(Cprev)
also has its L-vertex in C. Now the rest of the proof is identical to that above.

Lemma 3.7 (final component lemma). Suppose there is no (u′, v′) ∈ P ∗ that
covers Q. For any (u, v) ∈ P ∗ such that PT (u, v) intersects C(ti), the portal edge
taken to enter C(ti) has its R-vertex in Cti . The same is the case for the portal edge
taken to exit C(ti), if any.

Proof. The proof of the lemma is very similar to that for Lemma 3.6. Since Cti is
the final component on the path P ∗, we would not have the edges of the form e2 and
e′′j (there is only one edge in P ∗ that has an end vertex in Cti , since we have eliminated
all cycles). Also, because e′1 is the first edge in P ∗ to transit C(ti), entry(e

′
1) must

be the head edge for the previous star component Cprev on the si-ti path. From the
star-path lemma (Lemma 3.5), we get that entry(e′1) has its R-vertex in C(ti). By
Lemma 3.4, exit(e′1) must have its R-vertex in C(ti) as well. As in the previous proof,
entry(e′j+1) = exit(e′j) for 1 ≤ j < a. Inductively applying the alternating paths
lemma, all the portal edges entry(e′j) and exit(e′j) have their R-vertices in C. Since
entry(e1) = exit(e′a), we also get that entry(e1) has its R-vertex in C.

To complete the proof of Theorem 3.3, we argue the following.
Lemma 3.8. Suppose no (u′, v′) ∈ P ∗ covers Q. Then for all vertices vj belonging

to P ∗ (for 1 ≤ j ≤ p), we have C(vj) �= C(ti).
Proof. The proof is by induction on j for 1 ≤ j ≤ p. Since C(u1) = C(si), we know

that head(C(u1)) has its L-vertex in Cu1 . By the consistency lemma (Lemma 3.6),
we know that the final portal edge on PT (u1, v1) must have its L-vertex in C(v1).
This implies that C(v1) �= C(ti), otherwise we would violate the final component
lemma (Lemma 3.7). This establishes the base case. Now, since C(v1) �= C(ti), the
consistency lemma (Lemma 3.6) implies that head(C(v1)) must have its L-vertex in the
component C(v1). But because C(uj+1) = C(vj) for all j, we have that head(C(u2))
must have its L-vertex in C(u2), and therefore we can proceed inductively.
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But note that Lemma 3.8 implies that we never reach C(ti) while following the
canonical path, which contradicts the fact that P ∗ corresponds to a path between
C(si) and C(ti) in the component graph. This contradiction completes the proof,
and hence implies that there must be some edge (u, v) ∈ P ∗ that covers the cut
Q.

3.4. Augmentation using hitting sets. We now show how we can use the
covering property to get a low-cost augmentation. Given an instance G, c(·) of the
k-EC-ND problem, suppose we have a subgraph H such that all terminal pairs {si, ti}
are l-edge-connected in H : we now identify sets and elements such that the hitting
set problem exactly captures the problem of augmenting H to (l + 1)-edge-connect
every si to ti. Moreover, we want to do this in such a way that the number of sets
and elements is small; if we were allowed exponentially many sets, we could imagine
each l-cut (U, V \ U) that separates si from ti to be a set, and the edges of G \H to
be the elements, such that element/edge e belongs to the set/cut (U, V \U) if e ∈ ∂U .
But this gives us too many sets, as mentioned in section 2.

To do this more efficiently, consider this: we can imagine H already contains the
base tree, since it costs at most as much as the optimum k-edge-connected solution.
Now look at the following hitting set instance IA: for each violated l-cut Q ∈ violH(i)
for a terminal pair {si, ti}, we have a set in our instance. (Recall that now Q ⊆ E
can be just a set of edges.) In case the same set of edges Q separate several terminal
pairs, we have a set for each terminal pair. For each edge e = (u, v) in G we have an
element. An element/edge e belongs to a set/cut Q if the edge e covers the cut Q—in
other words, if the base cycle Oe satisfies the property that (H ∪Oe)\Q connects the
terminal pair {si, ti}. The cost of an element e is simply the cost of the base cycle
Oe, which is at most 2c(e), by the properties of the backboned graph. Note that,
in this instance, the number of sets is at most |D| ·ml = O(n2ml) and the number
of elements is at most m. A straightforward consequence of the cut cover theorem
(Theorem 3.3) establishes the following.

Theorem 3.9 (augmentation theorem). Given an backboned instance G, c(·) of
the k-EC-ND problem, suppose we have a subgraph H containing the base tree such
that the terminal pairs {si, ti} are l-edge-connected in H for some l < k. Then
the instance of the hitting set problem IA created above has a solution costing at most
2 c(OPT). Furthermore, if the set of elements/edges bought in a solution to the hitting
set instance is F , then the subgraph (H ∪ (∪e∈FOe)) is a network that (l + 1)-edge-
connects every terminal pair {si, ti}.

As a warm-up, this shows that we can solve the k-EC-ND problem, and more
generally the generalized Steiner connectivity problem, on any backboned graph by
starting off with the base tree as the 1-edge-connected network, and repeatedly apply-
ing Theorem 3.9 (and a good approximation algorithm for hitting set) to augment the
connectivity from l to l+1 at cost O(log(n2ml))c(OPT). In total, this approach gives
us an approximation guarantee of

∑
l O(l logm+ logn) = O(r2max logm+ rmax logn).

Finally, translating this to general networks loses another almost-logarithmic factor
via Theorem 3.2. However, we can do better (and even do it online), as we now show.

3.5. Online algorithm using hitting sets. To give an online algorithm for
k-EC-ND, let us consider the above proofs again. When we defined the hitting set
instance I corresponding to the (l + 1)-augmentation problem, it appeared as if the
notion of an element/edge e hitting a set/cut Q depended on the subgraph H . How-
ever, this is not the case: recall that the cut cover theorem (Theorem 3.3) showed
that for any l-cut Q ∈ violH(i), there exists an edge e = (u, v) ∈ OPT such that
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Oe \Q connects an L-vertex to an R-vertex. In fact, if we were only given some set

of edges Q̂ and some labels on its endpoints, and the theorem gives us an edge e,
then this edge e is good for all subgraphs H such that (i) PT (si, ti) ⊆ H , (ii) Q̂ is an
l-cut separating si and ti in H , and (iii) the labels are indeed the labels we would get

given H and Q̂. Moreover, for any cut Q, once we know the L and R labels of its end
vertices, we can also identify whether an element (u, v) covers the cut Q. These are
the properties we exploit in our online algorithm.

For the online algorithm for backboned graph, we first set up an instance I of the
hitting set problem:

• Universe. For each edge e ∈ E, we have an element; there are N = m
elements. The cost of element e is c(Oe) ∈ [c(e), 2c(e)].
• Sets. For each l ∈ {1, 2, . . . , (k − 1)}, we have a collection Fl of Ml ≤

(
m
l

)
2l

sets, where each set Ql is a set of l edges along with {L,R} labels on the
endpoints of these edges. Hence F = ∪lFl are all the M := O((2m)k) sets.
• Incidence. A element e = (u, v) hits a set Ql if and only if the subgraph
O(u,v) \Ql connects an L-vertex and an R-vertex in Ql.

Now when a terminal pair {si, ti} arrives, we first buy the edges on si-ti base tree
path PT (si, ti) that have not yet been bought, and then perform a series of (k −
1) augmentations. In round l, we feed all the minimal violated cuts with l edges
in the current subgraph H along with their {L,R} labels to the online hitting set
algorithm, which results in a new subgraph with increased connectivity. Note that
the deterministic online algorithm for weighted set cover given by Alon et al. [3]
would be O(logN logM) = O(k log2 m)-competitive on this hitting set instance as
well. Formally, the algorithm is presented below.

Algorithm 1 OnlineAlg(D) for online k-EC-ND on backboned graphs.

1: let H ← ∅.
2: set up the instance I of online hitting set.
3: for each terminal pair {si, ti} that arrives do
4: let H ← H ∪ PT (si, ti)
5: for l = 1 to k − 1 do
6: while {si, ti} not l + 1-edge-connected in H do
7: find some violated l-cut Q between si and ti in H and its labeling w.r.t. H
8: feed (Q, labeling) to online hitting set algorithm; let its output be F ⊆ E
9: let H ← H ∪ (∪e∈FOe)

10: end while
11: end for
12: end for

Theorem 3.10. The algorithm OnlineAlg is has a competitive ratio of O(k log2 m)
for the k-EC-ND problem on backboned graphs.

Proof. The proof essentially reiterates the aforementioned facts. Consider the
case where τ terminals have arrived, and let OPT be an optimal offline network k-
edge-connecting the demand pairs {si, ti}i≤τ . Clearly, the total cost spent in step 4
in buying base tree paths is at most c(OPT). Moreover, since for each request we feed
the online algorithm, there is an element/edge e ∈ OPT that hits it (Theorem 3.3),
the optimal offline cost to hit all our requests is at most 2c(OPT). (The factor 2
arises because we buy Oe with cost at most 2c(e), even though OPT may only buy e.)
Hence, from the O(logM logN)-competitiveness of the online hitting set algorithm,
we get O(k log2 m)-competitiveness for our online algorithm.

D
ow

nl
oa

de
d 

03
/2

4/
13

 to
 1

28
.2

37
.1

44
.2

18
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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Algorithm 2 OnlineMetricAlg(D) for metric k-EC-ND.

1: let network S ← ∅.
2: for each terminal pair si that arrives do
3: let Ei denote the set of edges bought by online Alg when we give it demand

vertex si.
4: for each edge e = (u, v) ∈ Ei do
5: let S ← S ∪ {(u, x) | x ∈ Nu} ∪ {(v, x) | x ∈ Nv}
6: let S ← S ∪ min-cost matching between (Nu \Nv) and (Nv \Nu)
7: end for
8: end for

Combining this with Theorem 3.2 and with the discussion in section 1.2, we
immediately get the following.

Corollary 3.11 (result for general graphs). There is an Õ(k log2 m logn)-
competitive randomized online algorithm for the k-EC-ND problem on general graphs.

Corollary 3.12 (cost-shares from online algorithms). The (randomized) α-
competitive k-EC-ND algorithm gives α-strict cost-shares for k-EC-ND. Hence, there
is a randomized 2α-approximation for the rent-or-buy version of k-EC-ND, and also
for the two-stage stochastic version with independent arrivals.

4. The complete metric case. In this section, we assume that G is a com-
plete graph and that the edge-costs c(·) satisfy the triangle inequality, i.e., c(u, v) ≤
c(u,w)+c(w, v) for all u, v, w ∈ V . Under this assumption, we can improve on our re-
sults to give a deterministic O(log n)-competitive online algorithm and constant-factor
approximation algorithms for the stochastic and rent-or-buy cases of k-EC-ND.

4.1. Online k-EC-ND on metric graphs. In this section, we consider the
rooted version of the online k-EC-ND problem on complete metrics and give a deter-
ministic online O(log n)-competitive algorithm. Formally, we are given a complete
graph G with the costs on edges c(·) satisfying the triangle inequality, and a root
vertex r; a new demand vertex vi arrives on the ith day requiring k-edge-connectivity
to the root r. The goal is to buy a set of edges Ei on the ith day such that the
collection ∪ij=1Ej contains k-edge-disjoint paths from r to vj′ for all j′ ∈ [1, i], and

the cost c(∪ij=1Ej) is competitive with the cost of an optimal offline subgraph which
k-edge-connects the demand vertices v1, v2, . . . , vi with root r.

At a high level, our idea for the online algorithm is the following: when a new
terminal arrives, run the online algorithm for Steiner tree; for each edge (u, v) that
it buys, we buy a minimum-cost set of edges to k-edge-connect u and v. While such
an algorithm would indeed return a feasible solution to the k-EC-ND instance, it may
not always be O(log n)-competitive. However, what we can show is that it would be
O(log n)-competitive provided the online Steiner tree constructed has bounded degree
(i.e., every vertex has degree bounded by a constant).

We first describe our k-EC-ND algorithm assuming such a good online algorithm
for the Steiner forest problem, and then we show how we can modify the algorithm
of Imase and Waxman [29] to get the properties we desire. In the following, let
Alg denote the O(log n)-competitive online algorithm for Steiner tree which always
maintains a feasible solution of bounded degree, and let Nv represent the set of the k
nearest neighbors around any vertex v in G.

Theorem 4.1. For any set of demands D that arrive, the network SD output by
algorithm OnlineMetricAlg is feasible to k-edge-connecting the root with the demands
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in D and has cost c(SD) at most O(log n)OPTD, where OPTD is the cost of an optimal
offline subgraph which k-edge-connects vertices in D ∪ {r}.

Proof. We first show that the network SD is indeed a feasible solution. Let the
terminals in D be s1, s2, . . . , si, indexed by their arrival times. For any j ∈ [1, i], let
Fj = ∪jl=1El denote the Steiner subgraph bought by Alg in Step 3. Now consider some
demand vertex sj ∈ D. Since Alg is an online algorithm for Steiner tree, the subgraph
Fj contains a path from sj to r. Consider vertices u and v such that (u, v) ∈ Fj . Since
we connect u to Nu and v to Nv and add in a perfect matching between the vertices
of (Nu \Nv) and (Nv \Nu) in S, it is easy to see that u and v are k-edge-connected.
Therefore, from the transitivity of edge-connectivity, we see that any two vertices that
are connected in Fj are in fact k-edge-connected, and hence SD is a feasible solution.

To bound the cost, we use the following lower bounds on the cost of an optimal so-
lution (similar bounds were also used by Cheriyan and Vetta [15] for node-connectivity
SNDP):

• c(OPTD) ≥ 1
2

∑
v∈D c(v,Nv), and

• c(Fi) ≤ O(log n)
k c(OPTD).

Let us explain why these are true: In any feasible solution, each terminal has to
connect to at least k distinct neighbors. So if we add up the cost of some k outgoing
edges from each vertex, the sum should be at most 2c(OPTD) since we can include
each edge in OPTD at most twice. This gives us the first bound, since c(v,Nv) is at
most the sum of the costs on some k outgoing edges. For the second bound, consider
the optimal fractional solution to the LP relaxation for the rooted k-EC-ND problem
on demand set D; clearly the cost of the fractional solution is at most c(OPTD).
Now, if we scale the fractional solution by a factor of k, we obtain a feasible fractional
solution for the Steiner tree LP on demand set D∪{r} of cost at most 1

k c(OPTD). But
now because the LP for the minimum cost Steiner tree problem (which is a special
case of SNDP) has a constant integrality gap, we get that the cost of an optimal
offline Steiner tree feasible to the demand set D is at most 2

k c(OPTD). The second
inequality then follows as a consequence of the O(log n)-competitiveness of the online
Steiner tree algorithm Alg.

The total cost of the subgraph SD is then

c(SD) ≤
∑
u∈Fi

c(u,Nu) +
∑

(u,v)∈Fi

(c(u,Nu) + c(v,Nv) + k · c(u, v))

≤ O(1)
∑
u∈Fi

c(u,Nu) + k
∑

(u,v)∈Fi

c(u, v)

≤ O(log n) c(OPTD).

Here, the cost of the min-cost matching betweenNu andNv was bounded by c(u,Nu)+
c(v,Nv) + k · c(u, v) by using the triangle inequality of the metric space. Also, the
second inequality follows from the assumption that Alg always maintains a bounded-
degree online Steiner tree.

It now remains to show how to design the bounded-degree O(log n)-competitive
online algorithm for Steiner tree; we now consider this subproblem.

4.1.1. Online degree-bounded Steiner tree. Imase and Waxman [29] show
that the greedy algorithm (of each new demand connecting to its nearest vertex on
the current solution) is O(log n)-competitive for the online Steiner tree problem. The
only problem is that if several terminals share a common vertex with their nearest
neighbors, the common vertex would have a very high degree in the Steiner tree we
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1664 A. GUPTA, R. KRISHNASWAMY, AND R. RAVI

maintain. To avoid this, the simple idea we use is to maintain a chain for each vertex
v, and connect these terminals (which would have otherwise connected to the common
vertex v) to the end of the chain instead. Because the graph is a complete metric,
this would allow us to bound the cost of the chain by the cost of the star around
each vertex v, and hence let us maintain a low-cost degree-bounded solution. In the
following, let GreedySteiner denote the online greedy algorithm for the Steiner tree
problem.

Algorithm 3 LowDegAlg(D) for bounded-degree online Steiner tree.

1: let network S ← ∅; define a chain Cv ← ∅ for each v ∈ V .
2: for each terminal vertex si that arrives do
3: let (v, si) denote the edge bought by GreedySteiner when we give it demand

vertex si.
4: if Cv = ∅ then
5: set S ← S ∪ (v, si); add si to the chain Cv

6: else
7: let v′ be the tail of the chain Cv; set S ← S ∪ (v′, si) and add si to the end

of the chain Cv.
8: end if
9: end for

Theorem 4.2. The network SD output by algorithm LowDegAlg is feasible
to the online Steiner tree problem on demand set D and has cost c(SD) at most
O(1)c(GreedySteiner(D)). Furthermore, the degree of each vertex in SD is at most 3.

Proof. We first show that the algorithm outputs a feasible solution. Consider a
newly arrived vertex si, and let (v, si) denote the edge bought by the online algorithm
GreedySteiner (recall that the greedy online Steiner tree algorithm buys only the edge
to the nearest neighbor on the current solution). If the chain Cv is empty when
si arrives, our online algorithm LowDegAlg also buys the edge (v, si) and therefore
connects si to the root r (since v was already connected to the root). If on the other
hand Cv was nonempty, then let Cv ≡ {v1, v2, . . . , vt}, with the vertices ordered by
time of addition to the chain. Then, by the way LowDegAlg adds edges within a
chain (in step 7), we are guaranteed that the edges (v, v1), (v1, v2), . . . , (vt−1, vt) are
all present in the network SD maintained. And since the edge (vt, si) is also added to
SD when si is added to the end of the chain Cv, we see that si is connected to v, and
therefore to r in SD. This proves the feasibility.

To bound the cost, consider a vertex v, and let the current chain be Cv ≡
{v1, v2, . . . , vt}. Now, by the triangle inequality, the total cost of all the edges
(v, v1), (v1, v2), . . . , (vt−1, vt) can be bounded by 2

∑t
i=1 c(v, vi), which is precisely

twice the total cost incurred by GreedySteiner when connecting v1, v2, . . . , vt to the
vertex v. Therefore, the total cost of SD can be bounded by 2c(GreedySteiner(D)).

It is also easy to see that the degree of each vertex in SD is at most 3. To see why,
let us consider a vertex v and look at when edges incident at v are added in SD. There
are two reasons why such edges are added: (i) an edge (v, v′) is added when v′ arrives to
the chain that v is present in, and (ii) v can have a chain of its own. In the former case,
we know that v belongs to the chain of only one other vertex v′ (the vertex to which
it was connected in GreedySteiner when it arrived), and therefore v can have at most
2 incident edges by being present in Cv′ . In the latter case, since it is the head, it can
have at most one edge incident on it (with the vertex which first entered v’s chain).
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Therefore, the network SD constructed is feasible to the online Steiner tree, has
a cost competitive with GreedySteiner, and the degree of each vertex is bounded by
3.

4.2. Stochastic and rent-or-buy k-EC-ND on metric graphs. We now con-
sider the stochastic and rent-or-buy versions of k-EC-ND on complete metrics. We give
an O(1)-approximation algorithm for metric-k-EC-ND and then show that it admits
O(1)-strict cost-shares (see section 1.2 for the definition), implying constant approx-
imations for the metric stochastic and rent-or-buy versions. While better algorithms
are known for k-EC-ND (and even the more general k-vertex-connectivity problem
[15]), we present an approximation algorithm which can be shown to admit good
cost-shares.

4.2.1. Overview. We first give a brief overview of how the framework of boosted
sampling [28] can be applied to obtain approximation algorithms for stochastic (and
rent-or-buy) versions of network design problems. Given an instance of a two-stage
stochastic network design problem (where different terminal pairs have independent
arrival probability distributions), the boosted sampling framework proceeds as follows:

(i) Sample each terminal pair according to its probability of being present (scaled
by a factor of σ that depends on the inflation parameter).

(ii) In the first stage, build an approximate Steiner forest S connecting the sam-
pled terminal pairs (using a suitable approximation algorithm Alg).

(iii) In the second phase, if a terminal pair {si, ti} is not connected by S, connect
the end vertices si and ti by a shortest augmenting path w.r.t. S.

To prove that this algorithm indeed produces a constant approximation w.r.t. the
optimal strategy, the main technical tool used is that of strict cost-sharing schemes
(refer to section 1.2 for a formal definition). Informally, these cost-shares (which are
coupled with the algorithm Alg) are designed to make sure that the augmenting cost
is small over all possible terminal pairs (which is useful in bounding the second stage
cost).

For the Steiner forest problem, Gupta et al. [28] designed a 4-approximation algo-
rithm that admits O(1)-strict cost-sharing schemes, thereby givingO(1)-approximation
algorithms for the stochastic (and rent-or-buy) versions. Subsequently, Fleischer et al.
[22] showed that the primal-dual Agrawal–Klein–Ravi (AKR) algorithm for Steiner
forest admits O(1)-strict cost-shares via an elegant proof associating witness terminals
for edges bought by the algorithm.

Following our approach for the online k-EC-ND algorithm for metric instances
in section 4.1, we extend the AKR algorithm to get an approximation algorithm for
k-EC-ND that admits O(1)-strict cost-shares. Just like the issue that arose for the
online algorithm, the main hurdle in directly extending the AKR algorithm (and the
cost-sharing scheme) is in modifying the AKR solution to ensure that the degree of
any vertex is small. While this as such is trivial (we can perform an Euler tour of the
AKR solution), the crux of the argument is to show that this modified algorithm also
admits O(1)-strict cost-shares. In the following section, we first formally define the
k-EC-ND approximation algorithm and then explain our cost-sharing mechanism.

4.2.2. Constant-factor approximation for metric k-EC-ND. Consider an
instance G = (V,E) of k-EC-ND with terminal pairs in D; let D represent the set
of all terminals, i.e., D = ∪{si,ti}∈D{si, ti}. Call a set S ⊆ V valid if there exists a
demand {si, ti} ∈ D such that |S ∩{si, ti}| = 1. Define ∂S to be the set of edges with
one endpoint in S, and x(E′) =

∑
e∈E′ xe. Finally, let Nv represent the set of the k
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nearest neighbors of vertex v in G. The LP relaxation of the k-EC-ND problem is the
following:

(LPk) minimize
∑
e∈E

cexe

subject to (1) x(∂S) ≥ k ∀ valid S ⊆ V,
(2) 0 ≤ xe ≤ 1 ∀ e ∈ E.

Let OPT and OPTLP be optimal integral and fractional solutions to the given instance;
clearly c(OPTLP) ≤ c(OPT). Our algorithm follows the ideas used in the online
algorithm, with the following changes: instead of running the online algorithm for
Steiner tree, we run the AKR algorithm [2] for Steiner forest to 1-edge-connect the
demand pairs in the first step. The AKR algorithm is a primal-dual 2-approximation
algorithm for the Steiner forest problem—when given a set of terminal pairs D, it
outputs a Steiner forest of cost at most twice the cost of an optimal fractional solution
to the standard LP relaxation of Steiner forest (which is just the above LP relaxation
LPk with k = 1).

Getting back to our algorithm, in our second step, in order to get a low-degree
Steiner forest, we simply take an Euler tour of the AKR solution. Finally, we k-edge-
connect u and v (using nearby neighbors Nu and Nv) for any edge (u, v) that the AKR
algorithm buys, just like in the online algorithm.

Algorithm 4 MetricAlg(D) for metric k-EC-ND.

1: let network S ← ∅. Run the AKR algorithm on D to get forest F .
2: let F̃ ← subgraph obtained by taking Euler tour of each component of F .
3: for each edge e = (u, v) in F̃ do
4: let S ← S ∪ {(u, x) | x ∈ Nu} ∪ {(v, x) | x ∈ Nv}
5: let S ← S ∪ min-cost matching between Nu and Nv

6: end for

Theorem 4.3. The network S output by algorithm MetricAlg k-edge-connects the
terminal pairs in D and has cost c(S) ≤ 10 c(OPT). Furthermore, if (u, v) ∈ F , then
u and v are k-edge-connected in S.

Proof. The proof is very similar to that of Theorem 4.1. We begin by showing
that network S is indeed a feasible solution. Consider a terminal pair {s, t} ∈ D:
since F is a feasible Steiner forest solution for D, we know that s and t belong to the
same tree in F and, therefore, to the same cycle in F̃ . We now show that any pair
of vertices that lie on a cycle in F̃ is k-edge-connected in S. Consider vertices u and
v such that (u, v) ∈ F̃ . Since we connect u to Nu and v to Nv and add in a perfect
matching between the vertices of Nu \ Nv and Nv \ Nu in S, it is easy to see that
u and v are k-edge-connected. By transitivity of edge-connectivity, any two vertices
on a cycle in F̃ are k-edge-connected. This proves that S is a feasible solution. To
bound the cost, we again use the following lower bounds (almost identical to the ones
used in the online algorithm):

• c(OPT) ≥ 1
2

∑
v∈D c(v,Nv), and

• c(F̃ ) ≤ 4
k c(OPT).

For completeness, let us explain why these are true: The first bound has already
been established in the proof for the online algorithm in the earlier section (proof of
Theorem 4.1). For the second bound, consider the optimal fractional solution to the
LP relaxation for the rooted k-EC-ND problem on demand set D; clearly the cost of
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the fractional solution is at most c(OPTD). Now, if we scale the fractional solution
by a factor of k, we obtain a feasible fractional solution for the Steiner forest LP on
demand set D ∪ {r} of cost at most 1

k c(OPTD). But now because the AKR for the
minimum-cost Steiner forest problem has a constant approximation factor (w.r.t. the
optimal LP solution), we get that the cost of the solution F is at most 2

k c(OPTD).

Making an Euler tour of F to get F̃ only increases the cost by a factor of at most 2.
The total cost of S is then

c(S) ≤
∑
u∈ ˜F

c(u,Nu) +
∑

(u,v)∈ ˜F

(c(u,Nu) + c(v,Nv) + k · c(u, v))

≤ 3
∑
u∈ ˜F

c(u,Nu) + k
∑

(u,v)∈ ˜F

c(u, v)

≤ 10 c(OPT).

In the second step, we used the fact that each vertex has degree 2 in F̃ , and there-
fore the term c(u,Nu) appears at most twice in

∑
(u,v)∈ ˜F (c(u,Nu) + c(v,Nv) +

k · c(u, v)).
4.2.3. Getting strict cost-shares. We now show how we can get strict cost-

shares for the above algorithm. As the basis for our cost-sharing scheme, we use the
cost-shares associated with the AKR algorithm, as given by Fleischer et al. [22]. We
refer to their cost-sharing scheme as the FKLS cost-shares, or the FKLS analysis.

Let FD denote the AKR solution on demand set D. The FKLS analysis defines
the cost-sharing functions ξ′ : E × V → R and ξ : D → R in the following manner:

(i) Each edge e ∈ FD is assigned two witness terminals w1 and w2 such that
ξ′(e, w1) = ξ′(e, w2) = ce/4. The function ξ′(e, v) is set to 0 for all v ∈
V \ {w1, w2}.

(ii) For any vertex u and an edge e not in FD, ξ′(e, u) is set to 0.
(iii) The total cost-share of a terminal pair {si, ti} is then defined as ξ({si, ti}) =∑

e∈FD (ξ′(e, si) + ξ′(e, ti)).
In further notation, for any edge e ∈ FD, let τe denote the time at which e was bought
by the AKR algorithm; also denote the time at which {si, ti} gets connected in FD

by τi. The FKLS analysis shows that the witnesses satisfy the following properties:
1. Consider a demand {si, ti} and any edge e ∈ FD bought at time τe ≤ τi. If

neither si nor ti is a witness for e, then e is also bought in the run of AKR
(D \ {si, ti}). In particular, for any edge e on the unique path connecting si
and ti in FD, if si and ti don’t witness e, then e ∈ FD\{si,ti}.

2.
∑|D|

i=1 ξ({si, ti}) ≤ 2
kc(OPTLP(D)). Further, the solution obtained by running

AKR on D \ {si, ti} can be augmented with edges of cost O(1)ξ({si, ti}) to
get a subgraph which connects si and ti. In fact, these “augmenting” edges
are those which si or ti witness.

Given that the 1-edge-connectivity problem has nice witness properties, the most
natural thing to try would be to define cost-shares for k-edge-connectivity in the
following way: for any edge e = (u, v) that si or ti witness, the cost-share for {si, ti}
includes the cost of k-edge-connecting u and v (at most 2 c(u,Nu) + 2 c(v,Nv) +
k c(u, v)). When defined in this form, although we would be able to augment a solution
of MetricAlg(D \ {si, ti}) to k-edge-connect si-ti by paying O(1) × ξk({si, ti}), we

cannot directly bound
∑|D|

i=1 ξ
k({si, ti}), since the quantity c(u,Nu) could be counted

several times. However, this can happen only if the degree of u in the approximate
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solution is high (just like in the online algorithm). We therefore look at transforming
the AKR solution into a low-degree one while preserving the witness properties. (An
Euler tour would get us the low-degree tree, but it would not satisfy the good witness
properties we desire.)

Let FD be the forest obtained by running the AKR algorithm on demand set D.
We apply the following modification step for each tree in FD. Consider a tree TD, and
arbitrarily root it at r. We now perform a reverse breadth-first (bottom up) traversal
and create a modified solution Fmod (which is set to ∅ initially).

Modification. Suppose we are at vertex u in our traversal: Nothing is done if
it is a leaf. If it is an internal node having degree 2, then the edge between u and its
child is included in Fmod. If it has degree more than 2, then we perform the following
local modification (u is said to be the main vertex being altered in the step, and the
edges being altered are the children edges incident at u):

Let v1, v2, . . . , vp be an ordering (see Figure 4.1) of the child vertices of u ordered
such that τ(u,v1) ≤ τ(u,v2) ≤ · · · ≤ τ(u,vp). We anchor the edge (u, v1) and add it to

Fmod. For every other edge (u, vi), we add the edge (vi, vi−1) to Fmod. The witnesses
of (u, v1) remain the same as those assigned by the FKLS algorithm, and the witnesses
of the edge (vi, vi−1) in Fmod are the FKLS witnesses of (u, vi) in FD. Note that the
degree of u in Fmod is reduced to 2, whereas the degree of u’s child vertices (which
were 2 before this step) are increased by at most 1. After this step, u would never be
the main vertex being altered in any step, meaning that its degree will be at most 3
in Fmod.

u

v1 v2 v3 v1 v2 v3vp vp

F Fmod

u

Fig. 4.1. A step in the modification: u is the main vertex being altered.

This local modification is performed in a reverse breadth-first fashion. It is easy
to see that we obtain a forest whose cost is at most twice the cost of the AKR solution.
Further, each vertex has degree at most 3 and each edge has at most 2 witnesses.

Lemma 4.4. The forest Fmod created by the above modification is such that
the cost c(Fmod) is at most 2c(FD), and any vertex has degree at most 3 in Fmod.
Furthermore, there exists witness definitions such that the following properties hold:

(i) If Wi is the set of edges in Fmod for which either si or ti is a witness, then
for any edge (u, v) in the unique path connecting si and ti in FD, u and
v remain connected in the subgraph Wi ∪ FD\{si,ti}, where FD\{si,ti} is the
forest returned by AKR(D \ {si, ti}).

(ii) At most 2 terminals witness any edge in Fmod.
Proof. The cost and degree bound follow directly as a consequence of the way

our modification algorithm worked. We now prove the witness properties by showing
that u and v are in fact connected by a path comprising a sequence of edges in Wi

followed by an edge which belongs to FD\{si,ti}. Consider the stage in the alteration
procedure when (u, v) is being altered. One of u or v has to be the main node being
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altered. Without loss of generality, we assume that u is the vertex being altered. Two
cases are to be considered.

Case 1. (u, v) is not witnessed by {si, ti}: Since (u, v) lies on the unique si-ti
path in FD, we know that τ(u,v) ≤ τi. Therefore, by the first property of the FKLS
analysis, this edge will be bought by the AKR algorithm when run on D\{si, ti}, and
therefore u and v are connected in FD\{si,ti} ⊆Wi ∪ FD\{si,ti}.

Case 2. (u, v) is witnessed by one of {si, ti}. Recall that we had assumed that u
is the main vertex being altered. In the case that (u, v) was the edge being anchored,
we know that (u, v) is present in the modified tree Fmod and has the same witnesses
as before, meaning (u, v) ∈ Wi ⊆ Wi ∪ FD\{si,ti}. If (u, v) was not the edge being
anchored, let v1, v2, . . . , vp be the ordering of the child vertices of u chosen by the
alteration procedure. Note that v ∈ {v2, v3, . . . , vp}. Without loss of generality, let
v be vq. Also, let r be the largest index such that 1 ≤ r < q and that (u, vr) is not
witnessed by either si or ti. There are two cases to be considered:

• Such an r does not exist: In this case, it means that each of the edges (u, v1),
(u, v2), . . . , (u, vq) are witnessed by si or ti, and therefore (u, v1), (v1, v2),
. . . , (vq−1, vq) all belong to Wi, meaning that u and v are connected in Wi ∪
FD\{si,ti}.
• Such an r exists: In this case, we know that each of the edges (u, vr+1), . . . ,
(u, vq) is witnessed by si or ti—this means that each of the edges (vr, vr+1), . . . ,
(vq−1, vq) is in Wi. Further, by the way we ordered the children of u, it is
clear that τ(u,vr) ≤ τ(u,vq) ≤ τi. The latter inequality is because of the fact
that (u, vq) is on the unique path connecting si and ti, and therefore cannot
be bought after si and ti are connected. Hence, by property 1 of the FKLS
algorithm, we know that (u, vr) is bought in the run of AKR(D \ {si, ti}).
Therefore, u and v are connected in Wi ∪ FD\{si,ti}.

This proves the desired witness properties, and hence completes the proof.
We are now ready to define the O(1)-strict cost-shares for this problem.

Cost-shares. For each terminal pair {si, ti}, we set its cost-share to be

ξk({si, ti}) =
∑

(u,v)∈Wi

(2 c(u,Nu) + 2 c(v,Nv) + k c(u, v)).

Recall that Wi is the set of edges which either si or ti witness in Fmod. Since each
vertex in Fmod has degree at most 3 and each edge e has at most 2 witnesses, we get∑

i ξ
k({si, ti}) ≤

∑
u∈D 12 c(u,Nu) + 2k

∑
e∈Fmod c(u, v) ≤ 32 c(OPT(D)). To show

that these cost-shares are O(1)-strict, we also need to give an algorithm which can
augment edges of cost ξk({si, ti}) to a subgraph returned by MetricAlg(D\{si, ti}) in
order to k-edge-connect si and ti.

Augmentation algorithm. Augment ({si, ti}): For all (u, v) ∈Wi, buy the set
of edges of minimum cost to k-edge-connect u and v.

Analysis. From Lemma 4.4, we know that if an edge (u, v) lies on the unique
path connecting si and ti in FD, then u and v are connected in Wi ∪FD\{si,ti}. Now
consider any edge (u′, v′) ∈ Wi∪FD\{si,ti}. If (u′, v′) is in Wi, then the augmentation
algorithm would k-edge-connect the vertices u′ and v′. If it is in FD\{si,ti}, then from
Theorem 4.3, MetricAlg(D\{si, ti}) would k-edge-connect u′ and v′. Hence, each edge
(u′, v′) on the u-v path contained in Wi ∪FD\{si,ti} is such that u′ and v′ are k-edge-
connected in Augment({si, ti}) ∪MetricAlg(D \ {si, ti}). Therefore, from transitivity
of edge-connectivity, we get that si and ti are k-edge-connected in Augment({si, ti})∪
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MetricAlg(D \ {si, ti}). This and the fact that the cost of the augmenting edges to
k-edge-connect si-ti is at most ξk({si, ti}) establish the O(1)-strict cost-shares for
Algorithm MetricAlg. The following theorem therefore follows.

Theorem 4.5. Algorithm MetricAlg permits O(1)-strict cost-shares for k-EC-ND,
implying O(1) approximations for metric rent-or-buy and two-stage stochastic (with
independent arrivals) k-EC-ND.

Appendix. Lower bound. In this section, we show that if D is the set of
demands that have arrived up to a certain point, then there are instances where the
competitive ratio of any online algorithm is Ω(|D|) for |D| = O(log n), even for the
rooted 2-edge connectivity problem. Consider the graph given in Figure A.1. There
is a binary tree of depth L, and all the leaves are connected to the root with distinct
“back” edges. All edges in this graph have unit cost. For ease of exposition, we will
assume that the edges bought when seeing any demand are a minimal set of edges to
achieve the connectivity requirement for that demand; any edges not in the minimal
set are considered to be bought the first time they are actually used.

r

L

...

level 2

s1

level 3

s2

s3

Fig. A.1. A lower bound of Ω(L).

All the requests will be vertices that need 2-connectivity to the root r. The first
request is level-1 vertex s1; one feasible solution is to buy the edge s1-r, and the second
path is some path from s1 to a leaf and back to r using a “back” edge. However, this
is not the only minimal solution possible: perhaps the algorithm can buy two disjoint
paths from s1 to two leaves which use their back edges to connect to r. In any case,
there will be at least one vertex on level 3 that is not yet connected to the root. We
then give any such vertex on level 3 as the next request. The third request will be
some vertex on level 5 that is a descendant of the second request, and which is not yet
connected to the root; in general, the next request is always chosen to be a descendant
of the previous demands. This ensures that there is always a feasible solution of cost
L + 1 for all the demands seen thus far, whereas the online algorithm pays at least
Ω(L) for the first Ω(L) requests, giving us the claimed lower bound.

Note that this construction also works against oblivious adversaries if we choose
a random descendant at level (2i− 1) as the ith request.

Acknowledgments. We would like to thank Chandra Chekuri, Amit Kumar,
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