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Abstract

We consider the following problem motivated by an application in computational
molecular biology. We are given a set of weighted axis-parallel rectangles such that
for any pair of rectangles and either axis, the projection of one rectangle does not
enclose that of the other. Define a pair to be independent if their projections in both
axes are disjoint. The problem is to find a maximum-weight independent subset of
rectangles.

We show that the problem is NP-hard even in the uniform case when all the
weights are the same. We analyze the performance of a natural local-improvement
heuristic for the general problem and prove a performance ratio of 3.25. We extend
the heuristic to the problem of finding a maximum-weight independent set in (d+1)-
claw free graphs, and show a tight performance ratio of d—1+ %. A performance ratio
of g was known for the heuristic when applied to the uniform case. Our contributions
are proving the hardness of the problem and providing a tight analysis of the local-
improvement algorithm for the general weighted case.
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1 Introduction

Let S be a set of axis-parallel rectangles, such that for any pair a,b € S of
rectangles, the interval defined by projecting a on an axis does not include the
interval defined by projecting b on the same axis. If the two intervals intersect,
then we say that @ and b are conflicting. A set S of rectangles is independent
if no pair of rectangles in S is conflicting. We consider the following decision
problem.

Independent subset of rectangles (IR)

Input: A set S of axis-parallel rectangles and an integer k.

Problem: Does there exist a subset S C S, such that S’ is independent and
1S’ > k.

The extension of the problem when the rectangles are weighted is immediate.
This problem is motivated by an application in molecular biology in which
rectangles correspond to regions of high local similarity, and the problem is to
find a large number of such regions that are independent. We show that IR
is NP-complete, and therefore, one must look for heuristics with a provably
good performance.

In order to exploit the structure in the problem, we construct a conflict graph
from the given set of rectangles. Each node in the graph corresponds to a
rectangle in the set and every two conflicting rectangles have an edge between
them in the conflict graph. The IR problem can be phrased as the maximum
independent set problem for the conflict graph. While the maximum indepen-
dent set problem in arbitrary graphs is well known to be notoriously hard to
approximate [1], we use the structure of the graphs arising from our problem
to provide good approximation algorithms. Define a d-claw as the graph K 4,
1.e., a star with d leaves. A graph is d-clawfree if it has no induced d-claw. A
key property that we use in devising our approximation algorithms and ana-
lyzing them is that a conflict graph of non-overlapping axis-parallel rectangles
1s 5-clawfree. A simple consequence of 5-clawfree property of the conflict graph
1s that a greedy algorithm that picks a node of maximum weight to add to the
solution and continues by deleting the picked node and its neighborhood has
a performance ratio of 4.

We consider a simple local improvement heuristic, t-opt, for the problem pa-
rameterized by the size, ¢, of the improvement. We shall describe it informally
here for the unweighted problem. Begin with an arbitrary maximal indepen-
dent set I in the graph. If there is an improvement that involves swapping at
most ¢ nodes into I, then we perform such an improvement. In other words, if
there is an independent set A of at most £ nodes in V' — I whose neighborhood
in I has size less than that of A, then this set may be added and its neigh-



borhood deleted from I. This results in a net increase in the size of I. The
local improvement algorithm performs such ¢-improvements as long as they
are available. It is not hard to argue that this algorithm runs in polynomial
time for any fixed ¢. Halldérsson [7] has shown that the #-opt heuristic when
applied to a d + 1-clawfree graph achieves a performance ratio of g + € for any
fixed € > 0 and in fact € decreases exponentially in ¢. In Section 4, we provide
a simple construction that shows that the performance ratio of g is the best
possible for the heuristic.

The local improvement heuristic can be extended in a natural way to weighted
graphs. An independent set A of size at most ¢ provides a t-improvement if
the total weight of its neighborhood in I is less than the weight of A. When
all the weights are polynomially bounded, the local improvement algorithm
runs in polynomial time. We show the following result improving the trivial
performance ratio of d for the local improvement heuristic.

Let I be a locally optimal independent set for d-opt, that is, let I be such that
no independent set of size d or less provides a d + l-improvement. Let I* be
the optimal independent set in a node-weighted d 4 1-clawfree graph. For a
subset S of nodes, let w(S) denote the sum of the weights of the nodes in S.
Then, we show that w(I*) < (d—1+ 5)10(]).

Note that in the biological example that motivated this research, d = 4, and
the above theorem shows a performance bound of 3.25 implying an 18% im-
provement in the worst-case quality of the output solution. Though the im-
provement is modest, we also demonstrate that the bound is almost best
possible for the local improvement heuristic that we analyze.

The class of d-clawfree graphs includes two other important classes of graphs:
graphs with degree at most d and unit disk graphs. The latter is the family of
intersection graphs of unit disks in the plane and can be shown to be 6-clawfree
by a simple geometric argument. Thus our results provide a tight analysis of
the local heuristic for the weighted independent set problem in these classes
of graphs. Note that there has also been work on obtaining better ratios for
the unweighted independent set problem in bounded degree graphs [2].

In Section 2, we describe in more detail how the IR problem arises in the
application to molecular biology. In Section 3, we present the NP-hardness
proof of Theorem 1. In Section 4, we sketch the basic local improvement
algorithm for the unweighted (uniform) case. We then extend the heuristic
to the weighted case and present an analysis of the same. We generalize the
analysis to arbitrary clawfree graphs and show its tightness. Finally, in Section
5, we conclude with open issues.



2 Motivation

A fundamental problem that arises in the analysis of genetic sequences is
to assess the similarity between two such sequences. Traditional notions of
similarity have suggested aligning the sequences to reflect globally [13] or
locally [14] similar regions in the string. A global alignment arranges the two
strings with spaces inserted within them, so that the characters are organized
in columns and most columns contain identical or similar characters in both
strings. Such alignments tend to reflect similar regions between the two strings
that have remained conserved over the evolutionary process of point mutations
that has led to the divergence between the two sequences.

Recent studies on genome rearrangements [4,5,9,11,12,10] have addressed the
notion of distances between sequences under more large-scale mutational oper-
ations. An example is a “reversal” that works on a large contiguous block of a
genomic sequence and reverses the order of certain “markers” in the fragment.
Another macro-mutational operation is a transposition that transfers a block
of sequence to another position. These rearrangements have been postulated
and confirmed to occur in the evolutionary history between several existing
species [8]. The body of work mentioned above addresses the computation of a
minimal set of such rearrangement operations to transform an initial sequence
A to a final sequence B. The input to such a procedure is a set of disjoint
fragments that occur in both the strings, their relative order and orientation
in the two strings. When these fragments code for some genetic information,
they are termed genes and what is being supplied in this case is the gene order
and orientation in the two strings for a set of common genes. Thus what is
required 1s a set of fragments which remain highly conserved in both strings
(the orientation may be reversed in the two strings), such that the similarity
between the two copies of a fragment i1s appreciable and a large number of such
fragments are available for investigation of genome rearrangements. Moreover,
no two fragments selected for comparison must overlap in either string, since
rearrangements work on segments of the string and therefore cannot separate
overlapping fragments.

The problem of selecting fragments of high local similarity between two strings
can be tackled by applying one of several known methods for local alignment
[14] in the literature. The output of such a method is a set of pairs of substrings
from A and B that have high local similarity. However, the projection of these
pairs in the two strings may not be disjoint as required. It is useful to picture
these regions of local similarity as axis-parallel rectangles in the plane where
the axes are the two strings A and B being compared. A pair of substrings
of high local similarity identifies the rectangle formed by the intersection of
the horizontal and vertical slabs corresponding to these substrings in A and
B. The rectangle may be weighted with the strength of the local similarity.



The resulting problem is to find a maximum-weight set of rectangles whose
projections are disjoint in both the axes. This leads to the IR problem intro-
duced earlier. The non-enclosing condition on the projections of the rectangles
translates to disallowing similarity pairs in which a substring in one pair is
completely contained in that of the other pair. This is a reasonable assumption
for data from sequences because the input data can be pruned to eliminate
similarities that disobey this requirement.

3 NP-completeness of IR: Proof of Theorem 1

Theorem 1 IR is NP-complete.

Proof. IR is trivially in the class N P. We shall show NP-hardness by trans-
forming from 3SAT.
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(a) cycle gadlget (b) clause gadget
Fig. 1. A cycle gadget and a clause gadget for m = 2.

Let U be an instance of 3SAT with m clauses ¢;,..., ¢, and n variables.
For each variable x, define a cycle gadget as follows (see Fig. 1(a)). The cycle
gadget has exactly 2m rectangles arranged in a cycle so that only conflicting
pairs are the ones that appear consecutively in the cycle. Label the rectangles
in the cycle gadget for x as z;,z;, for 1 < 73 < m. The following lemma is
immediate:

Proposition 1 A cycle gadget with 2m rectangles has a mazimum indepen-
dent subset of size m. Further, there are only two such subsets of maximum
size, either the set of all z;s or the set of all T}s.

For ecach clause ¢;, 1 < 3 < m, we define a clause gadget as set of three
rectangles (see Fig. 1(b)), one for each literal in the clause, that are pairwise
conflicting. If literal # appears in clause ¢;, label the corresponding rectangle
in the clause gadget as ¢, ;. Finally, place all the rectangles on the plane as



follows (see Fig. 2): A pair (a,b) of rectangles conflicts only if one of the
following conditions is true.

— a, b belong to the same clause.

— a,b are adjacent rectangles in a cycle gadget, i.e. ¢ = z; and b = Z; or
b=1=;_.

— a=c,; and b= Z;,.

Xz Y1
A = 4
e —
A o
g
AN ?
I []
Z,
(X+y+2z) (X+y+2)
Variables Clauses

Fig. 2. An instance of 3SAT withn =3,m=2and U = (Z4+y+ 2)(Z+ § + 2),
transformed to an instance of IR

Figure 2 gives a layout for the casen =3,m =2and U = (Z+y+2)(Z+7+2).

Therefore, we have transformed an instance U of 3SAT to an instance S of

IR, such that |S| = 2mn + 3m.

Proposition 2 U € 3SAT if and only if there exists an independent subset
S" C S such that |S'| > mn + m.

Proof. Let U € 3SAT be satisfiable. For any variable  that is TRUE in a
valid truth assignment, pick all the rectangles z; for 1 < 7 < m, otherwise
pick Z; and for all 1 < 5 < m. Cleatly, m rectangles are picked from each
of the n cycle gadgets, and they are independent. For each clause ¢;, there is
at least one literal = € ¢; that is TRUE. By construction, rectangle ¢, ; only
conflicts with other rectangles in the same clause gadget and with Z;, none
of which has been selected. Therefore, one rectangle from each of the clause
gadgets can be picked for a total of mn + m rectangles.



Correspondingly, let S C S be non-conflicting and |S’'| > mn 4+ m. Now,
each cycle gadget can contribute at most m rectangles and each clause can
contribute at most 1 rectangle to an independent set. Therefore, in order to
get mn + m rectangles each cycle gadget must supply m and each clause must
supply 1 rectangle. We consider the following truth assignment. For each clause
gadget, if the rectangle chosen is ¢, ;, then set z to be TRUE. Clearly, each
clause has at least one TRUE literal, and we only need to ensure that both
z and & are not set to TRUE. Suppose that was the case, implying that for
some 1 < 3,3 < m, ¢, ; and ¢z were selected. Then, in the cycle gadget of
z, neither Z; nor x;; can be selected. By proposition 1, this cycle gadget does
not supply m independent rectangles. O

Theorem 1 follows. O

4 Approximating independent sets in clawfree graphs

We begin with some formal definitions.

Definition 1

(i) Consider a set S of axis-parallel rectangles. Each rectangle may be iden-
tified by a pair of intervals (I, I,) defining its projections on the two
azes. Rectangle b overlaps rectangle a if one of its intervals contains an
interval of a. S is non-overlapping if no rectangle overlaps another. Two
rectangles b and a conflict if at least one of their intervals intersect.

(i) Define the conflict graph Gs(V, E) of a set S of azis-parallel rectangles
as follows: each rectangle corresponds to a verter v € V, and (v,w) € E
iff @ and b are conflicting. In the following, we will drop the subscript S
when the context is clear. For X CV, let G(X) be the graph induced by
the vertices in X.

(iit) Let w : V. — Rt be the weight function on rectangles. For X C V,
w(X) = X, ex ().

(i) For a graph G = (V, E), define the neighborhood of a vertex in v € V
as N(v) = {z € V|(v,z) € E}. For X CV, N(X) = UzexN(z). Also,
define N'(z) = N(N*"Y(z)) fori >0 and N°(z) = {z}. In the following
discussion, the graph that we refer to will either be clear from the context
or will be explicitly defined.

As we observed earlier, the problem of finding an independent set of rectangles
1s that of finding a maximum weighted independent set in the corresponding
conflict graph. In order to provide good approximate solutions, we make the
following observation.



Lemma 1 A conflict graph of non-overlapping azis-parallel rectangles is 5-
clawfree.

Proof. (by contradiction): Assume the statement is not true. There is an
independent set of 5 rectangles, all conflicting with one rectangle s. Let s be
defined by the interval pair ((z1,2), (y1,y2)). Each rectangle that conflicts
with but is not overlapped by s must intersect at least one of the four lines
T =11, & =2y, y =1y and y = y5. Assuming 5 such rectangles, one of these
points must be contained in two of these rectangles. These two rectangles
conflict, a contradiction. O

Consider the problem of finding a maximum weight independent set in a d +
1-clawfree graph. One simple heuristic is the greedy one: Add a vertex of
maximum weight to the current independent set I, discard all its neighbors
and continue. This greedy heuristic performs quite well.

Lemma 2 Let I* be a mazimum weighted independent set in a d+ 1-clawfree

graph G, and I be an independent set selected by the greedy heuristic. Then
w(I*) < d-w(l).

Proof. The proof is straightforward and hence omitted.

a

In the following discussion, we shall attempt to find better algorithms for
finding maximum weighted independent sets in d + 1 clawfree graphs. Even
constant factor improvements are desirable, especially when d is small (Note
that it is 4 in our application). Specifically, we will focus on a natural heuris-
tic, which is based on iteratively improving the solution through some local
changes. This heuristic for computing maximum weight independent sets in
d + 1-clawfree graphs is described in figure 3.

Note that this algorithm runs in polynomial time if the weights are uniform
or if they are polynomial functions of n.

Let us assume for the moment that all rectangles have the same weight. By
Theorem 1, the problem remains N P-hard. Halldérsson [7] has shown that
t-opt, when applied to a d + 1-clawfree graph, achieves a performance ratio
of g + € for any fixed € > 0. It is interesting to note that his analysis uses
only a restricted form of improvements that he calls ¢-ear-improvements. We
present below a simple construction that shows that the performance ratio of

g is the best possible for the local improvement heuristic. To this end, we use



Procedure t-opt(Z)
begin
I — maximal-independent-set (Z)
while 3 independent set ACV — 1, |A| <t
and w(A4) > w(N(A)NI)
I 1A
endwhile
return I

end;

Fig. 3. A local improvement algorithm for node weighted graphs

the following result of Erdos and Sachs, which can be found in [3]. Recall that
the girth of a graph G is the length of the smallest cycle in G.

Lemma 3 Given positive integers d and g, for all n sufficiently large, there
exist d-reqular graphs on 2n vertices with girth at least g.

Theorem 2 For all positive integers d and t, there exist d+1-claw free graphs
with an independent set I, where I is locally optimal with respect to t-opt but
7] > 411

Proof. By Lemma 3, we have a d-regular graph G = (V, E) on n vertices
with girth ¢ (for all sufficiently large even n). Construct a new graph G’ on
vertex set V U E, and connect vertices z,y in G' if x € V, y € F and y is
incident on z in G. Intuitively, this corresponds to subdividing every edge in
G by addition of a new vertex of degree 2. Clearly, G’ is bipartite and d + 1-
clawfree. Also, the girth of G’ is at least 2¢. Let I = V and I* = E. Since
the minimum degree of a vertex in G’ is 2, the girth condition implies that
every subset of E of size at most ¢ has a neighborhood of size at least ¢t + 1 in
V. Hence, the independent set [ is optimal with respect to t-opt. Noting that
[I*] = |E| = 2|V| = £|I| completes the proof. O

Weighted Independent Sets

We now turn to analyze the performance of t-opt for weighted d + 1-clawfree
graphs and show that its performance is provably inferior to the performance
for the unweighted case, even when the weights are a polynomial function of
n. We also provide matching upper bounds. The following lemma provides a
simple upper bound of d and motivates the detailed analysis that follows.



Lemma 4 Let I be a locally optimal solution for 1-opt in a d + 1-clawfree
graph. Then if I* is the optimal solution,

w(I™) <d-w(l)

Proof. Assume without loss of generality that I and I* are disjoint, as a
non trivial intersection of I and I* improves the performance. Consider the
bipartite graph G(I U I*). By local optimality, we know that for all v € V — 1T
(in particular, for all v € I*), w(v) < w(N(v)), where N(v) refers to the
neighborhood of v in G(I U I*). Therefore,

w(]*) = E’UEI* w(v) S E’UEI* EuEN(v) w(u)
= Yuel Lven(w) w(u) < d-w(l)

Next, we show that the performance of t-opt improves somewhat as we increase
t. While the improvement is somewhat modest, 1t might still be useful for small
values of d.

Let I be a locally optimal independent set for d-opt implying that for all
XCV-1|X|<d wX) <wNX)NI). Let d(v) be the degree of v in
G(I U I*). Note that we can without loss of generality, assume that I and I*
are disjoint sets. Otherwise, we work with the graph G((I U I*) — J), where
J = InNI* Define I; = {v € I*|d(v) = i}. Clearly, I* is partitioned into
exactly d sets. For v € I, let d;(v) be the degree of v in G(I U I7).

Lemma 5 Let I be a locally optimal independent set for d-opt. For1 < ¢ < d,
let fi(w) =1 if d;(u) > 0 and O otherwise. Then,

(i) i-w(l}) < Yuerldi(u) - (1 — 1) + fi(w)] - w(u), foralli<d
(i) iyt w(I7) < Tuerl(Shy diw) - (6 = 1)) + 1] - w(u)

Proof. Consider the graph G(I'UI}), and for each vertex v € TU I}, let N(u)
be its neighborhood in G(I U I7). Observe that G(I U I7) has exactly ¢|I]|

edges. Therefore,

- w(lf) = Yoerr Luenw) w(v) = Luerw(N(u))

Further, any element « € I has at most d neighbors, therefore by local optimal-
ity for d-opt, w(N(u)) < w(N?(u)) for all w € I. Using this and rearranging
terms, we get

10



i w(I7) <> w(N?(u))

uel

< X (diw)(i—1) + w(u)

uel,d;(u)>0

The last equality follows from the fact that for an w € I such that d;(u) > 0,
the number of times this « is counted in the sum is at most d;(w)(i — 1) 4 1.
This proves the first proposition. The second follows by a similar argument on

the graph G(I U I*). O

Next, we prove a technical lemma that we will use to bound the value of w(I*).

Lemma 6 For arbitrary integer d > 0, consider the following integer program

IP(d) — maXx E;’i:]_ (i—l).d.di._l_(d_i).fi

2

s.t.
¢di<d
Vi, fi < d
Vi,0< f; <1
Vi, di € {0,1,2,...,d}

Then, IP(d) = d(d —1).

Proof. We will prove that the integer program is maximized when d; = 1, f; =
1 for all 7. Clearly, this solution is feasible. Also, observe that any optimal
solution will have the property that 3¢, d; = d and f; = 1 for all i such that
d; > 0. If this was not true, there would exist some d; or f; that could be
incremented to increase the value of the objective function. Therefore, it is
sufficient to prove that there exists an optimal solution in which d; < 1 for all
i.

Consider an optimal solution in which this is not true, so that d; > 1 for some
¢. Then, as Y ;d; < d, there exists j such that d; = 0, f; = 0. Then, if we
decrement d; by 1, and set d; = 1, f; = 1, it 1s easy to see that the solution
remains feasible.

Now, the objective function is the sum of d terms, where the contribution of
the it* term is

(Yt

11



Furthermore, the new solution affects only the i and j** terms of this func-
tion. The net change is

e ()

which is non-negative, so the new solution remains optimal. Continuing in this
fashion, we eventually get an optimal solution in which all d; <1. O

We can now state and prove Theorem 3.

Theorem 3 Let I be a locally optimal independent set for d-opt, and I be
the optimal independent set. Then w(I*) < (d — 1+ H)w(T).

Proof. As the sets I partition I, we have the identity

d-w(I*) = Ez cw(IF) + 2(d — ) - w(I})

Applying the bounds obtained from lemma 5, we get

d w(I*)Sz:I Z: (di(U)-(Z—1)—|—(d—i)di(u>(i_z,1)+fi(u>) —I_l] w(u)
:ze; l; ((i— 1) .d.di(u)i—l— (d—z’)-fi(u)) N 1] ()
<(IP(d)+1) - w(I)

where I P(d) is the optimum value of the integer program described in lemma 6.

Therefore, w(I*) < (d —1+ %)w(]). O

Next, we show that our analysis 1s tight, by demonstrating the existence of
claw-free graphs for which the heuristic cannot achieve a performance better
than d — 1. First, we present a technical lemma describing the existence of
bipartite graphs with an expansion property. Its proof is implicit in proofs for
existence of expander graphs (see for example, Chung[6]).

Lemma 7 For all positive integers d, t, and for all € > 0 there exists an integer
n, and bipartite graphs with bipartition (I,O) with the following properties.

12



- [I]=[0]=mn.
— For all vertices v € I U O, deg(v) < d.
—Forall X CO, | X|<t, INX)|>(d-1—¢)-|X|

Note that these graphs are different from expander graphs in that the expan-
sion is large (close to the maximum degree) but is required only for subsets
of some constant size ¢. As a consequence of the existence of such graphs, we
can derive Theorem 4. We state and prove it below.

Theorem 4 For all positive integers d,t and for all € > 0, there exist d + 1-
claw free graphs with an independent set I, such that I is locally optimal with
respect to t-opt but w(I*) > (d —1—€) - w(l).

Proof. Let (I,0) be a bipartite graph with the expansion property described
in lemma 7. Further, for all elements v € I, let w(v) = 1, and for all elements
w € O, let w(u) = d —1 — e. By the third condition in Lemma 7, in the
graph (1,0), I is alocally optimal solution with respect to t-opt, and w(0) =
(d—1—¢)-w(l). O

5 Concluding Remarks

We conclude by describing many problems that arise naturally from this work.
The problem we study is geometric, and we suspect that it might have ap-
plications to problems in computational geometry. However, the only related
work that we found was a study of intersecting rectangles (for hidden surface
removal) which corresponds to the case when both projections intersect. On
the other side, can geometric techniques be applied to improve the quality of
our solution?

Indeed, the only property we have exploited in finding approximate solutions
1s claw-freeness in the associated conflict graph. An interesting area of research
1s to investigate more properties of conflict graphs, and use these properties
to find better algorithms or hardness of approximation results.

We have discussed the problem only in the context of pairwise alignments. It
1s often the case that k& > 2 sequences are aligned, and biologists are interested
in extracting meaningful blocks of locally aligned sequences, which correspond
to hypercubes of dimension k. This natural extension to multiple alignment
complicates the problem considerably, as the conflict graph of a set of k-
dimensional cubes is only 2%+ 1-clawfree. Different ideas are needed to provide
meaningful approximations. It is also possible that general graphs are conflict
graphs of some higher dimensional cubes, which might imply some hardness

13



of approximation results for the problem.

Finally, local improvement algorithms have recently been studied extensively,
and some interesting positive results have been obtained for related problems,
such as independent sets and vertex covers in degree bounded graphs, 3-DM
matching, k-set-packing etc. [2,7]. Halldérsson [7] shows reducibilities between
these problems and uses these reductions to analyze local improvement heuris-
tics for the unweighted case. We hope that the ideas in our analysis can be
extended to analyzing heuristics for the weighted versions of these problems.
This is particularly interesting for the case of independent sets in bounded
degree graphs, where a slightly better local improvement can be applied to
improve performance in the unweighted case [2], but nothing is known about
the weighted version.
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