Approximation Algorithms for a Capacitated Network Design Problem*

R. Hassin' R. Ravi* F. S. Salman®

December 17, 2001

Abstract

We study a capacitated network design problem with applications in local access network
design. Given a network, the problem is to route flow from several sources to a sink and to
install capacity on the edges to support the flow at minimum cost. Capacity can be purchased
only in multiples of a fixed quantity. All the flow from a source must be routed in a single path
to the sink. This NP-hard problem generalizes the Steiner tree problem and also more effectively
models the applications traditionally formulated as capacitated tree problems. We present an
approximation algorithm with performance ratio (psr + 2) where pgr is the performance ratio
of any approximation algorithm for minimum Steiner tree problem. When all sources have the
same demand value, the ratio improves to (psr + 1) and in particular, to 2 when all nodes in
the graph are sources.

Keywords: Network design, approximation algorithms, routing flow, capacity installation

1 Introduction

We consider the problem of capacity installation and the routing of traffic from a set of source
nodes to a single sink node in a network. We model applications in which capacity can be pur-
chased in multiples of a fixed quantity. In telecommunication network design this corresponds to
installing transmission facilities such as fiber-optic cables on the edges of a centralized network, and
in transportation networks this applies to assigning vehicles of fixed capacity to routes from several
destinations to a single hub node. A typical telecommunication network consists of a backbone net-
work and several local access networks. The backbone provides very high speed connection between
gateway nodes (service hubs) and each local access network collects traffic at a centralized gateway
node through which the backbone is accessed. The performance measures for the effectiveness of a
network design include cost, reliability and quality of service. While reliability is a major criterion
for a backbone network, cost and quality of service may play important roles in the design of local
access networks. The problem we study models the topological design of a cost-effective local access
network.

“A preliminary version of this paper appeared in the Proceedings of the APPROX’2000, LNCS Vol. 1913, 2000.

"Department of Statistics and Operations Research, Tel-Aviv University, Tel Aviv 69978, Israel. This work was
done when this author visited GSIA, Carnegie Mellon University. Email: hassin@post.tau.ac.il

tGSIA, Carnegie Mellon University, Pittsburgh, PA 15213, USA. Supported by an NSF CAREER grant CCR-
9625297. Email: ravi@cmu.edu

$Krannert School of Management, Purdue University, West Lafayette, IN 47907, USA. Supported by an IBM
Corporate Fellowship while this work was done. Email: salmanf@mgmt.purdue.edu

1

The capacitated network design problem, which we will refer to as CND in short, can be stated
as follows. We are given an underlying undirected graph G = (V,E). A subset S of nodes is
specified as sources of traffic and a single sink ¢ is specified. Each source node s; € S has a positive
integer-valued demand dem;, all of which must be routed to ¢ via a single path, that is flow cannot
be bifurcated. Capacity of an edge e of G is provided in multiples of a modularity U, a given
positive integer, by purchasing and installing one or more of the transmission facility at cost ¢, per
each one. The problem is to find a minimum cost installation of facilities that provides sufficient
capacity to route all of the demand simultaneously. The problem requires choosing a path from
each source to the sink node and finding the number of facilties to be installed on each edge such
that when all the demand is routed, the total flow on the edge is at most the capacity. In other
words, traffic originating in different sources may share the capacity on the installed cables and
the capacity installed on an edge has to be at least as much as the total traffic routed through this
edge in both directions.

Based on the telecommunication application we refer to the transmission facility installed on
the edges as the “cable”, even though it could represent other modes of transmission. In telecom-
munications, typically a set of cables with differing capacities is available to the network designer.
Our problem corresponds to the case where a single cable type is used. The CND problem has
been studied in the literature as the single-facility network loading problem, together with its gen-
eralizations such as the multicommodity and the multiple facility cases. For a survey on exact
solution methods in this area, the reader is referred to the chapter on multicommodity capacitated
network design by Gendron, Crainic and Frangioni in [SS99], and the chapter on network design
by Balakrishnan, Magnanti and Mirchandani in [DMM97]. In spite of the recent computational
progress, the size of the instances that can be solved to optimality in reasonable time contains no
more than 50 nodes and 100 edges, whereas real-life instances may contain hundreds of nodes and
edges.

The capacitated network design problem is NP-hard since it generalizes the Steiner tree problem
which has been shown to be NP-hard [GJ77]. Given a graph with a subset of vertices distinguished
as the set of terminals, and costs on the edges, the Steiner tree problem is to find a minimum-cost
subtree spanning the set of terminals. In the CND problem, when cable capacity is larger than the
total demand in the network, one copy of the cable will be installed on every edge that carries flow.
This special case of our problem is equivalent to a Steiner tree problem, where the set of terminals
to be connected is the set of the source nodes and the sink node.

The NP-hardness of CND implies that the existence of an algorithm that finds an optimal
solution in polynomial time is very unlikely. Therefore, we focus on obtaining provable near-
optimal solutions in polynomial time. For CND, a constant factor approximation was obtained
earlier by Salman et al. in [SCR+97]. The algorithm in [SCR+97] is based on an algorithm
of Mansour and Peleg [MP94], that approximates the multicommodity and the single cable type
problem in an n-node graph with an O(logn) performance ratio. While Mansour and Peleg used a
spanner to route traffic, Salman et al. [SCR+-97] showed that routing through a Light Approximate
Shortest Path Tree (defined in [KRY93]) gives a worst-case performance ratio of 7 for the single
sink problem. When all the nodes in the input network except the sink node are source nodes, the
approximation ratio in [SCR+97] reduces to (2v/2 + 2). Other constant factor approximations for
CND also follow from the work of Andrews and Zhang [AZ98] who gave an O(k?)-approximation
for the single sink problem with k cable types, and the work of Garg et al. [GKK+01] who gave an

improved O(k)-approximation for the same problem, but the resulting constant factors are rather
high.

In this paper, we present an approximation algorithm with a better approximation ratio by
making use of the relation of the CND problem to the Steiner tree problem. The algorithm utilizes
a Steiner tree when the demand is low compared to the cable capacity and whenever the demand
accumulates to a value close to the cable capacity, the algorithm sends the aggregated demand by a
shortest path to the sink. We show that this algorithm has a worst-case ratio (psy + 2), where pgp
is the performance ratio of the Steiner tree approximation. For the case when demand is uniform,
that is every source has the same demand value, our approximation ratio improves to (psy + 1).
When all the nodes in the input network except the sink node are source nodes, we first find a
minimum spanning tree instead of a Steiner tree. As a result, the approximation ratio reduces to 3
with non-uniform demands, and to 2, with uniform demands.

Although the Steiner tree problem is NP-hard even with Euclidean or rectilinear costs [GJ77], a
Steiner tree with approximately minimum cost can be constructed in polynomial time. A minimum
cost tree spanning all the terminals has cost at most twice the cost of an optimal Steiner tree [TM80].
Furthermore, approximation algorithms with improved worst-case ratios have been developed in a
series of papers [Z293, BR94, KZ97, PS97, HP99, RZ00] over the last two decades. As a result, for
graphs with arbitrary costs, the worst-case ratio was gradually decreased from 2 to 1.55. Robins
and Zelikovsky [RZ00] gave the currently best known approximation ratio of 1.55. On the other
hand, it has also been shown that the Steiner tree problem can not be approximated within a factor
of 1+e€ for sufficiently small € > 0, unless P = NP [BP89, CT96].

With the above mentioned results on the approximation of the Steiner tree problem, the algo-
rithm we propose in this paper improves the approximation ratio of the CND problem to 3.55 for
the non-uniform demand case. We note that any improvements in the approximation of the Steiner
tree problem will be reflected in the approximation ratio of our algorithm.

The problem we study is also related to the capacitated MST problem (c-MST) [Pap78, AGS8S,
GY91, KB83, CL73, S83]: Given an undirected edge-weighted graph with a root node and a pos-
itive integer U, the problem is to find a minimum spanning tree such that every subtree of the
root node has a total demand of at most U. This problem has been cited by Kershenbaum and
Boorstyn [KB83] as well as later by Gavish [G91] to model the local access network design problem
when traffic is routed from a set of sources to a sink node under limited capacity of links. In
c-MST, network links have a fixed capacity U, whereas in our single cable problem capacity can be
purchased in multiples of U and the multiplicity of cables on each link is a decision variable. While
a tree is required as a solution in c-MST, in most applications the actual requirement is to send
the demand of each source node via a single path to the sink node, which is known as the non-
bifurcating requirement for the demands. Our single cable problem enforces the non-bifurcating
requirement without requiring that the solution be a tree. As a result, a solution to our problem
may contain cycles and the total traffic going through a node may exceed U, as opposed to a
solution of c-MST. We can contrast our approximation results with the best known approximation
results for the c-MST. Altinkemer and Gavish [AG88] gave a 4-approximation for the non-uniform
demand case and a 3-approximation for the uniform demand case of c-MST. In the non-uniform
demand case, our (pgy + 2)-approximation has a performance ratio less than 4, and handles the
Steiner version that does not require all non-sink nodes be source nodes (i.e., other Steiner nodes
in the graph are allowed). When all non-sink nodes are sources performance ratio improves to 3,

and to 2 for the corresponding uniform demand case.

In the next two sections, we present the algorithms for the cases of uniform and non-uniform
demands and analyze their worst-case performance. We conclude with an extension of the local
access design problem.

2 Uniform Demand

In this section we consider the case when every source node has the same demand value; without
loss of generality we assume that the demand equals one for each source. The interesting cases for
the problem arise when U > 1 because if U = 1 sending every demand to the sink through the
path with minimum total cost is an optimal solution. Therefore, we analyze the problem assuming
U > 1. We first give an outline of the proposed algorithm. We construct a Steiner tree 7" with
terminal set S U {t} and cost ¢, on each edge e in polynomial time such that the cost of the tree is
at most pgp times the optimal Steiner tree cost. We also find a path from each node to the sink
in G with minimum total cost. Next, we identify a subtree of 7" such that the total demand in
the subtree equals the cable capacity U. In this subtree we select a node with the smallest cost
of reaching the sink as the hub node (ties can be broken arbitrarily). We route the demand of
each source to the hub node in 7" and send the aggregated demand at the hub to the sink via a
minimum cost path in the input graph G. We repeat these steps until no more such subtrees can
be identified. Finally, we cancel flow in opposite directions of an edge and reassign the source nodes
to the hub nodes.

In order to describe the algorithm we need to define some more notation. The minimum cost
of a path from node v to the sink ¢ in G is denoted by c¢(v,t). In the Steiner tree T', we designate
the sink node t as the root of the tree and define the level of a node as the number of edges on its
path to the sink node . Any node adjacent to v with level one larger than the level of v is called
a child of v. For each node v, T, denotes the subtree of T rooted at v. At a given iteration of the
algorithm, R is the set of unprocessed source nodes and D(T},) is the total unprocessed demand in
T,. That is, D(T,) = 3 5. cprr, demi = |[RNT,| since dem; = 1 for all i in the uniform case. Note
that here we omit the iteration number for simplicity of notation.

The Algorithm UNIFORM, given below, takes 7' as input, and outputs 1) for each source, a
route through which all of its demand is sent to the sink, and 2) the number of cables that are
installed on the edges of the input network to support the flow of traffic going through them.

Algorithm UNIFORM:
Initialize: R := S
Main step:
Pick a node v such that D(T,) > U and level of v is maximum.
If no such node exists (that is, D(1};) < U) or v = t, then go to the final step.
Find a node, say w, in RN T, such that c¢(w,t) is minimum.
Designate w as a “hub” node and set C' = {w}.
Collect U-1 additional source nodes into C' (described below).
Assign these sources to w.
Route the demand of each source in C' to the hub node w via the unique paths in 7.

Route the demand of C' aggregated at the hub via the minimum cost path to the sink in G.
Install one copy of the cable on this path.
Remove C from R.
If R is not empty, repeat the main step.
If R is empty, go to the final step.
Final step:
If R is not empty, then
Designate ¢ as the hub node for sources in R
Route all the demand in R to t via the unique paths in 7.
For all edges e of T’
If the sum of flow on e in both directions exceeds U
Cancel maximal amount of flow in opposite directions
Reassign the sources whose flow has been cancelled (described below).
Install one copy of cable on the edges of 7" which have positive flow.

The following procedure is used to collect unprocessed source nodes from 7, in the set C' at the
main step of the algorithm. The set C' contains only the hub node w when the procedure is called.
At the end of the procedure C contains U nodes.

Procedure to collect source nodes of T,
Add v to C, ifv € R.
Let vy,...,v; be the children of v.
If w # v, then
Let v, be the child of v such that the hub node w is in T}, .
Add T, N R to C.
While |C| < U,
Pick an unprocessed child of v, say v;.
If D(T,,) + |C| < U, then
Add T,, N R to C.
Else, (T), is collected partially)
Scan Tj, depth-first and add sources in R N7}, to C one at a time until |C| = U.
Return C.

The procedure to cancel flow on an edge e of T' is called after all the demand has been routed.
We denote the set of sources sending flow on e in the direction towards ¢ by Sy, These sources have
total flow f,,; and we will show that they send their flow to a common hub node wg,;. Similarly,
let fin be the flow on e in the opposite direction with source set S;, assigned to the hub w;,.

Procedure to cancel flow on an edge e
If fi, < fout, then cancel f;;, as follows:

Assign all sources of S, to wey: and route their flow to wey;.

Assign f;, number of sources from S,,; to w;, and route their flow to wy,.
If fin, > fout, then cancel f,; as follows:

Assign all sources of S,y to w;, and route their flow to w;,.

Assign fy,: number of sources from Sj, t0 wey: and route their flow to wey¢-

Figure 1: A node v of T, its children and its subtree.

It can be easily verified that Algorithm UNIFORM has a polynomial time complexity. We
proceed to analyze the worst-case performance of the solutions output by the algorithm.

Lemma 2.1 In a solution output by Algorithm UNIFORM, the total flow on any edge of the tree
T s at most the cable capacity U.

Proof: Let us pick an arbitrary edge e of T', and let v be the incident node on e with higher level
(see Figure 1). Consider the solution output by the algorithm. In this solution, the total flow on
e equals the sum of the flow coming out of T3 and the flow going into 7,. Our proof is based on
these two claims:

Claim 1: The total flow going out of 7}, is at most U — 1.

Claim 2: The total flow coming into 7T;, is at most U — 1.

To prove claims 1 and 2, we consider two cases based on how the sources in 7T}, are assigned to hub
nodes by the algorithm. A partially assigned subtree has at least one of its source nodes collected
in a set C and has at least one source node not in C.

a) Partially assigned T, b) Completely assigned T,

Figure 2: Examples of partially and completely assigned subtrees.

Suppose T, is partially assigned (see Figure 2). There exists outflow from T, if at least one
source in T}, is assigned to a hub node out of T;,. When the algorithm assigns sources in 7}, to a hub
node outside T), for the first time, a subtree T with v at a smaller level than v is being processed

6

by the algorithm. Due to the subtree selection rule, we can conclude that the total unprocessed
demand in 7, is strictly less than U. Therefore, the total outflow from 7, will be at most U — 1.
Hence, Claim 1 holds in this case.

The reason Claim 2 holds for a partially assigned 7T, is as follows. When there exists an inflow
into T, the flow is accumulated at a hub node in T},. Since the algorithm accumulates a flow of
exactly U at any hub node, a flow of at most U — 1 will go into 7,. The algorithm first picks a
subtree and a hub node in it, and collects demand starting with the subtrees of T;. Therefore, the
algorithm will not collect sources out of 7}, unless all the sources in T, have already been collected.
This implies that once flow enters T3, none of the nodes in T}, will become a hub node again. Thus
Claims 1 and 2 are proved for the case of partially assigned 7.

Now let us assume that 7}, is not partially assigned. Then, all the sources in 7}, are collected in
the same set by the algorithm. If these sources are routed to a hub node out of the subtree, then
the outflow is at most U — 1. If the sources are routed to a hub node in the subtree, then the inflow
is at most U — 1. Inflow or outflow on this edge occurs only once throughout the iterations of the
algorithm. Thus, Claims 1 and 2 hold in this case, too.

For any edge of T', the flow in one direction does not exceed U, by Claims 1 and 2. If the edge e
has flow in both directions such that fi,(e)+ fout(e) > U, then at the final step of the algorithm we
cancel flow of equal value in opposite directions. As a result, the flow in one direction will be equal
to zero, and the flow in the opposite direction will be equal to the difference of fi,(e) and fou:(e);
hence, the total flow on e will not exceed U. The cancellation of flow of value k = | fin(€) — fout(€)|
will lead to the switching of the hub nodes of & sources which sent flow on e in one direction with
that of k£ other sources which sent flow in the opposite direction. As a result, the routes for these
sources will change but the total low on any of the edges on their routes will not increase. Consider
the subtree composed of the union of routes of S;,, and S,,;, which we call T;,, and T,,;. For the
edges in the intersection of Tj, and Ty, flow in opposite directions will be cancelled; hence the
total flow on these edges will decrease. For the remaining edges of T, and T,,;, some of the flow
in one direction (of value up to k) will reverse its direction but the total flow will not increase in
amount. An example to flow cancellation is given in Figure 3. ad

Theorem 2.2 Algorithm UNIFORM is a (1 + psr)-approzimation algorithm for the capacitated
network design problem with uniform demand.

Proof: Let Copr be the cost of an optimal solution and Crgyr be the cost of a solution output
by Algorithm UNIFORM. Let C'sp denote the cost of the cables installed on the edges of the Steiner
tree T' (whose cost is at most pgr times the cost of an optimal Steiner tree). Let C¢ be the cost
of cables installed on the edges of G to send aggregated flow from the hub nodes to the sink node
with minimum cost.

By Lemma 2.1, at most one copy of cable is sufficient to accomodate flow on the edges of the
Steiner tree T'. The cost of a Steiner tree with terminal set S U {t¢} is a lower bound on the optimal
cost because we must connect the nodes in S to ¢ and install at least one copy of the cable on each
connecting edge. Therefore, Csr < psrCopr.

A source set C, collected at iteration k& has demand equal to U and the algorithm installs one
copy of the cable on the path from the hub node wy to the sink ¢ with cost ¢(wy,t). The term

a) On edge e, sum of flow in both b) Sources are reassigned to hubs after
directions exceeds u, where u=10. flow of value 5 is cancelled on edge e.

Figure 3: An example of cancelling flow and reassigning sources to hub nodes. Here w; and wy are
hub nodes chosen in the order of their indices, with collected source sets C; and C5, respectively.

2sieCy, C(s'[}"t) is the cost associated with routing the unit demand of each source s; of C} through
the minimum cost path and purchasing on each edge of the path 1/U fraction of the cable. The
algorithm identifies a collection of subtrees with disjoint source sets (but possibly common non-
source nodes). Therefore, > ;> cc, C(s—(}’t) is a lower bound on Cppr. Since the algorithm sends
the total demand of a set C} via the source in Cj, with the minimum cost of reaching ¢ (that is, the

hub node wy,) and |Cg| = U, we get

i Ysiccy C(siyt) c(si,t
c(wk,t):sgégcc(si,t) < &€|é—k|“: 5 (si:t)

Thus, we finally have

Cq= Zc(wkut) < Z Z C(Sg) < Corpr.

k k $;€Ck
Therefore, Cyrur = Cst + Cg < (1 + pst)Copr-]

When every non-sink node in the input graph has a non-zero demand, we do not need to con-
struct a Steiner tree. Instead, we input a minimum cost spanning tree 7" to algorithm UNIFORM.
In the proof of 2.2, Csr will refer to the cost of the spanning tree 7' and pgr will be equal to 1.
Therefore, we obtain a performance ratio of 2.

Corollary 2.3 Algorithm UNIFORM is a 2-approzimation algorithm for the capacitated network
design problem with uniform demand at every non-sink node.

3 Non-uniform Demand

When the demand of a source node can be any positive integral value, it is no longer possible to
collect sources with total demand exactly equal to the capacity U. Suppose we are allowed to split

8

the demand of a source into any integral units each of which can be routed in separate paths to
the sink. In that case, the algorithm of the previous section can be used by expanding each source
s; with demand dem; to a set of sources with unit demand connected by zero-length edges in the
tree. However, in the more general case, all the flow of a source must use the same path to the
sink. In this case, we modify Algorithm UNIFORM so that we send demand directly to the sink
when it accumulates to an amount between U/2 and U. To guarantee that we don’t exceed U while
collecting demand, we send all sources with demand at least U/2 directly at the beginning of the
algorithm.

For a source set C, let dem(C) be the total demand of sources in C. As defined for the uniform
demand case, we use D(C) to denote the total remaining (unprocessed) demand of C. The modified
algorithm, which we call Algorithm NON-UNIFORM, is given below.

Algorithm NON-UNIFORM:
Initialize: R :=S.
Preprocessing: (send large demands directly)
For all sources s; such that dem; > U/2,
Route the demand to the sink via the minimum cost path in G.
Install (de—glﬂ copies of cable on the edges of this s; — ¢ path.
Remove s; from R.
Main step:
Pick a node v such that D(T},) > U/2 and level of v is maximum.
If no such node exists (that is, D(T;) < U/2) or v = t, then go to the final step.
Find a node, say w, in RN T, such that ¢(w,t) is minimum.
Designate w as a “hub” node and set C' = {w}.
Collect additional source nodes in C (described below).
Assign these sources to w.
Route demand of each source in C' to the hub node w via the unique path in 7T'.
Route demand of C aggregated at w via the minimum cost w — ¢ path in G.
Install one copy of cable on the edges of this w — ¢ path.
Remove C from R and set C = ().
If R is not empty, repeat the main step.
If R is empty, go to the final step.
Final step:
If R is not empty, then route all the demand in R to t via the unique paths in 7T'.
Install one copy of cable on the edges of T" which have positive flow.

The following procedure is used to collect unprocessed source nodes from 7, in the set C' at the
main step of the algorithm. The set C' contains only the hub node w when the procedure is called.
At the end of the procedure demand of C' is in the range [U/2,U].

Procedure to collect source nodes of T5:
Add v to C, ifv € R.
Let vy,...,v; be the children of v.
If w # v, then
Let v, be the child of v such that the hub node w is in T}, .

9

Add T,,N R to C.
While dem(C) < U/2,
Pick an unprocessed child of v, say v;.
Add T,, N R to C.
Return C.

Lemma 3.1 Algorithm NON-UNIFORM outputs a solution in which 1) flow on any edge of the
tree T is at most U, and 2) flow sent from a hub node to the sink in G at each iteration of the
algorithm is at least U/2 and at most U.

Proof: The proof is simpler compared to the uniform-demand case because the algorithm does
not assign any subtree partially. Consider an edge e of 1. Let v be incident on e such that e is
not in 7T,. Since all the sources in 7, are collected in the same set by the algorithm, the demand
of these sources is routed to a hub node either out of the subtree, or in the subtree, but not both.
Thus, flow on e exists only in one direction. If the demand of sources is routed to a hub node out
of T, then outflow is at most U — 1. If the demand is routed to a hub node in the subtree, then
inflow is at most U — 1. Thus, for any edge of T', low does not exceed U.

Due to the subtree selection rule in the algorithm, if a subtree T, is selected at an iteration, then
all the subtrees rooted at its children have remaining demand strictly less than U/2. Therefore,
when source nodes are collected in C, the first time the total collected demand dem/(C') exceeds
U/2, dem(C) will be at most U. Therefore, the total flow sent from the hub to the sink at this
iteration is in the range [U/2,U]. O

Theorem 3.2 Algorithm NON-UNIFORM is a (2 + psr)-approzimation algorithm for the capac-
itated network design problem with non-uniform demand.

Proof: We use the same definitions of Copr, Crprur, Ce and Csr as in the proof of Theorem 2.2.

By Lemma 3.1, at most one copy of the cable is sufficient to accommodate flow on the edges of
the Steiner tree T'. Therefore, Csr < psrCopr.

For a source set C} collected at iteration k, the algorithm installs one copy of the cable on
the minimum cost wy — ¢ path in G. By Lemma 3.1, at most one copy of cable is sufficient to
accommodate flow on this path and the flow utilizes at least half of the capacity of the cable.
Thus, 3, cc, dem; > U/2. If we were allowed to pay for only the portion of the cable used, then
a minimum cost solution would use the minimum cost path from each source to the sink. This
solution would have cost } 7, ¢ de&’” - ¢(s4,t) and this is a lower bound on Copy. Since source sets
collected by the algorithm have disjoint sources, and the demand from a set C} is sent via the

source in Cj that is closest to ¢ (the hub node wy),

dem; dem; . 1 1
Copr > Z Z i “e(sg,t) > Z Z i “(min c(si,t)) > Z Z §c(wk,t) = 50@.
k si€Ch k sieCh 5i€Ck k s:eCh
The last inequality follows since 3, ¢, dem; > % and mingcc, c(s;,t) = c(wg,t). Therefore,
Crnevr = Cst + Ca < (2 + pst)Copr- O

10

When every non-sink node in the input graph has a non-zero demand, we do not need to
construct a Steiner tree. Instead, we input a minimum cost spanning tree 7' to algorithm NON-
UNIFORM. In the proof of Theorem 3.2, Csp will refer to the cost of the spanning tree T" and pgr
will be equal to 1. Therefore, we obtain a performance ratio of 3.

Corollary 3.3 Algorithm NON-UNIFORM is a 3-approzimation algorithm for the capacitated net-
work design problem with non-uniform demand at every non-sink node.

4 Extensions

Our methods apply to the following extension of the local access network design problem. Instead
of specifying a single sink node, any node v in the graph can be used as a node that sinks U units
of demand at a cost of f,. A node is allowed to sink more than U units of demand by paying
(dzm] - fu cost to sink dern units of flow. The problem is to open sufficient number of sinks and

route all the demands to these sinks at minimum cable plus sink opening costs.

To model this extension, we extend the metric in two steps: 1) create a new sink node ¢ with
edges to every vertex v of cost f,, 2) take the metric completion of this augmented network. Notice
that the second step may decrease some of the costs on the edges incident on the new sink ¢ (e.g.,
if f; 4+ c¢(j,7) < f;, then the cost of the edge (j,¢) can be reduced from f; to f; +¢(j, %)), or between
any pair of original nodes (e.g., if ¢(i, j) > f; + f;, then we may replace the former by the latter).
Bearing this in mind, it is not hard to see that any solution in the new graph to the single cable
problem with ¢ as the sink and with the modified costs can be converted to a solution to the original
problem of the same cost. Thus, our algorithms in the previous sections apply to give the same
performance guarantees.

References

[AGS8S] K. Altinkemer and B. Gavish, “Heuristics with constant error guarantees for the design of tree
networks,” Management Science, 34, 331-341, 1988.

[AZ98] M. Andrews and L. Zhang, “The access network design problem,” In Proc. of the 39th Ann. IEEE
Symp. on Foundations of Computer Science, 42-49, October 1998.

[BP89] M. Bern and P. Plassmann, “The Steiner tree problem with edge lengths 1 and 2,” Information
Processing Letters, 32, 171-176, 1989.

[BR94] P. Berman and V. Ramaiyer, “Improved approximations for the Steiner tree problem,” J. of
Algorithms, 17, 381-408, 1994.

[CL73] K. M. Chandy and T. Lo, “The capacitated minimum tree,” Networks, 3, 173-182, 1973.

[CTI6] A. Clementi and L. Trevisan, “Improved Non-approximability results for minimum vertex cover
with density constraints,” Proceedings of 2nd Computing and Combinatorics Conference. CO-
COON’96, Berlin, Springer Verlag, 333-342,1996.

[DMM97] M. Dell’Amico, F. Maffioli and S. Martello, Editors, “Annotated Bibliographies in Combinatorial
Optimization,” Wiley-Interscience Publication, 1997.

11

[G91]

[GIT77]

B. Gavish, “Topological design of telecommunication networks - local access design methods,”
Annals of Operations Research, 33, 17-71, 1991.

M. R. Garey and D. S. Johnson, “The rectilinear Steiner tree problem is NP-complete,” STAM
J. of Applied Math., 32, 826-834, 1977.

[GKK+01] N. Garg, R. Khandekar, G. Konjevod, R. Ravi, F. S. Salman, and A. Sinha, “On the Integrality

[HP99]

[KB9g]

[KB83]

[KRY93]

[KZ97]

[MP94]

[Pap78]

[PS97]

[RZ00]

[SCR+97]

[$83]

[$599]

[TMS80]

93]

Gap of a Natural Formulation of the Single-Sink Buy-at-Bulk Network Design Problem,” In Proc.
of the 8th International Integer Programming and Combinatorial Optimization Conference, LNCS
2081,170-184, 2001.

S. Hougardy and H.J. Prémmel, “A 1.598 approximation algorithm for the Steiner problem in
graphs”, Proc. of the 9th Ann. ACM-SIAM Symp. on Discrete Algorithms, 448-453, 1999.

Kawatra, R. and D. L. Bricker, ”A multiperiod planning model for the capacitated minimal
spanning tree problem”, European Journal of Operational Research, 121, 412-419, 2000.

A. Kershenbaum and R. Boorstyn, “Centralized teleprocessing network design,” Networks, 13,
279-293, 1983.

S. Khuller, B. Raghavachari and N. E. Young, “Balancing minimum spanning and shortest path
trees,” Algorithmica, 14, 305-322, 1993.

M. Karpinsky and A. Zelikovsky, “New approximation algorithms for the Steiner tree problem,”
J. Combinatorial Optimization, 1, 47-65, 1997.

Y. Mansour and D. Peleg, “An approximation algorithm for minimum-cost network design,” The
Weizman Institute of Science, Rehovot, 76100 Israel, Tech. Report CS94-22, 1994; Also presented
at the DIMACS workshop on Robust Communication Networks, 1998.

C. H. Papadimitriou, “The complexity of the capacitated tree problem,” Networks, 8, 217-230,
1978.

H.J. Prémmel and A. Steger, “RNC-approximation algorithms for the Steiner problem”, Proc.
of the 14th Ann. Symp. on Theoretical Aspects of Computer Science, 559-570, 1997.

G. Robins and A. Zelikovsky, “Improved steiner tree approximation in graphs”, Proc. of the 10th
Ann. ACM-STAM Symp. on Discrete Algorithms, 770-779, 2000.

F.S. Salman, J. Cheriyan, R. Ravi and S. Subramanian, “Approximating the single-sink link-
installation problem in network design,” STAM J. Optimization, 595-610, 2000.

R. L. Sharma, “Design of an economical multidrop network topology with capacity constraints,”
IEEE Trans. Comm., 31, 590-591, 1983.

B. Sanso and P. Soriano, Editors, “Telecommunications Network Planning,” Kluwer Academic
Publishers, 1999.

H. Takahashi and A. Matsuyama, “An approximate solution for the Steiner problem in graphs”,
Math. Japan, 24, 573-577, 1980.

A. Zelikovsky, “An 11/6-approximation algorithm for the network Steiner problem,” Algorith-
mica, 9, 463-470, 1993.

12

