
Single-Sink Fractionally Subadditive Network
Design∗

Guru Guruganesh†1, Jennifer Iglesias‡2, R. Ravi3, and
Laura Sanità4

1 Carnegie Mellon University, Pittsburgh, PA, USA
ggurugan@andrew.cmu.edu

2 Carnegie Mellon University, Pittsburgh, PA, USA
jiglesia@andrew.cmu.edu

3 Carnegie Mellon University, Pittsburgh, PA, USA
ravi@andrew.cmu.edu

4 University of Waterloo, Waterloo, Canada
laura.sanita@uwaterloo.ca

Abstract
We study a generalization of the Steiner tree problem, where we are given a weighted network
G together with a collection of k subsets of its vertices and a root r. We wish to construct a
minimum cost network such that the network supports one unit of flow to the root from every
node in a subset simultaneously. The network constructed does not need to support flows from
all the subsets simultaneously.

We settle an open question regarding the complexity of this problem for k = 2, and give a 3
2 -

approximation algorithm that improves over a (trivial) known 2-approximation. Furthermore, we
prove some structural results that prevent many well-known techniques from doing better than
the known O(logn)-approximation. Despite these obstacles, we conjecture that this problem
should have an O(1)-approximation. We also give an approximation result for a variant of the
problem where the solution is required to be a path.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.2 Graph
Theory

Keywords and phrases Network design, single-commodity flow, approximation algorithms,
Steiner tree

Digital Object Identifier 10.4230/LIPIcs.ESA.2017.46

1 Introduction

We study a robust version of a single-sink network design problem that we call the Single-sink
fractionally-subadditive network design (f-SAND) problem. In an instance of f-SAND, we
are given an undirected graph G = (V,E) with edge costs we ≥ 0 for all e ∈ E, a root node
r ∈ V , and k colors represented as vertex subsets Ci ⊆ V \ {r} for all i ∈ [k], that wish to
send flow to r. A feasible solution is an integer capacity installation on the edges of G, such
that for every i ∈ [k], each node in Ci can simultaneously send one unit of flow to r. Thus,

∗ Full version available at: https://arxiv.org/abs/1707.01487.
† This material is based upon work supported in part by National Science Foundation awards CCF-
1319811,CCF-1536002, and CCF-1617790.

‡ This material is based upon work supported by the National Science Foundation Graduate Research
Fellowship Program under Grant No. 2013170941.

© Guru Guruganesh, Jennifer Iglesias, Laura Sanità, and R. Ravi;
licensed under Creative Commons License CC-BY

25th Annual European Symposium on Algorithms (ESA 2017).
Editors: Kirk Pruhs and Christian Sohler; Article No. 46; pp. 46:1–46:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ESA.2017.46
https://arxiv.org/abs/1707.01487
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

46:2 Single-Sink Fractionally Subadditive Network Design

the total flow sent by color i nodes is is |Ci| while the flows sent from nodes of different
colors are instead non-simultaneous and can share capacity. An optimal solution is a feasible
one that minimizes the total cost of the installation.

The single-sink nature of the problem suggests a natural cut-covering formulation, namely:

min
∑
e∈E

wexe s.t.∑
e∈δ(S)

xe ≥ f(S) ∀S ⊂ V \ {r}

x ≥ 0 , x ∈ Z , (IP)

where δ(S) denotes the set of edges with exactly one endpoint in S, and

f(S) := max
i∈[k]
{|Ci ∩ S|} (1)

for all S ⊆ V \ {r}. Despite having exponentially many constraints, the LP-relaxation of (IP)
can be solved in polynomial-time because the separation problem reduces to performing k
max-flow computations. The main challenge is to round the resulting solution into an integer
solution.

Rounding algorithms for the LP relaxation of (IP) have been investigated by many
authors, under certain assumptions of the function f(S). Prominent examples are some
classes of 0/1-functions (such as uncrossable functions), or integer-valued functions such as
proper functions, or weakly supermodular functions [12, 19]; however, these papers consider
arbitrary cut requirements rather than the single-sink connectivity requirements we study.

Our single-sink problem is a special case of a broader class of subadditive network design
problems where the function f is allowed to be a general subadditive function. Despite their
generality, the single-sink network design problem for general subadditive functions can be
approximated within an O(log |V |) factor by using a tree drawn from the probabilistic tree
decomposition of the metric induced by G using the results of Fakcharoenphol, Rao, and
Talwar [8], and installing the required capacity on the tree edges. Hence, a natural direction
is to consider special cases of such subadditive cut requirement functions.

Our function f(S) defined in (1) is an interesting and important special case of subadditive
functions. It was introduced as XOS-functions (max-of-sum functions) in the context of
combinatorial auctions by Lehman et al. [20]. Feige [9] proved that this function is equivalent
to fractionally-subadditive functions which are a strict generalization of submodular functions
(hence the title). These functions have been extensively studied in the context of learning
theory and algorithmic game theory [1, 3, 20]. Our work is an attempt to understand their
behavior as single-sink network design requirement functions.

f-SAND was first studied by Oriolo et al. [21] in the context of robust network design,
where the goal is to install minimum cost capacity on a network in order to satisfy a given
set of (non-simultaneous) traffic demands among terminal nodes. Each subset Ci can in
fact be seen as a way to specify a distinct traffic demand that the network would like to
support. They observed that f-SAND generalizes the Steiner tree problem: an instance of the
Steiner tree problem with k + 1 terminals t1, . . . , tk+1 is equivalent to the f-SAND instance
with r := tk+1 and Ci := {ti} for all i ∈ [k]. This immediately shows that f-SAND is NP-hard
(in fact, APX-hard [6]) when k is part of the input. The authors in [21] strengthened the
hardness result by proving that f-SAND is NP-hard even if k is not part of the input, and in
particular for k = 3 (if k = 1 the problem is trivially solvable in polynomial-time by computing
a shortest path tree rooted at r). From the positive side, they observed that there is a trivial

G. Guruganesh, J. Iglesias, L. Sanità, and R. Ravi 46:3

k-approximation algorithm, that relies on routing via shortest paths, and an O(log | ∪i Ci|)-
approximation algorithm using metric embeddings [8, 17]. The authors conclude their paper
mentioning two open questions, namely whether the problem is polynomial-time solvable for
k = 2, and whether there exists an O(1)-approximation algorithm.

1.1 Our results
1. In this paper, we answer the first open question in [21] by showing that f-SAND is NP-hard

for k = 2 via a reduction from SAT.
2. We give a 3

2 -approximation algorithm for this case (k = 2). This is the first improve-
ment over the (trivial) k-approximation obtained using shortest paths for any k. Our
approximation algorithm is based on pairing terminals of different groups together, and
therefore reducing to a suitable minimum cost matching problem. While the idea behind
the algorithm is natural, its analysis requires a deeper understanding of the structure of
the optimal solution.

3. We also introduce an interesting variant of f-SAND, which we call the Latency-f-SAND
problem, where the network built is restricted to being a path with the root r being one
of the endpoints (f-SAND-path). We show a O(log2 k logn)-approximation using a new
reformulation of the problem that allows us to exploit techniques recently developed for
latency problems [4].

4. While being a generalization of well-studied problems, f-SAND does not seem to admit an
easy O(1)-approximation via standard LP-rounding techniques for arbitrary values of k.
We prove some structural results that highlight the difficulty of the general problem (see
full version [18]). In particular, we show a family of a instances providing a super-constant
gap between an optimal f-SAND solution and an optimal tree-solution, i.e., a solution
whose support is a tree – this rules out many methods that output a solution with a
tree structure. The bulk of the construction was shown in [13] and we amend it to our
problem using a simple observation. Furthermore, we give some evidence that an iterative
rounding approach (as in Jain’s fundamental work [19]) is unlikely to work. This follows
by considering a special class of Kneser Graphs, where the LP seems to put low fractional
weight on each edge in an extreme point.

5. Open Questions. We offer the following conjecture as our main open question.1
I Conjecture 1. There exists an O(1)-approximation algorithm for the f-SAND problem.
Although standard LP-based approaches seem to fail in providing a constant factor
approximation, the worst known integrality gap example we are aware of yields a (trivial)
lower bound of 2 on the integrality gap of (IP) for f-SAND. A related open question is if
there is an instance of f-SAND for which the integrality gap of (IP) is greater than 2.

1.2 Related work
Network design problems where the goal is to build a minimum cost network in order to
support a given set of flow demands, have been extensively studied in the literature (we
refer to the survey [5]). There has been a huge amount of research focusing on the case the
set of demands is described via a polyhedron (see e.g. [2]). In this context a very popular
model is the Virtual private network [7, 11], for which many approximation results have been
developed (see e.g. [14, 15, 16] and the references therein). For the case where the set of

1 Although the problem is known in some circles, it has not been explicitly stated as a conjecture. We do
so here, in the hopes that it will encourage others to work on this problem.

ESA 2017

46:4 Single-Sink Fractionally Subadditive Network Design

demands is instead given as a (finite) discrete list, the authors in [21] developed a constant
factor approximation algorithm on ring networks, and proved that f-SAND is polynomial-time
solvable on ring networks.
Regarding the formulation (IP), Goemans and Williamson [12] gave a O(log(fmax))-ap-
proximation algorithm for solving (IP) whenever f(S) is an integer-valued proper function
that can take values up to fmax, based on a primal-dual approach. Subsequently, Jain [19]
improved this result by giving a 2-approximation algorithm using iterative rounding of the
LP-relaxation. Recently, a strongly-polynomial time FPTAS to solve the LP-relaxation of
(IP) with proper functions has been given in [10].

2 3/2-approximation for the two color case

The goal of this section is to give a 3
2 -approximation algorithm for SAND with two colors.

We remark that our algorithm bypasses the difficulties mentioned in the previous section. In
particular, the final output is not a tree.

2.1 Simplifying Assumptions
We will refer to the two colors as green and blue, and let CG ⊂ V denote the set of green
terminals, and CB ⊂ V denote the set of blue terminals. Without loss of generality, we will
assume that |CG| = |CB |, i.e., the cardinality of green terminals is equal to the cardinality
of blue terminals (if not, we could easily add dummy nodes at distance 0 from the root).
Furthermore, by replacing each edge in the original graph with |CG| parallel edges of the
same cost, we can assume that in a feasible solution the capacity installed on each edge must
be either 0 or 1. This means that each edge is used by at most one terminal of CG (resp.
CB) to carry flow to the root. Lastly, we assume that every terminal in CG shares at least
one edge with some terminal in CB in the optimal solution.2

Let OPT denote an optimal solution to a given instance of SAND with two colors. We
start by developing some results on the structure of OPT, that will be crucial to analyze our
approximation algorithm later.

2.2 Understanding the structure of OPT
A feasible solution of a SAND instance consists of a (integer valued) capacity installation on
the edges that allows for a flow from the terminals to the root. Given a feasible solution,
each terminal will send its unit of flow to t on a single path. Let us call the collection of
such paths a routing associated with the feasible solution. The first important concept we
need is the concept of splits.

2.2.1 Shared Edges and Splits
Given a routing, for each terminal g ∈ CG (and b ∈ CB respectively) let Pg (Pb) denote the
path along which g (b) sends flow to the root; i.e. Pg := {g = x0, x1, . . . , x|Pg| = r}. We say
that an edge e is shared if the paths of two terminals of different color contain the edge.
We say that g ∈ CG and b ∈ CB are partners with respect to a shared edge e = uv, if their
respective paths use the edge e; i.e. e ∈ Pg ∩ Pb.

2 We can easily ensure this e.g. by modifying our instance as follows: we add a dummy node r′ which is
only connected to r with |CG| parallel edges of 0 cost, and we make r′ be the new root. In this way, all
terminals will use one copy of the edge (r, r′).

G. Guruganesh, J. Iglesias, L. Sanità, and R. Ravi 46:5

I Definition 2. A split in the path Pg is a maximal set of consecutive edges of the path
such that g is partnered with some b on all the edges of this set.

If {(xi, xi+1), (xi+1, xi+2), . . . , (xi+j−1, xi+j)} is a split in the path Pg = {g = x0, x1, . . . ,

x|Pg| = r} for g ∈ CG, then there exists a unique terminal b ∈ CB such that Pb contains the
edges {(xi, xi+1), (xi+1, xi+2), . . . , (xi+j−1, xi+j)}, Pb does not contain the edge (xi−1, xi),
and if xi+j 6= r then Pb does not contain the edge (xi+j , xi+j+1). By our assumptions, the
terminal b is unique as each edge is used by at most one terminal of each color.

Since the flow is going from a terminal g to r, the path Pg naturally induces an orientation
on its edges given by the direction of the flow, even though the edges are undirected. Of
course, the paths of different terminals could potentially induce opposite orientations on
(some of) the shared edges (see Figure 1).

I Definition 3. A split is wide, if the paths of the two terminals that are partners on the
edges of the split induce opposite orientations on the edges. A split is thin, if the paths of
the two terminals that are partners on the edges of the split induce the same orientation on
the edges.

The above notions are well defined for any routing with respect to a feasible solution.
Now, we focus on the structure of an optimal routing, i.e., a routing with respect to an
optimal solution. For the rest of this section, we let {Pg}g∈CG

and {Pb}b∈CB
be an optimal

routing. The following lemma is immediate.

I Lemma 4. Let {(xi, xi+1), (xi+1, xi+2), . . . , (xi+j−1, xi+j)} be a split in the path Pg (for
some g ∈ CG). The edges of the split form a shortest path from xi to xi+j.

Proof. If not, we could replace this set of edges with the set of edges of a shortest path
from xi to xi+j , in both Pg and Pb, where b is the partner of g on the split. Therefore, we
can install one unit of capacity on these edges, and remove the unit of capacity from the
edges of the split. We get another feasible solution with smaller cost, a contradiction to the
optimality of our initial solution. J

2.2.2 Split Graph

A consequence of Lemma 4 is each split is entirely characterized by the endpoints of the split
and the terminals that share them. We denote each split by a tuple (u, v, g, b) which states
that there is a shortest path between u and v whose edges are shared by g and b.

Let S denote the set of all splits in the optimal routing. We construct a directed graph GS

whose vertex set corresponds to V = S ∪CG ∪CB (i.e. the vertex set contains one vertex for
each split and one vertex for each terminal). For each g ∈ CG, we place a directed green edge
going between two consecutive splits in Pg. Specifically, if {(xi, xi+1), . . . , (xi+j−1, xi+j)}
and {(xi′ , xi′+1), . . . , (xi′+j′−1, xi′+j′)} are two splits in Pg with i < i′, we say that they are
consecutive if the subpath from xi+j to xi′ does not contain any split. In this case, we place
a directed edge in GS whose tail is the vertex corresponding to the first split, and whose
head is the vertex corresponding to the second one. Similarly, for each b ∈ CB we place a
directed blue edge between vertices of consecutive splits that appear in Pb. Furthermore, for
each g ∈ CG (resp. b ∈ CB) we place a directed green (resp. blue) edge from g (resp. b) to
the vertex corresponding to the first split on the path Pg (resp. Pb), if any. This graph is
denoted as the Split Graph (see Figure 1).

ESA 2017

46:6 Single-Sink Fractionally Subadditive Network Design

r

b2

b1

g2

g1

g1 − b2 g2 − b1

g1 − b1
b2

b1

g2

g1

Figure 1 The above left graph (where each undirected edge is supposed to have unit capacity)
shows an optimal routing for some f-SAND instance. Note that b1 and g2 (resp. b2 and g1) send
flow to r going counterclockwise (resp. clockwise) on the edges of the cycle. The path Pb1 contains
two splits: the first is wide (b1 is partnered with g1), the second is thin (b1 is partnered with g2).
The graph on the right is the Split Graph for the optimal solution on the left. The pair of vertices
g1, b1 and the pair of vertices g2, b2 constitute the fresh pairs.

Each split indicates that two terminals of different colors are sharing the capacity on a set
of edges in an optimal routing. Hence, each split-vertex in GS has indegree 2 (in particular,
one edge of each color). Furthermore, each split-vertex in GS has outdegree either 0 or 2; if
it has two outgoing edges, one is green and one is blue. Similarly, each terminal has indegree
0, and outdegree 1 (as we assume that each terminal shares at least one edge).

2.2.3 Fresh Pairs
We need one additional definition before proceeding to the algorithm.

I Definition 5. An S-alternating sequence is a sequence of vertices of the Split Graph
{v, s1, s2, . . . , sh, w} with h ≥ 1, that satisfies the following:
(i) (v, s1) and (w, sh) are directed edges in GS and v, w are terminals of different color.
(ii) For all even i ≥ 2, (si, si−1) and (si, si+1) are both directed edges in GS with opposite

colors.
We call the path obtained by taking the edges in (i) and (ii) an S-alternating path. We
call (v, w) a fresh pair if they are the endpoints of an S-alternating path.

By definition, in an S-alternating sequence the vertices s1, . . . , sh are all split-vertices, and
h is odd. We remark here that an S-alternating path is not a directed path. (See again
Figure 1).

I Lemma 6. We can find a set of edge-disjoint S-alternating paths in the Split Graph such
that each terminal is the endpoint of exactly one path in this set.

Proof. We construct the desired set as follows. For each vertex g ∈ CG, there is a unique
outgoing edge to a split vertex s ∈ S (as we assume every terminal participates in a split).
Since each split-vertex has indegree 2, s has another ingoing edge coming from a different
vertex w. If w ∈ CB , then (v, w) is a fresh pair and we have found an S-alternating sequence
{v, s, w}. If w is a split-vertex, then it has another outgoing edge to a different split-vertex

G. Guruganesh, J. Iglesias, L. Sanità, and R. Ravi 46:7

s′, which in its turn has another incoming edge from a different vertex w′. We continue to
build an alternating sequence (and a corresponding alternating path) in this way until it
terminates in a terminal. Since the path is of even length and the colors alternate, we can
conclude that this will terminate in a terminal of opposite color. We remove the edges of this
path from the Split Graph, and iterate the process. Each terminal will belong to exactly one
S-alternating path, as it has outdegree exactly 1, and all the paths are edge-disjoint, proving
the lemma. J

2.3 The Algorithm
We are now ready to present our matching algorithm. The algorithm has two steps. First,
construct a complete bipartite graph H with the bipartitions CG and CB , where the weight
on the edge (g, b) ∈ CG ×CB is equal to the cost of the Steiner tree in G connecting g, b and
the root. Note that the graph H can be computed in polynomial time, since a Steiner tree
on 3 vertices can be easily computed in polynomial time.

Second, find a minimum-weight perfect matchingM in H, and for each edge (g, b) ∈M
install (cumulatively) one unit of capacity on each edge of G that is in the Steiner tree
associated to the edge (g, b) ∈M. The capacity installation output by this procedure is a
feasible solution to f-SAND, and has total cost equal to the weight ofM.

I Lemma 7. The matching algorithm is a 3
2 -approximation algorithm.

Proof. First, we partition OPT into four parts; let wb (and wg respectively) be the cost of
the edges which are used only by blue (green respectively) terminals in OPT , and let wt
(wd) be the cost of edges in thin (wide) splits in OPT . Thus, w(OPT) = wb +wg +wt +wd.
By Lemma 6, we can extract from the Split Graph associated to OPT a set of S-alternating
paths such that each terminal is contained in exactly one fresh pair. Consider the matching
M1 determined by the set of fresh pairs found by the aforementioned procedure. We will
now bound the weight ofM1.

I Claim 8. The weight of the matching formed by connecting the fresh pairs is at most

3
2 · wb + 3

2 · wg + 1 · wt + 3 · wd.

Proof. Let (g, b) be a fresh pair and (g, s1, . . . , sh, b) be the corresponding S-alternating
sequence. The edges of the associated S-alternating path naturally correspond to paths in G
composed by non-shared edges (that connect either the endpoints of two different splits, or
one terminal and one endpoint of a split). These paths together with the edges of the wide
splits in the sequence, naturally yield a path P (b, g) in G connecting g and b.

If we do this for all fresh pairs, we obtain that the total cost of the paths P (b, g) is
upper bounded by 1 · wb + 1 · wg + 2 · wd. The reason for having a coefficient of 2 in front
of wd is because the S-alternating paths of Lemma 6 are edge-disjoint, but not necessarily
vertex-disjoint: however, since each split-vertex has at most 4 edges incident into it, it can
be part of at most 2 S-alternating paths.

Using the aforementioned connection, we can move all terminals in CG to their partners in
CB . Subsequently, we connect them to the root using the Pb for all b ∈ CB . This connection
to the root will incur a cost of 1 ·wb + 1 ·wd + 1 ·wt. Combining this together, we get a total
cost of 2 ·wb+1 ·wg +1 ·wt+3 ·wd. Analogously, if we connect the partners in CG to the root
using the the path Pg for all g ∈ CG, we will incur a total cost of 1 ·wb+ 2 ·wg + 1 ·wt+ 3 ·wd.

ESA 2017

46:8 Single-Sink Fractionally Subadditive Network Design

Since the sum of the cost of the Steiner trees connecting the fresh pairs to the root is no
more than either of these two values, we can bound the weight ofM1 by their average:

3
2 · wb + 3

2 · wg + 1 · wt + 3 · wd. J

I Claim 9. There exists a matching in H of weight at most 1 · wb + 1 · wg + 2 · wt.

Proof. Consider the flow routed on the optimal paths by the set of all terminals CG ∪ CB.
We modify the flow (and the corresponding routing) as follows. Whenever two terminals
traverse a wide-split, re-route the flows so as to not use the wide-split. This is always possible
as the two terminals traverse these edges in opposite directions (by definition of wide splits).
This re-routing ensures that all the edges of wide-splits are not used anymore in the resulting
paths. However, thin-splits which contained terminals of different colors passing in the same
direction, might now contain two terminals of the same color passing through the edges.
This means that these edges will be used twice (or must have twice the capacity installed).
All other edges do not need to have their capacity changed. Thus, the resulting flow can
be associated with a feasible solution of cost at most 1 · wb + 1 · wg + 2 · wt + 0 · wd. This
flow corresponds to all vertices directly connecting to the root as any shared edge is counted
twice. Hence, this is a bound on any matching in H. J

The average weight of the above matchings is an upper-bound on the minimum weight of a
matching in H. Hence, the weight ofM is at most

1
2 ·
(3

2 · wb + 3
2 · wg + 1 · wt + 3 · wd

)
+ 1

2 ·
(
1 · wb + 1 · wg + 2 · wt + 0 · wd

)
≤ 3

2 ·
(
wb + wg + wt + wd)

Therefore, the matching algorithm is 3
2 -approximation algorithm. J

3 Hardness for two colors

We prove that the SAND problem is NP-hard even with just two colors.

I Theorem 10. The SAND problem with 2 colors is NP-hard.

Proof. We use a reduction from a variant of the Satisfiability (SAT) problem, where each
variable can appear in at most 3 clauses, that is known to be NP-hard [22]. Formally, in a
SAT instance we are given m clauses K1, . . . ,Km, and p variables x1, . . . , xp. Each clause
Kj is a disjunction of some literals, where a literal is either a variable xi or its negation x̄i,
for some i in 1, . . . , p. The goal is to find a truth assignment for the variables that satisfies
all clauses, where a clause is satisfied if at least one of its literals takes value true. In the
instances under consideration, each variable xi appears in at most 3 clauses, either as a
literal xi, or as a literal x̄i. It is not difficult to see that, without loss of generality, we can
assume that every variable appears in exactly 3 clauses. Furthermore, by possibly replacing
all occurrences of xj with x̄j and vice versa, we can assume that each variable xi appears in
exactly one clause in its negated form (x̄i).

Given such a SAT instance, we define an instance of SAND as follows (see Fig. 2). We
construct a graph G = (V,E) by introducing one sink node r, one node kj for each clause
Kj , and 7 distinct nodes y`i , (` = 1, . . . , 7), for each variable xi. That is,

V := {r} ∪ {k1, . . . , km} ∪

{
p⋃
i=1
{y1
i , y

2
i , y

3
i , y

4
i , y

5
i , y

6
i , y

7
i }

}

G. Guruganesh, J. Iglesias, L. Sanità, and R. Ravi 46:9

Figure 2 The picture shows the subgraph introduced for every variable xi. Bold edges have cost
2, solid edges have cost 1, and dashed edges have cost M . Black circles indicate nodes in C1, and
grey circles indicate nodes in C2. Nodes in C1 ∩ C2 are colored half-black and half-grey.

The set of edges E is the disjoint union of three different sets, E := E1 ∪E2 ∪E3, where:

E1 :=
p⋃
i=1

{ 4⋃
`=1
{r, y2`−1

i }

}
; E2 :=

p⋃
i=1

{ 6⋃
`=1
{y`i , y`+1

i }

}
.

To define the set E3, we need to introduce some more notation. For a variable xi, we
let i1 and i2 be the two indices of the clauses containing the literal xi, and we let i3 be the
index of the clause containing the literal x̄i. We then have

E3 :=
p⋃
i=1

{
{y2
i , ki1}, {y4

i , ki3}, {y6
i , ki2}

}
.

We assign cost 2 to the edges in E1, unit cost to the edges in E2, and a big cost M >> 0 to
the edges of E3 (in particular, M > 2m+ 8p). Finally, we let the color classes3 be defined as:

C1 := {k1, . . . , km} ∪

{
p⋃
i=1
{y1
i , y

5
i }

}
; C2 := {k1, . . . , km} ∪

{
p⋃
i=1
{y3
i , y

7
i }

}
.

We claim that there exists an optimal solution to the SAND instance of cost at most
(M + 2)m+ 8p if and only if there is a truth assignment satisfying all clauses for the SAT
instance.

3.1 Completeness
First, let us assume that the SAT instance is satisfiable. For each clause Kj , we select one
literal that is set to true in the truth assignment. We define the paths for our terminal nodes
in C1 as follows. For each node y ∈

⋃p
i=1{y1

i , y
5
i }, we let the flow travel from y to r along

the edge {y, r}. For each kj , we let the flow travel to r on a path P j1 , that we define based
on the literal selected for Kj . Specifically, let xi be the variable corresponding to the literal
selected for the clause Kj . Then:

if Kj = Ki1 , we let P j1 be the path with nodes {kj , y2
i , y

3
i , r},

if Kj = Ki2 , we let P j1 be the path with nodes {kj , y6
i , y

7
i , r},

if Kj = Ki3 , we let P j1 be the path with nodes {kj , y4
i , y

3
i , r}.

3 We here have C1 ∩ C2 6= ∅. However, the reduction can be easily modified to prove hardness of instances
where C1 ∩ C2 = ∅, by simply adding for all j two nodes k1

j , k2
j adjacent to kj with an edge of zero cost,

and by letting k1
j (resp. k2

j) be in C1 (resp. C2) instead of kj .

ESA 2017

46:10 Single-Sink Fractionally Subadditive Network Design

We define the paths for our terminal nodes in C2 similarly. For each node y ∈
⋃p
i=1{y3

i , y
7
i },

we let the flow travel from y to r along the edge {y, r}. For each kj , we let the flow travel to
r on a path P j2 defined as follows. Let xi be the variable corresponding to the literal selected
for the clause Kj . Then:

if Kj = Ki1 , we let P j2 be the path with nodes {kj , y2
i , y

1
i , r},

if Kj = Ki2 , we let P j2 be the path with nodes {kj , y6
i , y

5
i , r},

if Kj = Ki3 , we let P j2 be the path with nodes {kj , y4
i , y

5
i , r}.

Note that the paths of terminals belonging to the same color set do not share edges. In
fact, by construction, the paths of two terminals in C1 could possibly share an edge only if
for two distinct clauses Kj 6= Kj′ we selected a literal corresponding to the same variable
xi, and we have Kj = Ki1 and Kj′ = Ki3 , since in this case the paths P j1 and P j

′

1 would
share the edge {y3

i , r}. However, selecting xi for Ki1 means xi takes value true in the truth
assignment, while selecting xi for Ki3 means xi takes value false in the truth assignment,
which is clearly a contradiction. A similar observation applies to paths of terminals in C2.
It follows that installing one unit of capacity on every edge that appears in (at least) one
selected path is enough to support the flow of both color sets. The total installation cost is
exactly 8p+ (M + 2)m.

3.2 Soundness
Suppose there is an optimal solution to the SAND instance of cost at most (M + 2)m+ 8p.
Let S denote such solution. Since the support of any feasible solution has to include at least
one distinct edge of cost M for each node kj , and M > 2m+ 8p, it follows that S has exactly
m edges of cost M in its support, each with one unit of capacity installed. Hence, if we
denote by P j1 (resp. P j2) the path used by kj to send flow to r with terminals in C1 (resp.
C2), we have the following fact.

Fact 1. For each j = 1, . . . ,m, the paths P j1 and P j2 from kj to r share the first edge.
We use this insight to construct a truth assignment for the SAT variables. Specifically, let

y`i be the endpoint of the first edge of P j1 and P j2 . We set xi to true if y`i = y2
i or if y`i = y6

i ,
and we set xi to false if y`i = y4

i . We repeat this for all clauses j = 1, . . . ,m, and we assign
an arbitrary truth value to all remaining variables, if any. In order to finish the proof, we
have to show that this assignment is consistent for all i = 1, . . . , p. To this aim, let us say
that a variable xi is in conflict if there is a node kj sending flow to r on a path whose first
edge has endpoint y4

i , and there is node kj′ 6= kj sending flow to r on a path whose first edge
has endpoint y2

i or y6
i . Note that our assignment procedure is consistent and yields indeed a

valid truth assignment if and only if there is no variable in conflict.
We now make a few claims on the structure of S, that will be useful to show that no

variable can be in conflict. Next fact follows from basic flow theory.

Fact 2. Without loss of generality, we can assume that the flow sent from terminals in C1
(resp. C2) to r, does not induce directed cycles.

I Claim 11. Without loss of generality, we can assume that every terminal sends flow to r
on a path that contains exactly one node y ∈

⋃p
i=1{y1

i , y
3
i , y

5
i , y

7
i }.

We defer the proof of this claim which is central to the remaining proof to the end. Let
Gi be the subgraph of G induced by the nodes {r, y1

i , . . . , y
7
i }, and let χi be the total cost

of the capacity that S installs on the subgraph Gi. Note that, by Fact 1, the cost of S is

G. Guruganesh, J. Iglesias, L. Sanità, and R. Ravi 46:11

m ·M +
∑m
i=1 χi. We will use Claim 1 to give a bound on the value χi. To this aim, let ni

be the number of nodes kj whose path P j1 contains edges of Gi. Note that 0 ≤ ni ≤ 3, and
each kj contributes to exactly one ni, for some i = 1, . . . , p.

I Claim 12. We have χi ≥ 8 + 2ni, with the inequality being strict if the variable xi is in
conflict.

Claim 12 finishes our proof, since it implies that the cost of S is at least

m ·M +
p∑
i=1

χi ≥ m ·M +
p∑
i=1

(8 + 2ni) = m ·M + 8p+ 2m,

with the inequality being tight if and only if there is no variable in conflict. J

4 Latency SAND

By adapting a construction from [13], there is a Ω(logn) gap between the tree and graph
version of f-SAND. This naturally raises the question of approximating f-SAND when the
solution must be restricted to different topologies. In this section, we consider the f-SAND
when the output topology must be a path. Since this variant of f-SANDis not easy to solve
on a tree, it is not clear how to solve it using tree metrics.

I Definition 13. In the latency-f-SAND problem, we are given an instance of f-SAND, but
require the output to be a path with the root r as one of its endpoints. Our goal is output a
minimum cost path, where the cost of an edge is we· (load on e). The load on an edge is the
maximum number of nodes of one color it separates from the root.

We assume that the lengths are integers and polynomially bounded in the input and give
a time-indexed length formulation for this problem. This linear programming formulation
was introduced by Chakrabarty and Swamy [4] for orienteering problems.

The Linear Programming Formulation for Latency-f-SAND.

min
∑
j,t

t · xj,t (LPbP)

s.t.
∑
t

xj,t ≥ 1 ∀j ∈ [m] (2)∑
P∈Pb·t

zP,t ≤ 1 ∀t ∈ [T] (3)

∑
P∈Pb·t:j∈P

zP,t ≥
∑
t′≤t

xj,t′ ∀j ∈ [m], t ∈ [T] (4)

x, z ≥ 0

We assume without loss of generality, that |Ci| = m for all i ∈ [k]. Pt denotes the set of
paths of weight at most t starting from the root. Since the lengths are polynomially bounded,
we can contain a variable for each possible length (we denote T to be the maximum possible
length). We use j ∈ Pt to indicate that the path Pt contains j terminals of each color. The
variable xj,t indicates that we have seen j terminals of each color by time t and zP,t indicates
that we use path P to visit the terminals at time t.

I Lemma 14. The linear program LPbP is a relaxation of Latency-f-SANDfor b ≥ 1.

ESA 2017

46:12 Single-Sink Fractionally Subadditive Network Design

Proof. We show that the contraints and objective are valid for any feasible solution to
Latency-f-SAND.

Constraint 2 ensures that j terminals of each color are covered at some given time period,
for every j ∈ [m].
Constraint 3 ensures that only one path is (fractionally) picked for each time period t.
Constraint 4 indicates that we must have picked a path P that covers j terminals by
time t if

∑
t′≤t xj,t′ = 1.

The objective function correctly captures the cost of the path. For an integer solution,
xj,t = 1 indicates that time t is the first time j terminals of each color are present in the
path. Thus the objective counts the prefix length t1 corresponding to where x1,t1 = 1 in
all m of the terms, the next prefix of length t2 − t1 in m − 1 of them and so on. This
accurately accounts for the loads in these segments of the path according to the objective
function in f-SAND. Finally, b ≥ 1 only allows the paths to be of lengths longer by a
factor of b so keeps the optimal solution feasible. J

First, we can relax the above LP by replacing Pt with Tt which is the set of all trees of
size at most t. This is a relaxation as Pt ⊆ Tt. Lemma 15, shows that we can round LPbT to
get a O(b) approximation to latency-f-SAND.

I Lemma 15. Given a fractional solution (x, z) to LPbT , we can round it to a solution to
latency-f-SAND with cost at most O(b) times the cost of LPbT .

We defer the proof to the full version [18] due to space constraints but briefly sketch the
argument. Roughly, we sample the trees at geometric intervals and “eulerify” them to
produce a solution whose cost is not too much larger than the LP-objective.

Despite, being able to round the LP, we cannot hope to solve it effeciently due to the
exponential number of variables in the primal. We will use the dual to obtain a solution to a
relaxed version of the primal.

max
∑
j

αj −
∑
t

βt (DualbP)

s.t. αj ≤ t+
∑
t′≥t

θj,t′ ∀j, t (5)

∑
j∈P

θj,t ≤ βt ∀t, P ∈ Pbt (6)

α, β, θ ≥ 0. (7)

Following [4] it is suffient that an “approximate separation oracle” in the sense of Lemma 16
is sufficient to compute an optimal solution to LPbT .

I Lemma 16. Given a solution (α, β, θ), we can show that either (α, β, θ) is a solution to
Dual1T or find a violated inequality for (α, β, θ) for DualbT for b = O(log2 k logn).

Once again, we defer the proof to the full version [18], but sketch the argument. To
efficiently separate, we observe that constraint 6 can be recast as a covering Steiner tree
problem. Using approximation algorithms for this problem, we find a violated inequality for
a (stronger) constraint. This results in the “approximate separation oracle”.

I Theorem 17. There exists a O(log2 k logn) approximation to the Latency-SAND problem.

Proof. Combining Lemma 3.2 of [4] with Lemma 16, we can now compute an ε-additive
optimal solution to LPbT for b = O(log2 k logn). Using Lemma 15, we then achieve an O(b)
approximation for our problem. J

G. Guruganesh, J. Iglesias, L. Sanità, and R. Ravi 46:13

References
1 M. Balcan, F. Constantin, S. Iwata, and L. Wang. Learning valuation functions. In

Conference on Learning Theory, volume 23, pages 4–1, 2012.
2 W. Ben-Ameur and H. Kerivin. Routing of uncertain demands. Optimization and Engin-

eering, 3:283–313, 2005.
3 K. Bhawalkar and T. Roughgarden. Welfare guarantees for combinatorial auctions with

item bidding. In Proceedings of the twenty-second annual ACM-SIAM symposium on Dis-
crete Algorithms, pages 700–709. Society for Industrial and Applied Mathematics, 2011.

4 D. Chakrabarty and C. Swamy. Facility location with client latencies: LP-based techniques
for minimum-latency problems. Mathematics of Operations Research, 41(3):865–883, 2016.

5 C. Chekuri. Routing and network design with robustness to changing or uncertain traffic
demands. SIGACT News, 38(3):106–128, 2007.

6 M. Chlebik and J. Chlebikova. Approximation hardness of the steiner tree problem on
graphs. Proc. of the Scandinavian Workshop on Algorithm Theory, pages 170–179, 2002.

7 N.G. Duffield, P. Goyal, A.G. Greenberg, P. P. Mishra, K.K. Ramakrishnan, and J. E.
van der Merwe. A flexible model for resource management in virtual private networks.
Proceedings of SIGCOMM, 29:95–108, 1999.

8 J. Fakcharoenphol, S. Rao, and K. Talwar. A tight bound on approximating arbitrary
metrics by tree metrics. Journal of Computer and System Sciences, 69:485–497, 2004.

9 U. Feige. On maximizing welfare when utility functions are subadditive. SIAM Journal on
Computing, 39(1):122–142, 2009.

10 A.E. Feldmann, J. Könemann, K. Pashkovich, and L. Sanità. Fast approximation al-
gorithms for the generalized survivable network design problem. Proceedings of ISAAC
(International symposium on algorithms and computation), pages 33:1– 33:12, 2016.

11 J. Fingerhut, S. Suri, and J. Turner. Designing least-cost nonblocking broadband networks.
Journal of Algorithms, 24(2):287–309, 1997.

12 M.X. Goemans and D.P. Williamson. A general approximation technique for constrained
forest problems. SIAM Journal on Computing, 24(2):296–317, 1995.

13 N. Goyal, N. Olver, and F.B. Shepherd. Dynamic vs. oblivious routing in network design.
Algorithmica, 61(1):161–173, 2011.

14 N. Goyal, N. Olver, and F.B. Shepherd. The VPN conjecture is true. Journal of the ACM,
60(3):17:1–17:17, June 2013.

15 F. Grandoni, T. Rothvoß, and L. Sanità. From uncertainty to non-linearity: Solving vir-
tual private network via single-sink buy-at-bulk. Mathematics of Operations Research,
36(2):185–204, 2011.

16 A. Gupta, J. Kleingerg, R. Kumar, B. Rastogi, and B. Yener. Provisioning a virtual private
network: A network design problem for multicommodity flow. Proceedings of Symposium
on Theory of Computing (STOC), pages 389–398, 2001.

17 A. Gupta, V. Nagarajan, and R. Ravi. An improved approximation algorithm for require-
ment cut. Operations Research Letters, 38(4):322–325, 2010.

18 G. Guruganesh, J. Iglesias, R. Ravi, and L. Sanità. Plane gossip: Approximating rumor
spread in planar graphs. arXiv preprint arXiv:1707.01487, 2017.

19 K. Jain. A factor 2 approximation algorithm for the generalized steiner network problem.
Combinatorica, 21(1):39–60, 2001.

20 B. Lehmann, D. Lehmann, and N. Nisan. Combinatorial auctions with decreasing marginal
utilities. In Proc. of the 3rd ACM Conf. on Electronic Commerce, pages 18–28. ACM, 2001.

21 G. Oriolo, L. Sanità, and R. Zenklusen. Network design with a discrete set of traffic matrices.
Operations Research Letters, 41(4):390–396, 2013.

22 M. Yannakakis. Node-and edge-deletion np-complete problems. In Proceedings of the tenth
annual ACM symposium on Theory of computing, pages 253–264. ACM, 1978.

ESA 2017

	Introduction
	Our results
	Related work

	3/2-approximation for the two color case
	Simplifying Assumptions
	Understanding the structure of OPT
	Shared Edges and Splits
	Split Graph
	Fresh Pairs

	The Algorithm

	Hardness for two colors
	Completeness
	Soundness

	Latency SAND

