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Abstract. Accurate reconstruction of phylogenies remains a key chal-
lenge in evolutionary biology. Most biologically plausible formulations
of the problem are formally NP-hard, with no known efficient solution.
The standard in practice are fast heuristic methods that are empirically
known to work very well in general, but can yield results arbitrarily far
from optimal. Practical exact methods, which yield exponential worst-
case running times but generally much better times in practice, provide
an important alternative. We report progress in this direction by intro-
ducing a provably optimal method for the weighted multi-state maximum
parsimony phylogeny problem. The method is based on generalizing the
notion of the Buneman graph, a construction key to efficient exact meth-
ods for binary sequences, so as to apply to sequences with arbitrary finite
numbers of states with arbitrary state transition weights. We implement
an integer linear programming (ILP) method for the multi-state prob-
lem using this generalized Buneman graph and demonstrate that the
resulting method is able to solve data sets that are intractable by prior
exact methods in run times comparable with popular heuristics. Our
work provides the first method for provably optimal maximum parsi-
mony phylogeny inference that is practical for multi-state data sets of
more than a few characters.

1 Introduction

One of the fundamental problems in computational biology is that of infer-
ring evolutionary relationships between a set of observed amino acid sequences
or taxa. These evolutionary relationships are commonly represented by a tree
(phylogeny) describing the descent of all observed taxa from a common ancestor,
a reasonable model provided we are working with sequences over small enough
regions or distant enough relationships that we can neglect recombination or
other sources of reticulation [1]. Several criteria have been implemented in the
literature for inferring phylogenies, of which one of the most popular is maximum

B. Berger (Ed.): RECOMB 2010, LNBI 6044, pp. 369–383, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



370 N. Misra et al.

parsimony (MP). Maximum parsimony defines the tree(s) with the fewest muta-
tions as the optimum, generally a reasonable assumption for short time-scales or
conserved sequences. It is a simple, non-parametric criterion, as opposed to com-
mon maximum likelihood models or various popular distance-based methods [2].
Nonetheless, MP is known to be NP-hard [3] and practical implementations of
MP are therefore generally based on heuristics which do not guarantee optimal
solutions.

For sequences where each site or character is expressed over a set of discrete
states, MP is equivalent to finding a minimum Steiner tree displaying the input
taxa. For example, general DNA sequences can be expressed as strings of four
nucleotide states and proteins as strings of 20 amino acid states. Recently, Srid-
har et al. [4] used integer linear programming to efficiently find global optima for
the special case of sequences with binary characters, which are important when
analyzing single nucleotide polymorphism (SNP) data. The solution was made
tractable in practice in large part by a pruning scheme proposed by Buneman
and extended by others [5,6,7]. The so-called Buneman graph B for a given set of
observed strings is an induced sub-graph of the complete graph G (whose nodes
represent all possible strings of mutations) such that B ⊆ G still contains all
distinct minimum Steiner trees for the observed data. By finding the Buneman
graph, one can often greatly restrict the space of possible solutions to the Steiner
tree problem. While there have been prior generalizations of the Buneman graph
to non-binary characters [8,9], they do not provide any comparable guarantees
usable for accelerating Steiner tree inference.

In this paper, we provide a new generalization of the definition of Buneman
graph for any finite number of states that guarantees the resulting graph will
contain all distinct minimum Steiner trees of the multi-state input set. Further,
we allow transitions between different states to have independent weights. We
then utilize the integer linear programming techniques developed in [4] to find
provably optimal solutions to the multi-state MP phylogeny problem. We vali-
date our method on four specific data sets chosen to exhibit different levels of
difficulty: a set of nucleotide sequences from Oryza rufipogon [10], a set of hu-
man mt-DNA sequences representing prehistoric settlements in Australia [11], a
set of HIV-1 reverse transcriptase amino acid sequences and, finally, a 500 taxa
human mitochondrial DNA data set. We further compare the performance of
our method, in terms of both accuracy and efficiency, with leading heuristics,
PAUP* [12] and the pars program of PHYLIP [13], showing our method to yield
comparable and often far superior run times on non-trivial data sets.

2 Methods

2.1 Notation and Background

Let H be an input matrix that specifies a set of N taxa χ, over a set of m
characters C = {c1, . . . cm} such that Hij represents the jth character of the ith

taxon. The taxa of H represent the terminal nodes of the Steiner tree inference.
Further, let nk be the number of admissible states of the kth character ck. The set
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of all possible states is the space S ≡ {0, 1, . . . n1− 1}⊗
. . .

⊗{0, 1, . . . nm− 1}.
We will represent the ith character of any element b ∈ S, by (b)i. The state
space S can be represented as a graph G = (VG , EG) with the vertex set VG = S
and edge set EG = {(u, v)|u, v ∈ S,∑m

cp∈C δ[(u)p, (v)p] = 1}, where δ[a, b] = 0 if
a = b and 1 otherwise. Furthermore, let α = {αp|cp ∈ C} be a set of weights,
such that αp[i, j] represents an edge length for a transition between states i, j ∈
{0, . . . np − 1} for character cp. We will assume that these lengths are positive
(states that share zero edge length are indistinguishable), symmetric in i, j and
satisfy the triangle inequality.

αp[i, j] + αp[j, k] ≥ αp[i, k] ∀ i, j, k ∈ {0, . . . np − 1} (1)

Non-negativity and symmetry are basic properties for any reasonable definition
of length. If a particular triplet of states (say i, j, k) does not satisfy the triangle
inequality in equation 1, we can set αp[i, k] = αp[i, j] + αp[j, k] and still ensure
that the shortest path connecting any set of states remains the same. We can
now define a distance dα over G, such that for any two elements u, v ∈ VG

dα[u, v] ≡
m∑

p∈C

αp[(u)p, (v)p] (2)

Given any subgraph K = (VK , EK) of G, we can define the length of K to be the
sum of the lengths of all the edges L(K) ≡ ∑

(u,v)∈EK
dα[u, v]. The maximum

parsimony phylogeny problem for χ is equivalent to constructing the minimum
Steiner tree T∗ displaying the set of all specified taxa χ, i.e., any tree T∗(V∗, E∗)
such that χ ⊆ V∗ and L(T∗) is minimum. Note that T∗ need not be unique.

2.2 Pre-processing

Before we construct the generalized Buneman graph corresponding to an input,
we perform a basic pre-processing of the data. The set of taxa in the input H
might not all be distinct over the length of sequence represented in H . These
correspond to identical rows in H and are eliminated. Similarly, characters that
do not mutate for any taxa do not affect the true phylogeny and can be removed.
Furthermore, if two characters are expressed identically in χ (modulo a relabeling
of the states), we will represent them by a single character with each edge length
replaced by the sum of the edge lengths of the individual characters. In case there
are n such non-distinct characters, one of them is given edge lengths equal to
the sum of the corresponding edges in each of the n characters and the rest
are discarded. These basic pre-processing steps are often useful in considerably
reducing the size of input.

2.3 Buneman Graph

The Buneman graph was introduced as a pruning of the complete graph for
the special case of binary valued characters. For this special case it is useful
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to introduce the notion of binary splits cp(0)|cp(1) for each character cp ∈ C,
which partition the set of taxa χ into two sets cp(0) and cp(1) corresponding
to the value expressed by cp. Each of these sets is called a block of cp. Each
vertex of the Buneman graph B can be represented by an m-tuple of blocks
[c1(i1), c2(i2), . . . , cm(im)], where ij = 0 or 1, for j ∈ {1, 2, . . .m}. To construct
the Buneman graph, a rule is defined for discarding/retaining the subset of
vertices contained in each pair of overlapping blocks [cp(ip), cq(iq)] for each pair
of characters (cp, cq) ∈ C×C. All vertices which satisfy cp(ip)∩cq(iq) = ∅ for any
pair of characters (cp, cq) can be eliminated, while those for which cp(ip)∩cq(iq) 	=
∅ for all [cp(ip), cq(iq)] are retained. Buneman previously established for the
binary case that the retained vertex set will contain all terminal and Steiner
nodes of all distinct minimum length Steiner trees.

We extend this prior result to the weighted multi-state case by presenting
an algorithm analogous to the binary case to construct a graph with these
properties.

2.4 Algorithm for Constructing the Generalized Buneman Graph

Briefly, the algorithm looks at the input matrix projected onto each distinct
pair of characters p, q and constructs a np×nq matrix C(p, q), where the i× jth

element C(p, q)ij is 1 only if there is at least one taxon t such that (t)p = i and
(t)q = j and zero otherwise. The algorithm then implements a rule for each such
pair of characters p, q that allows us to enumerate the possible states of those
characters in any optimal Steiner tree. For clarity, we will assume that each state
for each character is expressed in at least one input taxon, since states that are
not present in any taxa cannot be present in a minimum length tree because of
the triangle inequality. The rule is defined by a np×nq matrix R(p, q) determined
by the following algorithm:

1. R(p, q)ij ← C(p, q)ij for all i ∈ {0, 1, . . . np − 1} and j ∈ {0, 1, . . . nq − 1}.
2. If all non-zero entries in C(p, q) are contained in the set of elements

(∪kC(p, q)ik)
⋃

(∪kC(p, q)kj)

for a unique pair i ∈ {0, 1, . . . np−1} and j ∈ {0, 1, . . . nq−1} thenR(p, q)xy ←
1 for all x, y such that either x = i or y = j (See Fig 1 where this pair of
states are denoted ipq and iqp.)

3. If the condition in step 2 is not satisfied then set R(p, q)ij ← 1 for all i, j.

This set of rules {R} then defines a subgraph Bpq ⊆ G for each pair of characters
p, q, such that any vertex v ∈ Bpq if and only if R(p, q)(v)p(v)q

= 1. The intersec-
tion of these subgraphs B = ∩cp,cq∈CBpq then gives the generalized Buneman
graph for χ given any set of distance metrics α = {αp|cp ∈ C}. Note that the
Buneman graph of any subset of χ is a subset of B. It is easily verified that for
binary characters, our algorithm yields the standard Buneman graph.

The remainder of this paper will make two contributions. First, it will show
that the generalized Buneman graph B defined above contains all minimum
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cp(ipq)

cq(iqp)

Fig. 1. An example of the generalized Buneman pruning condition. If all taxa in χ are
present in the shaded region, vertices in all other blocks can be discarded.

Steiner trees for the input taxa χ. This will in turn establish that restricting the
search space for minimum Steiner trees to B will not affect the correctness of the
search. The paper will then empirically demonstrate the value of these methods
to efficiently finding minimum Steiner trees in practice.

Before we prove that all Steiner minimum trees connecting the taxa are dis-
played in B, we need to introduce the notion of a neighborhood decomposition.
Suppose we are given any tree T (V,E) displaying the set of taxa χ. We will con-
tract each degree-two Steiner node (i.e., any node that is not present in χ) and
replace its two incident edges by a single weighted edge. Such trees are called X-
Trees [14]. Each X-Tree can be uniquely decomposed into its phylogenetic X-Tree
components, which are maximal subtrees whose leaves are taxa. Formally, each
phylogenetic X-Tree P (ψ) consists of a set of taxa ψ ⊆ χ and a tree displaying
them, such that there is a bijection or labeling η : lP → ψ between elements
of ψ and the set of leaves lP ∈ P (ψ) [14] (Fig 2) . All vertices in P (ψ) with
degree 3 or higher will be called branch points. From now on we will assume that
given any input tree, such a decomposition has already been performed (Fig 2).
Two phylogenetic X-Trees P (ψ) and P ′(ψ) are considered equivalent if they have
identical length and the same tree topology. By identical tree topology, we mean
there is a bijection between the edge set of the two trees, such that removing any
edge and its image partitions the leaves into identical bi-partitions. We define
two trees to be neighborhood distinct if after neighborhood decomposition they
differ in at least one phylogenetic X-Tree component. We define a labeling of
the phylogenetic X-Tree as an injective map Γ : P → G between the vertices
of P (ψ) and those of the graph G such that Γu represents the character string
for the image of vertex u in G. Since leaf labels are fixed to be the character
strings representing the corresponding taxa, Γt = ηt ∈ ψ for any leaf t ∈ lP .
Identical phylogenetic X-Trees can, however, differ in the labels Γu of internal
branch points u ∈ P \ lP .

We will use a generalization of the Fitch-Hartigan algorithm to weighted par-
simony proposed by Erdos and Szekely [15,16]. The algorithm uses a similar
forward pass/backward pass technique to compute an optimal labeling for any
phylogenetic X-Tree T (ψ). Arbitrarily root the tree T (ψ) at some taxon ζ and
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Fig. 2. An input tree and its phylogenetic X-Tree components,with taxa labelled by
integers

starting with the leaves compute the minimum length minL(Γb, Tb) of any la-
beling of the subtree Tb consisting of the vertex b and its descendants, where the
root b is labeled Γb as follows.

1. If Γb labels a leaf ηb ∈ ψ, minL(Γb = ηb, Tb) = 0 and ∞ otherwise.
2. If b has k children Db = {v1, . . . vk}, and Tv is the subtree consisting of
v ∈ Db and its descendants,

minL(Γb, Tb) =
∑

v∈Db

min
Γv

{minL(Γv, Tv) + dα[Γb, Γv]} (3)

where the minimum is to be taken over all possible labels Γv for each char-
acter and for each child v ∈ Db.

The optimal labeling of T (ψ) is one which minimizes the length at the root:
L(T ) = minL(ηζ , Tζ). Labels for each descendant are inferred in a backward
pass from the root to the leaves and using equation 3. Note that the minimum
length of a tree is just the sum of minimum lengths for each character, i.e.,
minL(Γb, Tb) =

∑
cs∈C minL(Γb, Tb)(s), where minL(Γb, Tb)(s) is the minimum

cost of tree Tb rooted at b for character cs.
Briefly, our proof is structured as follows: Given any phylogenetic X-Tree T (ψ)

labeling (typically denoted Γ below), we will show that the generalized Buneman
pruning algorithm for each pair of characters (cp, cq) defines a subgraph Bpq

which contains at least one possible labeling of no higher cost (typically denoted
Φ below) for T (ψ). We will then show that the intersection of these subgraphs
B = ∩p�=qBpq thus contains an optimal labeling for T (ψ).

If the pruning condition in step 2 of the algorithm that defines the Buneman
graph is not implemented for the pair of characters (cp, cq), then Bpq = G and
all labels are necessarily inside Bpq. We prove the following lemma for the case
when the pruning condition is satisfied, ie., there exist unique states ipq of cp
and iqp of cq, such that each element in the set of leaves lT = {t ∈ T (ψ)|ηt ∈ ψ}
either has (ηt)p = ipq or (ηt)q = iqp or both. Each time we relabel vertices, we
will keep all characters except cp and cq fixed. To economize our notation, we will
represent the sum of costs in cp and cq of the tree T labeled by Γ , which has some
branch point b as the root, simply by writing L(Γ, T ) = L(Γ, T )(p) +L(Γ, T )(q).
We use the notation Γx = [(Γx)p, (Γx)q] to represent the label for a vertex x and
suppress the state of all other characters.
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Fig. 3. (a) The base case of a degree |ψ| star that can be attached to a parent vertex
ζ in the Erdos-Szekely algorithm. (b) T (ψ) for the general case (see Lemma 1).

Lemma 1. Given any phylogenetic X-Tree T (ψ) with ψ ⊆ Bpq, and a labeling
Γ , such that an internal branch point b ∈ T \ lT is labeled outside Bpq, i.e.,
Γb /∈ Bpq, there exists an alternate labeling Φ of T (ψ) inside Bpq such that

1. either L(Γ, T ) ≥ L(Φ, T ) + dα[Γb, Φb], or —
2. L(Γ, T ) ≥ L(Φ, T ) for each of the following choices: Φb = [ipq, iqp] or [ipq,

(Γb)q] or [(Γb)p, iqp], and Φv = Γv for all v 	= b. We will call a tree that
satisfies this second condition a (cp, cq)-Tree

Proof. We will use induction on the number of internal branch points outside
Bpq to prove the claim. Without loss of generality we can consider all branch
points of T (ψ) to be labeled outside Bpq. If some branch points are labeled
inside Bpq then they can be treated as leaves of smaller X-Tree(s) that have all
branch points outside Bpq. This is similar to the neighborhood decomposition
we performed earlier for those branch points that were present in the set of input
taxa. The set of branch points is then the set T \ lT = {u ∈ T |Γu /∈ Bpq}.

For the base case assume all the leaves are joined at a single branch point b
to form a star of degree |ψ| (see Fig. 3(a) without the root ζ). We can group the
leaves into three sets:

1. I = {ηu = [ipq, yu]|yu 	= iqp, ηu ∈ ψ}
2. II = {ηv = [xv, iqp]|xv 	= ipq, ηv ∈ ψ}
3. III = {ηw = [ipq, iqp]|ηw ∈ ψ}

The cost of the tree for cp and cq, with branch point Γb = [x, y], is

L(Γ, T )(p) + L(Γ, T )(q) =
∑

u∈I

(αp[x, ipq] + αq[y, yu]) +
∑

v∈II

(αp[x, xv]

+ αq[y, iqp]) +
∑

w∈III

(αp[x, ipq] + αq[y, iqp]) (4)

The only way for L(Γ, T )(p) + L(Γb, T )(q) to be minimum with x 	= ipq and
y 	= iqp, is if III = ∅ and |I| = |II|. For contradiction, suppose |I|+ |III| > |II|.
We could then define a labeling Φ identical to Γ over all characters, except
Φb = [ipq, y], such that dα[Γb, Φb] = αp[Γb, Φb]. We could then reduce the length,
since
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L(Γ, T )(p) =
∑

u∈I

αp[x, ipq] +
∑

v∈II

αp[x, xv] +
∑

w∈III

αp[x, ipq]

≥ αp[x, ipq] +
∑

v∈II

(αp[x, xv ] + αp[x, ipq])

≥ αp[x, ipq] +
∑

v∈II

αp[ipq, xv] = L(Φ, T )(p) + dα[Γb, Φb] (5)

where the last inequality follows from the triangle inequality. Similarly, if |II|+
|III| > |I|, we could define Φb = [x, iqp] and arrive at L(Γ, T )(q) ≥ L(Φ, T )(q) +
dα[Γb, Φb].

On the other hand if |I| = |II| and III = ∅ setting Φb = [ipq, y] or Φb = [x, iqp]
or Φb = [ipq, iqp] all achieve a length no more than L(Γ, T )(p) + L(Γ, T )(q).
Therefore, this is a (cp, cq)-Tree. This proves the base case for our proposition.

We will now assume that the claim is true for all trees with n branch points
or less. Suppose we have a labeled tree T (ψ) with n + 1 branch points which
are all outside Bpq. Let Db = {v1, . . . vk} be the children of a branch point
b in T (ψ) and {T1, . . . Tk} be the subtrees of each v ∈ Db and their descen-
dants. Note that some of these descendants may be leaves. Since T (ψ) has at
least two branch points, one of its descendants (say v1) must be a branch point
(Fig 3(b)). Let Tb = T \ T1 be the subtree consisting of b and all its other de-
scendants. For clarity we will use the notation Γb = [xb, yb] and Γv1 = [x1, y1].
This implies,

L(Γ, T ) = L(Γ, Tb) + L(Γ, T1) + dα[Γb, Γv1 ]
= L(Γ, Tb) + L(Γ, T1) + αp[xb, x1] + αq[yb, y1] (6)

There are four possibilities.

1. Both Tb and T1 are (cp, cq)-Trees with n or less branch points - In this
case, by induction, both Tb and T1 can be relabeled with Φb and Φv1 of the
form [ipq, iqp]. Since the cost in cp and cq of the edge (b, v1) is now zero,
we have an optimal labeling of T (ψ) within Bpq and L(Γ, T ) ≥ L(Φ, T ) .
Note that each of the choices of the form [ipq, y1] or [x1, ipq] for relabel-
ing of b also satisfy property 2 of the claim. Therefore, this is a (cp, cq)-
Tree.

2. Tb is a (cp, cq)-Tree, but T1 is not. Therefore, there is a labeling Φ of T1 with
either Φv1 = [ipq, y1] and/or Φv1 = [x1, ipq] such that

L(Γ, T1) ≥ L(Φ, T1) + dα[Γv1 , Φv1 ] (7)

Let us assume for concreteness that Φv1 = [ipq, y1]. It will become clear that
the argument works for the other possible choices. Since, Tb is a (cp, cq)-Tree,
by induction, we can choose a labeling of Tb with Φb = [ipq, yb], such that
L(Γ, Tb) ≥ L(Φ, Tb). This gives
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L(Φ, T ) = L(Φ, Tb) + L(Φ, T1) + dα[Φb, Φv1 ]
= L(Φ, Tb) + L(Φ, T1) + αq[yb, y1] (8)

Comparing the previous two equations with equation 6, we get,

L(Γ, T ) = L(Γ, Tb) + L(Γ, T1) + αp[xb, x1] + αq[yb, y1]
≥ L(Φ, Tb) + L(Φ, T1) + dα[Γv1 , Φv1 ] + αp[xb, x1] + αq[yb, y1]
= L(Φ, Tb) + L(Φ, T1) + αp[x1, ipq] + αp[xb, x1] + αq[yb, y1]
≥ L(Φ, Tb) + L(Φ, T1) + αp[xb, ipq] + αq[yb, y1]
= L(Φ, Tb) + L(Φ, T1) + dα[Γb, Φb] + dα[Φb, Φv1 ]
= L(Φ, T ) + dα[Γb, Φb] (9)

which satisfies the first possibility of the claim. It should be clear that
if Φv1 = [x1, iqp] then the choice Φb = [xb, iqp] would give an identical
bound.

3. T1 is a (cp, cq)-Tree, but Tb is not. This case is similar to the previous one.
Since Tb has less than n branch points, which are all outside Bpq, and it is
not a (cp, cq)-Tree, we have from induction a labeling Φ of Tb with either
Φb = [ipq, yb] and/or Φb = [xb, ipq] such that

L(Γ, Tb) ≥ L(Φ, Tb) + dα[Γb, Φb] (10)

As before, let us assume Φb = [ipq, yb] for concreteness. Since T1 is a (cp, cq)-
Tree, we can choose a labeling with Φv1 = [ipq, y1] such that L(Γ, T1) ≥
L(Φ, T1). This gives,

L(Φ, T ) = L(Φ, Tb) + L(Φ, T1) + dα[Φb, Φv1 ]
= L(Φ, Tb) + L(Φ, T1) + αq[yb, y1] (11)

Comparing the previous two equations with equation 6, we get,

L(Γ, T ) = L(Γ, Tb) + L(Γ, T1) + αp[xb, x1] + αq[yb, y1]
≥ L(Φ, Tb) + L(Φ, T1) + dα[Γb, Φb] + αp[xb, x1] + αq[yb, y1]
≥ L(Φ, Tb) + L(Φ, T1) + dα[Γb, Φb] + dα[Φb, Φv1 ]
= L(Φ, T ) + dα[Γb, Φb] (12)

An identical argument carries through if Φb = [xb, iqp].
4. Neither T1 or Tb are (cp, cq)-Trees. It follows from induction that there is

a labeling Φ such that L(Γ, Tb) ≥ L(Φ, Tb) + dα[Γb, Φb] and L(Γ, T1) ≥
L(Φ, T1) + dα[Γv1 , Φv1 ]. There are two possibilities in this case.
(a) (Φb = [ipq, yb] and Φv1 = [ipq, y1]) or (Φb = [xb, iqp] and Φv1 = [x1, iqp]).

As before, we will prove the claim for the former possibility while the
later case can be proved by an identical argument.

L(Φ, T ) = L(Φ, Tb) + L(Φ, T1) + dα[Φb, Φv1 ]
= L(Φ, Tb) + L(Φ, T1) + αq[yb, y1] (13)
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L(Γ, T ) = L(Γ, Tb) + L(Γ, T1) + αp[xb, x1] + αq[yb, y1]
≥ L(Φ, Tb) + L(Φ, T1) + dα[Γb, Φb] + dα[Γv1 , Φv1 ]
+ αp[xb, x1] + αq[yb, y1]
≥ L(Φ, Tb) + L(Φ, T1) + dα[Γb, Φb] + αq[yb, y1]
= L(Φ, Tb) + L(Φ, T1) + dα[Γb, Φb] + dα[Φb, Φv1 ]
= L(Φ, T ) + dα[Γb, Φb] (14)

This also satisfies the claim. The proof for Φb = [xb, iqp] and Φv1 =
[x1, iqp] is identical.

(b) (Φb = [ipq, yb] and Φv1 = [x1, iqp]) or (Φb = [xb, iqp] and Φv1 = [ipq, y1]).
As before, we show the calculation for the former possibility. In this
case

L(Φ, T ) = L(Φ, Tb) + L(Φ, T1) + dα[Φb, Φv1 ]
= L(Φ, Tb) + L(Φ, T1) + αp[xb, ipq] + αq[iqp, y1] (15)

Combining this with equation 6 we get,

L(Γ, T ) = L(Γ, Tb) + L(Γ, T1) + αp[xb, x1] + αq[yb, y1]
≥ L(Φ, Tb) + L(Φ, T1) + dα[Γb, Φb] + dα[Γv1 , Φv1 ]
+ αp[xb, x1] + αq[yb, y1]
= L(Φ, Tb) + L(Φ, T1) + αp[xb, ipq] + αq[iqp, y1]
+ αp[xb, x1] + αq[yb, y1]
≥ L(Φ, Tb) + L(Φ, T1) + αp[xb, ipq] + αq[iqp, y1]
= L(Φ, Tb) + L(Φ, T1) + dα[Φb, Φv1 ] = L(Φb, T ) (16)

But if we now relabel b and v1 with Φ̃v1 = [ipq, iqp] and Φ̃b = [ipq, iqp]
while Φ̃v = Φv for all other v, we get L(Φ, T1) + αq[y1, iqp] ≥ L(Φ̃v1 , T1)
and L(Φ, Tb) + αp[xb, ipq] ≥ L(Φ̃, Tb). This immediately gives,

L(Φ̃, T ) = L(Φ̃, Tb) + L(Φ̃, T1) + dα[Φ̃b, Φ̃v1 ]
≥ L(Φ, T ) ≥ L(Γ, T ) (17)

Identical arguments work for the choices Φ̃v1 = [x1, iqp] and Φ̃b = [xb, iqp].

This proves that if either of the two possibilities claimed are always true for an
X-Tree with n branch points or less then they are also true for a tree with n+ 1
branch points. The proof for arbitrary n follows from induction.

��
Corollary 1. Given a minimum length phylogenetic X-Tree T (ψ) there is an
optimal labeling for each branch point within B.

Proof. Lemma 1 establishes that for any minimum Steiner tree labeled by Γ and
any branch point b ∈ T such that Γb /∈ Bpq, an alternative optimal labeling Φ
exists such that Φb is inside the union of blocks
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Λ(Γb, p, q) ≡ [cp(ipq)cq(iqp)] ∪ [cp(ipq)cq((Γb)q)] ∪ [cp((Γb)p)cq(iqp)]

If we root the tree at b, the new optimal labeling for all its descendants is in-
ferred in a backward pass of the Erdos-Szekely algorithm. This ensures that
each branch point in a minimum length phylogenetic X-Tree is labeled inside
Bpq. Let Sb = ∩Bpq �=GΛ(Γb, p, q) ⊆ B, where the intersection is taken over all
pair of characters for which the pruning condition is satisfied. It follows from
Lemma 1 that Sb also contains an alternate optimal labeling of T (ψ). Note
that Sb is a non-empty subset of B. This must be true because given a char-
acter pair cp, cq, each union of blocks contains at least one taxon and so the
rule matrix R(p, q) that defines the Buneman graph must have ones for each of
these blocks. Therefore each element in Sb represents a distinct vertex of the
Buneman graph. ��
As argued before, any minimum Steiner tree can be decomposed uniquely into
phylogenetic X-Tree components and the previous corollary ensures that each
phylogenetic X-Tree can be labeled optimally inside the generalized Buneman
graph. It follows that all distinct minimum Steiner trees are contained inside the
generalized Buneman graph.

2.5 Integer Linear Program (ILP) Construction

We briefly summarize the ILP flow construction used to find the optimal phy-
logeny. We convert the generalized Buneman graph into a directed graph by
replacing an edge between vertices u and v with two directed edges (u, v), (v, u)
each with weight wuv as determined by the distance metric. Each directed edge
has a corresponding binary variable su,v in our ILP. We arbitrarily choose one of
the taxa as the root r, which acts as a source for the flow model. The remaining
taxa T ≡ χ−{r} correspond to sinks. Next, we set up real-valued flow variables
f t

u,v, representing the flow along the edge (u, v) that is intended for terminal t.
The root r outputs |T | units of flow, one for each terminal. The Steiner tree is
the minimum-cost tree satisfying the flow constraints. This ILP was described
in [4], and we refer the reader to that paper for further details. The ILP for this
construction of the Steiner tree problem is the following:

Minimize
∑

(u,v)∈B
wuvsu,v

subject to
∑

v

(f t
u,v − f t

v,u) = 0 ∀u ∈ B \ {t, r}, ∀t ∈ T
∑

v

(f t
r,v − f t

v,r) = 1 ∀t ∈ T

0 ≤ f t
u,v ≤ su,v ∀(u, v) ∈ B, ∀t ∈ T

su,v ∈ {0, 1} ∀(u, v) ∈ B (18)
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Table 1. Pruning and run time results for the data sets reported

Data Input Complete |B| ILP pars PAUP*

(raw) graph length time length time length time

O. rufipogon DNA 41 × 1043 218 ∗ 32 58 57 0.29s 57 2.57s 57 2.09s

Human mt-DNA 80 × 245 228 64 44 0.48s 45 0.56s 44 5.69s

HIV-1 RT protein 50 × 176 216 ∗ 3 ∗ 42 297 40 127.5s 42 0.30s 40 3.84s

mt3000 500 × 3000 299 ∗ 32 322 177 40s 178 2m37s 177 5h23m

mt5000a 500 × 5000 2167 ∗ 32 1180 298 5h10m 298 35m49s 298 3h52m

mt5000b 500 × 5000 2229 ∗ 33 360 312 3m41s 312 57m6s 312 2h40m

mt10000 500 × 10000 2357 ∗ 35 6006 N. A. N. A. 637 1h34m 637 1h39m

3 Results

We implemented our generalized Buneman pruning and the ILP in C++. The
ILP was solved using the Concert callable library of CPLEX 10.0. We compared
the performance of our method with two popular heuristic methods for maximum
parsimony phylogeny inference — pars, which is part of the freely-available
PHYLIP package [13], and PAUP* [12], the leading commercial phylogenetics
package. We attempted to use PHYLIP’s exact branch-and-bound method DNA
penny for nucleotide sequences, but discontinued the tests when it failed to solve
any of the data sets in under 24 hours. In each case, pars and PAUP* were run
with default parameters. We first report results from three moderate-sized data
sets selected to provide varying degrees of difficulty: a set of 1,043 sites from a
set of 41 sequences of O. rufipogon (red rice) [10], 245 positions from a set of 80
human mt-DNA sequences reported by [11], and 176 positions from 50 HIV-1
reverse transcriptase amino acid sequences. The HIV sequences were retrieved
by NCBI BLASTP [17] searching for the top 50 best aligned taxa for the query
sequence GI 19571541 and default parameters. We then added additional tests
on larger data sets all derived from human mitochondrial DNA. The mtDNA
data was retrieved from NCBI BLASTN, searching for the 500 best aligned taxa
for the query sequence GI 61287976 and default parameters. The complete set
of 16,546 characters (after removing indels) was then broken in four windows
of varying sizes and characteristics: the first 3,000 characters (mt3000), the first
5,000 characters (mt5000a), the next 5,000 characters (mt5000b), and the first
10,000 characters (mt10000). Table 1 summarizes the results.

For the set of 41 sequences of lhs-1 gene from O. rufipogon (red rice) [10], our
method pruned the full graph of 218 ∗ 32 nodes (after screening out redundant
characters) to 58. Fig 4(a) shows the resulting phylogeny. Both PAUP* and pars
yielded an optimal tree although more slowly than the ILP (2.09 seconds and
2.57 seconds respectively, as opposed to 0.29 seconds).

For the 245-base human mt-DNA sequences, the generalized Buneman prun-
ing was again highly efficient, reducing the state set from 228 after removing
redundant sequences to 64. Fig 4(b) shows the phylogeny returned. While PAUP*
was able to find the optimal phylogeny (although it was again slower at 5.69
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Fig. 4. Most parsimonious phylogenies (a) lhs-1 gene for O. rufipogon [10] (b) Human
mt-DNA [11] and (c) HIV-1 RT proteins [17]. Edges are labelled by their lengths in
parentheses followed by sites that mutate along that edge. Dark red ovals are input
taxa and light blue Steiner nodes.

seconds versus 0.48 seconds), pars yielded a slightly sub-optimal phylogeny
(length 45 instead of 44) in a comparable run time (0.56 seconds).

For HIV-1 sequences, our method pruned the full graph of 216 ∗ 3 ∗ 42 possible
nodes to a generalized Buneman graph of 297 nodes, allowing solution of the ILP
in about two minutes. Fig 4(c) shows an optimal phylogeny for the data. PAUP*
was again able to find the optimal phylogeny and in this case was faster than
the ILP (3.84 seconds as opposed to 127.5 seconds). pars required a shorter run
time of 0.30 seconds, but yielded a sub-optimal tree of length of 42, as opposed
to the true minimum of 40.

For the four larger mitochondrial datasets, Buneman pruning was again highly
effective in reducing graph size relative to the complete graph, although the
ILP approach eventually proves impractical when Buneman graph sizes grows
sufficiently large. Two of the data sets yielded Buneman graphs of size below
400, resulting in ILP solutions orders of magnitude faster than the heuristics.
mt5000a, however, yielded a Buneman graph of over 1,000 nodes, resulting in an
ILP that ran more slowly than the heuristics. mt10000 resulted in a Buneman
graph of over 6,000 nodes, leading to an ILP too large to solve. pars was faster
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than PAUP* in all cases, but PAUP* found optimal solutions for all three instances
we can verify while pars found a sub-optimal solution in one instance.

We can thus conclude that the generalized Buneman pruning approach de-
veloped here is very effective at reducing problem size, but solving provably to
optimality does eventually become impractical for large data sets. Heuristic ap-
proaches remain a practical necessity for such cases even though they cannot
guarantee, and do not always deliver, optimality. Comparison of PAUP* to pars
and the ILP suggests that more aggressive sampling over possible solutions by
the heuristics can lead optimality even on very difficult instances but at the cost
of generally greatly increased run time on the easy to moderate instances.

4 Discussion

We have presented a new method for finding provably optimal maximum parsi-
mony phylogenies on multi-state characters with weighted state transitions, us-
ing integer linear programming. The method builds on a novel generalization of
the Buneman graph for characters with arbitrarily large but finite state sets and
for arbitrary weight functions on character transitions. Although the method has
an exponential worst-case performance, empirical results show that it is fast in
practice and is a feasible alternative for data sets as large as a few hundred taxa.
While there are many efficient heuristics for recontructing maximum parsimony
phylogenies, our results cater to the need for provably exact methods that are
fast enough to solve the problem for biologically relevant multi-state data sets.
Our work could potentially be extended to include more sophisticated integer
programming techniques that have been successful in solving large instances of
other hard optimization problems, for instance the recent solution of the 85,900-
city traveling salesman problem pla85900 [18]. The theoretical contributions of
this paper may also prove useful to work on open problems in multi-state MP
phylogenetics, to accelerating methods for related objectives, and to sampling
among optimal or near-optimal solutions.
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