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Proof. (sketch): Observe that jS

0

j = O(jSj), which implies that jS

0

j = O(n).

The �rst two conditional statements each take constant time and are executed

for all possible O(n

2

m

2

) intervals. The last conditional statement takes time

O(m), but is executed O(jS

0

jm

2

) = O(nm

2

) times. 2

5 Conclusions

We have formulated and provided e�cient algorithms for a number of problems

on computing similarity between RNA strings. Among possible extensions, we

mention two: careful modeling of energies of secondary structure primitives such

as multiloops, bulges etc., and de�ning models that capture more general struc-

tures such as proteins. It is worthwhile to note that our algorithms for RNA

string matching extend to structures that allow crossing edges as long as every

base forms at most one bond.
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Procedure Binarize(i; j)

(* Assume that (i; j) 2 S has k children f(i

1

; j

1

); : : : ; (i

k

; j

k

)g *)

begin

for 1 � u < k do

Binarize(i

u

; j

u

)

S

0

= S

0

[ f(i

1

; j

u

)g

if (u > 1)

parent((i

1

; j

u�1

)) = (i

1

; j

u

)

parent((i

u

; j

u

)) = (i

1

; j

u

)

parent(i

1

; j

k

) = (i; j)

end

Figure 3: Binarizing an RNA structure tree

Procedure InferStructure()

begin

for intervals (i

1

; j

1

), 1 � i

1

< j

1

� n

and intervals (i

2

; j

2

), 1 � i

2

< j

2

�m

(* Assume that the intervals are examined in lexicographically increasing order of widths*)

Align[i

1

; j

1

; i

2

; j

2

] = max

8

>

>

>

>

>

<

>

>

>

>

>

:

Align[i

1

+ 1; j

1

; i

2

; j

2

] + 
(s[i

1

];

0

�

0

)

Align[i

1

; j

1

; i

2

+ 1; j

2

] + 
(

0

�

0

; t[i

2

])

Align[i

1

+ 1; j

1

; i

2

+ 1; j

2

] + 
(s[i

1

]; t[i

2

])

Align[i

1

; j

1

� 1; i

2

; j

2

] + 
(s[j

1

];

0

�

0

)

Align[i

1

; j

1

; i

2

; j

2

� 1] + 
(

0

�

0

; t[j

2

])

Align[i

1

; j

1

� 1; i

2

; j

2

� 1] + 
(s[j

1

]; t[j

2

])

if (i

1

; j

1

) 2 S and

t[i

2

] and t[j

2

] are complementary base-pairs

Align[i

1

; j

1

; i

2

; j

2

] = max

(

Align[i

1

; j

1

; i

2

; j

2

];

�(i

1

; j

1

; i

2

; j

2

) + 
(s[i

1

]; t[i

2

])

+
(s[j

1

]; t[j

2

]) + Align[i

1

+ 1; j

1

� 1; i

2

+ 1; j

2

� 1]

else if (i

1

; j

1

) 2 S

0

� S and

(k; j

1

)) = rightchild(i

1

; j

1

)

Align[i

1

; j

1

; i

2

; j

2

] = max

�

Align[i

1

; j

1

; i

2

; j

2

];

max

i

2

<l<j

2

fAlign[i

1

; k � 1; i

2

; l � 1] +Align[k; j

1

; l; j

2

]g

end

Figure 4: Inferring structure of an RNA string



If (k

1

; j

1

) and (k

2

; j

2

) are not matched then (k

1

; j

1

) could be aligned against an

arbitrary interval in [i

2

; j

2

]. Then,

RSCS[i

1

; j

1

; i

2

; j

2

] = min

x;y

fRSCS[i

1

; k

1

� 1; i

2

; x� 1] +

RSCS[k

1

; j

1

; x; y] + len(t[y + 1 : : : j

2

])g

where the minimization is over all i

2

� x < y � j

2

such that [x; y] is a spanning

interval of t. Likewise,

RSCS[i

1

; j

1

; i

2

; j

2

] = min

x;y

fRSCS[i

1

; x� 1; i

2

; k

2

� 1] +

RSCS[x; y; k

2

; j

2

] + len(s[y + 1 : : : j

1

])g

where i

1

� x < y � j

1

and [x; y] is a spanning interval of s. Clearly, for each

pair of spanning intervals, the complexity of computing RSCS is O(n

2

+ m

2

),

which implies theorem 3.6.

Theorem 3.6 Let s; t be two RNA strings over

P

with structure S

1

and S

2

re-

spectively. An RSCS of s; t can be computed in O(n

2

m

2

(n

2

+m

2

)) time.

4 Inferring RNA structure via Alignment

Given two sequences s[1 : : :n] and t[1 : : :m], where s has a known structure

S

1

, we infer the structure of t by aligning the two sequences. This approach is

useful if we know that the two sequences are functionally related and have similar

structure. For all 1 � i < j � m+n, base-pairs i�gap[2; i] and j�gap[2; j] form

a bond in t only if they are complementary and (i � gap[1; i]; j � gap[1; j]) 2 S.

We would like to �nd an alignment that maximizes the sequence alignment score

as well as the number of bonds formed in t. The algorithm for computing RNA

alignment can be easily modi�ed to accomplish this.

Consider the algorithm AlignRNA (�g. 2). Note that when we are comparing

intervals [i

1

; j

1

] and [i

2

; j

2

], and there exists (k

1

; j

1

) 2 S, there may be 
(m)

complementary pairs (k

2

; j

2

) that (k

1

; j

1

) can align against, and we need to

pick the pair that gives the best alignment. Therefore, the naive algorithm has

complexity O(n

2

m

3

). In the following, we take advantage of the tree structure

S of s to obtain an O(n

2

m

2

+ nm

3

) algorithm.

Consider the forest de�ned by the elements of S and the function parent.

First, we binarize the forest by introducing additional base-pairs in S to get

S

0

, so that each node in S

0

has at most 2 children. Procedure Binarize (�g. 3)

accomplishes this, for a tree rooted at (i; j) 2 S.

For the algorithm InferStructure(�g. 4), we assume that we already have the

sets S and S

0

for s. Functions 
 and � are the costs for aligning bases and

base-pairs respectively, as de�ned for RNA Alignment.

Theorem 4.1 The algorithm InferStructure() computes the optimal alignment for

inferring structure in O(m

2

n

2

+ nm

3

) time.



De�nition 3.4 Let s be an RNA string with structure S. De�ne the 'length' of s,

denoted by len(s), to be jsj+ jSj.

From this, the de�nition of a shortest common RNA-supersequence (RSCS)

and a longest common RNA-subsequence (RLCS) of two or more RNA sequences

follows.

Theorem 3.5 Let s; t be two RNA strings over

P

with structure S

1

and S

2

re-

spectively. RLCS of s; t can be computed in O(n

2

m

2

) time.

Proof. (sketch): For elements u; v 2

P

[f

0

�

0

g, de�ne


(u; v) =

8

<

:

1 u = v

0 u =

0

�

0

or v =

0

�

0

�1 otherwise

and

�(i; j; k; l) =

8

<

:

1 s[i] = t[k]^ s[j] = t[l]

^(i; j) 2 S

1

^ (k; l) 2 S

2

�1 otherwise

We claim without proof that for these de�nitions of 
 and �, algorithmAlignRNA

computes the length of RLCS of two strings. The claim on running time follows

from theorem 3.2. 2

Note that the alignment obtained in the LCS computation does not always

yield a common RNA supersequence. In fact, it is possible that for the alignment

obtained, there exist indices 1 � i < j < k < l � m+n such that (i�gap[1; i]; k�

gap[1; k]) 2 S

1

and (j � gap[2; j]; l � gap[2; l]) 2 S

2

. Clearly a common RNA

supersequence must have both base-pairs but they cannot be interleaved because

of our assumption of an unknotted structure.

Our algorithm for computing RSCS must therefore enforce this condition.

For an RNA-string s with structure S, de�ne a spanning-interval [i; j] as a

substring s[i : : : j], such that no pair (k; l) 2 S satis�es i � k � j < l or

k < i � l � j. We compute the RSCS for each pair of spanning interval [i

1

; j

1

]

and [i

2

; j

2

] in the two strings. If both j

1

and j

2

do not form bonds with another

base-pair, then

RSCS[i

1

; j

1

; i

2

; j

2

] = min

8

<

:

RSCS[i

1

; j

1

� 1; i

2

; j

2

] + 1

RSCS[i

1

; j

1

; i

2

; j

2

� 1] + 1

RSCS[i

1

; j

1

� 1; i

2

; j

2

� 1] + 
(s[j

1

]; t[j

2

])

where 
 is de�ned as in RLCS. Otherwise, let (k

1

; j

1

) 2 S

1

and (k

2

; j

2

) 2 S

2

.

Then we have di�erent cases depending whether (k

1

; j

1

) and (k

2

; j

2

) match or

not in the RSCS of the two strings. (k

1

; j

1

) and (k

2

; j

2

) are matched only if

s[k

1

] = t[k

2

], and s[j

1

] = t[j

2

]. In that case,

RSCS[i

1

; j

1

; i

2

; j

2

] = RSCS[i

1

; k

1

� 1; i

2

; k

2

� 1] +

RSCS[k

2

+ 1; j

1

� 1; k

2

+ 1; j

2

� 1] + 3



Theorem 3.2 Algorithm AlignRNA (�g. 2) computes an optimum global align-

ment for Two RNA strings in O(n

2

m

2

) time.

Note that edit-distance is the inverse problem of computing an alignment

with a minimum number of insertions, deletions, mismatches and bonding pair

mismatches. It follows that edit-distance can be computed in O(n

2

m

2

) time.

Procedure AlignRNA()

begin

for intervals (i

1

; j

1

), 1 � i

1

< j

1

� m

and (i

2

; j

2

), 1 � i

2

< j

2

� n

(* Assume that the intervals are examined in lexicographically

increasing order of widths *)

Align[i

1

; j

1

; i

2

; j

2

] = max

(

Align[i

1

; j

1

� 1; i

2

; j

2

] + 
(s[j

1

];

0

�

0

)

Align[i

1

; j

1

; i

2

; j

2

� 1] + 
(

0

�

0

; t[j

2

])

Align[i

1

; j

1

� 1; i

2

; j

2

� 1] + 
(s[j

1

]; t[j

2

])

if there exist i

1

� k

1

< j

1

; i

2

� k

2

< j

2

s.t. (k

1

; j

1

) 2 S

1

; (k

2

; j

2

) 2 S

2

Align[i

1

; j

1

; i

2

; j

2

] = max

8

>

<

>

:

Align[i

1

; j

1

; i

2

; j

2

];

Align[i

1

; k

1

� 1; i

2

; k

2

� 1]+

Align[k

1

+ 1; j

1

� 1; k

2

+ 1; j

2

� 1]

+�(k

1

; j

1

; k

2

; j

2

) + 
(s[k

1

]; t[k

2

]) + 
(s[j

1

]; t[j

2

])

end

Figure 2: Computing optimal alignment for RNA strings

3.1 LCS and SCS of RNA strings

For sequences, LCS and SCS can easily be deduced from an alignment in which

no mismatches occur. For i varying from 1 to m + n, the LCS is simply the

sequence formed by concatenating non-space symbols that appear in both A[1; i]

and A[2; i], while the SCS is the concatenation of non-space symbols that appear

in A[1; i] or A[2; i]. It is also easy to see that for strings of length m and n, if

l is the length of the longest common subsequence and s is the length of the

shortest common supersequence, then l = m + n � s. Therefore for sequences,

the two problems are virtually identical.

The notion of a subsequence and supersequence can be extended naturally

to RNA strings as follows:

De�nition 3.3 Let s and t be two RNA strings with structure S

1

and S

2

respec-

tively. s is an RNA-supersequence of t if there exists an alignment A of s and t,

such that for all i, A[1; i] = s[i], and for all i; j (i � gap[2; i]; j � gap[2; j]) 2 S

2

implies (i; j) 2 S

1

. s is an RNA-subsequence of t if t is an RNA-supersequence of

s.



if there is no bonding pair involving i. We generate p

0

from p by replacing each

position i by k � i if (i; k) or (k; i) is a bonding pair, and by

h[(m� i) � � � (2m)] + [(�2m) � � � (�i)] +X

t

i

if there is no bonding pair involving i.

We omit the lengthy case analysis proving that p

0

occurs at i in t

0

with 2k

mismatches if and only if p occurs in t with k edge mismatches. This problem

can be solved in O(nm

2=3

polylogm) time [12]. 2

3 Computing Alignment for RNA strings

In this section, we look at sequence-alignment problems in the context of RNA

strings. Speci�cally, we will consider variants of the edit-distance, longest-

common-subsequence and shortest-common-supersequence problems.

Following Zuker[27, 28, 29], assume a model in which there are no knots in

the secondary structure. A secondary structure is denoted by the set S of all

base-pairs which have formed bonds. For (i; j) 2 S, h is accessible from (i; j)

if i < h < j, and there is no pair (k; l) 2 S, s.t. i < k < h < l < j. De�ne

(i; j) 2 S as the parent of (k; l) 2 S if k; l are accessible from (i; j). Observe that

each (i; j) 2 S has at most one parent, implying a forest on the elements of S.

The de�nitions of sibling, child, leaf follow naturally.

Let s[1 : : :n] and t[1 : : :m] be two RNA strings over the alphabet

P

=

fA;C;G;Ug with structure S

1

and S

2

respectively. For technical reasons, let

s[0] = t[0] =

0

�

0

. An alignment of s and t is de�ned by a 2 �m

0

matrix A, in

which each row contains a string interspersed with spaces, and for all columns

j, either A[1; j] 6=

0

�

0

or A[2; j] 6=

0

�

0

. For i 2 f1; 2g, de�ne

gap[i; j] =

�

j if A[i; j] =

0

�

0

jfl < j s.t. A[i; l] =

0

�

0

gj otherwise

Intuitively, if A[i; j] 6=

0

�

0

, then gap[i; j] is the number of gaps that were inserted

in the ith string till position j in alignment A. Following standard terminology,

position i in A has a match if A[1; i] = A[2; i] 6=

0

�

0

, an insertion if A[1; i] =

0

�

0

,

a deletion if A[2; i] =

0

�

0

and a mismatch otherwise. Additionally, for RNA

strings a bonding pair occurs at positions i; j if (i � gap[1; i]; j � gap[1; j]) 2 S

1

and (i � gap[2; i]; j � gap[2; j]) 2 S

2

. Intuitively, we would like to compute an

alignment which maximizes both symbol and base-pair matches.

Formally, for elements u; v 2

P

[f

0

�

0

g, de�ne 
(u; v) to be the score asso-

ciated with aligning u against v. For 1 � i < j � m and 1 � k < l � n, let

�(i; j; k; l) be the score associated with aligning base-pairs (i; j) with (k; l).

De�nition 3.1 The Global Alignment problem for RNA strings is de�ned as fol-

lows: Given RNA strings s and t, compute an alignment A (and the associated

function gap) that maximizes

P

1�i�m+n


(s[i � gap[1; i]]; t[i� gap[2; i]]) +

P

1�i<j�m+n

�(i � gap[1; i]; j � gap[1; j]; i� gap[2; i]; j � gap[2; j])



The Compare(p[i],p[j]) for i � j operation is implemented the same way. That

completes the description of the algorithm. We omit the proof of the correctness

except to invoke Lemma 2.3 and to remark that the following is preserved in the

preprocessing using the

�

=

operation above: The largest pre�x of p[1] � � �p[i+ 1]

that matches its su�x under

�

=

is the largest pre�x p[1] � � �p[k] of p[1] � � �p[i] that

matches p[i = k+ 1] � � �p[i] and also answers Compare(p[i+ 1],p[k+ 1]) equal. It

is easy to see that the entire algorithm works in O(n+m) time. 2

2.2 K{mismatches with RNA strings

We will sketch algorithms for the SKM and the CKM problem.

Theorem 2.4 The CKM problem can be solved in O(n

p

mpolylogm) time.

Proof. As usual we solve the version of the problem in which for each text

location we return the number of mismatches (in the string and the secondary

structure) between p and the substring of t of lengthm. The case when the string

considered by itself is easy; this is simply the standard problem of counting

mismatches with strings and it takes O(n

p

mpolylogm) time [1]. In order to

consider the secondary structure by itself, recall the reduction in Theorem 2.1.

We generate t

0

and p

0

(with wild cards) as described there. It follows from

an argument based on (nontrivial) case analysis (which we omit here) that our

problem is reduced to solving the problem of counting the mismatches between

p

0

and the substrings of t

0

(the number of mismatches of p

0

at a location i in t

0

is

exactly twice the number of mismatches of p at i in t). This problem in turn can

be solved in O(n

p

mpolylogm) time [1]. Finally, we can combine the number of

mismatches in the two parts above in linear time and detect all locations in t

where the total number of mismatches is at most K. 2

Theorem 2.5 The SKM problem can be solved in O(nm

2=3

polylogm) time.

Proof. Suppose as usual without loss of generality that n � 2m. We will again

determine for each position the number of mismatches between p and t. Doing

this considering t and p as a string can be easily done in O(nm

1=2

polylogm)

time; henceforth we only consider counting mismatches due to the secondary

structure. We give a reduction from this problem to that of counting the mis-

matches between a text t

0

and pattern p

0

where t

0

contains symbols from an

ordered alphabet set � and each position of p

0

matches sets of ranges of the

symbols from �. We call this the sets of ranges problem.

An example of the sets of ranges problem. Let p = ah[a�c]+[f�g]+[z]ic

and t = ababcda. The second position in p from the left matches symbols

a; b; c; f; g; z. Therefore, the number of mismatches between p and t at the

leftmost position is 1 and that at the 5th position from the left is 3. 2

Now we describe the reduction. We generate t

0

from t by replacing each

position i by k � i if (i; k) or (k; i) is a bonding pair, and by the character X

t



2.1 Exact Matching with RNA strings

In this section, we sketch our results for SEM and CEM problems.

Theorem 2.1 The CEM problem can be solved in O(n polylogm) time.

Proof.(Sketch) Our algorithm works as follows. First we perform standard

string matching (using, say [9]) to �nd all locations where p does not occur in t

since the strings mismatch. This takes O(n+m) time.

Now we look for mismatches in the secondary structure. We construct an

instance of string matching with wild cards to solve this problem. Assume that

the RNA strings are strings drawn from fA;C;G;Ug; the strings we generate

for string matching with wild cards will contain symbols from fA;C;G;Ug as

well as integers. We generate a text string t

0

from t by replacing each position

i by k � i if (i; k) or (k; i) is a bonding pair, and by the character t[i] if there

is no bonding pair involving i. Generate p

0

from p by replacing each position i

by k� i if (i; k) or (k; i) is a bonding pair, and by the wild card � if there is no

bonding pair involving i.

We claim that matching p

0

in t

0

gives all mismatches between the secondary

structure of p and that of the substrings of t. The proof, a case analysis, is

omitted here. The algorithm therefore takes time O(npolylogm) using the bound

in [5]. 2

Theorem 2.2 The SEM problem can be solved in O(n+m) time.

Proof. We prove that a simple modi�cation of the Knuth-Morris-Pratt algo-

rithm [9] su�ces to solve the SEM problem. Let the match operation between

two strings as de�ned for the SEM problem be denoted by

�

=

.

Lemma 2.3 The

�

=

relation is transitive, that is, if t[i] � � �t[i + k � 1] matches

p[1] � � �p[k], and some pre�x p[1] � � �p[j], j < k, matches the su�x of t[i] � � � t[i +

k � 1], then the string p[1] � � �p[j], matches the su�x of p[1] � � �p[k].

Proof. Follows from the de�nition of the

�

=

relation. 2

Now we modify the comparisons in the KMP algorithm to perform SEM. Note

that in standard KMP, comparing two locations is merely testing for equality.

The following subroutines for Compare(p[i],t[j]) for j � i, and Compare(p[i],p[j])

for i � j implement our

�

=

relation. Compare(p[i],t[j])

if p[i] 6= t[j] return unequal

if p[i] = t[j], (i� k; i) is a bonding pair in t, 0 � k � i but (j � k; j) is not a

bonding pair in p then return unequal

if p[i] = t[j], (j � k; j) is a bonding pair in p, 0 � k � i but (i� k; i) is not a

bonding pair in t then return unequal

else return equal

end



when we deal with RNA strings. The �rst problem we consider is the basic

problem of exact matching.

Symmetric Exact Matching.(SEM) Given a text RNA string t and a pattern

RNA string p of length n and m respectively, determine all those positions where

p occurs in t, that is, all locations i in t where,

1. Strings match, that is, t[i] � � � t[i+m� 1] = p[1] � � �p[m], and

2. Secondary structures are identical, that is, for any bonding pair (i + j �

1; i+ k � 1), 0 � j < k � m � 1, (j; k) is a bonding pair as well and vice

versa. Note that the existence of some bonding pair (i + j; i + k), where

0 � j < k and k > m � 1 does not a�ect p occurring in t at i. Similarly

for bonding pairs (i+ j; i+ k), where 0 � k � m � 1 and j < 0.

Containment Exact Matching.(CEM) It is de�ned just as SEM except that

the secondary structure of p and that of the substring of t of length m beginning

at i need not be identical. It is only required that the secondary structure of p

contained in the latter. Formally, p occurs in t at i if strings match as before

and

2. For any bonding pair (j; k), 1 � j < k � m, (i + j � 1; i + k � 1) is a

bonding pair as well, but not necessarily vice versa.

The other basic problem we consider is the k-mismatches problem for the

RNA strings de�ned as below.

Symmetric K-mismatches problem.(SKM) Given a text RNA string t and

a pattern RNA string p of length n and m respectively, and a parameter k,

determine all those positions where p occurs in t with at most K mismatches.

We say that p occurs in t with at most K mismatches at i in t if there exist

integers K

1

and K

2

such that K

1

+K

2

� K and in addition,

1. There areK

1

string mismatches. That is, t[i] � � � t[i+m�1] and p[1] � � �p[m]

di�er in K

1

positions.

2. There are K

2

secondary structures mismatches. That is, there are K

2

pairs

of text and pattern positions i + j � 1; i + k � 1, 0 � j < k � m � 1 and

j; k where precisely one of (i+ j � 1; i+ k � 1) or (j; k) is a bonding pair.

Note again that the existence of some bonding pair (i + j; i + k), where

0 � j < k and k > m�1 does not a�ect the number of mismatches between

the secondary structure of p and that of t[i] � � � t[i +m � 1]. Similarly for

bonding pairs (i + j; i+ k), where 0 � k � m� 1 and j < 0.

Containment K-mismatches problem.(CKM) The CKM problem is de�ned

the same way as SKM except for the mismatches in the secondary structure.

Here we only consider the number of bonding pairs in p which mismatch, that

is, those that do not fall on bonding pairs in t; the bonding pairs in t that do

not fall on a bonding pair in p are not counted as mismatches.



of our alignment algorithm that takes in account both sequence and structure

compares favorably with this estimate.

Tree based comparison methods do not appear to generalize when comparing

both the secondary structure as well as the underlying sequence of two RNA

strings. The di�culty seems to be in the local de�nition of the operations of tree

edit and tree alignment: A single edit operation, for instance, can either create

a new node or delete an existing node and reconnect its children to its parent.

Suppose we include characters from the sequence in a tree representation of the

secondary structure to represent an RNA string. The deletion of a character

that is an allowable tree edit operation does not take into account that there

may be an edge in the secondary structure with this character as one endpoint.

Therefore, such edit operations have no semantic meaning in the process of

converting one RNA string to another, and illustrate the weakness of purely

tree-based methods of edit. Our algorithms use a combination of sequence edit

computation and a tree-based computation to align the edges in the secondary

structure to overcome this di�culty.

Prediction methods. Prediction of RNA secondary structure of a single RNA

molecule from its sequence has been widely studied in the past [3, 4, 10, 14, 23,

24, 28, 29]. Most of this work use adaptations of dynamic programming to solve

variants of the problem that take into account di�erent energy assignments for

the di�erent secondary structure primitives such as stacked pairs, hairpins, mul-

tiloops, interior loops and bulges. Sanko� [17] considers prediction of secondary

structure common to two RNA sequences also taking into account alignment of

the sequences. The key di�erence from our approach is that he does not assume

that the secondary structure of either of the sequences is given, but instead

computes an alignment and a most likely folding that is common to both the

sequences. Sanko�'s algorithm more carefully models the energy functions for

di�erent kinds of loops in the structure (such as stacked pairs, multiloops etc.);

the running time of his algorithm for two sequences is two orders of magnitude

higher. In contrast to the above work, our version of the prediction problem

assumes that more information is available in the form of the sequence and the

secondary structure of an RNA string that is closely related to the one whose

structure is to be predicted.

Another related line of work is [6, 15, 16] that uses stochastic context free

grammars to model a family of related RNA strings. Other related work appears

in [8, 11, 18, 19].

In the next section, we describe our results on RNA string matching; We

then turn to alignment of RNA strings and its variants in Section 3. In Section

4, we describe our algorithm for structure prediction given a related RNA string.

We conclude with some open issues.

2 RNA string matching

In this section, we explore string matching problems in the context of RNA

strings. We formally de�ne the variants of string matching problems that arise



pattern RNA string and a typically longer text RNA string are given, and the

task is to compute the positions in the text where the pattern occurs with at

most k(� 0) mismatches. We obtain our bounds by reducing these RNA string

matching problems to well-known string matching problems allowing wild cards

and ranges.

Alignment. The global similarity between two RNA strings is de�ned as a

weighted sum of sequence similarity and structural similarity. Our algorithm for

computing global similarity can be used to compute an edit distance between

two RNA strings that is a weighted sum of sequence edit cost and edge-mismatch

costs.

The next two entries in Table 1 are analogous to the LCS and SCS problem

for two RNA strings. A longest common RNA subsequence (RLCS) of two RNA

strings is one whose sequence is a subsequence of the two given strings and the

sum of the common characters in the sequences as well as the number of common

edges in the two strings that are matched to each other is maximum. This de�-

nition, as well as our algorithm, can be extended to allow an arbitrary weighted

sum of the number of common characters and the number of matched edges in

the two strings. The shortest common RNA supersequence (RSCS) is an RNA

string of which both the given strings are RNA subsequences such that the to-

tal number of characters plus edges in the supersequence is minimum. Again,

the extension to weighting edges and characters di�erently is straightforward.

Somewhat surprisingly, RLCS and RSCS seem to be computationally very dif-

ferent problems. We can reduce RLCS to computing an optimal alignment by

de�ning the scoring function appropriately. On the other hand our algorithm for

computing the RSCS has running time that is two orders of magnitude more.

Structure. The problem of inferring structure through alignment, takes as

input an RNA sequence and an RNA string and computes an alignment of the

sequence with the string to maximize a weighted sum of the sequence similarity

and the number of edges in the RNA string whose endpoints are aligned with

complementary base-pairs in the RNA sequence. This alignment can be used

as a model of commonality between the RNA string and the unknown RNA

sequence. As more and more RNA secondary sequences become available, our

formulation of the prediction problem appears increasingly relevant.

Related work

Comparison methods. First we review work on comparison methods devel-

oped to estimate distances between RNA secondary structures. Since secondary

structures can be represented as trees, there are several papers [7, 22, 25, 26]

addressing comparisons of trees. Tree edits are discussed and e�cient algorithms

are derived in [22, 25, 26] while a new notion of tree alignment is proposed and

algorithms developed in [7]. Even though these comparison methods compute

distances only between secondary structures, the worst-case running time of es-

timating this distance (tree edits or alignments) is quadric; the running time



Problem Running time

String Symmetric Exact Matching (SEM) O(n +m)

Matching Containment Exact Matching (CEM) O(n polylog m)

Symmetric K-mismatches problem (SKM) O(nm

2=3

polylog m)

Containment K-mismatches problem (CKM) O(n

p

m polylog m)

Alignment Global similarity or RNA edit distance O(n

2

m

2

)

Longest Common RNA Substring (RLCS) O(n

2

m

2

)

Shortest Common RNA Superstring (RSCS) O(n

2

m

2

(n

2

+m

2

))

Structure Inferring structure through alignment O(n

2

m

2

+ nm

3

)

Table 1: Summary of results.

sequence when a closely related RNA string is given.

Standard notions of similarity between two sequences have been formulated

as problems of exact and approximate string matching, �nding a longest common

subsequence (LCS) or a shortest common supersequence (SCS) of the sequences,

and computing optimal alignments under general scoring functions. We formu-

late the corresponding versions of these problems between two RNA strings and

present e�cient algorithms for computing them. In the context of RNA strings,

we would like to match symbols as well as edges in the two strings. An edge in one

of the strings is said to be matched if the two symbols in the other string that are

aligned to its endpoints are connected by an edge in the second string. Two vari-

ants of exact and approximate matching problems arise, depending on whether

edges in both the pattern and text strings or only the edges in the pattern are

required to be matched: we call these variants the symmetric and containment

variants respectively. We observe that the action-at-a-distance e�ect of aligning

edges signi�cantly increases the complexity of RNA string similarity algorithms.

Furthermore, problems like LCS and SCS that are computationally identical for

sequences turn out to be quite di�erent in the context of RNA strings.

Finally, we solve the problem of inferring the secondary structure of an RNA

sequence when a closely related RNA string is given by aligning the sequence

with the given RNA string. The alignment not only maximizes the common

characters as in traditional sequence alignment but also favors the alignment of

the endpoints of an edge in the related string with complementary base pairs in

the input string.

Results

Table 1 describes the list of problems addressed in this paper and the time

complexity of the algorithms we propose for solving them. In the table, n and

m represent the sizes of the two input strings.

String matching. The �rst four entries of the table are analogous to exact

and approximate matching problems in standard strings. In such problems, a



1 Introduction

A variety of string matching problems are motivated by the analysis of DNA

or protein sequences. An example is the problem of computing the similarity

between two sequences such as the edit distance to transform one into another

using insertions, deletions and substitutions of characters [13, 20, 21]. When

comparing RNA sequences, usually much more is known about the secondary

structure of base pairing between nucleotides in the sequence. A bonded pair of

bases is usually represented as an edge between the two complementary bases

involved in the bond; traditional models of RNA secondary structure[27] assume

that every base participates in at most one such pair, and that the edges repre-

senting the paired bases are noncrossing or noninterleaving along the length of

the string. The secondary structure can be represented by a nesting tree whose

nodes correspond to edges of the pairing and parenthood in the tree represents

the immediate enclosure relation between the two edges (see �g. 1).

a
b

c

d

d = parent(a)

Figure 1: Secondary structure of an RNA sequence

Consequently, much of the work on comparing the secondary structures

of two RNA strings have been modeled as problems of comparing two trees

[7, 22, 25, 26]. In this paper, we study several problems in computing the sim-

ilarity between two RNA strings that take into consideration both the primary

sequence and secondary base-pairing information provided with the strings. We

also investigate the problem of inferring the secondary structure of an RNA
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Abstract

Ribonucleic acid (RNA) strings are strings over the four-letter alphabet

fA;C;G;Ug with a secondary structure of base-pairing between A�U and

C � G pairs in the string

1

. Edges are drawn between two bases that are

paired in the secondary structure and these edges have traditionally been

assumed to be noncrossing. The noncrossing base-pairing naturally leads

to a tree-like representation of the secondary structure of RNA strings.

In this paper, we address several notions of similarity between two RNA

strings that take into account both the primary sequence and secondary

base-pairing structure of the strings. We present e�cient algorithms for

exact matching and approximate matching between two RNA strings. We

de�ne a notion of alignment between two RNA strings and devise algo-

rithms based on dynamic programming. We then present a method for

optimally aligning a given RNA string with unknown secondary structure

to one with known sequence and structure, thus attacking the structure

prediction problem in the case when the structure of a closely related se-

quence is known. The techniques employed to prove our results include

reductions to well-known string matching problems allowing wild cards

and ranges, and speeding up dynamic programming by using the tree

structures implicit in the secondary structure of RNA strings.
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We reserve the term RNA string when the sequence as well as the structure is given and
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