PRIMAL-DUAL MEETS LOCAL SEARCH: APPROXIMATING
MST’S WITH NONUNIFORM DEGREE BOUNDS

J. KONEMANN" AND R. RAVI *

Abstract. We present a new bicriteria approximation algorithm for the degree-bounded minimum-
cost spanning tree problem: Given an undirected graph with nonnegative edge weights and a degree
bound B find a spanning tree of maximum node-degree B and minimum total edge-cost. Our algo-
rithm outputs a tree of maximum degree at most a constant times B and total edge-cost at most a
constant times that of a minimum-cost degree- B-bounded spanning tree.

While our new algorithm is based on ideas from Lagrangean relaxation as is our previous work [8],
it does not rely on computing a solution to a linear program. Instead it uses a repeated application of
Kruskal’s MST' algorithm interleaved with a combinatorial update of approximate Lagrangean node-
multipliers maintained by the algorithm. These updates cause subsequent repetitions of the spanning
tree algorithm to run for longer and longer times (hence to "age” more and more), leading to overall
progress and a proof of the performance guarantee. A second useful feature of our algorithm is that
it can handle non-uniform degree bounds on the nodes: Given distinct bounds B, for every node
v € V, the output tree has degree at most O(B, + log|V|) for every v € V. As before, the cost of
the tree is at most a constant times that of a minimum-cost tree obeying the degree bounds.

Key words. approximation algorithms, network algorithms, bicriteria approximation, spanning
trees, degree-bounded spanning trees, Lagrangean relaxation

AMS subject classifications. 68W25, 05C05, 05C85, 68R10, 90C29

1. Introduction.

1.1. Formulation. In this paper, we address a natural non-uniform budget ver-
sion of the degree-bounded minimum-cost spanning tree problermn (nBMST). Given an
undirected graph G = (V,E), a cost function ¢ : E — IRT and positive integers
{B,}vev all greater than 1, the goal is to find a spanning tree 7' of minimum total
cost such that for all vertices v € V' the degree of v in T is at most B,,.

1.2. Previous work and our result. In an n-node graph, Ravi et al. [10, 11]
showed how to compute a spanning tree T" of degree O (B, logn) for allv € V and total
cost at most O(logn) opt where opt is the minimum cost of any tree in which the
degree of node v is bounded by B, for all v € V. The authors generalized their ideas
to Steiner trees, generalized Steiner forests and the node-weighted case. Subsequently,
Konemann and Ravi [7, 8] improved the results on the (edge-weighted) spanning tree
version of the problem with uniform degree-bounds (i.e., B, = B for all v). The main
theorem from [8] is as follows:

THEOREM 1.1 (see [8]). There is an approzimation algorithm that, given a graph
G = (V,E), a nonnegative cost function c : E — R™, a constant B > 2 and a
parameter w > 1, computes a spanning tree T such that

1. A(T) £ 725 - bB +logyn for any arbitrary constant b > 1, and
2. ¢(T) <w- opt
where b > 1 is an arbitrary constant.

The contributions of this paper are two-fold: First, we present improved approx-
imation algorithms for the minimum-cost degree-bounded spanning tree problem in
the presence of non-uniform degree bounds. Second, our algorithm is direct in the

* GSIA, Carnegie Mellon University, Pittsburgh PA 15213. E-mail:{jochen,ravi}@cmu.edu. This
material is based upon work supported by the National Science Foundation under Grant No. 0105548.



2 J. KONEMANN AND R. RAVI

sense that we do not solve linear programs. The algorithm in [8] uses Lagrangean re-
laxation and thus needs to solve a linear program. The analysis in [8] relies crucially
on the fact that we compute an exact solution to this LP.

On the other hand, our new algorithm integrates elements from the primal-dual
method for approximation algorithms for network design problems with local search
methods for minimum-degree network problems [4, 12]. The algorithm goes through
a series of spanning trees and improves the maximum deviation of any vertex degree
from its respective degree bound continuously. A practical consequence of this is
that we can terminate the algorithm at any point in time and still obtain a spanning
tree of the input graph (whose node-degrees, of course, may not meet the worst-case
guarantees we prove).

THEOREM 1.2. There is a primal-dual approzimation algorithm that, given a
graph G = (V, E), a nonnegative cost function c : E — IR™, integers B, > 1 for all
v €V and a parameter w > 1 computes a tree T such that

1. degy(v) < % -b-B, +2-logyn for allv eV, and
2. ¢(T) <w- opt
where b > 1 is an arbitrary constant. The running time is O(|V|%log|V|).

When B = B, for all v € V, we can replace the additive term 2log, n in the
degree guarantee of Theorem 1.2 by log, n matching Theorem 1.1 constructively.

The paper is organized as follows: First, we review the primal-dual interpretation
of the well-known algorithm for minimum-cost spanning trees by Kruskal [9]. Subse-
quently, we show how to use this algorithm for the nBMST problem and present an
analysis of performance guarantee and running time of our method.

2. A primal-dual algorithm to compute MST’s. In this section we review
Kruskal’s minimum-cost spanning tree algorithm. More specifically, we discuss a
primal-dual interpretation of this method that follows from [2]. We start by giving
a linear programming formulation of the convex hull of incidence vectors of spanning
trees.

2.1. The spanning tree polyhedron. In the following, we formulate the min-
imum-cost spanning tree problem as an integer program where we associate a 0, 1-
variable x, with every edge e € E. In a solution x, the value of z. is one if e is
included in the spanning tree corresponding to  and 0 otherwise. Our formulation
relies on a complete formulation of the convex hull of incidence vectors of spanning
trees (denoted by SPg) given by Chopra [2].

Chopra’s formulation uses the notion of a feasible partition of vertex set V. A
feasible partition of V' is a set m = {V4,..., V). } such that the V; are pairwise disjoint
subsets of V. Moreover, V.= V; U... UV, and the induced subgraphs G[V;] are
connected. Let G denote the (multi-) graph that has one vertex for each V; and
edge (V;,V;) occurs with multiplicity |{(v;,v;) : v; € V;,v; € V;}|. In other words, G«
results from G by contracting each of the V; to a single node. Define the rank r(m)
of m as the number of nodes of G- and let II be the set of all feasible partitions of V.
Chopra then shows that

Sk ={z e R™: Z ze >r(m)—1 Vrell}
ecE(Gr)

We now let d(v) denote the set of edges e € E that are incident to node v and obtain
an integer programming formulation for our problem:



APPROXIMATION ALGORITHMS FOR DEGREE-BOUNDED MST 3

(IP) min Z CeTe

eckE
8.t Z ze>r(m)—1 Vrell
e€E[G]
(2.1) z(d(v)) < B, YveV

T integer

The dual of the linear programming relaxation (LP) of (IP) is given by

(D) max Y (r(m) —1)-yr — > AuBy
well veV

(2.2) s.t Z Yr <Cet+tAy+A, Ve=uveFE
m:e€E[Gr]
y,A>0

We also let (IP-SP) denote (IP) without constraints of type (2.1). Let the LP relax-
ation be denoted by (LP-SP) and let its dual be (D-SP).

2.2. A primal-dual interpretation of Kruskal’s MST algorithm. Kruskal’s
algorithm can be viewed as a continuous process over time: We start with an empty
tree at time 0 and add edges as we go along. The algorithm terminates at time ¢* with
a spanning tree of the input graph G. In this section we show that Kruskal’s method
can be interpreted as a primal-dual algorithm (see also [6]). For that reason, at any
time 0 < t < t* we keep a pair (x¢,y:), where x; is a partial (possibly infeasible)
primal solution for (LP-SP) and y; is a feasible dual solution for (D-SP). Initially, we
let .o =0foralle € E and y, o =0 for all = € II.

Let E; be the forest corresponding to partial solution z;, i.e. E; = {e € E :
Zer = 1}. We then denote by m; the partition induced by the connected components
of G[E;]. At time ¢, the algorithm then increases y,, until a constraint of type (2.2)
for edge e € E'\ E; becomes tight. Assume that this happens at time ¢’ > ¢. The dual
update is

ym,t’ = tl —t.

We then include e into our solution, i.e. we set z.p = 1. If more than one edge
becomes tight at time #', we can process these events in any arbitrary order. Thus,
note that we can pick any such tight edge first in our solution.

Observe that the above primal-dual algorithm is indeed Kruskal’s algorithm: If
the algorithm adds an edge e at time ¢ then e is the minimum-cost edge connecting
two connected components of G[E;]. In the rest of this paper we use MST to refer to
Kruskal’s minimum-cost spanning tree algorithm.

The proof of the following lemma is folklore. We supply it for the sake of com-
pleteness.

LemMMA 2.1. At time t*, Algorithm MST finishes with a pair (g, ye) of primal
and dual feasible solutions to (IP-SP) and (D-SP), respectively, such that

Z Celepr = Z(T(W) = 1) Yrtr

ecE mell



4 J. KONEMANN AND R. RAVI

Proof. Notice, that for all edges e € Ey- we must have c. = .cpg, ) Yn,e- and
hence, we can express the cost of the final tree as follows:

c(Ep) = Z Z Yr,tx = Z |Ei N E[Gr]| - Yr =

eClx me€E[Gr) mell

By construction Ey« is a tree and we must have that the set Ey« NE[G ] has cardinality
exactly r(m) — 1 for all # € II with yr:; > 0. We obtain that ) ., ccze =
Y wen(r(m) = 1) -y ¢+ and this finishes the proof of the lemma. O

3. Minimum-cost degree-bounded spanning trees. In this section, we pro-
pose a modification of the above algorithm for approximating degree-bounded span-
ning trees of low total cost (for suitably weakened degree bounds). Our algorithm
goes through a sequence of spanning trees E°,..., E! and associated pairs of pri-
mal (infeasible) and dual feasible solutions z!, (y’,A?) for 0 < i < t. The idea is
to reduce the degree of nodes v € V' whose degree is substantially higher than their
associated bound B,, as we proceed through this sequence, while keeping the cost of
the associated primal solution (tree) bounded with respect to the corresponding dual
solution.

To begin, our algorithm first computes a minimum-cost spanning tree using the
Algorithm MST. This yields a feasible primal solution z° for (LP-SP) and a feasible
dual solution y° for (D-SP). Notice that y° also induces a feasible solution for (D) by
letting \Y = 0 for all v € V while 2° potentially violates constraints of type (2.1).

We introduce the notion of normalized degree of a node v in a tree 7' and denote
it by

(3.1 ndeg;(v) = max{0,degr(v) — - By}

where § > 0 is a constant to be specified later. Our algorithm successively computes
pairs of spanning trees and associated dual solutions to (D), i.e.

R P S YN Gt TP S VRSN S (7P

From one such pair to the next, we try to reduce the degree of nodes of high normalized
degree. Specifically, our algorithm runs as long as there is a node in the current tree
with ndeg(v) > 2log,(n) for some constant b > 1.

Our algorithm keeps a cost ¢, with each edge e € E and for each iteration 1 <
i <t. x' corresponds to a minimum-cost spanning tree E’ for cost function ¢ and y°
is the associated dual packing. Throughout the algorithm we maintain that

(3.2) Cuv < Cy < Cup + AL+ A

for all uv € E. Hence, (y*, \?) is a feasible solution for (D).

Let A? be the maximum normalized degree of any node in the tree E?. The
central piece of our algorithm is a recompute step where we raise the A values of a
carefully chosen set Sy of nodes with high normalized degree. This introduces slack
in many of the constraints of type (2.2).

We now increase the ¢-cost of edges that are incident to nodes in Sy (while main-
taining (3.2)) and rerun MST on G using the new edge-costs. The hope is that the
increased ¢-cost of edges incident to nodes of high normalized degree leads MST to use
edges that are incident to nodes of lower normalized degree in their place. We are



APPROXIMATION ALGORITHMS FOR DEGREE-BOUNDED MST )

able to show that the number of recompute steps is polynomial, by arguing that we
make substantial progress in the normalized degree sequence of all nodes.

As mentioned, each recompute step takes a pair of primal infeasible and dual
feasible solutions (z¢, (y%, \?)) and computes a new pair of primal (infeasible) and
dual feasible solutions (z*T1, (y**1, AiT1)). In the following we use ndeg’(v) as a short
for ndegy: (v). We then adapt the notation from [3, 4] and let

S, ={v €V : ndeg'(v) > d}

be the set of all nodes whose normalized degree is at least d in the i*" solution.

Algorithm 1 The algorithm for the nBMST problem attempts to reduce the maxi-
mum normalized degree of any node in a given spanning tree.

1: Given: primal feasible solution z° to (LP-SP) and dual feasible solution y° to
(D-SP)
N 0,VoeV; <« c.,Ve€e E
i< 0
while A? > 2log,(n) do
Choose d' in {A? — 2logy(n) + 1,..., At} s.t. ZUES;i ) B, <b- Zvesgi B,
Choose € > 0
AL XD + € for all v € % and ALt <= AL otherwise
ctl(e) - ¢'(e) + €' if either e € B and eNS%, #Pore g E'and enS, | #10
(21, y") « MST(G, 1)
10 i¢t+1
11: end while

A detailed description of the procedure is given in Algorithm 1. In step 5 of
Algorithm 1, we choose a suitable set of nodes whose A-values we increase. A simple
argument in [3] can be extended to guarantee the feasibility of the choice in Step 5 of
the algorithm.

LEMMA 3.1. There is a d € {A" —2log,(n) + 1,..., A’} such that

Z By <b- ZBv

i i
vESdi_1 veSdi

for a given constant b > 1.
Proof. Suppose for a contradiction that for all d* € {A? — 2log,(n) + 1,..., At}

we have
> By>b- > B,

i i
vESdz;l vESdi

Note that since we may assume B, < (n—1) for all vertices, we must have ), B, <
n(n —1). However, since ) .o B, > 1, we have in this case that
A

Z B, > b2 log, (n) — n2

i
UesAi—Zlogb(n)

a contradiction. O



6 J. KONEMANN AND R. RAVI

When B, = B for all v € V, the 2log,n term in the above lemma can be
improved to logn using the previous arguments in [3]. This in turn leads to the slight
improvement of our results claimed right after the statement of Theorem 1.2.

Step 6 of Algorithm 1 hides the details of choosing an appropriate e’ by which
edges in the current tree that are incident to nodes of normalized degree at least d°
are lengthened. Our choice of € and the following update of the ¢ costs of the edges
in G will ensure that Kruskal’s algorithm computes a new tree in which at least one
edge e € E' that is incident to a node of Séi is replaced by an edge e ¢ E? that is
incident to nodes of low normalized degree.

In fact, we show that a careful choice of € ensures that & is incident to nodes of
normalized degree at most d’ —2 while e’ is incident to at least one node of normalized
degree d' or higher. The main idea here is to increase A, for nodes v € S%; | by €' and
increase the c¢-cost of non-tree edges that are incident to nodes of normalized degree
at least d* — 1 by €' as well. In other words, the cost of non-tree edges incident to
nodes of normalized degree at least d° — 1 increases by the same amount as the cost
of tree edges incident to nodes of normalized degree at least d*. This way, we enforce
that the edge we swap in touches nodes of normalized degree at most d* — 2. Once
we accomplish this, adapting a potential function argument from [3] we can put a
polynomial upper bound on the number of such iterations (see Section 3.3).

Lemma 3.1 plays a key role in the later analysis of the performance guarantee
achieved by Algorithm 1. Notice that step 7 of the algorithm increases the node
multipliers of all nodes in Sii_l. On the other hand, in step 8, we only increase the
¢-cost of those tree edges that are incident to nodes in S?,. Roughly, Lemma 3.1
provides us with a bound on the number of tree edges that are incident to nodes of
normalized degree exactly d’ — 1.

We now describe how to choose €’ so that the above conditions are satisfied.

3.1. Choosing €'. In this section we elaborate on the choice of €’ in step 6 of
Algorithm 1. In step 8 of Algorithm 1, we increase ¢, by € for all tree edges uv that
are incident to nodes of degree at least d’ and for all non-tree edges that are incident
to nodes of degree at least d* — 1. We want to choose € such that the subsequent
update of ¢ and the following run of MST yields a new tree E*! that differs from E*
by a single edge swap: E*t! = E?\ {e’} U€. Here, the edge ' € E' is a tree edge
that is incident to a node from S%. On the other hand we want & € E \ E' to be a
non-tree edge that is not incident to any node from S7; ;.

Asindicated in the previous section, we want E*T! to be a minimum-cost spanning
tree of G for cost function ¢+, In order to achieve this, e’ must be on the unique
cycle in E' U {¢'} and we also must have

St (eh) =E(e') + ¢ =T (@),
In other words, the update of A, for v € Si_l creates one more beneficial swap.

We let K* be the set of connected components of the forest £\ S%;, i.e. the forest
that results from removing nodes of normalized degree at least d* from E'. We say
that an edge e = uv € E is a cross-edge if

1. e is a non-tree edge, i.e. e € E \ E',

2. u€ K,v€ K, for Kj, K, € K! and K; # K>, and

3. {u,0}N S, =0.
We denote the set of cross-edges in iteration i by C!. Observe that if C* = (), then the
set Sgi_q provides a witness to the infeasibility of the degree bounds imposed on the
nodes in this set.



APPROXIMATION ALGORITHMS FOR DEGREE-BOUNDED MST 7

It is now clear that E’ + e contains a unique cycle C? for each cross-edge e € C*.
Furthermore, there must be at least one vertex v on C! that has normalized degree
at least d'.

For each cross-edge e € C?, we now let

€ = min  (c*(e) —¢(€)) .
e’ECé,e’ﬂS;ﬁé(D

Note that it follows from the fact that E? is a minimum-cost spanning tree for cost
function ¢ that €/ > 0 for all e € C*. Finally, we let €’ = min,c¢i €.

In the following, we let (e?, &%) be the witness pair for '. In other words, let (f, f)
be a pair of edges where f € E\ E? is a non-tree edge and f € C}Q is a tree edge that

is incident to a node from Séi and that lies on the unique cycle in E? + f. Then, we
must have that

c(f)+e <a(f)

and equality holds for f = ¢ and f = &. Notice that & is incident to nodes of
normalized degree at most d* — 2 by the definition of cross-edges.

An important observation is that e’ can be 0. Such a step can be viewed as a
local-improvement step along the lines of [4]. We do not modify the dual solution but
decrease the normalized degree of a node of high normalized degree.

3.2. Analysis: Performance guarantee. Assume that Algorithm 1 termi-
nates after iteration ¢*. Recall that Theorem 1.2 requires us to show

(3.3) ¢(E) <w- opt.

In this section prove

(3.4) Y e<wd (rm)=1)-yh—w-> By,- A,

ecE? nell veV

for all 1 < i < t*. Observe that (y,\?) is a feasible solution for (D) and that the
right-hand side of (3.4) is w times the dual objective function induced by (y?, \?).
Inequality (3.4) for i = t* together with weak duality implies (3.3). This line of proof
extends that developed for the analysis of primal-dual algorithms for minimum-cos
networks developed in [1, 5].

In order to facilitate the proof of (3.4) for all 1 <14 < ¢*, we maintain the following
invariant inductively for all 0 <1 < ¢*:

(Inv) w - Z B\l < (w—1)- Z(’I‘(ﬂ') —1)-yl.

veV mell

Recall that we assumed w > 1 in Theorem 1.2.

The rest of this section is split into two parts: First, we show that Invariant
(Inv) holds throughout the execution of Algorithm 1). The second part then uses this
invariant and proves (3.4) for all 1 <i <¢*.

3.2.1. Proof of Invariant (Inv). We prove the validity of (Inv) for all 1 < i <
t* by induction over i. First, notice that (Inv) holds for i = 0 since A% = 0 for all
v € V. To see the induction step of (Inv) we use the following lemma that ultimately



8 J. KONEMANN AND R. RAVI

yields (3.4). Recall the definition of normalized degree in (3.1) and the role of the
parameter 8 > 0 in it.
LEMMA 3.2. Let b > 1 be the constant chosen in Theorem 1.2. We must have

om0 > Y -0+ LY By

rell well vES;Z .

for all 0 <i <t*.

The lemma quantifies the increase in the dual objective function value as our
algorithm moves from y* to y'™!. Intuitively, the lemma shows that the increase in the
dual objective function value is proportional to the total slack created by lengthening
tree edges of E! that are incident to nodes of normalized degree at least d* — 1.

Before presenting the proof of Lemma 3.2 we show how it helps to prove (Inv).
Observe that the left hand side of (Inv) increases by we’ >~ si B, as a consequence

of increasing the A\ values of nodes in S?
side of (Inv) increases by at least

(w—=1)- Z B,.

vES;Z .

yi_1- Lemma 3.2 implies that the right hand

Choosing

(3.5) B>0- —1
completes the proof of Invariant (Inv).

We now prove Lemma 3.2.

Proof of Lemma 3.2: Let E* = {ef,... e}, ;} and let #} be the time at which
MST included edge ¢}. W.lo.g., assume that t{ <--- <!, . From the description of
MST we can rewrite

(3.6)
Do(r(m) =1) gk = (=t - (n—j) Zt’ (n—j+1)—(n—j) Zt’
mell j=1

where we define ¢ = 0.

Figure 3.1 illustrates the effect of iteration i. Observe that, by our choice of
€', E' is a minimum-cost spanning tree even for cost function ¢'*!. However, recall
that there is a way to break ties such that step 9 in iteration ¢ correctly outputs
E = Ei\ {e'} U {€'}. This observation together with (3.6) enables us to quantify
the change in dual in iteration ¢:

(3.7) Dor(m 1) (vt k) = i (#5 =)
mell j=1

In iteration i, we increase the ¢-cost of all edges e € E! that are incident to nodes
of normalized degree at least d’ by €’ while the ¢-costs of all other tree edges remain
unchanged. It is not hard to see that the time an edge becomes tight equals its ¢-cost.
In other words, all edges in E? that are incident to nodes of normalized degree at least
d* become tight €’ time units later. Together with (3.7) we obtain

(3.8) D o(r(m) = 1)« (yit —yl) =€ - |E(Sh) N EY|

nell



APPROXIMATION ALGORITHMS FOR DEGREE-BOUNDED MST 9

| | |
| |
ti 5t th

i+1 i+1 i+1 i+1
tl t2 t3 t4

|

| .

T time
L

Fic. 3.1. The figure shows two runs of MST in two consecutive iterations i and ¢ + 1. The
horizontal line is the time axes while the vertical lines denote the times at which different edges
become tight and are included. In the ith run edge e; becomes tight at time tf. In this example, edge
es is the only edge incident to a vertex of normalized degree at least d*. Its length increases and the
time at which it becomes tight during MST’s ezecution is postponed by €' time units.

where E (S;i) denotes the set of edges in E that are incident to nodes from S’;. (Note
that we include in E(S) edges with both endpoints in S).

Recall the definition of normalized degree in (3.1). Notice that it follows from the
termination condition in step 4 of Algorithm 1 that A? > 2log,(n) and hence d’ > 0.
Therefore, the real degree of any node v € S%; must be at least

B-By+d;>f By +1.

Finally, notice that it follows from the fact that E? is a tree that there are at most
|S%| — 1 edges in E (S(Z;li) that are incident to two nodes from Sj;. We can use these
observations to lower-bound the right-hand side of (3.8):

> o(r(m) = 1) (Yt —yl) > € > B-B,+1|-(Sk|-1)| >8> B,

mell ves; veSsy,

An application of Lemma 3.1 yields the lemma. O
We proceed with the proof of (3.4).

3.2.2. Bounding the cost of E’. As MST finishes we obtain from Lemma 2.1
that

(3.9) S ET) = Y @t = (r(m) — 1) -yttt
ecEitl mell

Observe that the real cost of the spanning tree £ is much smaller than ¢! (E*1),
In fact, notice that we have

(3.10) (B = c@) + (B \ fei}) <& (@) + F(E\ {'})

where the first step follows from the fact that ET! = E?\ {e'} U{e'} by the definition
of € and the way we break ties in MST. The second inequality uses the fact that we
always have ¢, < ¢ for all 1 <i <t and for all e € E.

Also, observe that

(3.11) ATHE N\ {e'}) =(E'\{e'}) + (|E(SL)NE| —1)-¢

since exactly one edge from E? that is incident to a node of normalized degree at least
d" is swapped out.



10 J. KONEMANN AND R. RAVI

We can lower-bound |E (S%;) N E'| using the arguments from the proof of Lemma
3.2:

|E (S4) NE| > ZB-BU+1 (|S’l—1)2§ Z B, | +1

UGS;i vES;l .

where the last inequality uses Lemma 3.1. Together with (3.11) we obtain

(3.12) THE NN >TEN\{e') + - Y B

vES;Z .

We then have
(B <E(E\{e'}) + (@)
+L(EY) - ep Z B,

UGS;Z N
) €p
= Z(T(?T) 1)yt = o Z B,
mell veSt.

di—1

where the first inequality follows from (3.10), the second inequality follows from (3.12),
and the last equality follows from (3.9).
Adding (Inv) for iteration (i + 1) to the last inequality we get

s v o) 2 5

nell veV vES;Z .

<w- <Z(r( )—1) -yttt =" B, Wl).

mell veV
This finishes the proof of the performance guarantee claimed in Theorem 1.2.

3.3. Analysis: Running time. In this section, we show that Algorithm 1
terminates in polynomial time. We accomplish this by showing that there will be
only a polynomial number of iterations of the main loop in Algorithm 1.

LeMMA 3.3. Algorithm 1 terminates after O(n*) iterations.

Proof. Following [3], we define the potential of spanning tree E* as

P, = Z 3ndegi(v)
veV

where ndeg;(v) denotes again the normalized degree of node v in the tree E°.

Notice that an iteration of Algorithm 1 swaps out a single edge e’ that is incident
to at least one node of normalized degree at least d. On the other hand we swap in
one edge &' that is incident to two nodes of normalized degree at most d* — 2. The
reduction in the potential hence is at least

(37 +2.3¢-2) _3.30 1 > 9. 342



APPROXIMATION ALGORITHMS FOR DEGREE-BOUNDED MST 11

Using the range of d?, we can lower-bound the right hand side of the last inequality
by

) Al
2. 3A’—210gb(n)—2 -Q 3

n2

The initial potential ®( is at most n - 327 and the decrease in the potential ®; in
iteration i is at least 2 (%)

In other words, in O(n?) iterations, we reduce ® by a constant factor. Hence,
the algorithm runs for O(n*) iterations total. Observing that each iteration can be
implemented in time O(n?logn) [5], we see that the whole algorithm runs in time
O(n®logn). O

Acknowledgments R. Ravi thanks IBM Almaden for hosting a stay when writ-
ing this paper.

REFERENCES

[1] A. Agrawal and P. Klein and R. Ravi. When trees collide: An approximation algorithm for the
generalized Steiner problem in networks. SIAM J. Comput., 24:440-456, 1995.
[2] S. Chopra. On the spanning tree polyhedron. Operations Research Letters, 8:25-29, 1989.
[3] M. Fiirer and B. Raghavachari. An NC approximation algorithm for the minimum degree
spanning tree problem. In Proc. of the 28th Annual Allerton Conf. on Communication,
Control and Computing, pages 274-281, 1990.
[4] M. Fiirer and B. Raghavachari. Approximating the minimum-degree Steiner tree to within one
of optimal. Journal of Algorithms, 17(3):409-423, November 1994.
[5] M. X. Goemans and D. P. Williamson. A general approximation technique for constrained
forest problems. SIAM J. Comput., 24:296-317, 1995.
[6] M. X. Goemans and D. P. Williamson. The primal-dual method for approximation algorithms
and its application to network design problems. In Dorit S. Hochbaum, editor, Approzi-
mation Algorithms for NP-hard Problems, chapter 4. PWS, Boston, 1997.
[7] J. Konemann and R. Ravi. A matter of degree: Improved approximation algorithms for degree-
bounded minimum spanning trees. In Proceedings, ACM Symposium on Theory of Com-
puting, pages 537-546, 2000.
[8] J. Kénemann and R. Ravi. A matter of degree: Improved approximation algorithms for degree-
bounded minimum spanning trees. SIAM J. Comput., 31(6):1783-1793, 2002.
[9] J. Kruskal. On the shortest spanning subtree of a graph and the traveling salesman problem.
Proceedings, American Mathematical Society, 7:48-50, 1956.
[10] R. Ravi, M. V. Marathe, S. S. Ravi, D. J. Rosenkrantz, and H. B. Hunt. Many birds with
one stone: Multi-objective approximation algorithms. In Proceedings, ACM Symposium
on Theory of Computing, pages 438-447, 1993.
[11] R. Ravi, M. V. Marathe, S. S. Ravi, D. J. Rosenkrantz, and H. B. Hunt. Approximation
algorithms for degree-constrained minimum-cost network-design problems. Algorithmica,
31, 2001.
[12] R. Ravi and B. Raghavachari and P. Klein. Approximation Through Local Optimality: De-
signing Networks with Small Degree. In Proceedings, Foundations of Software Technology
and Theoretical Computer Science, pages 279-290, 1992.



