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The apaitated network design problem, whih we will refer to as CND in short, an be statedas follows. We are given an underlying undireted graph G = (V;E). A subset S of nodes isspei�ed as soures of traÆ and a single sink t is spei�ed. Eah soure node si 2 S has a positiveinteger-valued demand demi, all of whih must be routed to t via a single path, that is ow annotbe bifurated. Capaity of an edge e of G is provided in multiples of a modularity U , a givenpositive integer, by purhasing and installing one or more of the transmission faility at ost e pereah one. The problem is to �nd a minimum ost installation of failities that provides suÆientapaity to route all of the demand simultaneously. The problem requires hoosing a path fromeah soure to the sink node and �nding the number of failties to be installed on eah edge suhthat when all the demand is routed, the total ow on the edge is at most the apaity. In otherwords, traÆ originating in di�erent soures may share the apaity on the installed ables andthe apaity installed on an edge has to be at least as muh as the total traÆ routed through thisedge in both diretions.Based on the teleommuniation appliation we refer to the transmission faility installed onthe edges as the \able", even though it ould represent other modes of transmission. In teleom-muniations, typially a set of ables with di�ering apaities is available to the network designer.Our problem orresponds to the ase where a single able type is used. The CND problem hasbeen studied in the literature as the single-faility network loading problem, together with its gen-eralizations suh as the multiommodity and the multiple faility ases. For a survey on exatsolution methods in this area, the reader is referred to the hapter on multiommodity apaitatednetwork design by Gendron, Craini and Frangioni in [SS99℄, and the hapter on network designby Balakrishnan, Magnanti and Mirhandani in [DMM97℄. In spite of the reent omputationalprogress, the size of the instanes that an be solved to optimality in reasonable time ontains nomore than 50 nodes and 100 edges, whereas real-life instanes may ontain hundreds of nodes andedges.The apaitated network design problem is NP-hard sine it generalizes the Steiner tree problemwhih has been shown to be NP-hard [GJ77℄. Given a graph with a subset of verties distinguishedas the set of terminals, and osts on the edges, the Steiner tree problem is to �nd a minimum-ostsubtree spanning the set of terminals. In the CND problem, when able apaity is larger than thetotal demand in the network, one opy of the able will be installed on every edge that arries ow.This speial ase of our problem is equivalent to a Steiner tree problem, where the set of terminalsto be onneted is the set of the soure nodes and the sink node.The NP-hardness of CND implies that the existene of an algorithm that �nds an optimalsolution in polynomial time is very unlikely. Therefore, we fous on obtaining provable near-optimal solutions in polynomial time. For CND, a onstant fator approximation was obtainedearlier by Salman et al. in [SCR+97℄. The algorithm in [SCR+97℄ is based on an algorithmof Mansour and Peleg [MP94℄, that approximates the multiommodity and the single able typeproblem in an n-node graph with an O(log n) performane ratio. While Mansour and Peleg used aspanner to route traÆ, Salman et al. [SCR+97℄ showed that routing through a Light ApproximateShortest Path Tree (de�ned in [KRY93℄) gives a worst-ase performane ratio of 7 for the singlesink problem. When all the nodes in the input network exept the sink node are soure nodes, theapproximation ratio in [SCR+97℄ redues to (2p2 + 2). Other onstant fator approximations forCND also follow from the work of Andrews and Zhang [AZ98℄ who gave an O(k2)-approximationfor the single sink problem with k able types, and the work of Garg et al. [GKK+01℄ who gave an2



improved O(k)-approximation for the same problem, but the resulting onstant fators are ratherhigh.In this paper, we present an approximation algorithm with a better approximation ratio bymaking use of the relation of the CND problem to the Steiner tree problem. The algorithm utilizesa Steiner tree when the demand is low ompared to the able apaity and whenever the demandaumulates to a value lose to the able apaity, the algorithm sends the aggregated demand by ashortest path to the sink. We show that this algorithm has a worst-ase ratio (�ST +2), where �STis the performane ratio of the Steiner tree approximation. For the ase when demand is uniform,that is every soure has the same demand value, our approximation ratio improves to (�ST + 1).When all the nodes in the input network exept the sink node are soure nodes, we �rst �nd aminimum spanning tree instead of a Steiner tree. As a result, the approximation ratio redues to 3with non-uniform demands, and to 2, with uniform demands.Although the Steiner tree problem is NP-hard even with Eulidean or retilinear osts [GJ77℄, aSteiner tree with approximately minimum ost an be onstruted in polynomial time. A minimumost tree spanning all the terminals has ost at most twie the ost of an optimal Steiner tree [TM80℄.Furthermore, approximation algorithms with improved worst-ase ratios have been developed in aseries of papers [Z93, BR94, KZ97, PS97, HP99, RZ00℄ over the last two deades. As a result, forgraphs with arbitrary osts, the worst-ase ratio was gradually dereased from 2 to 1.55. Robinsand Zelikovsky [RZ00℄ gave the urrently best known approximation ratio of 1.55. On the otherhand, it has also been shown that the Steiner tree problem an not be approximated within a fatorof 1+� for suÆiently small � > 0, unless P = NP [BP89, CT96℄.With the above mentioned results on the approximation of the Steiner tree problem, the algo-rithm we propose in this paper improves the approximation ratio of the CND problem to 3.55 forthe non-uniform demand ase. We note that any improvements in the approximation of the Steinertree problem will be reeted in the approximation ratio of our algorithm.The problem we study is also related to the apaitated MST problem (-MST) [Pap78, AG88,G91, KB83, CL73, S83℄: Given an undireted edge-weighted graph with a root node and a pos-itive integer U , the problem is to �nd a minimum spanning tree suh that every subtree of theroot node has a total demand of at most U . This problem has been ited by Kershenbaum andBoorstyn [KB83℄ as well as later by Gavish [G91℄ to model the loal aess network design problemwhen traÆ is routed from a set of soures to a sink node under limited apaity of links. In-MST, network links have a �xed apaity U , whereas in our single able problem apaity an bepurhased in multiples of U and the multipliity of ables on eah link is a deision variable. Whilea tree is required as a solution in -MST, in most appliations the atual requirement is to sendthe demand of eah soure node via a single path to the sink node, whih is known as the non-bifurating requirement for the demands. Our single able problem enfores the non-bifuratingrequirement without requiring that the solution be a tree. As a result, a solution to our problemmay ontain yles and the total traÆ going through a node may exeed U , as opposed to asolution of -MST. We an ontrast our approximation results with the best known approximationresults for the -MST. Altinkemer and Gavish [AG88℄ gave a 4-approximation for the non-uniformdemand ase and a 3-approximation for the uniform demand ase of -MST. In the non-uniformdemand ase, our (�ST + 2)-approximation has a performane ratio less than 4, and handles theSteiner version that does not require all non-sink nodes be soure nodes (i.e., other Steiner nodesin the graph are allowed). When all non-sink nodes are soures performane ratio improves to 3,3



and to 2 for the orresponding uniform demand ase.In the next two setions, we present the algorithms for the ases of uniform and non-uniformdemands and analyze their worst-ase performane. We onlude with an extension of the loalaess design problem.2 Uniform DemandIn this setion we onsider the ase when every soure node has the same demand value; withoutloss of generality we assume that the demand equals one for eah soure. The interesting ases forthe problem arise when U > 1 beause if U = 1 sending every demand to the sink through thepath with minimum total ost is an optimal solution. Therefore, we analyze the problem assumingU > 1. We �rst give an outline of the proposed algorithm. We onstrut a Steiner tree T withterminal set S [ ftg and ost e on eah edge e in polynomial time suh that the ost of the tree isat most �ST times the optimal Steiner tree ost. We also �nd a path from eah node to the sinkin G with minimum total ost. Next, we identify a subtree of T suh that the total demand inthe subtree equals the able apaity U . In this subtree we selet a node with the smallest ostof reahing the sink as the hub node (ties an be broken arbitrarily). We route the demand ofeah soure to the hub node in T and send the aggregated demand at the hub to the sink via aminimum ost path in the input graph G. We repeat these steps until no more suh subtrees anbe identi�ed. Finally, we anel ow in opposite diretions of an edge and reassign the soure nodesto the hub nodes.In order to desribe the algorithm we need to de�ne some more notation. The minimum ostof a path from node v to the sink t in G is denoted by (v; t). In the Steiner tree T , we designatethe sink node t as the root of the tree and de�ne the level of a node as the number of edges on itspath to the sink node t. Any node adjaent to v with level one larger than the level of v is alleda hild of v. For eah node v, Tv denotes the subtree of T rooted at v. At a given iteration of thealgorithm, R is the set of unproessed soure nodes and D(Tv) is the total unproessed demand inTv. That is, D(Tv) =Psi2R\Tv demi = jR \ Tvj sine demi = 1 for all i in the uniform ase. Notethat here we omit the iteration number for simpliity of notation.The Algorithm UNIFORM, given below, takes T as input, and outputs 1) for eah soure, aroute through whih all of its demand is sent to the sink, and 2) the number of ables that areinstalled on the edges of the input network to support the ow of traÆ going through them.Algorithm UNIFORM:Initialize: R := SMain step:Pik a node v suh that D(Tv) � U and level of v is maximum.If no suh node exists (that is, D(Tt) < U) or v = t, then go to the �nal step.Find a node, say w, in R \ Tv suh that (w; t) is minimum.Designate w as a \hub" node and set C = fwg.Collet U -1 additional soure nodes into C (desribed below).Assign these soures to w.Route the demand of eah soure in C to the hub node w via the unique paths in T .4



Route the demand of C aggregated at the hub via the minimum ost path to the sink in G.Install one opy of the able on this path.Remove C from R.If R is not empty, repeat the main step.If R is empty, go to the �nal step.Final step:If R is not empty, thenDesignate t as the hub node for soures in RRoute all the demand in R to t via the unique paths in T .For all edges e of TIf the sum of ow on e in both diretions exeeds UCanel maximal amount of ow in opposite diretionsReassign the soures whose ow has been anelled (desribed below).Install one opy of able on the edges of T whih have positive ow.The following proedure is used to ollet unproessed soure nodes from Tv in the set C at themain step of the algorithm. The set C ontains only the hub node w when the proedure is alled.At the end of the proedure C ontains U nodes.Proedure to ollet soure nodes of TvAdd v to C, if v 2 R.Let v1; : : : ; vk be the hildren of v.If w 6= v, thenLet vp be the hild of v suh that the hub node w is in Tvp .Add Tvp \R to C.While jCj < U ,Pik an unproessed hild of v, say vi.If D(Tvi) + jCj � U , thenAdd Tvi \R to C.Else, (Tvi is olleted partially)San Tvi depth-�rst and add soures in R \ Tvi to C one at a time until jCj = U .Return C.The proedure to anel ow on an edge e of T is alled after all the demand has been routed.We denote the set of soures sending ow on e in the diretion towards t by Sout. These soures havetotal ow fout and we will show that they send their ow to a ommon hub node wout. Similarly,let fin be the ow on e in the opposite diretion with soure set Sin assigned to the hub win.Proedure to anel ow on an edge eIf fin � fout, then anel fin as follows:Assign all soures of Sin to wout and route their ow to wout.Assign fin number of soures from Sout to win and route their ow to win.If fin > fout, then anel fout as follows:Assign all soures of Sout to win and route their ow to win.Assign fout number of soures from Sin to wout and route their ow to wout.5
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Figure 1: A node v of T , its hildren and its subtree.It an be easily veri�ed that Algorithm UNIFORM has a polynomial time omplexity. Weproeed to analyze the worst-ase performane of the solutions output by the algorithm.Lemma 2.1 In a solution output by Algorithm UNIFORM, the total ow on any edge of the treeT is at most the able apaity U .Proof: Let us pik an arbitrary edge e of T , and let v be the inident node on e with higher level(see Figure 1). Consider the solution output by the algorithm. In this solution, the total ow one equals the sum of the ow oming out of Tv and the ow going into Tv. Our proof is based onthese two laims:Claim 1: The total ow going out of Tv is at most U � 1.Claim 2: The total ow oming into Tv is at most U � 1.To prove laims 1 and 2, we onsider two ases based on how the soures in Tv are assigned to hubnodes by the algorithm. A partially assigned subtree has at least one of its soure nodes olletedin a set C and has at least one soure node not in C.
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Figure 2: Examples of partially and ompletely assigned subtrees.Suppose Tv is partially assigned (see Figure 2). There exists outow from Tv, if at least onesoure in Tv is assigned to a hub node out of Tv. When the algorithm assigns soures in Tv to a hubnode outside Tv for the �rst time, a subtree T�v with �v at a smaller level than v is being proessed6



by the algorithm. Due to the subtree seletion rule, we an onlude that the total unproesseddemand in Tv is stritly less than U . Therefore, the total outow from Tv will be at most U � 1.Hene, Claim 1 holds in this ase.The reason Claim 2 holds for a partially assigned Tv is as follows. When there exists an inowinto Tv, the ow is aumulated at a hub node in Tv. Sine the algorithm aumulates a ow ofexatly U at any hub node, a ow of at most U � 1 will go into Tv. The algorithm �rst piks asubtree and a hub node in it, and ollets demand starting with the subtrees of Tv. Therefore, thealgorithm will not ollet soures out of Tv, unless all the soures in Tv have already been olleted.This implies that one ow enters Tv, none of the nodes in Tv will beome a hub node again. ThusClaims 1 and 2 are proved for the ase of partially assigned Tv.Now let us assume that Tv is not partially assigned. Then, all the soures in Tv are olleted inthe same set by the algorithm. If these soures are routed to a hub node out of the subtree, thenthe outow is at most U �1. If the soures are routed to a hub node in the subtree, then the inowis at most U � 1. Inow or outow on this edge ours only one throughout the iterations of thealgorithm. Thus, Claims 1 and 2 hold in this ase, too.For any edge of T , the ow in one diretion does not exeed U , by Claims 1 and 2. If the edge ehas ow in both diretions suh that fin(e)+fout(e) > U , then at the �nal step of the algorithm weanel ow of equal value in opposite diretions. As a result, the ow in one diretion will be equalto zero, and the ow in the opposite diretion will be equal to the di�erene of fin(e) and fout(e);hene, the total ow on e will not exeed U . The anellation of ow of value k = jfin(e)� fout(e)jwill lead to the swithing of the hub nodes of k soures whih sent ow on e in one diretion withthat of k other soures whih sent ow in the opposite diretion. As a result, the routes for thesesoures will hange but the total ow on any of the edges on their routes will not inrease. Considerthe subtree omposed of the union of routes of Sin and Sout, whih we all Tin and Tout. For theedges in the intersetion of Tin and Tout, ow in opposite diretions will be anelled; hene thetotal ow on these edges will derease. For the remaining edges of Tin and Tout, some of the owin one diretion (of value up to k) will reverse its diretion but the total ow will not inrease inamount. An example to ow anellation is given in Figure 3. 2Theorem 2.2 Algorithm UNIFORM is a (1 + �ST )-approximation algorithm for the apaitatednetwork design problem with uniform demand.Proof: Let COPT be the ost of an optimal solution and CHEUR be the ost of a solution outputby Algorithm UNIFORM. Let CST denote the ost of the ables installed on the edges of the Steinertree T (whose ost is at most �ST times the ost of an optimal Steiner tree). Let CG be the ostof ables installed on the edges of G to send aggregated ow from the hub nodes to the sink nodewith minimum ost.By Lemma 2.1, at most one opy of able is suÆient to aomodate ow on the edges of theSteiner tree T . The ost of a Steiner tree with terminal set S [ftg is a lower bound on the optimalost beause we must onnet the nodes in S to t and install at least one opy of the able on eahonneting edge. Therefore, CST � �STCOPT .A soure set Ck olleted at iteration k has demand equal to U and the algorithm installs oneopy of the able on the path from the hub node wk to the sink t with ost (wk; t). The term7



���
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���
���

��
��
��
��

���
���
���

���
���
���

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��

��
��
��

���
���
���
���

���
���
���
���

��
��
��
��
��
��
��

��
��
��

���
���
���

���
���
���

���
���
���
���

����
����
����
����

���
���
���
���

����
����
����

����
����
����

����
����
����

����
����
����

���
���
���

���
���
���

����
����
����

����
����
����

���
���
���
���

���
���
���
���

����
����
����

����
����
����

����
����
����
����

���
���
���
���

���
���
���
���

����
����
����
��������

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

���
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

���
���
���

���
���
���

:

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

t

e

out

in

1

2

w

w

v

t

e

out

in

1

2

w

w

v
f     (e)=5 f     (e)=0

f   (e)=7 f   (e)=2
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Figure 3: An example of anelling ow and reassigning soures to hub nodes. Here w1 and w2 arehub nodes hosen in the order of their indies, with olleted soure sets C1 and C2, respetively.Psi2Ck (si;t)U is the ost assoiated with routing the unit demand of eah soure si of Ck throughthe minimum ost path and purhasing on eah edge of the path 1=U fration of the able. Thealgorithm identi�es a olletion of subtrees with disjoint soure sets (but possibly ommon non-soure nodes). Therefore, PkPsi2Ck (si;t)U is a lower bound on COPT . Sine the algorithm sendsthe total demand of a set Ck via the soure in Ck with the minimum ost of reahing t (that is, thehub node wk) and jCkj = U , we get(wk; t) = minsi2Ck (si; t) � Psi2Ck (si; t)jCkj = Xsi2Ck (si; t)U :Thus, we �nally have CG =Xk (wk; t) �Xk Xsi2Ck (si; t)U � COPT :Therefore, CHEUR = CST + CG � (1 + �ST )COPT : 2When every non-sink node in the input graph has a non-zero demand, we do not need to on-strut a Steiner tree. Instead, we input a minimum ost spanning tree T to algorithm UNIFORM.In the proof of 2.2, CST will refer to the ost of the spanning tree T and �ST will be equal to 1.Therefore, we obtain a performane ratio of 2.Corollary 2.3 Algorithm UNIFORM is a 2-approximation algorithm for the apaitated networkdesign problem with uniform demand at every non-sink node.3 Non-uniform DemandWhen the demand of a soure node an be any positive integral value, it is no longer possible toollet soures with total demand exatly equal to the apaity U . Suppose we are allowed to split8



the demand of a soure into any integral units eah of whih an be routed in separate paths tothe sink. In that ase, the algorithm of the previous setion an be used by expanding eah souresi with demand demi to a set of soures with unit demand onneted by zero-length edges in thetree. However, in the more general ase, all the ow of a soure must use the same path to thesink. In this ase, we modify Algorithm UNIFORM so that we send demand diretly to the sinkwhen it aumulates to an amount between U=2 and U . To guarantee that we don't exeed U whileolleting demand, we send all soures with demand at least U=2 diretly at the beginning of thealgorithm.For a soure set C, let dem(C) be the total demand of soures in C. As de�ned for the uniformdemand ase, we use D(C) to denote the total remaining (unproessed) demand of C. The modi�edalgorithm, whih we all Algorithm NON-UNIFORM, is given below.Algorithm NON-UNIFORM:Initialize: R := S.Preproessing: (send large demands diretly)For all soures si suh that demi � U=2,Route the demand to the sink via the minimum ost path in G.Install ddemiU e opies of able on the edges of this si � t path.Remove si from R.Main step:Pik a node v suh that D(Tv) � U=2 and level of v is maximum.If no suh node exists (that is, D(Tt) < U=2) or v = t, then go to the �nal step.Find a node, say w, in R \ Tv suh that (w; t) is minimum.Designate w as a \hub" node and set C = fwg.Collet additional soure nodes in C (desribed below).Assign these soures to w.Route demand of eah soure in C to the hub node w via the unique path in T .Route demand of C aggregated at w via the minimum ost w � t path in G.Install one opy of able on the edges of this w � t path.Remove C from R and set C = ;.If R is not empty, repeat the main step.If R is empty, go to the �nal step.Final step:If R is not empty, then route all the demand in R to t via the unique paths in T .Install one opy of able on the edges of T whih have positive ow.The following proedure is used to ollet unproessed soure nodes from Tv in the set C at themain step of the algorithm. The set C ontains only the hub node w when the proedure is alled.At the end of the proedure demand of C is in the range [U=2; U ℄.Proedure to ollet soure nodes of Tv:Add v to C, if v 2 R.Let v1; : : : ; vk be the hildren of v.If w 6= v, thenLet vp be the hild of v suh that the hub node w is in Tvp .9



Add Tvp \R to C.While dem(C) < U=2,Pik an unproessed hild of v, say vi.Add Tvi \R to C.Return C.Lemma 3.1 Algorithm NON-UNIFORM outputs a solution in whih 1) ow on any edge of thetree T is at most U , and 2) ow sent from a hub node to the sink in G at eah iteration of thealgorithm is at least U=2 and at most U .Proof: The proof is simpler ompared to the uniform-demand ase beause the algorithm doesnot assign any subtree partially. Consider an edge e of T . Let v be inident on e suh that e isnot in Tv. Sine all the soures in Tv are olleted in the same set by the algorithm, the demandof these soures is routed to a hub node either out of the subtree, or in the subtree, but not both.Thus, ow on e exists only in one diretion. If the demand of soures is routed to a hub node outof Tv, then outow is at most U � 1. If the demand is routed to a hub node in the subtree, theninow is at most U � 1. Thus, for any edge of T , ow does not exeed U .Due to the subtree seletion rule in the algorithm, if a subtree Tv is seleted at an iteration, thenall the subtrees rooted at its hildren have remaining demand stritly less than U=2. Therefore,when soure nodes are olleted in C, the �rst time the total olleted demand dem(C) exeedsU=2, dem(C) will be at most U . Therefore, the total ow sent from the hub to the sink at thisiteration is in the range [U=2; U ℄. 2Theorem 3.2 Algorithm NON-UNIFORM is a (2 + �ST )-approximation algorithm for the apa-itated network design problem with non-uniform demand.Proof: We use the same de�nitions of COPT , CHEUR, CG and CST as in the proof of Theorem 2.2.By Lemma 3.1, at most one opy of the able is suÆient to aommodate ow on the edges ofthe Steiner tree T . Therefore, CST � �STCOPT .For a soure set Ck olleted at iteration k, the algorithm installs one opy of the able onthe minimum ost wk � t path in G. By Lemma 3.1, at most one opy of able is suÆient toaommodate ow on this path and the ow utilizes at least half of the apaity of the able.Thus, Psi2Ck demi � U=2. If we were allowed to pay for only the portion of the able used, thena minimum ost solution would use the minimum ost path from eah soure to the sink. Thissolution would have ost Psi2S demiU � (si; t) and this is a lower bound on COPT . Sine soure setsolleted by the algorithm have disjoint soures, and the demand from a set Ck is sent via thesoure in Ck that is losest to t (the hub node wk),COPT �Xk Xsi2Ck demiU (si; t) �Xk Xsi2Ck demiU ( minsi2Ck (si; t)) �Xk Xsi2Ck 12(wk; t) = 12CG:The last inequality follows sine Psi2Ck demi � U2 and minsi2Ck (si; t) = (wk; t). Therefore,CHEUR = CST + CG � (2 + �ST )COPT : 210



When every non-sink node in the input graph has a non-zero demand, we do not need toonstrut a Steiner tree. Instead, we input a minimum ost spanning tree T to algorithm NON-UNIFORM. In the proof of Theorem 3.2, CST will refer to the ost of the spanning tree T and �STwill be equal to 1. Therefore, we obtain a performane ratio of 3.Corollary 3.3 Algorithm NON-UNIFORM is a 3-approximation algorithm for the apaitated net-work design problem with non-uniform demand at every non-sink node.4 ExtensionsOur methods apply to the following extension of the loal aess network design problem. Insteadof speifying a single sink node, any node v in the graph an be used as a node that sinks U unitsof demand at a ost of fv. A node is allowed to sink more than U units of demand by payingddemU e � fv ost to sink dem units of ow. The problem is to open suÆient number of sinks androute all the demands to these sinks at minimum able plus sink opening osts.To model this extension, we extend the metri in two steps: 1) reate a new sink node t withedges to every vertex v of ost fv, 2) take the metri ompletion of this augmented network. Notiethat the seond step may derease some of the osts on the edges inident on the new sink t (e.g.,if fi+ (j; i) < fj, then the ost of the edge (j; t) an be redued from fj to fi+ (j; i)), or betweenany pair of original nodes (e.g., if (i; j) > fi + fj, then we may replae the former by the latter).Bearing this in mind, it is not hard to see that any solution in the new graph to the single ableproblem with t as the sink and with the modi�ed osts an be onverted to a solution to the originalproblem of the same ost. Thus, our algorithms in the previous setions apply to give the sameperformane guarantees.Referenes[AG88℄ K. Altinkemer and B. Gavish, \Heuristis with onstant error guarantees for the design of treenetworks," Management Siene, 34, 331-341, 1988.[AZ98℄ M. Andrews and L. Zhang, \The aess network design problem," In Pro. of the 39th Ann. IEEESymp. on Foundations of Computer Siene, 42-49, Otober 1998.[BP89℄ M. Bern and P. Plassmann, \The Steiner tree problem with edge lengths 1 and 2," InformationProessing Letters, 32, 171-176, 1989.[BR94℄ P. Berman and V. Ramaiyer, \Improved approximations for the Steiner tree problem," J. ofAlgorithms, 17, 381-408, 1994.[CL73℄ K. M. Chandy and T. Lo, \The apaitated minimum tree," Networks, 3, 173-182, 1973.[CT96℄ A. Clementi and L. Trevisan, \Improved Non-approximability results for minimum vertex overwith density onstraints," Proeedings of 2nd Computing and Combinatoris Conferene. CO-COON'96, Berlin, Springer Verlag, 333-342,1996.[DMM97℄ M. Dell'Amio, F. MaÆoli and S. Martello, Editors, \Annotated Bibliographies in CombinatorialOptimization," Wiley-Intersiene Publiation, 1997.11
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