
PRIMAL-DUAL MEETS LOCAL SEARCH: APPROXIMATINGMST'S WITH NONUNIFORM DEGREE BOUNDSJ. K�ONEMANN� AND R. RAVI �Abstra
t. We present a new bi
riteria approximation algorithm for the degree-bounded minimum-
ost spanning tree problem: Given an undire
ted graph with nonnegative edge weights and a degreebound B �nd a spanning tree of maximum node-degree B and minimum total edge-
ost. Our algo-rithm outputs a tree of maximum degree at most a 
onstant times B and total edge-
ost at most a
onstant times that of a minimum-
ost degree-B-bounded spanning tree.While our new algorithm is based on ideas from Lagrangean relaxation as is our previous work [8℄,it does not rely on 
omputing a solution to a linear program. Instead it uses a repeated appli
ation ofKruskal's MST algorithm interleaved with a 
ombinatorial update of approximate Lagrangean node-multipliers maintained by the algorithm. These updates 
ause subsequent repetitions of the spanningtree algorithm to run for longer and longer times (hen
e to "age" more and more), leading to overallprogress and a proof of the performan
e guarantee. A se
ond useful feature of our algorithm is thatit 
an handle non-uniform degree bounds on the nodes: Given distin
t bounds Bv for every nodev 2 V , the output tree has degree at most O(Bv + log jV j) for every v 2 V . As before, the 
ost ofthe tree is at most a 
onstant times that of a minimum-
ost tree obeying the degree bounds.Key words. approximation algorithms, network algorithms, bi
riteria approximation, spanningtrees, degree-bounded spanning trees, Lagrangean relaxationAMS subje
t 
lassi�
ations. 68W25, 05C05, 05C85, 68R10, 90C291. Introdu
tion.1.1. Formulation. In this paper, we address a natural non-uniform budget ver-sion of the degree-bounded minimum-
ost spanning tree problem (nBMST). Given anundire
ted graph G = (V;E), a 
ost fun
tion 
 : E ! IR+ and positive integersfBvgv2V all greater than 1, the goal is to �nd a spanning tree T of minimum total
ost su
h that for all verti
es v 2 V the degree of v in T is at most Bv .1.2. Previous work and our result. In an n-node graph, Ravi et al. [10, 11℄showed how to 
ompute a spanning tree T of degree O(Bv logn) for all v 2 V and total
ost at most O(log n) opt where opt is the minimum 
ost of any tree in whi
h thedegree of node v is bounded by Bv for all v 2 V . The authors generalized their ideasto Steiner trees, generalized Steiner forests and the node-weighted 
ase. Subsequently,K�onemann and Ravi [7, 8℄ improved the results on the (edge-weighted) spanning treeversion of the problem with uniform degree-bounds (i.e., Bv = B for all v). The maintheorem from [8℄ is as follows:Theorem 1.1 (see [8℄). There is an approximation algorithm that, given a graphG = (V;E), a nonnegative 
ost fun
tion 
 : E ! IR+, a 
onstant B � 2 and aparameter ! > 1, 
omputes a spanning tree T su
h that1. �(T ) � !!�1 � bB + logb n for any arbitrary 
onstant b > 1, and2. 
(T ) < ! � optwhere b > 1 is an arbitrary 
onstant.The 
ontributions of this paper are two-fold: First, we present improved approx-imation algorithms for the minimum-
ost degree-bounded spanning tree problem inthe presen
e of non-uniform degree bounds. Se
ond, our algorithm is dire
t in the� GSIA, Carnegie Mellon University, Pittsburgh PA 15213. E-mail:fjo
hen,ravig�
mu.edu. Thismaterial is based upon work supported by the National S
ien
e Foundation under Grant No. 0105548.1



2 J. K�ONEMANN AND R. RAVIsense that we do not solve linear programs. The algorithm in [8℄ uses Lagrangean re-laxation and thus needs to solve a linear program. The analysis in [8℄ relies 
ru
iallyon the fa
t that we 
ompute an exa
t solution to this LP.On the other hand, our new algorithm integrates elements from the primal-dualmethod for approximation algorithms for network design problems with lo
al sear
hmethods for minimum-degree network problems [4, 12℄. The algorithm goes througha series of spanning trees and improves the maximum deviation of any vertex degreefrom its respe
tive degree bound 
ontinuously. A pra
ti
al 
onsequen
e of this isthat we 
an terminate the algorithm at any point in time and still obtain a spanningtree of the input graph (whose node-degrees, of 
ourse, may not meet the worst-
aseguarantees we prove).Theorem 1.2. There is a primal-dual approximation algorithm that, given agraph G = (V;E), a nonnegative 
ost fun
tion 
 : E ! IR+, integers Bv > 1 for allv 2 V and a parameter ! > 1 
omputes a tree T su
h that1. degT (v) � !!�1 � b � Bv + 2 � logb n for all v 2 V , and2. 
(T ) < ! � optwhere b > 1 is an arbitrary 
onstant. The running time is O(jV j6 log jV j).When B = Bv for all v 2 V , we 
an repla
e the additive term 2 logb n in thedegree guarantee of Theorem 1.2 by logb n mat
hing Theorem 1.1 
onstru
tively.The paper is organized as follows: First, we review the primal-dual interpretationof the well-known algorithm for minimum-
ost spanning trees by Kruskal [9℄. Subse-quently, we show how to use this algorithm for the nBMST problem and present ananalysis of performan
e guarantee and running time of our method.2. A primal-dual algorithm to 
ompute MST's. In this se
tion we reviewKruskal's minimum-
ost spanning tree algorithm. More spe
i�
ally, we dis
uss aprimal-dual interpretation of this method that follows from [2℄. We start by givinga linear programming formulation of the 
onvex hull of in
iden
e ve
tors of spanningtrees.2.1. The spanning tree polyhedron. In the following, we formulate the min-imum-
ost spanning tree problem as an integer program where we asso
iate a 0; 1-variable xe with every edge e 2 E. In a solution x, the value of xe is one if e isin
luded in the spanning tree 
orresponding to x and 0 otherwise. Our formulationrelies on a 
omplete formulation of the 
onvex hull of in
iden
e ve
tors of spanningtrees (denoted by SPG ) given by Chopra [2℄.Chopra's formulation uses the notion of a feasible partition of vertex set V . Afeasible partition of V is a set � = fV1; : : : ; Vkg su
h that the Vi are pairwise disjointsubsets of V . Moreover, V = V1 [ : : : [ Vk and the indu
ed subgraphs G[Vi℄ are
onne
ted. Let G� denote the (multi-) graph that has one vertex for ea
h Vi andedge (Vi; Vj) o

urs with multipli
ity jf(vi; vj) : vi 2 Vi; vj 2 Vjgj. In other words, G�results from G by 
ontra
ting ea
h of the Vi to a single node. De�ne the rank r(�)of � as the number of nodes of G� and let � be the set of all feasible partitions of V .Chopra then shows thatSPG = fx 2 IRm : Xe2E(G�)xe � r(�) � 1 8� 2 �g:We now let Æ(v) denote the set of edges e 2 E that are in
ident to node v and obtainan integer programming formulation for our problem:



APPROXIMATION ALGORITHMS FOR DEGREE-BOUNDED MST 3min Xe2E 
exe(IP) s.t Xe2E[G�℄xe � r(�) � 1 8� 2 �x(Æ(v)) � Bv 8v 2 V(2.1) x integerThe dual of the linear programming relaxation (LP) of (IP) is given bymax X�2�(r(�) � 1) � y� �Xv2V �vBv(D) s.t X�:e2E[G�℄ y� � 
e + �u + �v 8e = uv 2 E(2.2) y; � � 0We also let (IP-SP) denote (IP) without 
onstraints of type (2.1). Let the LP relax-ation be denoted by (LP-SP) and let its dual be (D-SP).2.2. A primal-dual interpretation of Kruskal's MST algorithm. Kruskal'salgorithm 
an be viewed as a 
ontinuous pro
ess over time: We start with an emptytree at time 0 and add edges as we go along. The algorithm terminates at time t� witha spanning tree of the input graph G. In this se
tion we show that Kruskal's method
an be interpreted as a primal-dual algorithm (see also [6℄). For that reason, at anytime 0 � t � t� we keep a pair (xt; yt), where xt is a partial (possibly infeasible)primal solution for (LP-SP) and yt is a feasible dual solution for (D-SP). Initially, welet xe;0 = 0 for all e 2 E and y�;0 = 0 for all � 2 �.Let Et be the forest 
orresponding to partial solution xt, i.e. Et = fe 2 E :xe;t = 1g. We then denote by �t the partition indu
ed by the 
onne
ted 
omponentsof G[Et℄. At time t, the algorithm then in
reases y�t until a 
onstraint of type (2.2)for edge e 2 E nEt be
omes tight. Assume that this happens at time t0 > t. The dualupdate is y�t;t0 = t0 � t:We then in
lude e into our solution, i.e. we set xe;t0 = 1. If more than one edgebe
omes tight at time t0, we 
an pro
ess these events in any arbitrary order. Thus,note that we 
an pi
k any su
h tight edge �rst in our solution.Observe that the above primal-dual algorithm is indeed Kruskal's algorithm: Ifthe algorithm adds an edge e at time t then e is the minimum-
ost edge 
onne
tingtwo 
onne
ted 
omponents of G[Et℄. In the rest of this paper we use MST to refer toKruskal's minimum-
ost spanning tree algorithm.The proof of the following lemma is folklore. We supply it for the sake of 
om-pleteness.Lemma 2.1. At time t�, Algorithm MST �nishes with a pair (xt� ; yt�) of primaland dual feasible solutions to (IP-SP) and (D-SP), respe
tively, su
h thatXe2E 
exe;t� = X�2�(r(�) � 1) � y�;t�



4 J. K�ONEMANN AND R. RAVIProof. Noti
e, that for all edges e 2 Et� we must have 
e =P�:e2E[G�℄ y�;t� andhen
e, we 
an express the 
ost of the �nal tree as follows:
(Et�) = Xe2Et� X�:e2E[G�℄ y�;t� = X�2� jEt� \E[G� ℄j � y�;t� :By 
onstru
tion Et� is a tree and we must have that the set Et�\E[G�℄ has 
ardinalityexa
tly r(�) � 1 for all � 2 � with y�;t� > 0. We obtain that Pe2E 
exe;t� =P�2�(r(�) � 1) � y�;t� and this �nishes the proof of the lemma.3. Minimum-
ost degree-bounded spanning trees. In this se
tion, we pro-pose a modi�
ation of the above algorithm for approximating degree-bounded span-ning trees of low total 
ost (for suitably weakened degree bounds). Our algorithmgoes through a sequen
e of spanning trees E0; : : : ; Et and asso
iated pairs of pri-mal (infeasible) and dual feasible solutions xi, (yi; �i) for 0 � i � t. The idea isto redu
e the degree of nodes v 2 V whose degree is substantially higher than theirasso
iated bound Bv , as we pro
eed through this sequen
e, while keeping the 
ost ofthe asso
iated primal solution (tree) bounded with respe
t to the 
orresponding dualsolution.To begin, our algorithm �rst 
omputes a minimum-
ost spanning tree using theAlgorithm MST. This yields a feasible primal solution x0 for (LP-SP) and a feasibledual solution y0 for (D-SP). Noti
e that y0 also indu
es a feasible solution for (D) byletting �0v = 0 for all v 2 V while x0 potentially violates 
onstraints of type (2.1).We introdu
e the notion of normalized degree of a node v in a tree T and denoteit by(3.1) ndegT (v) = maxf0; degT (v)� � � Bvgwhere � > 0 is a 
onstant to be spe
i�ed later. Our algorithm su

essively 
omputespairs of spanning trees and asso
iated dual solutions to (D), i.e.(x1; fy1; �1g); (x2; fy2; �2g); : : : ; (xt; fyt; �tg):From one su
h pair to the next, we try to redu
e the degree of nodes of high normalizeddegree. Spe
i�
ally, our algorithm runs as long as there is a node in the 
urrent treewith ndeg(v) � 2 logb(n) for some 
onstant b > 1.Our algorithm keeps a 
ost e
ie with ea
h edge e 2 E and for ea
h iteration 1 �i � t. xi 
orresponds to a minimum-
ost spanning tree Ei for 
ost fun
tion e
i and yiis the asso
iated dual pa
king. Throughout the algorithm we maintain that(3.2) 
uv � e
iuv � 
uv + �iu + �ivfor all uv 2 E. Hen
e, (yi; �i) is a feasible solution for (D).Let �i be the maximum normalized degree of any node in the tree Ei. The
entral pie
e of our algorithm is a re
ompute step where we raise the � values of a
arefully 
hosen set Sd of nodes with high normalized degree. This introdu
es sla
kin many of the 
onstraints of type (2.2).We now in
rease the e
-
ost of edges that are in
ident to nodes in Sd (while main-taining (3.2)) and rerun MST on G using the new edge-
osts. The hope is that thein
reased e
-
ost of edges in
ident to nodes of high normalized degree leads MST to useedges that are in
ident to nodes of lower normalized degree in their pla
e. We are



APPROXIMATION ALGORITHMS FOR DEGREE-BOUNDED MST 5able to show that the number of re
ompute steps is polynomial, by arguing that wemake substantial progress in the normalized degree sequen
e of all nodes.As mentioned, ea
h re
ompute step takes a pair of primal infeasible and dualfeasible solutions (xi; (yi; �i)) and 
omputes a new pair of primal (infeasible) anddual feasible solutions (xi+1; (yi+1; �i+1)). In the following we use ndegi(v) as a shortfor ndegEi(v). We then adapt the notation from [3, 4℄ and letSid = fv 2 V : ndegi(v) � dgbe the set of all nodes whose normalized degree is at least d in the ith solution.Algorithm 1 The algorithm for the nBMST problem attempts to redu
e the maxi-mum normalized degree of any node in a given spanning tree.1: Given: primal feasible solution x0 to (LP-SP) and dual feasible solution y0 to(D-SP)2: �0v  0;8v 2 V ;e
0e  
e;8e 2 E3: i 04: while �i > 2 logb(n) do5: Choose di in f�i � 2 logb(n) + 1; : : : ;�ig s.t. Pv2Sidi�1 Bv � b �Pv2Sidi Bv6: Choose �i > 07: �i+1v  �iv + �i for all v 2 Sidi�1 and �i+1v  �iv otherwise8: e
i+1(e) e
i(e)+ �i if either e 2 Ei and e\Sidi 6= ; or e 62 Ei and e\Sidi�1 6= ;9: (xi+1; yi+1) MST(G;e
i+1)10: i i+ 111: end whileA detailed des
ription of the pro
edure is given in Algorithm 1. In step 5 ofAlgorithm 1, we 
hoose a suitable set of nodes whose �-values we in
rease. A simpleargument in [3℄ 
an be extended to guarantee the feasibility of the 
hoi
e in Step 5 ofthe algorithm.Lemma 3.1. There is a di 2 f�i � 2 logb(n) + 1; : : : ;�ig su
h thatXv2Sidi�1 Bv � b � Xv2Sidi Bvfor a given 
onstant b > 1.Proof. Suppose for a 
ontradi
tion that for all di 2 f�i � 2 logb(n) + 1; : : : ;�ig,we have Xv2Sidi�1Bv > b � Xv2Sidi Bv:Note that sin
e we may assume Bv � (n�1) for all verti
es, we must havePv2V Bv �n(n� 1). However, sin
e Pv2Si�i Bv � 1, we have in this 
ase thatXv2Si�i�2 logb(n)Bv � b2 logb(n) = n2a 
ontradi
tion.



6 J. K�ONEMANN AND R. RAVIWhen Bv = B for all v 2 V , the 2 logb n term in the above lemma 
an beimproved to logn using the previous arguments in [3℄. This in turn leads to the slightimprovement of our results 
laimed right after the statement of Theorem 1.2.Step 6 of Algorithm 1 hides the details of 
hoosing an appropriate �i by whi
hedges in the 
urrent tree that are in
ident to nodes of normalized degree at least diare lengthened. Our 
hoi
e of �i and the following update of the e
 
osts of the edgesin G will ensure that Kruskal's algorithm 
omputes a new tree in whi
h at least oneedge ei 2 Ei that is in
ident to a node of Sidi is repla
ed by an edge ei 62 Ei that isin
ident to nodes of low normalized degree.In fa
t, we show that a 
areful 
hoi
e of �i ensures that ei is in
ident to nodes ofnormalized degree at most di�2 while ei is in
ident to at least one node of normalizeddegree di or higher. The main idea here is to in
rease �v for nodes v 2 Sidi�1 by �i andin
rease the e
-
ost of non-tree edges that are in
ident to nodes of normalized degreeat least di � 1 by �i as well. In other words, the 
ost of non-tree edges in
ident tonodes of normalized degree at least di � 1 in
reases by the same amount as the 
ostof tree edges in
ident to nodes of normalized degree at least di. This way, we enfor
ethat the edge we swap in tou
hes nodes of normalized degree at most di � 2. On
ewe a

omplish this, adapting a potential fun
tion argument from [3℄ we 
an put apolynomial upper bound on the number of su
h iterations (see Se
tion 3.3).Lemma 3.1 plays a key role in the later analysis of the performan
e guaranteea
hieved by Algorithm 1. Noti
e that step 7 of the algorithm in
reases the nodemultipliers of all nodes in Sidi�1. On the other hand, in step 8, we only in
rease thee
-
ost of those tree edges that are in
ident to nodes in Sidi . Roughly, Lemma 3.1provides us with a bound on the number of tree edges that are in
ident to nodes ofnormalized degree exa
tly di � 1.We now des
ribe how to 
hoose �i so that the above 
onditions are satis�ed.3.1. Choosing �i. In this se
tion we elaborate on the 
hoi
e of �i in step 6 ofAlgorithm 1. In step 8 of Algorithm 1, we in
rease e
uv by �i for all tree edges uv thatare in
ident to nodes of degree at least di and for all non-tree edges that are in
identto nodes of degree at least di � 1. We want to 
hoose �i su
h that the subsequentupdate of e
i and the following run of MST yields a new tree Ei+1 that di�ers from Eiby a single edge swap: Ei+1 = Ei n feig [ ei. Here, the edge ei 2 Ei is a tree edgethat is in
ident to a node from Sidi . On the other hand we want ei 2 E n Ei to be anon-tree edge that is not in
ident to any node from Sidi�1.As indi
ated in the previous se
tion, we wantEi+1 to be a minimum-
ost spanningtree of G for 
ost fun
tion e
i+1. In order to a
hieve this, ei must be on the unique
y
le in Ei [ feeig and we also must havee
i+1(ei) = e
i(ei) + �i = e
i+1(ei):In other words, the update of �v for v 2 Sidi�1 
reates one more bene�
ial swap.We let Ki be the set of 
onne
ted 
omponents of the forest Ei nSidi , i.e. the forestthat results from removing nodes of normalized degree at least di from Ei. We saythat an edge e = uv 2 E is a 
ross-edge if1. e is a non-tree edge, i.e. e 2 E nEi,2. u 2 K1; v 2 K2 for K1;K2 2 Ki and K1 6= K2, and3. fu; vg \ Sidi�1 = ;.We denote the set of 
ross-edges in iteration i by Ci. Observe that if Ci = ;, then theset Sdi�1 provides a witness to the infeasibility of the degree bounds imposed on thenodes in this set.



APPROXIMATION ALGORITHMS FOR DEGREE-BOUNDED MST 7It is now 
lear that Ei + e 
ontains a unique 
y
le Cie for ea
h 
ross-edge e 2 Ci.Furthermore, there must be at least one vertex v on Cie that has normalized degreeat least di.For ea
h 
ross-edge e 2 Ci, we now let�ie = mine02Cie;e0\Sidi 6=; �e
i(e)� e
i(e0)� :Note that it follows from the fa
t that Ei is a minimum-
ost spanning tree for 
ostfun
tion e
i that �ie � 0 for all e 2 Ci. Finally, we let �i = mine2Ci �ie.In the following, we let hei; eii be the witness pair for �i. In other words, let hf; fibe a pair of edges where f 2 E nEi is a non-tree edge and f 2 Cif is a tree edge thatis in
ident to a node from Sidi and that lies on the unique 
y
le in Ei + f . Then, wemust have that e
i(f) + �i � e
i(f)and equality holds for f = ei and f = ei. Noti
e that ei is in
ident to nodes ofnormalized degree at most di � 2 by the de�nition of 
ross-edges.An important observation is that �i 
an be 0. Su
h a step 
an be viewed as alo
al-improvement step along the lines of [4℄. We do not modify the dual solution butde
rease the normalized degree of a node of high normalized degree.3.2. Analysis: Performan
e guarantee. Assume that Algorithm 1 termi-nates after iteration t�. Re
all that Theorem 1.2 requires us to show(3.3) 
(Et�) � ! � opt :In this se
tion prove(3.4) Xe2Ei 
e � !X�2�(r(�) � 1) � yi� � ! �Xv2V Bv � �ivfor all 1 � i � t�. Observe that (yi; �i) is a feasible solution for (D) and that theright-hand side of (3.4) is ! times the dual obje
tive fun
tion indu
ed by (yi; �i).Inequality (3.4) for i = t� together with weak duality implies (3.3). This line of proofextends that developed for the analysis of primal-dual algorithms for minimum-
osnetworks developed in [1, 5℄.In order to fa
ilitate the proof of (3.4) for all 1 � i � t�, we maintain the followinginvariant indu
tively for all 0 � i � t�:(Inv) ! �Xv2V Bv�iv � (! � 1) �X�2�(r(�) � 1) � yi�:Re
all that we assumed ! > 1 in Theorem 1.2.The rest of this se
tion is split into two parts: First, we show that Invariant(Inv) holds throughout the exe
ution of Algorithm 1). The se
ond part then uses thisinvariant and proves (3.4) for all 1 � i � t�.3.2.1. Proof of Invariant (Inv). We prove the validity of (Inv) for all 1 � i �t� by indu
tion over i. First, noti
e that (Inv) holds for i = 0 sin
e �0v = 0 for allv 2 V . To see the indu
tion step of (Inv) we use the following lemma that ultimately



8 J. K�ONEMANN AND R. RAVIyields (3.4). Re
all the de�nition of normalized degree in (3.1) and the role of theparameter � > 0 in it.Lemma 3.2. Let b > 1 be the 
onstant 
hosen in Theorem 1.2. We must haveX�2�(r(�) � 1) � yi+1� �X�2�(r(�) � 1) � yi� + �i�b � Xv2Sidi�1 Bvfor all 0 � i � t�.The lemma quanti�es the in
rease in the dual obje
tive fun
tion value as ouralgorithm moves from yi to yi+1. Intuitively, the lemma shows that the in
rease in thedual obje
tive fun
tion value is proportional to the total sla
k 
reated by lengtheningtree edges of Ei that are in
ident to nodes of normalized degree at least di � 1.Before presenting the proof of Lemma 3.2 we show how it helps to prove (Inv).Observe that the left hand side of (Inv) in
reases by !�iPv2Sidi�1 Bv as a 
onsequen
eof in
reasing the � values of nodes in Sidi�1. Lemma 3.2 implies that the right handside of (Inv) in
reases by at least(! � 1) � ��ib � Xv2Sidi�1 Bv:Choosing(3.5) � � b � !! � 1
ompletes the proof of Invariant (Inv).We now prove Lemma 3.2.Proof of Lemma 3.2: Let Ei = fei1; : : : ; ein�1g and let tij be the time at whi
hMST in
luded edge eij . W.l.o.g., assume that ti1 � � � � � tin�1. From the des
ription ofMST we 
an rewrite(3.6)X�2�(r(�) � 1) � yi� = n�1Xj=1(tij � tij�1) � (n� j) = n�1Xj=1 tij ((n� j + 1)� (n� j)) = n�1Xj=1 tijwhere we de�ne ti0 = 0.Figure 3.1 illustrates the e�e
t of iteration i. Observe that, by our 
hoi
e of�i, Ei is a minimum-
ost spanning tree even for 
ost fun
tion e
i+1. However, re
allthat there is a way to break ties su
h that step 9 in iteration i 
orre
tly outputsEi+1 = Ei n feig [ feig. This observation together with (3.6) enables us to quantifythe 
hange in dual in iteration i:X�2�(r(�) � 1) � �yi+1� � yi�� = n�1Xj=1 �ti+1j � tij�(3.7)In iteration i, we in
rease the e
-
ost of all edges e 2 Ei that are in
ident to nodesof normalized degree at least di by �i while the e
-
osts of all other tree edges remainun
hanged. It is not hard to see that the time an edge be
omes tight equals its e
-
ost.In other words, all edges in Ei that are in
ident to nodes of normalized degree at leastdi be
ome tight �i time units later. Together with (3.7) we obtain(3.8) X�2�(r(�) � 1) � �yi+1� � yi�� = �i � ��E �Sidi� \Ei��



APPROXIMATION ALGORITHMS FOR DEGREE-BOUNDED MST 9timeti1 ti2 ti3 ti4ti+11 ti+12 ti+13 ti+14
�i

Fig. 3.1. The �gure shows two runs of MST in two 
onse
utive iterations i and i + 1. Thehorizontal line is the time axes while the verti
al lines denote the times at whi
h di�erent edgesbe
ome tight and are in
luded. In the ith run edge el be
omes tight at time til . In this example, edgee3 is the only edge in
ident to a vertex of normalized degree at least di. Its length in
reases and thetime at whi
h it be
omes tight during MST's exe
ution is postponed by �i time units.where E �Sidi� denotes the set of edges in E that are in
ident to nodes from Sidi . (Notethat we in
lude in E(S) edges with both endpoints in S).Re
all the de�nition of normalized degree in (3.1). Noti
e that it follows from thetermination 
ondition in step 4 of Algorithm 1 that �i > 2 logb(n) and hen
e di > 0.Therefore, the real degree of any node v 2 Sidi must be at least� � Bv + di � � �Bv + 1:Finally, noti
e that it follows from the fa
t that Ei is a tree that there are at mostjSidi j � 1 edges in E �Sidi� that are in
ident to two nodes from Sidi . We 
an use theseobservations to lower-bound the right-hand side of (3.8):X�2�(r(�)� 1) � �yi+1� � yi�� � �i �0B�0B� Xv2Sidi � � Bv + 11CA� (jSidi j � 1)1CA � �i� � Xv2Sidi BvAn appli
ation of Lemma 3.1 yields the lemma.We pro
eed with the proof of (3.4).3.2.2. Bounding the 
ost of Ei. As MST �nishes we obtain from Lemma 2.1that(3.9) e
i+1(Ei+1) = Xe2Ei+1 e
i+1e = X�2�(r(�) � 1) � yi+1� :Observe that the real 
ost of the spanning tree Ei+1 is mu
h smaller than e
i+1(Ei+1).In fa
t, noti
e that we have(3.10) 
(Ei+1) = 
(ei) + 
(Ei n feig) � e
i+1(ei) + e
i(Ei n feig)where the �rst step follows from the fa
t that Ei+1 = Ei nfeig[feig by the de�nitionof �i and the way we break ties in MST. The se
ond inequality uses the fa
t that wealways have 
e � e
ie for all 1 � i � t and for all e 2 E.Also, observe that(3.11) e
i+1(Ei n feig) = e
i(Ei n feig) + ���E �Sidi� \ Ei��� 1� � �isin
e exa
tly one edge from Ei that is in
ident to a node of normalized degree at leastdi is swapped out.
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an lower-bound ��E �Sidi� \Ei�� using the arguments from the proof of Lemma3.2: ��E �Sidi� \ Ei�� � 0B� Xv2Sidi � � Bv + 11CA� (jSidi j � 1) � �b �0B� Xv2Sidi�1 Bv1CA+ 1where the last inequality uses Lemma 3.1. Together with (3.11) we obtaine
i+1(Ei n feig) � e
i(Ei n feig) + �i�b � Xv2Sidi�1Bv :(3.12)We then have 
(Ei+1) � e
i(Ei n feig) + e
i+1(ei)� e
i+1(Ei)� �i�b � Xv2Sidi�1Bv= X�2�(r(�) � 1) � yi+1� � �i�b � Xv2Sidi�1Bvwhere the �rst inequality follows from (3.10), the se
ond inequality follows from (3.12),and the last equality follows from (3.9).Adding (Inv) for iteration (i+ 1) to the last inequality we get
(Ei+1) � ! � X�2�(r(�) � 1) � yi+1� �Xv2V Bv�i+1v !� �i�b � Xv2Sidi�1Bv� ! � X�2�(r(�) � 1) � yi+1� �Xv2V Bv�i+1v ! :This �nishes the proof of the performan
e guarantee 
laimed in Theorem 1.2.3.3. Analysis: Running time. In this se
tion, we show that Algorithm 1terminates in polynomial time. We a

omplish this by showing that there will beonly a polynomial number of iterations of the main loop in Algorithm 1.Lemma 3.3. Algorithm 1 terminates after O(n4) iterations.Proof. Following [3℄, we de�ne the potential of spanning tree Ei as�i = Xv2V 3ndegi(v)where ndegi(v) denotes again the normalized degree of node v in the tree Ei.Noti
e that an iteration of Algorithm 1 swaps out a single edge ei that is in
identto at least one node of normalized degree at least di. On the other hand we swap inone edge ei that is in
ident to two nodes of normalized degree at most di � 2. Theredu
tion in the potential hen
e is at least(3di + 2 � 3di�2)� 3 � 3di�1 � 2 � 3di�2
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an lower-bound the right hand side of the last inequalityby 2 � 3�i�2 logb(n)�2 = 
 3�in2 ! :The initial potential �0 is at most n � 3�0 and the de
rease in the potential �i initeration i is at least 
 ��in3 �.In other words, in O(n3) iterations, we redu
e � by a 
onstant fa
tor. Hen
e,the algorithm runs for O(n4) iterations total. Observing that ea
h iteration 
an beimplemented in time O(n2 logn) [5℄, we see that the whole algorithm runs in timeO(n6 logn).A
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