
A MATTER OF DEGREE:IMPROVED APPROXIMATION ALGORITHMS FORDEGREE-BOUNDED MINIMUM SPANNING TREES �J. K�ONEMANN AND R. RAVIAbstrat. In this paper, we present a new biriteria approximation algorithm for the degree-bounded minimum spanning tree problem. In this problem, we are given an undireted graph, anonnegative ost funtion on the edges, and a positive integer B�, and the goal is to �nd a minimumost spanning tree T with maximum degree at most B�. In an n-node graph, our algorithm �ndsa spanning tree with maximum degree O(B� + log n) and ost O( optB� ) where optB� is theminimum ost of any spanning tree whose maximum degree is at most B�. Our algorithm uses ideasfrom Lagrangean duality. We show how a set of optimum Lagrangean multipliers yields bounds onboth the degree and the ost of the omputed solution.Key words.AMS subjet lassi�ations.1. Introdution.1.1. Motivation and formulation. In the design of omputer networks a fun-damental problem is that of transmitting a single information paket from a givensoure-host to a set of reipient-hosts. This problem is widely known as the broadastor multiast problem, depending on whether we want to transmit the paket to allother hosts or to a spei� subset of reipients. Both problems have been widelystudied [3, 6, 18℄. In partiular, it is believed that the multiast problem will play aninreasingly important role in data networks.A naive solution to the multiast problem would be to implement it as a seriesof uniasts. In other words, the soure sends a single paket to every reipient host.The routing is done independently for eah of the uniasts. However, the ost of thisapproah in terms of bandwidth onsumption beomes unaeptable if the number ofhosts in the multiast group grows.Graph theoreti ideas have turned out to be essential in the design of eÆientnetwork routing protools. A physial network an be modeled as a omplete graphwhere eah host is assoiated with a node and an edge represents the virtual linkbetween the orresponding hosts. Usually, edges of that graph are annotated bythe transmission delay of the orresponding virtual link. A standard solution tobroadasting and multiasting problems is then to send pakets along the edges of aminimum spanning tree rooted at the soure node [18℄. Every internal node dupliatesthe inoming message and sends it to its hildren.However, a spanning tree might have a high fan-out out at ertain internal nodes.Swithes in point-to-point networks may vary in their ability to support multiasting.That is, some routers may not support multiasting at all and others may only supporta limited number of opies they an make of an inoming paket [20℄. Bauer andVarma [1℄ show that it is natural to model swith apabilities by node degrees ingraphs.The preeding disussion suggests that a solution to the multiasting problemshould minimize the total transmission delay and the maximum degree of a vertex�GSIA, Carnegie Mellon University, Pittsburgh, PA 15213. EMail: fjohen,ravig�mu.edu. Re-searh supported in part by NSF grant 96-25279.1



2 J. K�onemann and R. Raviin the omputed solution. Traditional approahes for this kind of biriteria problemoften ompute the minimum-ost solution under a linear ombination of the two ostmeasures [14, 17℄. However, in the ase of very disparate objetives these tehniquesusually do not produe useful solutions.In this paper, we address a natural budgeted version of the degree-bounded min-imum spanning tree problem (BMST). Here, we are given an undireted graph G =(V;E), a ost funtion  : E ! IR+ and a positive integer B � 2. We would like to�nd a spanning tree T of maximum vertex degree at most B and minimum ost. Thisformulation was �rst introdued in [17℄ and an be modeled by the following integerlinear program. optB = min Xe2E exe (IP)s.t x(Æ(v)) � B 8v 2 V (1.1)x 2 SPGx integerHere, Æ(v) denotes the set of all edges of E that are inident to v and SPG isthe spanning tree polyhedron, that is, the onvex hull of edge-inidene vetors ofspanning trees of G. We note that omplete desriptions of SPG are known in theliterature ([2, 4℄).1.2. Previous work and our result. Ravi et al. [17℄ showed how to om-pute a spanning tree T of maximum degree O(B log ( nB )) and total ost at mostO(log n) optB . They generalize their ideas to Steiner trees, generalized Steiner forestsand the node-weighted ase.Another result that is related to our work is given in a paper by Khuller, Ragh-avahari and Young [11℄. The authors show how to ompute a spanning tree of npoints in the plane that has degree at most 3 (4) and ost at most 1:5 (1:25) that ofa minimum-ost spanning tree (without any degree onstraints).While the approximation fator of O(log n) on the ost of the solution annotbe improved substantially (via redutions from the set overing problem [12℄) in thenode-weighted ase, improvements for the edge-weighted ase were left open in [17℄.Our main result is suh an improvement and is stated in the following theorem. Wedenote the degree of a node v in tree T by ÆT (v). Let the maximum node degree ina tree T be denoted by �(T ).Theorem 1.1. There is a polynomial-time approximation algorithm that, givena graph G = (V;E), a nonnegative ost funtion  : E ! IR+, a onstant B� � 2 anda parameter ! > 0, omputes a spanning tree T suh that1. �(T ) � (1 + !)bB� + logb n for any arbitrary onstant b > 1, and2. (T ) < (1 + 1=!)optB� .For instane, hoosing ! = 1=2 and b = 2 would yield a tree with degree at most3B� + log2 n and ost at most 3optB� .1.3. Tehnique: Lagrangean Duality. Our algorithm builds on the Lagrangeandual of (IP) resulting from dualizing the degree onstraints. We denote its value byoptLD(B) . optLD(B) = max��0 minT2 SPG f(T ) +Xv2V �v(ÆT (v) �B)g: (LD(B))



Improved Approximation Algorithms for Degree-Bounded Minimum Spanning Trees 3For any �xed � � 0, an optimum integral solution to (IP) is a feasible andidatefor attaining the inner minimum above. Sine the maximum degree of suh a solutionis at most B and � � 0, it follows that optLD(B) is a lower bound on optB .Proposition 1.2. [15℄ optLD(B) � optBThe interesting fat is that optLD(B) an be omputed in polynomial time [15℄.The result is a vetor �B of optimum Lagrangean multipliers on the nodes and a set ofoptimum trees OB, all of whih ahieve the inner minimum for this set of multipliers.In other words, every tree TB 2 OB minimizes the following objetive:(TB) +Xv2V �Bv (ÆTB (v)�B):Given �B , the task of �nding a tree T that minimizes the above objetive funtion isalled the Lagrangean subproblem of LD(B).Using �B (uv) = (uv) + �Bu + �Bv the last expression an be restated as�B (TB)�BXv2V �Bv (1.2)Notie that for a given �B and B, the seond term is a onstant. Hene, any minimumspanning tree of G under ost �B , denoted by MST(G; �B ), is a solution for T .An important feature of our algorithm is to relax the degree onstraints slightlyfrom B to (1 + !)B for some �xed ! > 0 and show that there is a tree T 2 O(1+!)Bthat satis�es the onditions of Theorem 1.1.This paper is organized as follows: in Setion 2 we review results on the relatedminimum-degree spanning tree problem. In partiular, we present the fundamentalideas from [5, 7℄. In Setion 3, we state our algorithm. Finally, we give the analysisof our proedure in Setion 4.2. Minimum Degree Spanning Trees. Related to the BMST problem is theproblem of minimizing the maximum degree of a spanning tree in some graph G(MDST). This problem is NP-hard sine the Hamiltonian path problem is a speialase. In fat, it isNP-omplete to deide for any k � 2 whether G ontains a spanningtree of maximum degree k [8℄.F�urer and Raghavahari presented an approximation algorithm with an additiveperformane guarantee of one [7℄: i.e., they desribe a polynomial time algorithm that�nds a spanning tree T of G suh that �(T ) � ��+1, where �� denotes the minimumpossible maximum degree over all spanning trees. In the same paper the authors alsogive a loal searh algorithm for the MDST problem. This approah yields a treewith maximum degree at most b�� + logb n for any onstant b > 1. Later, Fishernoted that this proedure an be adapted to �nd a minimum-ost spanning tree ofapproximately minimum maximum degree in an edge-weighted graph [5℄.The loal searh algorithms from [5, 7℄ play an important role in this paper. Inthis setion we show a minor strengthening of these results that is ruial to theanalysis of our algorithm.2.1. A loal improvement algorithm. In this setion, we explain the basiideas from the loal searh algorithm for the MDST problem. We state the algorithmsine we use it later. The proedure starts with a spanning tree T and tries to improveit by swapping non-tree edges against tree edges.



4 J. K�onemann and R. RaviDefinition 2.1. Given a tree T and a non-tree edge uv, let C(uv) be the uniqueyle in T [ fuvg and let wz 2 C(e). We all the swap huv; wzi an improvement forw if maxfÆT (u); ÆT (v)g+ 1 < ÆT (w):If an edge swap huv; wzi is an improvement step for either w or z then the maximumdegree of the nodes u; v; w and z dereases as a result of the swap; We all suh aswap simply an improvement.The algorithm in [7℄ performs improvement steps as long as possible. In fat,it is not hard to see that starting with an arbitrary tree, the number of possibleimprovements is �nite. We end up with a loally optimal tree.Definition 2.2. A tree T is alled loally optimal (LOT) if no vertex degree anbe dereased by applying an improvement swap.Computing a loally optimal tree might be too ambitious a goal however. In fat,it is not known how to do this in polynomial time. However, the analysis in [7℄ showsthat it is enough to ompute a pseudo-optimal tree.Definition 2.3. A tree T of maximum degree �(T ) is alled pseudo-optimal(POT) if for all verties v with �(T ) � dlogb ne � ÆT (v) � �(T ), no improvementstep for v is appliable. Here b is an arbitrary onstant bigger than one.Fisher's adaptation [5℄ of the algorithm from [7℄ omputes a minimum-ost span-ning tree of approximately minimum maximum degree. To obtain his algorithm wehave to make two small hanges to the proedure from [7℄. First, instead of startingwith an arbitrary spanning tree, we start with a minimum-ost spanning tree. Seond,an improvement step must be ost neutral. That is, for an improvement step huv; wzito be appliable we must have uv = wz. Algorithm 1 states the proedure.Algorithm 1 The algorithm PLoal omputes a pseudo-optimal tree.1: Given: graph G = (V;E) and ost funtion  : E ! IR+2: T  MST(G; )3: while T is not pseudo optimal do4: Identify ost neutral improvement huv; wzi5: T  T � wz + uv6: end while2.2. Analysis and running time. In what follows we highlight and strengthenthe major ideas of the analysis from [5, 7℄. The strengthening is due to �Eva Tardos[19℄ and leads to a shorter and simpler proof of Lemma 4.5 than the one that appearedin the extended abstrat [13℄.The fundamental underlying proof idea for the unweighted problem is based onan averaging argument that we present here. Let a setW � V be suh that for a givengraph G = (V;E), the graph G[V �W ℄ has t onneted omponents. A spanning treeof G has to onnet these t omponents and the nodes from W . We need exatlyt + jW j � 1 edges going between the nodes of W and the t onneted omponentsto aomplish this. Eah of these edges must be inident to a node from W . Heneaveraging yields a lower bound of (t+ jW j�1)=jW j on the maximum degree �� of T .Proposition 2.4. [7℄ Let W be a set of size w whose removal splits G into tomponents. Then �� � �w+t�1w �.



Improved Approximation Algorithms for Degree-Bounded Minimum Spanning Trees 5We now turn to the weighted ase, i.e. the minimum-degree minimum-ost span-ning tree problem. The above mentioned strengthening of the results from [5℄ is basedon the following de�nitions.Definition 2.5. Given an undireted graph G = (V;E) and a non-negative ostfuntion  on the edges, let O be de�ned asO = fT : T is an MST under ost g:In the following we will be talking about onvex ombinations of spanning trees.Hene we introdue some further simplifying notation.Definition 2.6. Let T� = PT2O �TT be a onvex ombination of minimum-ost spanning trees of G with respet to ost funtion , i.e. �T � 0 for all T andPT2O �T = 1. We denote the frational degree of vertex v in T� byÆ� (v) = XT2O �T ÆT (v):Finally we de�ne the minimum maximum degree of onvex ombinations of span-ning trees.Definition 2.7. Given G = (V;E) and a non-negative ost funtion  on theedges, let �� denote the minimum maximum degree of any onvex ombination ofminimum-ost spanning trees, i.e.�� = minonvex omb. � maxv2V Æ� (v):The following easy proposition will be used in the later analysis.Proposition 2.8. [7℄ For any onstant b > 1 and a tree T , let Sd be the set ofnodes that have degree at least d in T . Then, there is ad 2 f�T � dlogb ne+ 1; : : : ;�T gsuh that jSd�1j � bjSdj.The main theorem is the following.Theorem 2.9. [5, 7℄ If T is a pseudo-optimal MST, then �T < b��+dlogb ne forany onstant b > 1. Moreover, a pseudo-optimal MST an be omputed in polynomialtime.Proof. Given a onstant b > 1, hoose d as in Proposition 2.8. That is, we havejSd�1j � bjSdj. Reall that Sd ontains the nodes of degree at least d in the tree T .Removing Sd from T leaves us with a forest F . Let bG be obtained from Gby ontrating eah onneted omponent of F . It is now easy to see that everyminimum-ost spanning tree of G ontains a minimum-ost spanning tree of bG (e.g.,every edge added by Kruskal's algorithm for �nding a minimum-ost spanning treefor G is feasible for a minimum-ost spanning tree of bG if it were not ontrated inthe formation of bG).Let (u; v) 2 E � T be an edge that onnets two omponents of F suh thatu; v 62 Sd�1, i.e. both u and v have degree at most d� 2. We laim that suh an edgeannot be inluded in any minimum spanning tree of bG. To see that, let P Tu;v be theedges of the unique u; v-path in T and let dP Tu;v be the subset of the edges of P Tu;v thatare in bG.



6 J. K�onemann and R. RaviIt follows from the pseudo-optimality of T that the ost of edge (u; v) must behigher than the ost of eah edge from dP Tu;v . For otherwise, (u; v) an be swapped inplae of another edge of the same or higher ost in dP Tu;v and all suh edges are inidentto at least one node in Sd�1, leading to an improvement. This means (u; v) annot bea part of any minimum spanning tree of bG. Equivalently, a minimum-ost spanningtree of G must use edges inident to Sd�1 to onnet the omponents of F and thenodes of Sd.By the de�nition of Sd, we know that F has at leastjSdjd� 2(jSdj � 1) = jSdj(d� 2) + 2trees. This follows from an easy ounting argument after observing that every nodein Sd has degree at least d in T and there are at most jSdj � 1 edges going betweennodes of Sd.This means that we need at leastjSdj(d� 2) + 2 + jSdj � 1 = jSdj(d� 1) + 1edges to onnet up the omponents of F and the nodes of Sd in any spanning tree.By the preeeding argument eah of these edges has to be inident to at least onenode of degree at least d � 1 in an MST. Hene the the average degree of a node ofSd�1 in any MST is jSdj(d� 1) + 1jSd�1j :Moreover, the average degree of a node in Sd�1 in any onvex ombination of MSTsis also at least the above ratio. Sine �� denotes the minimum possible maximumdegree of any frational MST, it follows using our hoie of index d from Proposition2.8 that �� > d� 1b :Using the range of d we obtain �(T ) < b�� + dlogb ne. The results in [5, 7℄ showa lower-bound on the degree of any MST. The extention to frational MST's is thementioned strengthening [19℄ of the previous ideas.For the running time we follow [7℄. Note that eah improvement step an beimplemented in polynomial time. We need to bound the number of iterations. Theproof uses a potential funtion argument. De�ne the potential of a vertex v as�(v) = 3ÆT (v)where T is the urrent tree. The total potential is the sum over all vertex potentials,that is �(T ) = Xv2V �(v):Now, an improvement step in Algorithm 1 improves the degree of a vertex v 2 Sdwith ÆT (v) = d and d � �(T )� dlogb ne+ 1. Hene, the redution in the potential isgoing to be at least (3d + 2 � 3d�2)� 3 � 3d�1 = 2 � 3d�2:



Improved Approximation Algorithms for Degree-Bounded Minimum Spanning Trees 7Using the range of d we an lower bound the right hand side of the last equality by3�(T )�logb n�1 = 
�3�(T )n � :The potential �(T ) of the tree T is at most n3�(T ). This implies that the overallderease of the potential due to the improvement step is
��(T )n2 �In other words, we redue the potential by at least a polynomial fator in eah itera-tion. In O(n2) iterations the redution is by a onstant fator. Hene, the algorithmneeds O(n3) improvement steps in total.3. The BMST-Algorithm. In this setion, we desribe our algorithm for theBMST problem. It uses the Lagrangean formulation LD(B) from the introdutionand Algorithm 1.The input to our algorithm onsists of a graph G, a non-negative ost funtion ,a degree bound B� and a positive onstant !. Let B = (1 + !)B�.Algorithm 2 Our algorithm for the BMST problem1: Given: graph G = (V;E), a ost funtion  : E ! IR+, a degree bound B� � 2and a parameter ! > 0.2: B  (1 + !)B�3: �B  Solve(LD(B))4: T  PLoal(G; �B )Sine the optimum Lagrange multipliers and pseudo-optimal MSTs an be om-puted in polynomial time [7, 15℄, Algorithm 2 runs in polynomial time.Reall that �B denotes the original ost funtion  augmented by the Lagrangeanmultipliers �B , i.e. �Buv = uv+�u+�v. We use OB to denote the set of all minimum-ost spanning trees of G for ost funtion �B .4. Analysis. In this setion we prove Theorem 1.1. First we show that the ost(T ) of the tree output by Algorithm 2, T , is small. Then, we prove that T has lowmaximum degree. Our proofs rely on tehniques from Lagrangean duality.4.1. The ost of T . Reall that optLD(B) � optB from Proposition 1.2. Un-fortunately, optLD(B) = optB is not true in general. There might be a duality gap.However, it an be shown that optLD(B) equals the optimum objetive funtion valueof the relaxation of (IP). The proof is insightful and hene we present it here.Theorem 4.1. [15℄ optLD(B) = minf(T ) : T 2 SPG ;8v 2 V : ÆT (v) � BgProof. We an restate (LD(B)) as the following linear program in variables � and�. Reall that we denote its maximum objetive funtion value by optLD(B) .max � (4.1)s.t. � � (T )�Xv2V �v(B � ÆT (v)) 8T 2 SPG� � 0



8 J. K�onemann and R. RaviThe �rst blok of onstraints states that � is at most the ost of any spanning treeT of G with respet to the Lagrangean funtion (1.2). The maximization objetiveof (4.1) fores � to attain the best possible ost. Writing down the dual of the lastprogram yields min ( XT2 SPG �TT ) (4.2)s.t. XT2SPG �T = 1XT2SPG �T ÆT (v) � B XT2 SPG �T = B 8v 2 V� � 0Note that T� =PT2 SPG �TT is a onvex ombination of trees in SPG . Also, observethat PT2 SPG �T ÆT (v) is preisely the degree Æ�(v) of this frational tree at node v.These observations yield the theorem.The theorem has two nie orollaries that we use. In the following, let �B denotethe vetor of optimum Lagrangean multipliers for (LD(B)). Reall that OB is the setof minimum-ost spanning trees under �B .Corollary 4.2. There exists a onvex ombination T� = PT2OB �TT suhthat 1. 8v 2 V : Æ��B (v) � B and2. �Bv > 0 only if Æ��B (v) = B.Proof. This follows from omplementary slakness applied to the optimum solu-tions of the dual linear programs (4.1) and (4.2).The seond orollary gives a bound on ���B .Corollary 4.3. ���B � BProof. By Corollary 4.2, we know that there is a onvex ombination T� of treesfrom OB suh that Æ��B (v) � B for all v. Hene���B = min� maxv2V Æ��B (v) � B:We now prove that (T ) is small.Lemma 4.4. For all trees T 2 OB we have (T ) < (1 + 1=!)optB� .Proof. Reall that we de�ned B = (1 + !)B�The following inequality holds for every T 2 OB :Xv2V �Bv (ÆT (v) �B�) � (T ) +Xv2V �Bv (ÆT (v) �B�) (4.3)� optLD(B�)In the �rst inequality we just added (T ). Note, that the right hand side of the �rstline is just the Lagrangean objetive funtion (1.2) for B�. Reall that T is a minimumspanning tree with respet to �B . Moreover, �B is a feasible set of multipliers for(LD(B�)). Hene, the seond inequality follows.



Improved Approximation Algorithms for Degree-Bounded Minimum Spanning Trees 9We also have(T ) = (T ) +Xv2V �Bv (ÆT (v)�B�) +Xv2V �Bv (B� � ÆT (v))� optLD(B�) +Xv2V �Bv (B� � ÆT (v))where the inequality follows from (4.3). Applying Proposition 1.2 and the fat thatÆT (v) � 1 for all v 2 V leads to(T ) < optB� +B�Xv2V �Bv :In the remainder of this proof we will derive the inequality B�Pv2V �Bv � optB�=!.This yields the lemma. From Corollary 4.2, we know that there is a onvex ombina-tion T� = XT2OB �TTsuh that �Bv > 0 only if Æ��B (v) = B.We derive a new inequality by summing over all T 2 OB , �T times the inequality(4.3) for eah T . We obtainXT2OB �T  Xv2V �Bv (ÆT (v)�B�)! � optLD(B�) XT2OB �T (4.4)The right hand side is equivalent to opt LD(B�) beausePT2OB �T = 1. Reorderingthe left hand side yields Xv2V �Bv   XT2OB �T ÆT (v)!�B�!Instead of summing over all v 2 V it suÆes to sum over v, where �Bv > 0. For suhv, we have Æ��B = XT2OB �T ÆT (v) = Bby Corollary 4.2. Using B = (1 + !)B� it follows that the left hand side of (4.4) isequivalent to !B�Xv2V �Bvand this �nishes the proof of the lemma.4.2. The Maximum Degree of T . Lemma 4.5. �T � (1 + !)bB� + dlogb nefor onstants b > 1 and !.Proof. T is a pseudo-optimal minimum-ost spanning tree with respet to ostfuntion �B . From Theorem 2.9 we know that�T � b���B + dlogb ne:An appliation of Corollary 4.3, noting B = (1 + !)B� yields the lemma.



10 J. K�onemann and R. Ravi5. Conlusions.5.1. Summary and remarks. In this paper we developed an improved ap-proximation algorithm for the degree-bounded minimum spanning tree problem. Fora positive onstant B� and an n-node graph, our method omputes a spanning treewhose ost is at most a onstant fator worse than the ost of the optimum degree-B�-bounded minimum spanning tree. Additionally, we proved that the maximum degreeof the resulting tree is O(B�+logn). Our proedure solves a Lagrangean relaxation ofthe BMST integer program for slightly relaxed degree onstraints ((1 + !)B� insteadof B�). We showed how this slak helps to prove low ost of the resulting tree. Ouralgorithm also makes use of a loal searh tehnique from [5, 7℄. We showed how aslight strengthening of the results in [5, 7℄ an be used to prove low maximum degreeof the resulting tree.As a side note, the reader should notie that in Algorithm 2 we assumed the exatsolution of (LD(B)). However, in an implementation, a reasonable approximation tothe optimum Lagrangean multipliers will most likely be suÆient. To ompute suh anapproximation, we ould employ subgradient optimization tehniques from [9, 10, 16℄.5.2. Extensions and open questions. An interesting open question is whetherour results extend to the ase of Steiner trees and general Steiner networks. Theentral diÆulty of suh an extension stems from the fat that, in the Steiner ase,the subproblem that arises from dualizing the degree onstraints (the minimum ostSteiner tree problem) is NP-hard itself.Another avenue for extending our work is to examine if our approah apable ofhandling individual node degrees? In the urrent version, node degrees are assumedto be uniform. Lemma 4.5 relies on the pseudo-optimality of tree T from Algorithm 2and on results from [5, 7℄. These results do not apply to non-uniform degrees. Is therean extention of the known MDST algorithms to handle individual degree bounds?We believe that the tehniques used in this paper an be generalized to apply toa broader lass of multiriteria problems. A entral point in the development of amore general framework is the identi�ation of key properties of suitable optimizationproblems; in the BMST problem, the dualization of the degree onstraints yields atratable subproblem. Furthermore, the ompat form of the objetive funtion ofthis subproblem proved to be a key for the analysis.Aknowledgments We thank �Eva Tardos for permitting us to inlude her sim-pler proof of Lemma 4.5 in the paper.REFERENCES[1℄ F. Bauer and A. Varma. Degree-onstrained multiasting in point-to-point networks. In Pro-eedings of the 14th Annual Joint Conferene of the IEEE Computer and CommuniationsSoieties (INFOCOM'95), pages 369{376, Los Alamitos, CA, USA, April 1995. IEEE Com-puter Soiety Press.[2℄ S. Chopra. On the spanning tree polyhedron. Operations Researh Letters, 8:25{29, 1989.[3℄ S. Deering, D. Estrin, D. Farinai, V. Jaobson, C.-G. Liu, and L. Wei. An arhiteture forwide-area multiast routing. In Proeedings, 1994 SIGCOMM Conferene, pages 126{135,London, UK, 1994.[4℄ Edmonds, J. Optimum branhings. J. Res. Nat. Bur. Standards, B71:233{240, 1967.[5℄ T. Fisher. Optimizing the degree of minimum weight spanning trees. Tehnial Report TR93-1338, Dept. of Computer Siene, Cornell University, Ithaa, NY 14853, 1993.[6℄ S. Floyd, V. Jaobson, S. MCanne, C. G. Liu, and L. Zhang. A reliable multiast frame-work for light-weight sessions and appliation level framing. IEEE/ACM Transations onNetworking, November 1996.
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