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itated Network Design Problem�R. Hassiny R. Raviz F. S. SalmanxDe
ember 17, 2001Abstra
tWe study a 
apa
itated network design problem with appli
ations in lo
al a

ess networkdesign. Given a network, the problem is to route 
ow from several sour
es to a sink and toinstall 
apa
ity on the edges to support the 
ow at minimum 
ost. Capa
ity 
an be pur
hasedonly in multiples of a �xed quantity. All the 
ow from a sour
e must be routed in a single pathto the sink. This NP-hard problem generalizes the Steiner tree problem and also more e�e
tivelymodels the appli
ations traditionally formulated as 
apa
itated tree problems. We present anapproximation algorithm with performan
e ratio (�ST + 2) where �ST is the performan
e ratioof any approximation algorithm for minimum Steiner tree problem. When all sour
es have thesame demand value, the ratio improves to (�ST + 1) and in parti
ular, to 2 when all nodes inthe graph are sour
es.Keywords: Network design, approximation algorithms, routing 
ow, 
apa
ity installation1 Introdu
tionWe 
onsider the problem of 
apa
ity installation and the routing of traÆ
 from a set of sour
enodes to a single sink node in a network. We model appli
ations in whi
h 
apa
ity 
an be pur-
hased in multiples of a �xed quantity. In tele
ommuni
ation network design this 
orresponds toinstalling transmission fa
ilities su
h as �ber-opti
 
ables on the edges of a 
entralized network, andin transportation networks this applies to assigning vehi
les of �xed 
apa
ity to routes from severaldestinations to a single hub node. A typi
al tele
ommuni
ation network 
onsists of a ba
kbone net-work and several lo
al a

ess networks. The ba
kbone provides very high speed 
onne
tion betweengateway nodes (servi
e hubs) and ea
h lo
al a

ess network 
olle
ts traÆ
 at a 
entralized gatewaynode through whi
h the ba
kbone is a

essed. The performan
e measures for the e�e
tiveness of anetwork design in
lude 
ost, reliability and quality of servi
e. While reliability is a major 
riterionfor a ba
kbone network, 
ost and quality of servi
e may play important roles in the design of lo
ala

ess networks. The problem we study models the topologi
al design of a 
ost-e�e
tive lo
al a

essnetwork.�A preliminary version of this paper appeared in the Pro
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The 
apa
itated network design problem, whi
h we will refer to as CND in short, 
an be statedas follows. We are given an underlying undire
ted graph G = (V;E). A subset S of nodes isspe
i�ed as sour
es of traÆ
 and a single sink t is spe
i�ed. Ea
h sour
e node si 2 S has a positiveinteger-valued demand demi, all of whi
h must be routed to t via a single path, that is 
ow 
annotbe bifur
ated. Capa
ity of an edge e of G is provided in multiples of a modularity U , a givenpositive integer, by pur
hasing and installing one or more of the transmission fa
ility at 
ost 
e perea
h one. The problem is to �nd a minimum 
ost installation of fa
ilities that provides suÆ
ient
apa
ity to route all of the demand simultaneously. The problem requires 
hoosing a path fromea
h sour
e to the sink node and �nding the number of fa
ilties to be installed on ea
h edge su
hthat when all the demand is routed, the total 
ow on the edge is at most the 
apa
ity. In otherwords, traÆ
 originating in di�erent sour
es may share the 
apa
ity on the installed 
ables andthe 
apa
ity installed on an edge has to be at least as mu
h as the total traÆ
 routed through thisedge in both dire
tions.Based on the tele
ommuni
ation appli
ation we refer to the transmission fa
ility installed onthe edges as the \
able", even though it 
ould represent other modes of transmission. In tele
om-muni
ations, typi
ally a set of 
ables with di�ering 
apa
ities is available to the network designer.Our problem 
orresponds to the 
ase where a single 
able type is used. The CND problem hasbeen studied in the literature as the single-fa
ility network loading problem, together with its gen-eralizations su
h as the multi
ommodity and the multiple fa
ility 
ases. For a survey on exa
tsolution methods in this area, the reader is referred to the 
hapter on multi
ommodity 
apa
itatednetwork design by Gendron, Craini
 and Frangioni in [SS99℄, and the 
hapter on network designby Balakrishnan, Magnanti and Mir
handani in [DMM97℄. In spite of the re
ent 
omputationalprogress, the size of the instan
es that 
an be solved to optimality in reasonable time 
ontains nomore than 50 nodes and 100 edges, whereas real-life instan
es may 
ontain hundreds of nodes andedges.The 
apa
itated network design problem is NP-hard sin
e it generalizes the Steiner tree problemwhi
h has been shown to be NP-hard [GJ77℄. Given a graph with a subset of verti
es distinguishedas the set of terminals, and 
osts on the edges, the Steiner tree problem is to �nd a minimum-
ostsubtree spanning the set of terminals. In the CND problem, when 
able 
apa
ity is larger than thetotal demand in the network, one 
opy of the 
able will be installed on every edge that 
arries 
ow.This spe
ial 
ase of our problem is equivalent to a Steiner tree problem, where the set of terminalsto be 
onne
ted is the set of the sour
e nodes and the sink node.The NP-hardness of CND implies that the existen
e of an algorithm that �nds an optimalsolution in polynomial time is very unlikely. Therefore, we fo
us on obtaining provable near-optimal solutions in polynomial time. For CND, a 
onstant fa
tor approximation was obtainedearlier by Salman et al. in [SCR+97℄. The algorithm in [SCR+97℄ is based on an algorithmof Mansour and Peleg [MP94℄, that approximates the multi
ommodity and the single 
able typeproblem in an n-node graph with an O(log n) performan
e ratio. While Mansour and Peleg used aspanner to route traÆ
, Salman et al. [SCR+97℄ showed that routing through a Light ApproximateShortest Path Tree (de�ned in [KRY93℄) gives a worst-
ase performan
e ratio of 7 for the singlesink problem. When all the nodes in the input network ex
ept the sink node are sour
e nodes, theapproximation ratio in [SCR+97℄ redu
es to (2p2 + 2). Other 
onstant fa
tor approximations forCND also follow from the work of Andrews and Zhang [AZ98℄ who gave an O(k2)-approximationfor the single sink problem with k 
able types, and the work of Garg et al. [GKK+01℄ who gave an2



improved O(k)-approximation for the same problem, but the resulting 
onstant fa
tors are ratherhigh.In this paper, we present an approximation algorithm with a better approximation ratio bymaking use of the relation of the CND problem to the Steiner tree problem. The algorithm utilizesa Steiner tree when the demand is low 
ompared to the 
able 
apa
ity and whenever the demanda

umulates to a value 
lose to the 
able 
apa
ity, the algorithm sends the aggregated demand by ashortest path to the sink. We show that this algorithm has a worst-
ase ratio (�ST +2), where �STis the performan
e ratio of the Steiner tree approximation. For the 
ase when demand is uniform,that is every sour
e has the same demand value, our approximation ratio improves to (�ST + 1).When all the nodes in the input network ex
ept the sink node are sour
e nodes, we �rst �nd aminimum spanning tree instead of a Steiner tree. As a result, the approximation ratio redu
es to 3with non-uniform demands, and to 2, with uniform demands.Although the Steiner tree problem is NP-hard even with Eu
lidean or re
tilinear 
osts [GJ77℄, aSteiner tree with approximately minimum 
ost 
an be 
onstru
ted in polynomial time. A minimum
ost tree spanning all the terminals has 
ost at most twi
e the 
ost of an optimal Steiner tree [TM80℄.Furthermore, approximation algorithms with improved worst-
ase ratios have been developed in aseries of papers [Z93, BR94, KZ97, PS97, HP99, RZ00℄ over the last two de
ades. As a result, forgraphs with arbitrary 
osts, the worst-
ase ratio was gradually de
reased from 2 to 1.55. Robinsand Zelikovsky [RZ00℄ gave the 
urrently best known approximation ratio of 1.55. On the otherhand, it has also been shown that the Steiner tree problem 
an not be approximated within a fa
torof 1+� for suÆ
iently small � > 0, unless P = NP [BP89, CT96℄.With the above mentioned results on the approximation of the Steiner tree problem, the algo-rithm we propose in this paper improves the approximation ratio of the CND problem to 3.55 forthe non-uniform demand 
ase. We note that any improvements in the approximation of the Steinertree problem will be re
e
ted in the approximation ratio of our algorithm.The problem we study is also related to the 
apa
itated MST problem (
-MST) [Pap78, AG88,G91, KB83, CL73, S83℄: Given an undire
ted edge-weighted graph with a root node and a pos-itive integer U , the problem is to �nd a minimum spanning tree su
h that every subtree of theroot node has a total demand of at most U . This problem has been 
ited by Kershenbaum andBoorstyn [KB83℄ as well as later by Gavish [G91℄ to model the lo
al a

ess network design problemwhen traÆ
 is routed from a set of sour
es to a sink node under limited 
apa
ity of links. In
-MST, network links have a �xed 
apa
ity U , whereas in our single 
able problem 
apa
ity 
an bepur
hased in multiples of U and the multipli
ity of 
ables on ea
h link is a de
ision variable. Whilea tree is required as a solution in 
-MST, in most appli
ations the a
tual requirement is to sendthe demand of ea
h sour
e node via a single path to the sink node, whi
h is known as the non-bifur
ating requirement for the demands. Our single 
able problem enfor
es the non-bifur
atingrequirement without requiring that the solution be a tree. As a result, a solution to our problemmay 
ontain 
y
les and the total traÆ
 going through a node may ex
eed U , as opposed to asolution of 
-MST. We 
an 
ontrast our approximation results with the best known approximationresults for the 
-MST. Altinkemer and Gavish [AG88℄ gave a 4-approximation for the non-uniformdemand 
ase and a 3-approximation for the uniform demand 
ase of 
-MST. In the non-uniformdemand 
ase, our (�ST + 2)-approximation has a performan
e ratio less than 4, and handles theSteiner version that does not require all non-sink nodes be sour
e nodes (i.e., other Steiner nodesin the graph are allowed). When all non-sink nodes are sour
es performan
e ratio improves to 3,3



and to 2 for the 
orresponding uniform demand 
ase.In the next two se
tions, we present the algorithms for the 
ases of uniform and non-uniformdemands and analyze their worst-
ase performan
e. We 
on
lude with an extension of the lo
ala

ess design problem.2 Uniform DemandIn this se
tion we 
onsider the 
ase when every sour
e node has the same demand value; withoutloss of generality we assume that the demand equals one for ea
h sour
e. The interesting 
ases forthe problem arise when U > 1 be
ause if U = 1 sending every demand to the sink through thepath with minimum total 
ost is an optimal solution. Therefore, we analyze the problem assumingU > 1. We �rst give an outline of the proposed algorithm. We 
onstru
t a Steiner tree T withterminal set S [ ftg and 
ost 
e on ea
h edge e in polynomial time su
h that the 
ost of the tree isat most �ST times the optimal Steiner tree 
ost. We also �nd a path from ea
h node to the sinkin G with minimum total 
ost. Next, we identify a subtree of T su
h that the total demand inthe subtree equals the 
able 
apa
ity U . In this subtree we sele
t a node with the smallest 
ostof rea
hing the sink as the hub node (ties 
an be broken arbitrarily). We route the demand ofea
h sour
e to the hub node in T and send the aggregated demand at the hub to the sink via aminimum 
ost path in the input graph G. We repeat these steps until no more su
h subtrees 
anbe identi�ed. Finally, we 
an
el 
ow in opposite dire
tions of an edge and reassign the sour
e nodesto the hub nodes.In order to des
ribe the algorithm we need to de�ne some more notation. The minimum 
ostof a path from node v to the sink t in G is denoted by 
(v; t). In the Steiner tree T , we designatethe sink node t as the root of the tree and de�ne the level of a node as the number of edges on itspath to the sink node t. Any node adja
ent to v with level one larger than the level of v is 
alleda 
hild of v. For ea
h node v, Tv denotes the subtree of T rooted at v. At a given iteration of thealgorithm, R is the set of unpro
essed sour
e nodes and D(Tv) is the total unpro
essed demand inTv. That is, D(Tv) =Psi2R\Tv demi = jR \ Tvj sin
e demi = 1 for all i in the uniform 
ase. Notethat here we omit the iteration number for simpli
ity of notation.The Algorithm UNIFORM, given below, takes T as input, and outputs 1) for ea
h sour
e, aroute through whi
h all of its demand is sent to the sink, and 2) the number of 
ables that areinstalled on the edges of the input network to support the 
ow of traÆ
 going through them.Algorithm UNIFORM:Initialize: R := SMain step:Pi
k a node v su
h that D(Tv) � U and level of v is maximum.If no su
h node exists (that is, D(Tt) < U) or v = t, then go to the �nal step.Find a node, say w, in R \ Tv su
h that 
(w; t) is minimum.Designate w as a \hub" node and set C = fwg.Colle
t U -1 additional sour
e nodes into C (des
ribed below).Assign these sour
es to w.Route the demand of ea
h sour
e in C to the hub node w via the unique paths in T .4



Route the demand of C aggregated at the hub via the minimum 
ost path to the sink in G.Install one 
opy of the 
able on this path.Remove C from R.If R is not empty, repeat the main step.If R is empty, go to the �nal step.Final step:If R is not empty, thenDesignate t as the hub node for sour
es in RRoute all the demand in R to t via the unique paths in T .For all edges e of TIf the sum of 
ow on e in both dire
tions ex
eeds UCan
el maximal amount of 
ow in opposite dire
tionsReassign the sour
es whose 
ow has been 
an
elled (des
ribed below).Install one 
opy of 
able on the edges of T whi
h have positive 
ow.The following pro
edure is used to 
olle
t unpro
essed sour
e nodes from Tv in the set C at themain step of the algorithm. The set C 
ontains only the hub node w when the pro
edure is 
alled.At the end of the pro
edure C 
ontains U nodes.Pro
edure to 
olle
t sour
e nodes of TvAdd v to C, if v 2 R.Let v1; : : : ; vk be the 
hildren of v.If w 6= v, thenLet vp be the 
hild of v su
h that the hub node w is in Tvp .Add Tvp \R to C.While jCj < U ,Pi
k an unpro
essed 
hild of v, say vi.If D(Tvi) + jCj � U , thenAdd Tvi \R to C.Else, (Tvi is 
olle
ted partially)S
an Tvi depth-�rst and add sour
es in R \ Tvi to C one at a time until jCj = U .Return C.The pro
edure to 
an
el 
ow on an edge e of T is 
alled after all the demand has been routed.We denote the set of sour
es sending 
ow on e in the dire
tion towards t by Sout. These sour
es havetotal 
ow fout and we will show that they send their 
ow to a 
ommon hub node wout. Similarly,let fin be the 
ow on e in the opposite dire
tion with sour
e set Sin assigned to the hub win.Pro
edure to 
an
el 
ow on an edge eIf fin � fout, then 
an
el fin as follows:Assign all sour
es of Sin to wout and route their 
ow to wout.Assign fin number of sour
es from Sout to win and route their 
ow to win.If fin > fout, then 
an
el fout as follows:Assign all sour
es of Sout to win and route their 
ow to win.Assign fout number of sour
es from Sin to wout and route their 
ow to wout.5
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Figure 1: A node v of T , its 
hildren and its subtree.It 
an be easily veri�ed that Algorithm UNIFORM has a polynomial time 
omplexity. Wepro
eed to analyze the worst-
ase performan
e of the solutions output by the algorithm.Lemma 2.1 In a solution output by Algorithm UNIFORM, the total 
ow on any edge of the treeT is at most the 
able 
apa
ity U .Proof: Let us pi
k an arbitrary edge e of T , and let v be the in
ident node on e with higher level(see Figure 1). Consider the solution output by the algorithm. In this solution, the total 
ow one equals the sum of the 
ow 
oming out of Tv and the 
ow going into Tv. Our proof is based onthese two 
laims:Claim 1: The total 
ow going out of Tv is at most U � 1.Claim 2: The total 
ow 
oming into Tv is at most U � 1.To prove 
laims 1 and 2, we 
onsider two 
ases based on how the sour
es in Tv are assigned to hubnodes by the algorithm. A partially assigned subtree has at least one of its sour
e nodes 
olle
tedin a set C and has at least one sour
e node not in C.
1

v

t

v

t

v

e
Tv

C2

C

v

e

vT
C C2

va) Partially assigned T b) Completely assigned Tv

1

Figure 2: Examples of partially and 
ompletely assigned subtrees.Suppose Tv is partially assigned (see Figure 2). There exists out
ow from Tv, if at least onesour
e in Tv is assigned to a hub node out of Tv. When the algorithm assigns sour
es in Tv to a hubnode outside Tv for the �rst time, a subtree T�v with �v at a smaller level than v is being pro
essed6



by the algorithm. Due to the subtree sele
tion rule, we 
an 
on
lude that the total unpro
esseddemand in Tv is stri
tly less than U . Therefore, the total out
ow from Tv will be at most U � 1.Hen
e, Claim 1 holds in this 
ase.The reason Claim 2 holds for a partially assigned Tv is as follows. When there exists an in
owinto Tv, the 
ow is a

umulated at a hub node in Tv. Sin
e the algorithm a

umulates a 
ow ofexa
tly U at any hub node, a 
ow of at most U � 1 will go into Tv. The algorithm �rst pi
ks asubtree and a hub node in it, and 
olle
ts demand starting with the subtrees of Tv. Therefore, thealgorithm will not 
olle
t sour
es out of Tv, unless all the sour
es in Tv have already been 
olle
ted.This implies that on
e 
ow enters Tv, none of the nodes in Tv will be
ome a hub node again. ThusClaims 1 and 2 are proved for the 
ase of partially assigned Tv.Now let us assume that Tv is not partially assigned. Then, all the sour
es in Tv are 
olle
ted inthe same set by the algorithm. If these sour
es are routed to a hub node out of the subtree, thenthe out
ow is at most U �1. If the sour
es are routed to a hub node in the subtree, then the in
owis at most U � 1. In
ow or out
ow on this edge o

urs only on
e throughout the iterations of thealgorithm. Thus, Claims 1 and 2 hold in this 
ase, too.For any edge of T , the 
ow in one dire
tion does not ex
eed U , by Claims 1 and 2. If the edge ehas 
ow in both dire
tions su
h that fin(e)+fout(e) > U , then at the �nal step of the algorithm we
an
el 
ow of equal value in opposite dire
tions. As a result, the 
ow in one dire
tion will be equalto zero, and the 
ow in the opposite dire
tion will be equal to the di�eren
e of fin(e) and fout(e);hen
e, the total 
ow on e will not ex
eed U . The 
an
ellation of 
ow of value k = jfin(e)� fout(e)jwill lead to the swit
hing of the hub nodes of k sour
es whi
h sent 
ow on e in one dire
tion withthat of k other sour
es whi
h sent 
ow in the opposite dire
tion. As a result, the routes for thesesour
es will 
hange but the total 
ow on any of the edges on their routes will not in
rease. Considerthe subtree 
omposed of the union of routes of Sin and Sout, whi
h we 
all Tin and Tout. For theedges in the interse
tion of Tin and Tout, 
ow in opposite dire
tions will be 
an
elled; hen
e thetotal 
ow on these edges will de
rease. For the remaining edges of Tin and Tout, some of the 
owin one dire
tion (of value up to k) will reverse its dire
tion but the total 
ow will not in
rease inamount. An example to 
ow 
an
ellation is given in Figure 3. 2Theorem 2.2 Algorithm UNIFORM is a (1 + �ST )-approximation algorithm for the 
apa
itatednetwork design problem with uniform demand.Proof: Let COPT be the 
ost of an optimal solution and CHEUR be the 
ost of a solution outputby Algorithm UNIFORM. Let CST denote the 
ost of the 
ables installed on the edges of the Steinertree T (whose 
ost is at most �ST times the 
ost of an optimal Steiner tree). Let CG be the 
ostof 
ables installed on the edges of G to send aggregated 
ow from the hub nodes to the sink nodewith minimum 
ost.By Lemma 2.1, at most one 
opy of 
able is suÆ
ient to a

omodate 
ow on the edges of theSteiner tree T . The 
ost of a Steiner tree with terminal set S [ftg is a lower bound on the optimal
ost be
ause we must 
onne
t the nodes in S to t and install at least one 
opy of the 
able on ea
h
onne
ting edge. Therefore, CST � �STCOPT .A sour
e set Ck 
olle
ted at iteration k has demand equal to U and the algorithm installs one
opy of the 
able on the path from the hub node wk to the sink t with 
ost 
(wk; t). The term7
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a) On edge e, sum of flow in both b) Sources are reassigned to hubs after
flow of value 5 is cancelled on edge e.directions exceeds u, where u=10.

C1 :

C2
:

C1 :

C2

Figure 3: An example of 
an
elling 
ow and reassigning sour
es to hub nodes. Here w1 and w2 arehub nodes 
hosen in the order of their indi
es, with 
olle
ted sour
e sets C1 and C2, respe
tively.Psi2Ck 
(si;t)U is the 
ost asso
iated with routing the unit demand of ea
h sour
e si of Ck throughthe minimum 
ost path and pur
hasing on ea
h edge of the path 1=U fra
tion of the 
able. Thealgorithm identi�es a 
olle
tion of subtrees with disjoint sour
e sets (but possibly 
ommon non-sour
e nodes). Therefore, PkPsi2Ck 
(si;t)U is a lower bound on COPT . Sin
e the algorithm sendsthe total demand of a set Ck via the sour
e in Ck with the minimum 
ost of rea
hing t (that is, thehub node wk) and jCkj = U , we get
(wk; t) = minsi2Ck 
(si; t) � Psi2Ck 
(si; t)jCkj = Xsi2Ck 
(si; t)U :Thus, we �nally have CG =Xk 
(wk; t) �Xk Xsi2Ck 
(si; t)U � COPT :Therefore, CHEUR = CST + CG � (1 + �ST )COPT : 2When every non-sink node in the input graph has a non-zero demand, we do not need to 
on-stru
t a Steiner tree. Instead, we input a minimum 
ost spanning tree T to algorithm UNIFORM.In the proof of 2.2, CST will refer to the 
ost of the spanning tree T and �ST will be equal to 1.Therefore, we obtain a performan
e ratio of 2.Corollary 2.3 Algorithm UNIFORM is a 2-approximation algorithm for the 
apa
itated networkdesign problem with uniform demand at every non-sink node.3 Non-uniform DemandWhen the demand of a sour
e node 
an be any positive integral value, it is no longer possible to
olle
t sour
es with total demand exa
tly equal to the 
apa
ity U . Suppose we are allowed to split8



the demand of a sour
e into any integral units ea
h of whi
h 
an be routed in separate paths tothe sink. In that 
ase, the algorithm of the previous se
tion 
an be used by expanding ea
h sour
esi with demand demi to a set of sour
es with unit demand 
onne
ted by zero-length edges in thetree. However, in the more general 
ase, all the 
ow of a sour
e must use the same path to thesink. In this 
ase, we modify Algorithm UNIFORM so that we send demand dire
tly to the sinkwhen it a

umulates to an amount between U=2 and U . To guarantee that we don't ex
eed U while
olle
ting demand, we send all sour
es with demand at least U=2 dire
tly at the beginning of thealgorithm.For a sour
e set C, let dem(C) be the total demand of sour
es in C. As de�ned for the uniformdemand 
ase, we use D(C) to denote the total remaining (unpro
essed) demand of C. The modi�edalgorithm, whi
h we 
all Algorithm NON-UNIFORM, is given below.Algorithm NON-UNIFORM:Initialize: R := S.Prepro
essing: (send large demands dire
tly)For all sour
es si su
h that demi � U=2,Route the demand to the sink via the minimum 
ost path in G.Install ddemiU e 
opies of 
able on the edges of this si � t path.Remove si from R.Main step:Pi
k a node v su
h that D(Tv) � U=2 and level of v is maximum.If no su
h node exists (that is, D(Tt) < U=2) or v = t, then go to the �nal step.Find a node, say w, in R \ Tv su
h that 
(w; t) is minimum.Designate w as a \hub" node and set C = fwg.Colle
t additional sour
e nodes in C (des
ribed below).Assign these sour
es to w.Route demand of ea
h sour
e in C to the hub node w via the unique path in T .Route demand of C aggregated at w via the minimum 
ost w � t path in G.Install one 
opy of 
able on the edges of this w � t path.Remove C from R and set C = ;.If R is not empty, repeat the main step.If R is empty, go to the �nal step.Final step:If R is not empty, then route all the demand in R to t via the unique paths in T .Install one 
opy of 
able on the edges of T whi
h have positive 
ow.The following pro
edure is used to 
olle
t unpro
essed sour
e nodes from Tv in the set C at themain step of the algorithm. The set C 
ontains only the hub node w when the pro
edure is 
alled.At the end of the pro
edure demand of C is in the range [U=2; U ℄.Pro
edure to 
olle
t sour
e nodes of Tv:Add v to C, if v 2 R.Let v1; : : : ; vk be the 
hildren of v.If w 6= v, thenLet vp be the 
hild of v su
h that the hub node w is in Tvp .9



Add Tvp \R to C.While dem(C) < U=2,Pi
k an unpro
essed 
hild of v, say vi.Add Tvi \R to C.Return C.Lemma 3.1 Algorithm NON-UNIFORM outputs a solution in whi
h 1) 
ow on any edge of thetree T is at most U , and 2) 
ow sent from a hub node to the sink in G at ea
h iteration of thealgorithm is at least U=2 and at most U .Proof: The proof is simpler 
ompared to the uniform-demand 
ase be
ause the algorithm doesnot assign any subtree partially. Consider an edge e of T . Let v be in
ident on e su
h that e isnot in Tv. Sin
e all the sour
es in Tv are 
olle
ted in the same set by the algorithm, the demandof these sour
es is routed to a hub node either out of the subtree, or in the subtree, but not both.Thus, 
ow on e exists only in one dire
tion. If the demand of sour
es is routed to a hub node outof Tv, then out
ow is at most U � 1. If the demand is routed to a hub node in the subtree, thenin
ow is at most U � 1. Thus, for any edge of T , 
ow does not ex
eed U .Due to the subtree sele
tion rule in the algorithm, if a subtree Tv is sele
ted at an iteration, thenall the subtrees rooted at its 
hildren have remaining demand stri
tly less than U=2. Therefore,when sour
e nodes are 
olle
ted in C, the �rst time the total 
olle
ted demand dem(C) ex
eedsU=2, dem(C) will be at most U . Therefore, the total 
ow sent from the hub to the sink at thisiteration is in the range [U=2; U ℄. 2Theorem 3.2 Algorithm NON-UNIFORM is a (2 + �ST )-approximation algorithm for the 
apa
-itated network design problem with non-uniform demand.Proof: We use the same de�nitions of COPT , CHEUR, CG and CST as in the proof of Theorem 2.2.By Lemma 3.1, at most one 
opy of the 
able is suÆ
ient to a

ommodate 
ow on the edges ofthe Steiner tree T . Therefore, CST � �STCOPT .For a sour
e set Ck 
olle
ted at iteration k, the algorithm installs one 
opy of the 
able onthe minimum 
ost wk � t path in G. By Lemma 3.1, at most one 
opy of 
able is suÆ
ient toa

ommodate 
ow on this path and the 
ow utilizes at least half of the 
apa
ity of the 
able.Thus, Psi2Ck demi � U=2. If we were allowed to pay for only the portion of the 
able used, thena minimum 
ost solution would use the minimum 
ost path from ea
h sour
e to the sink. Thissolution would have 
ost Psi2S demiU � 
(si; t) and this is a lower bound on COPT . Sin
e sour
e sets
olle
ted by the algorithm have disjoint sour
es, and the demand from a set Ck is sent via thesour
e in Ck that is 
losest to t (the hub node wk),COPT �Xk Xsi2Ck demiU 
(si; t) �Xk Xsi2Ck demiU ( minsi2Ck 
(si; t)) �Xk Xsi2Ck 12
(wk; t) = 12CG:The last inequality follows sin
e Psi2Ck demi � U2 and minsi2Ck 
(si; t) = 
(wk; t). Therefore,CHEUR = CST + CG � (2 + �ST )COPT : 210



When every non-sink node in the input graph has a non-zero demand, we do not need to
onstru
t a Steiner tree. Instead, we input a minimum 
ost spanning tree T to algorithm NON-UNIFORM. In the proof of Theorem 3.2, CST will refer to the 
ost of the spanning tree T and �STwill be equal to 1. Therefore, we obtain a performan
e ratio of 3.Corollary 3.3 Algorithm NON-UNIFORM is a 3-approximation algorithm for the 
apa
itated net-work design problem with non-uniform demand at every non-sink node.4 ExtensionsOur methods apply to the following extension of the lo
al a

ess network design problem. Insteadof spe
ifying a single sink node, any node v in the graph 
an be used as a node that sinks U unitsof demand at a 
ost of fv. A node is allowed to sink more than U units of demand by payingddemU e � fv 
ost to sink dem units of 
ow. The problem is to open suÆ
ient number of sinks androute all the demands to these sinks at minimum 
able plus sink opening 
osts.To model this extension, we extend the metri
 in two steps: 1) 
reate a new sink node t withedges to every vertex v of 
ost fv, 2) take the metri
 
ompletion of this augmented network. Noti
ethat the se
ond step may de
rease some of the 
osts on the edges in
ident on the new sink t (e.g.,if fi+ 
(j; i) < fj, then the 
ost of the edge (j; t) 
an be redu
ed from fj to fi+ 
(j; i)), or betweenany pair of original nodes (e.g., if 
(i; j) > fi + fj, then we may repla
e the former by the latter).Bearing this in mind, it is not hard to see that any solution in the new graph to the single 
ableproblem with t as the sink and with the modi�ed 
osts 
an be 
onverted to a solution to the originalproblem of the same 
ost. Thus, our algorithms in the previous se
tions apply to give the sameperforman
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