
PRIMAL-DUAL MEETS LOCAL SEARCH: APPROXIMATINGMST'S WITH NONUNIFORM DEGREE BOUNDSJ. K�ONEMANN� AND R. RAVI �Abstrat. We present a new biriteria approximation algorithm for the degree-bounded minimum-ost spanning tree problem: Given an undireted graph with nonnegative edge weights and a degreebound B �nd a spanning tree of maximum node-degree B and minimum total edge-ost. Our algo-rithm outputs a tree of maximum degree at most a onstant times B and total edge-ost at most aonstant times that of a minimum-ost degree-B-bounded spanning tree.While our new algorithm is based on ideas from Lagrangean relaxation as is our previous work [8℄,it does not rely on omputing a solution to a linear program. Instead it uses a repeated appliation ofKruskal's MST algorithm interleaved with a ombinatorial update of approximate Lagrangean node-multipliers maintained by the algorithm. These updates ause subsequent repetitions of the spanningtree algorithm to run for longer and longer times (hene to "age" more and more), leading to overallprogress and a proof of the performane guarantee. A seond useful feature of our algorithm is thatit an handle non-uniform degree bounds on the nodes: Given distint bounds Bv for every nodev 2 V , the output tree has degree at most O(Bv + log jV j) for every v 2 V . As before, the ost ofthe tree is at most a onstant times that of a minimum-ost tree obeying the degree bounds.Key words. approximation algorithms, network algorithms, biriteria approximation, spanningtrees, degree-bounded spanning trees, Lagrangean relaxationAMS subjet lassi�ations. 68W25, 05C05, 05C85, 68R10, 90C291. Introdution.1.1. Formulation. In this paper, we address a natural non-uniform budget ver-sion of the degree-bounded minimum-ost spanning tree problem (nBMST). Given anundireted graph G = (V;E), a ost funtion  : E ! IR+ and positive integersfBvgv2V all greater than 1, the goal is to �nd a spanning tree T of minimum totalost suh that for all verties v 2 V the degree of v in T is at most Bv .1.2. Previous work and our result. In an n-node graph, Ravi et al. [10, 11℄showed how to ompute a spanning tree T of degree O(Bv logn) for all v 2 V and totalost at most O(log n) opt where opt is the minimum ost of any tree in whih thedegree of node v is bounded by Bv for all v 2 V . The authors generalized their ideasto Steiner trees, generalized Steiner forests and the node-weighted ase. Subsequently,K�onemann and Ravi [7, 8℄ improved the results on the (edge-weighted) spanning treeversion of the problem with uniform degree-bounds (i.e., Bv = B for all v). The maintheorem from [8℄ is as follows:Theorem 1.1 (see [8℄). There is an approximation algorithm that, given a graphG = (V;E), a nonnegative ost funtion  : E ! IR+, a onstant B � 2 and aparameter ! > 1, omputes a spanning tree T suh that1. �(T ) � !!�1 � bB + logb n for any arbitrary onstant b > 1, and2. (T ) < ! � optwhere b > 1 is an arbitrary onstant.The ontributions of this paper are two-fold: First, we present improved approx-imation algorithms for the minimum-ost degree-bounded spanning tree problem inthe presene of non-uniform degree bounds. Seond, our algorithm is diret in the� GSIA, Carnegie Mellon University, Pittsburgh PA 15213. E-mail:fjohen,ravig�mu.edu. Thismaterial is based upon work supported by the National Siene Foundation under Grant No. 0105548.1



2 J. K�ONEMANN AND R. RAVIsense that we do not solve linear programs. The algorithm in [8℄ uses Lagrangean re-laxation and thus needs to solve a linear program. The analysis in [8℄ relies ruiallyon the fat that we ompute an exat solution to this LP.On the other hand, our new algorithm integrates elements from the primal-dualmethod for approximation algorithms for network design problems with loal searhmethods for minimum-degree network problems [4, 12℄. The algorithm goes througha series of spanning trees and improves the maximum deviation of any vertex degreefrom its respetive degree bound ontinuously. A pratial onsequene of this isthat we an terminate the algorithm at any point in time and still obtain a spanningtree of the input graph (whose node-degrees, of ourse, may not meet the worst-aseguarantees we prove).Theorem 1.2. There is a primal-dual approximation algorithm that, given agraph G = (V;E), a nonnegative ost funtion  : E ! IR+, integers Bv > 1 for allv 2 V and a parameter ! > 1 omputes a tree T suh that1. degT (v) � !!�1 � b � Bv + 2 � logb n for all v 2 V , and2. (T ) < ! � optwhere b > 1 is an arbitrary onstant. The running time is O(jV j6 log jV j).When B = Bv for all v 2 V , we an replae the additive term 2 logb n in thedegree guarantee of Theorem 1.2 by logb n mathing Theorem 1.1 onstrutively.The paper is organized as follows: First, we review the primal-dual interpretationof the well-known algorithm for minimum-ost spanning trees by Kruskal [9℄. Subse-quently, we show how to use this algorithm for the nBMST problem and present ananalysis of performane guarantee and running time of our method.2. A primal-dual algorithm to ompute MST's. In this setion we reviewKruskal's minimum-ost spanning tree algorithm. More spei�ally, we disuss aprimal-dual interpretation of this method that follows from [2℄. We start by givinga linear programming formulation of the onvex hull of inidene vetors of spanningtrees.2.1. The spanning tree polyhedron. In the following, we formulate the min-imum-ost spanning tree problem as an integer program where we assoiate a 0; 1-variable xe with every edge e 2 E. In a solution x, the value of xe is one if e isinluded in the spanning tree orresponding to x and 0 otherwise. Our formulationrelies on a omplete formulation of the onvex hull of inidene vetors of spanningtrees (denoted by SPG ) given by Chopra [2℄.Chopra's formulation uses the notion of a feasible partition of vertex set V . Afeasible partition of V is a set � = fV1; : : : ; Vkg suh that the Vi are pairwise disjointsubsets of V . Moreover, V = V1 [ : : : [ Vk and the indued subgraphs G[Vi℄ areonneted. Let G� denote the (multi-) graph that has one vertex for eah Vi andedge (Vi; Vj) ours with multipliity jf(vi; vj) : vi 2 Vi; vj 2 Vjgj. In other words, G�results from G by ontrating eah of the Vi to a single node. De�ne the rank r(�)of � as the number of nodes of G� and let � be the set of all feasible partitions of V .Chopra then shows thatSPG = fx 2 IRm : Xe2E(G�)xe � r(�) � 1 8� 2 �g:We now let Æ(v) denote the set of edges e 2 E that are inident to node v and obtainan integer programming formulation for our problem:



APPROXIMATION ALGORITHMS FOR DEGREE-BOUNDED MST 3min Xe2E exe(IP) s.t Xe2E[G�℄xe � r(�) � 1 8� 2 �x(Æ(v)) � Bv 8v 2 V(2.1) x integerThe dual of the linear programming relaxation (LP) of (IP) is given bymax X�2�(r(�) � 1) � y� �Xv2V �vBv(D) s.t X�:e2E[G�℄ y� � e + �u + �v 8e = uv 2 E(2.2) y; � � 0We also let (IP-SP) denote (IP) without onstraints of type (2.1). Let the LP relax-ation be denoted by (LP-SP) and let its dual be (D-SP).2.2. A primal-dual interpretation of Kruskal's MST algorithm. Kruskal'salgorithm an be viewed as a ontinuous proess over time: We start with an emptytree at time 0 and add edges as we go along. The algorithm terminates at time t� witha spanning tree of the input graph G. In this setion we show that Kruskal's methodan be interpreted as a primal-dual algorithm (see also [6℄). For that reason, at anytime 0 � t � t� we keep a pair (xt; yt), where xt is a partial (possibly infeasible)primal solution for (LP-SP) and yt is a feasible dual solution for (D-SP). Initially, welet xe;0 = 0 for all e 2 E and y�;0 = 0 for all � 2 �.Let Et be the forest orresponding to partial solution xt, i.e. Et = fe 2 E :xe;t = 1g. We then denote by �t the partition indued by the onneted omponentsof G[Et℄. At time t, the algorithm then inreases y�t until a onstraint of type (2.2)for edge e 2 E nEt beomes tight. Assume that this happens at time t0 > t. The dualupdate is y�t;t0 = t0 � t:We then inlude e into our solution, i.e. we set xe;t0 = 1. If more than one edgebeomes tight at time t0, we an proess these events in any arbitrary order. Thus,note that we an pik any suh tight edge �rst in our solution.Observe that the above primal-dual algorithm is indeed Kruskal's algorithm: Ifthe algorithm adds an edge e at time t then e is the minimum-ost edge onnetingtwo onneted omponents of G[Et℄. In the rest of this paper we use MST to refer toKruskal's minimum-ost spanning tree algorithm.The proof of the following lemma is folklore. We supply it for the sake of om-pleteness.Lemma 2.1. At time t�, Algorithm MST �nishes with a pair (xt� ; yt�) of primaland dual feasible solutions to (IP-SP) and (D-SP), respetively, suh thatXe2E exe;t� = X�2�(r(�) � 1) � y�;t�



4 J. K�ONEMANN AND R. RAVIProof. Notie, that for all edges e 2 Et� we must have e =P�:e2E[G�℄ y�;t� andhene, we an express the ost of the �nal tree as follows:(Et�) = Xe2Et� X�:e2E[G�℄ y�;t� = X�2� jEt� \E[G� ℄j � y�;t� :By onstrution Et� is a tree and we must have that the set Et�\E[G�℄ has ardinalityexatly r(�) � 1 for all � 2 � with y�;t� > 0. We obtain that Pe2E exe;t� =P�2�(r(�) � 1) � y�;t� and this �nishes the proof of the lemma.3. Minimum-ost degree-bounded spanning trees. In this setion, we pro-pose a modi�ation of the above algorithm for approximating degree-bounded span-ning trees of low total ost (for suitably weakened degree bounds). Our algorithmgoes through a sequene of spanning trees E0; : : : ; Et and assoiated pairs of pri-mal (infeasible) and dual feasible solutions xi, (yi; �i) for 0 � i � t. The idea isto redue the degree of nodes v 2 V whose degree is substantially higher than theirassoiated bound Bv , as we proeed through this sequene, while keeping the ost ofthe assoiated primal solution (tree) bounded with respet to the orresponding dualsolution.To begin, our algorithm �rst omputes a minimum-ost spanning tree using theAlgorithm MST. This yields a feasible primal solution x0 for (LP-SP) and a feasibledual solution y0 for (D-SP). Notie that y0 also indues a feasible solution for (D) byletting �0v = 0 for all v 2 V while x0 potentially violates onstraints of type (2.1).We introdue the notion of normalized degree of a node v in a tree T and denoteit by(3.1) ndegT (v) = maxf0; degT (v)� � � Bvgwhere � > 0 is a onstant to be spei�ed later. Our algorithm suessively omputespairs of spanning trees and assoiated dual solutions to (D), i.e.(x1; fy1; �1g); (x2; fy2; �2g); : : : ; (xt; fyt; �tg):From one suh pair to the next, we try to redue the degree of nodes of high normalizeddegree. Spei�ally, our algorithm runs as long as there is a node in the urrent treewith ndeg(v) � 2 logb(n) for some onstant b > 1.Our algorithm keeps a ost eie with eah edge e 2 E and for eah iteration 1 �i � t. xi orresponds to a minimum-ost spanning tree Ei for ost funtion ei and yiis the assoiated dual paking. Throughout the algorithm we maintain that(3.2) uv � eiuv � uv + �iu + �ivfor all uv 2 E. Hene, (yi; �i) is a feasible solution for (D).Let �i be the maximum normalized degree of any node in the tree Ei. Theentral piee of our algorithm is a reompute step where we raise the � values of aarefully hosen set Sd of nodes with high normalized degree. This introdues slakin many of the onstraints of type (2.2).We now inrease the e-ost of edges that are inident to nodes in Sd (while main-taining (3.2)) and rerun MST on G using the new edge-osts. The hope is that theinreased e-ost of edges inident to nodes of high normalized degree leads MST to useedges that are inident to nodes of lower normalized degree in their plae. We are



APPROXIMATION ALGORITHMS FOR DEGREE-BOUNDED MST 5able to show that the number of reompute steps is polynomial, by arguing that wemake substantial progress in the normalized degree sequene of all nodes.As mentioned, eah reompute step takes a pair of primal infeasible and dualfeasible solutions (xi; (yi; �i)) and omputes a new pair of primal (infeasible) anddual feasible solutions (xi+1; (yi+1; �i+1)). In the following we use ndegi(v) as a shortfor ndegEi(v). We then adapt the notation from [3, 4℄ and letSid = fv 2 V : ndegi(v) � dgbe the set of all nodes whose normalized degree is at least d in the ith solution.Algorithm 1 The algorithm for the nBMST problem attempts to redue the maxi-mum normalized degree of any node in a given spanning tree.1: Given: primal feasible solution x0 to (LP-SP) and dual feasible solution y0 to(D-SP)2: �0v  0;8v 2 V ;e0e  e;8e 2 E3: i 04: while �i > 2 logb(n) do5: Choose di in f�i � 2 logb(n) + 1; : : : ;�ig s.t. Pv2Sidi�1 Bv � b �Pv2Sidi Bv6: Choose �i > 07: �i+1v  �iv + �i for all v 2 Sidi�1 and �i+1v  �iv otherwise8: ei+1(e) ei(e)+ �i if either e 2 Ei and e\Sidi 6= ; or e 62 Ei and e\Sidi�1 6= ;9: (xi+1; yi+1) MST(G;ei+1)10: i i+ 111: end whileA detailed desription of the proedure is given in Algorithm 1. In step 5 ofAlgorithm 1, we hoose a suitable set of nodes whose �-values we inrease. A simpleargument in [3℄ an be extended to guarantee the feasibility of the hoie in Step 5 ofthe algorithm.Lemma 3.1. There is a di 2 f�i � 2 logb(n) + 1; : : : ;�ig suh thatXv2Sidi�1 Bv � b � Xv2Sidi Bvfor a given onstant b > 1.Proof. Suppose for a ontradition that for all di 2 f�i � 2 logb(n) + 1; : : : ;�ig,we have Xv2Sidi�1Bv > b � Xv2Sidi Bv:Note that sine we may assume Bv � (n�1) for all verties, we must havePv2V Bv �n(n� 1). However, sine Pv2Si�i Bv � 1, we have in this ase thatXv2Si�i�2 logb(n)Bv � b2 logb(n) = n2a ontradition.



6 J. K�ONEMANN AND R. RAVIWhen Bv = B for all v 2 V , the 2 logb n term in the above lemma an beimproved to logn using the previous arguments in [3℄. This in turn leads to the slightimprovement of our results laimed right after the statement of Theorem 1.2.Step 6 of Algorithm 1 hides the details of hoosing an appropriate �i by whihedges in the urrent tree that are inident to nodes of normalized degree at least diare lengthened. Our hoie of �i and the following update of the e osts of the edgesin G will ensure that Kruskal's algorithm omputes a new tree in whih at least oneedge ei 2 Ei that is inident to a node of Sidi is replaed by an edge ei 62 Ei that isinident to nodes of low normalized degree.In fat, we show that a areful hoie of �i ensures that ei is inident to nodes ofnormalized degree at most di�2 while ei is inident to at least one node of normalizeddegree di or higher. The main idea here is to inrease �v for nodes v 2 Sidi�1 by �i andinrease the e-ost of non-tree edges that are inident to nodes of normalized degreeat least di � 1 by �i as well. In other words, the ost of non-tree edges inident tonodes of normalized degree at least di � 1 inreases by the same amount as the ostof tree edges inident to nodes of normalized degree at least di. This way, we enforethat the edge we swap in touhes nodes of normalized degree at most di � 2. Onewe aomplish this, adapting a potential funtion argument from [3℄ we an put apolynomial upper bound on the number of suh iterations (see Setion 3.3).Lemma 3.1 plays a key role in the later analysis of the performane guaranteeahieved by Algorithm 1. Notie that step 7 of the algorithm inreases the nodemultipliers of all nodes in Sidi�1. On the other hand, in step 8, we only inrease thee-ost of those tree edges that are inident to nodes in Sidi . Roughly, Lemma 3.1provides us with a bound on the number of tree edges that are inident to nodes ofnormalized degree exatly di � 1.We now desribe how to hoose �i so that the above onditions are satis�ed.3.1. Choosing �i. In this setion we elaborate on the hoie of �i in step 6 ofAlgorithm 1. In step 8 of Algorithm 1, we inrease euv by �i for all tree edges uv thatare inident to nodes of degree at least di and for all non-tree edges that are inidentto nodes of degree at least di � 1. We want to hoose �i suh that the subsequentupdate of ei and the following run of MST yields a new tree Ei+1 that di�ers from Eiby a single edge swap: Ei+1 = Ei n feig [ ei. Here, the edge ei 2 Ei is a tree edgethat is inident to a node from Sidi . On the other hand we want ei 2 E n Ei to be anon-tree edge that is not inident to any node from Sidi�1.As indiated in the previous setion, we wantEi+1 to be a minimum-ost spanningtree of G for ost funtion ei+1. In order to ahieve this, ei must be on the uniqueyle in Ei [ feeig and we also must haveei+1(ei) = ei(ei) + �i = ei+1(ei):In other words, the update of �v for v 2 Sidi�1 reates one more bene�ial swap.We let Ki be the set of onneted omponents of the forest Ei nSidi , i.e. the forestthat results from removing nodes of normalized degree at least di from Ei. We saythat an edge e = uv 2 E is a ross-edge if1. e is a non-tree edge, i.e. e 2 E nEi,2. u 2 K1; v 2 K2 for K1;K2 2 Ki and K1 6= K2, and3. fu; vg \ Sidi�1 = ;.We denote the set of ross-edges in iteration i by Ci. Observe that if Ci = ;, then theset Sdi�1 provides a witness to the infeasibility of the degree bounds imposed on thenodes in this set.



APPROXIMATION ALGORITHMS FOR DEGREE-BOUNDED MST 7It is now lear that Ei + e ontains a unique yle Cie for eah ross-edge e 2 Ci.Furthermore, there must be at least one vertex v on Cie that has normalized degreeat least di.For eah ross-edge e 2 Ci, we now let�ie = mine02Cie;e0\Sidi 6=; �ei(e)� ei(e0)� :Note that it follows from the fat that Ei is a minimum-ost spanning tree for ostfuntion ei that �ie � 0 for all e 2 Ci. Finally, we let �i = mine2Ci �ie.In the following, we let hei; eii be the witness pair for �i. In other words, let hf; fibe a pair of edges where f 2 E nEi is a non-tree edge and f 2 Cif is a tree edge thatis inident to a node from Sidi and that lies on the unique yle in Ei + f . Then, wemust have that ei(f) + �i � ei(f)and equality holds for f = ei and f = ei. Notie that ei is inident to nodes ofnormalized degree at most di � 2 by the de�nition of ross-edges.An important observation is that �i an be 0. Suh a step an be viewed as aloal-improvement step along the lines of [4℄. We do not modify the dual solution butderease the normalized degree of a node of high normalized degree.3.2. Analysis: Performane guarantee. Assume that Algorithm 1 termi-nates after iteration t�. Reall that Theorem 1.2 requires us to show(3.3) (Et�) � ! � opt :In this setion prove(3.4) Xe2Ei e � !X�2�(r(�) � 1) � yi� � ! �Xv2V Bv � �ivfor all 1 � i � t�. Observe that (yi; �i) is a feasible solution for (D) and that theright-hand side of (3.4) is ! times the dual objetive funtion indued by (yi; �i).Inequality (3.4) for i = t� together with weak duality implies (3.3). This line of proofextends that developed for the analysis of primal-dual algorithms for minimum-osnetworks developed in [1, 5℄.In order to failitate the proof of (3.4) for all 1 � i � t�, we maintain the followinginvariant indutively for all 0 � i � t�:(Inv) ! �Xv2V Bv�iv � (! � 1) �X�2�(r(�) � 1) � yi�:Reall that we assumed ! > 1 in Theorem 1.2.The rest of this setion is split into two parts: First, we show that Invariant(Inv) holds throughout the exeution of Algorithm 1). The seond part then uses thisinvariant and proves (3.4) for all 1 � i � t�.3.2.1. Proof of Invariant (Inv). We prove the validity of (Inv) for all 1 � i �t� by indution over i. First, notie that (Inv) holds for i = 0 sine �0v = 0 for allv 2 V . To see the indution step of (Inv) we use the following lemma that ultimately



8 J. K�ONEMANN AND R. RAVIyields (3.4). Reall the de�nition of normalized degree in (3.1) and the role of theparameter � > 0 in it.Lemma 3.2. Let b > 1 be the onstant hosen in Theorem 1.2. We must haveX�2�(r(�) � 1) � yi+1� �X�2�(r(�) � 1) � yi� + �i�b � Xv2Sidi�1 Bvfor all 0 � i � t�.The lemma quanti�es the inrease in the dual objetive funtion value as ouralgorithm moves from yi to yi+1. Intuitively, the lemma shows that the inrease in thedual objetive funtion value is proportional to the total slak reated by lengtheningtree edges of Ei that are inident to nodes of normalized degree at least di � 1.Before presenting the proof of Lemma 3.2 we show how it helps to prove (Inv).Observe that the left hand side of (Inv) inreases by !�iPv2Sidi�1 Bv as a onsequeneof inreasing the � values of nodes in Sidi�1. Lemma 3.2 implies that the right handside of (Inv) inreases by at least(! � 1) � ��ib � Xv2Sidi�1 Bv:Choosing(3.5) � � b � !! � 1ompletes the proof of Invariant (Inv).We now prove Lemma 3.2.Proof of Lemma 3.2: Let Ei = fei1; : : : ; ein�1g and let tij be the time at whihMST inluded edge eij . W.l.o.g., assume that ti1 � � � � � tin�1. From the desription ofMST we an rewrite(3.6)X�2�(r(�) � 1) � yi� = n�1Xj=1(tij � tij�1) � (n� j) = n�1Xj=1 tij ((n� j + 1)� (n� j)) = n�1Xj=1 tijwhere we de�ne ti0 = 0.Figure 3.1 illustrates the e�et of iteration i. Observe that, by our hoie of�i, Ei is a minimum-ost spanning tree even for ost funtion ei+1. However, reallthat there is a way to break ties suh that step 9 in iteration i orretly outputsEi+1 = Ei n feig [ feig. This observation together with (3.6) enables us to quantifythe hange in dual in iteration i:X�2�(r(�) � 1) � �yi+1� � yi�� = n�1Xj=1 �ti+1j � tij�(3.7)In iteration i, we inrease the e-ost of all edges e 2 Ei that are inident to nodesof normalized degree at least di by �i while the e-osts of all other tree edges remainunhanged. It is not hard to see that the time an edge beomes tight equals its e-ost.In other words, all edges in Ei that are inident to nodes of normalized degree at leastdi beome tight �i time units later. Together with (3.7) we obtain(3.8) X�2�(r(�) � 1) � �yi+1� � yi�� = �i � ��E �Sidi� \Ei��



APPROXIMATION ALGORITHMS FOR DEGREE-BOUNDED MST 9timeti1 ti2 ti3 ti4ti+11 ti+12 ti+13 ti+14
�i

Fig. 3.1. The �gure shows two runs of MST in two onseutive iterations i and i + 1. Thehorizontal line is the time axes while the vertial lines denote the times at whih di�erent edgesbeome tight and are inluded. In the ith run edge el beomes tight at time til . In this example, edgee3 is the only edge inident to a vertex of normalized degree at least di. Its length inreases and thetime at whih it beomes tight during MST's exeution is postponed by �i time units.where E �Sidi� denotes the set of edges in E that are inident to nodes from Sidi . (Notethat we inlude in E(S) edges with both endpoints in S).Reall the de�nition of normalized degree in (3.1). Notie that it follows from thetermination ondition in step 4 of Algorithm 1 that �i > 2 logb(n) and hene di > 0.Therefore, the real degree of any node v 2 Sidi must be at least� � Bv + di � � �Bv + 1:Finally, notie that it follows from the fat that Ei is a tree that there are at mostjSidi j � 1 edges in E �Sidi� that are inident to two nodes from Sidi . We an use theseobservations to lower-bound the right-hand side of (3.8):X�2�(r(�)� 1) � �yi+1� � yi�� � �i �0B�0B� Xv2Sidi � � Bv + 11CA� (jSidi j � 1)1CA � �i� � Xv2Sidi BvAn appliation of Lemma 3.1 yields the lemma.We proeed with the proof of (3.4).3.2.2. Bounding the ost of Ei. As MST �nishes we obtain from Lemma 2.1that(3.9) ei+1(Ei+1) = Xe2Ei+1 ei+1e = X�2�(r(�) � 1) � yi+1� :Observe that the real ost of the spanning tree Ei+1 is muh smaller than ei+1(Ei+1).In fat, notie that we have(3.10) (Ei+1) = (ei) + (Ei n feig) � ei+1(ei) + ei(Ei n feig)where the �rst step follows from the fat that Ei+1 = Ei nfeig[feig by the de�nitionof �i and the way we break ties in MST. The seond inequality uses the fat that wealways have e � eie for all 1 � i � t and for all e 2 E.Also, observe that(3.11) ei+1(Ei n feig) = ei(Ei n feig) + ���E �Sidi� \ Ei��� 1� � �isine exatly one edge from Ei that is inident to a node of normalized degree at leastdi is swapped out.



10 J. K�ONEMANN AND R. RAVIWe an lower-bound ��E �Sidi� \Ei�� using the arguments from the proof of Lemma3.2: ��E �Sidi� \ Ei�� � 0B� Xv2Sidi � � Bv + 11CA� (jSidi j � 1) � �b �0B� Xv2Sidi�1 Bv1CA+ 1where the last inequality uses Lemma 3.1. Together with (3.11) we obtainei+1(Ei n feig) � ei(Ei n feig) + �i�b � Xv2Sidi�1Bv :(3.12)We then have (Ei+1) � ei(Ei n feig) + ei+1(ei)� ei+1(Ei)� �i�b � Xv2Sidi�1Bv= X�2�(r(�) � 1) � yi+1� � �i�b � Xv2Sidi�1Bvwhere the �rst inequality follows from (3.10), the seond inequality follows from (3.12),and the last equality follows from (3.9).Adding (Inv) for iteration (i+ 1) to the last inequality we get(Ei+1) � ! � X�2�(r(�) � 1) � yi+1� �Xv2V Bv�i+1v !� �i�b � Xv2Sidi�1Bv� ! � X�2�(r(�) � 1) � yi+1� �Xv2V Bv�i+1v ! :This �nishes the proof of the performane guarantee laimed in Theorem 1.2.3.3. Analysis: Running time. In this setion, we show that Algorithm 1terminates in polynomial time. We aomplish this by showing that there will beonly a polynomial number of iterations of the main loop in Algorithm 1.Lemma 3.3. Algorithm 1 terminates after O(n4) iterations.Proof. Following [3℄, we de�ne the potential of spanning tree Ei as�i = Xv2V 3ndegi(v)where ndegi(v) denotes again the normalized degree of node v in the tree Ei.Notie that an iteration of Algorithm 1 swaps out a single edge ei that is inidentto at least one node of normalized degree at least di. On the other hand we swap inone edge ei that is inident to two nodes of normalized degree at most di � 2. Theredution in the potential hene is at least(3di + 2 � 3di�2)� 3 � 3di�1 � 2 � 3di�2
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 3�in2 ! :The initial potential �0 is at most n � 3�0 and the derease in the potential �i initeration i is at least 
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