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2Finding a spanning tree of minimum routing cost in a general weighted undirected graph isknown to be NP-hard [11]. In this paper we show that �nding a minimum routing cost tree in ageneral weighted graph G is equivalent to solving the same problem on a complete graph in whichthe edge weights are the shortest path lengths in G. This result implies that the minimum routingtree problem with metric inputs is also NP{hard.Wong [22] studied the minimum routing cost tree problem and presented a 2-approximationalgorithm even without the metric requirement. We give a better result for the metric case, which,by the above remark, applies to the general case as well.Theorem 1.1. There is a PTAS for �nding the minimum routing cost tree of a weighted undirectedgraph. In particular, on an n-vertex graph, we can �nd a (1 + �){approximate solution in timeO(n2d 2� e�2).Our result is derived by approximating a minimum routing cost tree by a restricted class oftrees that we call k{stars. For any �xed size k, a k{star is a tree in which at most k verticeshave degree greater than one. For a given accuracy parameter �, we consider all d2� � 1e-stars andoutput the one with the minimum routing cost. To argue the performance guarantee, we showhow a minimum routing cost tree can be converted into a k{star without much degradation in itsrouting cost (no more than a factor of 1 + 2k+1). We also prove that for any �xed k, the minimumk{star can be determined in polynomial time. Hence, by �nding the d2� �1e-star with the minimumrouting cost, we get a (1 + �){approximate solution.There is an important di�erence between our PTAS for the routing cost tree problem andWong's 2-approximation: while we show an approximation bound to the best tree's routing cost,Wong's proof shows that his trees have routing cost at most twice the value of the sum of pairwisedistances between nodes in the input graph. This stronger connection is exploited by Gus�eld [9]in an application to multiple alignments in computational biology (described later).1.1 Optimum communication spanning trees.T. C. Hu [10] formulated a general version of the routing cost spanning tree problem that hecalled optimum communication spanning trees. In this problem, in addition to the costs on edges,a requirement value rij is speci�ed for every pair of vertices i; j. The communication cost betweena pair in a given spanning tree is the cost of the path between them in the tree multiplied by theirrequirement rij . The communication cost of the tree is the sum of all the pairwise communicationcosts. Thus the routing cost is a special case of the communication cost when all the requirementvalues are one.1 In [10], Hu derives weak conditions under which the optimum routing cost tree isa star. In this paper, we demonstrate that simple generalizations of stars are indeed su�cient toguarantee any desirable accuracy in approximating optimal routing trees.By using a recent result of Bartal [3] on approximating metrics probabilistically by tree metrics,we notice the following result.Theorem 1.2. There is an O(log2 n)-approximation algorithm for the communication spanningtree problem on an n-node metric.Recent improvements to Bartal's original result in [4, 6] also lead to an improvement of theperformance guarantee in the above theorem to O(log n log log n).The result in the above theorem is actually stronger in the same sense as Wong [22].Given (symmetric) requirement values rij and metric distances dij between node pairs i; j, our1Hu uses the term \optimum distance spanning trees" to denote trees with minimum routing cost.



3approximate solution has communication cost at most O(log2 n) times Pi;j rijdij. As in [9], weexploit this connection in the application to computational biology.An overview of the remainder of the paper is as follows. In x2 we describe the application ofminimum routing cost trees to alignment problems in computational biology. In x3 we give somebasic de�nitions. In x4, we show how the general case of the problem can be reduced to the metricone. x5 describes how k{stars provide good approximations to the optimum routing cost trees inmetrics. In x6, we discuss a polynomial algorithm for �nding minimum cost k{stars in a graph.Finally, in x7 we describe an algorithm for approximating optimum communication spanning trees.2 An application to computational biology.2.1 Multiple sequence alignments.Multiple sequence alignments are important tools for highlighting patterns common to a setof genetic sequences in computational biology. A multiple alignment of a set of n strings involvesinserting gaps in the strings and arranging their characters into columns with n rows, one fromeach string. The order of characters along a row corresponding to string si is the same as thatin si, with possibly some blanks inserted. The following is an example of an alignment of threestrings ATTCGAC, TTCCGTC and ATCGTC.A T T - C G A - C- T T C C G - T CA - T - C G - T CThe intent of identifying common patterns is represented by attempting as much as possibleto place the same character in every column.The multiple sequence alignment problem has typically been formalized as an optimizationproblem in which some explicit objective function is minimized or maximized. One of the mostpopular objective functions for multiple alignment generalizes ideas from optimally aligning twosequences. The pairwise-alignment problem [21] can be phrased as that of �nding a minimummutation path between two sequences. Formally, given costs for inserting or deleting a characterand for substituting one character of the alphabet for another, the problem is to �nd a minimum-cost mutation path from one sequence to the other. The cost of this path is the edit distancebetween them. An optimal alignment of two sequences of length l can be computed e�ectively bydynamic programming [21] in O(l2) time. The generalization to multiple sequences leads to thesum-of-pairs objective.The sum-of-pairs or SP objective for multiple alignment is to minimize the sum, over all pairsof sequences, of the pairwise distance between them in the alignment (where the distance of twosequences in an alignment with l columns, is obtained by adding up the costs of the pairs ofcharacters appearing at positions 1; : : : ; l).Pioneering work of Sanko� and co-authors [17, 18] led to an exponential-time dynamicprogramming solution to the SP-alignment problem. A straightforward implementation requirestime proportional to 2nln, for a problem with n sequences each of length at most l. Consideringthat in typical real{life instances l can be a few hundred, the basic dynamic programming approachturns out to be infeasible for all but very small problems. Carrillo and Lipman [5] have introducedsome bounding criteria which reduce the time and space requirements of dynamic programmingand make solvable problems for n � 6 and l � 200. However, constructing optimal alignments isbound to be computationally expensive, since the problem has been shown NP{complete (Wangand Jiang, [20]). Despite these very expensive solution methods, the SP-objective is implemented



4in several popularly available multiple alignment packages such as MACAW [19] and MSA [13].2.2 Approximation algorithms via routing cost trees.The �rst approximation algorithm for the SP-alignment problem was due to Gus�eld [9] with aperformance ratio of 2� 2n where n is the number of sequences aligned. This was slightly improvedto 2 � 3n by Pevzner [15]. The best known approximation algorithm for this problem is due toBafna, Lawler and Pevzner [2] which achieves a ratio of 2� rn for any �xed value of r. The runningtime is exponential in r. Notice that this is not a PTAS for the problem, and no polynomial timeapproximation scheme is known yet for the SP-alignment problem.Gus�eld's approximation algorithm for the SP-alignment problem is based on the 2-approximation for minimum routing cost trees due to Wong [22]. Gus�eld's algorithm uses afolklore approach to multiple alignment guided by a tree, due to Feng and Doolittle [8] { Given aspanning tree on the complete graph on the sequences to be aligned, the multiple alignment guidedby the tree is built recursively as follows. First, remove a leaf sequence l in the tree attached tosequence v by a tree edge (l; v), and align the remaining sequences recursively. Then, insert backthe leaf sequence in the alignment guided by an optimal pairwise alignment between the pair l andv. If this optimal pairwise alignment introduces a gap in v, insert the same gap in the recursivelycomputed alignment for the tree without the leaf. Since the cost of aligning a blank to a blank isassumed zero, the resulting alignment has the property that for every pair related by a tree edge,the cost of the induced pairwise alignment equals their edit distance. By the triangle inequality onedit-distances, the SP-cost of the alignment derived from this spanning tree can be upper-boundedby the routing cost of the tree.Wong's 2-approximation algorithm considers the shortest path tree rooted at every vertex inturn, and picks the one with minimum routing cost. For graphs with metric distances obeyingthe triangle inequality, every shortest path tree is isomorphic to a star. Furthermore, in this case,Wong's analysis shows that the best star has routing cost at most twice the total cost of the graphitself. The cost of the graph in this case is the sum of pairwise edit distances between sequences,which is a lower bound on the SP-cost. Thus, Gus�eld observed that a multiple alignment derivedfrom the best center-star gives a 2-approximation for the SP-alignment problem.2.3 Tree-driven SP-alignment.Despite the popularity of the SP-objective, most of the currently available methods for �ndingalignments use a progressive approach of incrementally building the alignment adding sequencesone at a time with no performance guarantee on the SP-cost. The Feng-Doolittle procedure can beviewed as one such procedure. The advantages of such approaches is their low running time, butthe shortcoming is that the order in which the sequences are merged into the alignment determinesits cost.In trying to de�ne a middle ground between the SP-objective and the more practical progressivemethods, we introduce the tree-driven SP-alignment method: apply the Feng-Doolittle procedureto the best possible spanning tree in the complete graph on the sequences. By our reasoning above,the tree that gives the best upper bound on the SP-cost of the alignment is the one with theminimum routing cost. Thus, our PTAS for routing cost trees may be useful in �nding good treesfor applying any progressive alignment method such as the Feng-Doolittle procedure.2.4 Generalized SP-alignments.A simple generalization of the SP objective for multiple alignments is to weight the di�erentsequence pairs in the alignment di�erently in the objective function. Given a priority value rij



5for the pair i; j of sequences, the generalized sum-of-pairs objective for multiple alignment isto minimize the sum, over all pairs of sequences, of the pairwise distance between them in thealignment multiplied by the priority value of the pair. This allows one to increase the priority ofaligning some pairs while down-weighting others, using other information (such as evolutionary)to decide on the priorities. An extreme case of assigning priorities is the threshold objective.In an evolutionary context, a multiple alignment is used to reconstruct the blocks or motifsin a single ancestral sequence from which the given sequences have evolved. However, if theevolutionary events of the ancestral sequence occur randomly at a certain rate over the course oftime, and independently at each location (character) of the string, after a su�ciently long time,the mutated sequence appears essentially like a random sequence compared to the initial ancestralsequence. If we postulate a threshold time beyond which this happens, this translates roughly toa threshold edit distance between the pair of sequences. The threshold objective sets rij to be onefor all pairs of input sequences whose edit-distance is less than this threshold and zero for otherpairs which are more distant. In this way we try to capture the most information about closelyrelated pairs in the objective function by setting an appropriate threshold.In the same vein as Gus�eld [9], Theorem 1.2 can be used to approximate the generalized SPobjective within an O(log2 n) factor on inputs with n sequences. Let dij denote the edit distancebetween sequences i and j. The theorem guarantees a tree whose communication cost using the rijvalues given by the priority function is at most O(log2 n) times Pi;j rijdij , which is a lower boundon the generalized SP value of any alignment. The Feng-Doolittle procedure guarantees that thegeneralized SP value of the resulting alignment is at most the communication cost of the tree whichin turn is at most O(log2 n) times the generalized SP value of any alignment.3 De�nitions.Throughout the paper we will be referring to a given weighted, connected, undirected graphG = (V;E;w), where we assume V = f1; : : : ; ng and w is a nonnegative edge weight function,not necessarily metric. For a subset S � V , by P(S) we denote the set of all unordered pairs ofelements of S.Definition 3.1. Let G = (V;E;w) and i; j 2 V . Let S = (VS ; ES ; w) be a subgraph of G. BySP (S; i; j) we denote a shortest path from i to j on S. When S is a tree, SP (S; i; j) denotes theunique path between i and j.Definition 3.2. Let S be a sugbraph of G and i; j 2 V . The weight of S is denoted byw(S) = Pe2ES w(e). The distance of i and j in S is denoted by dS(i; j) := w(SP (S; i; j)). Wede�ne dG(i; S) = minj2VS dG(i; j). If T is a tree and S � T , we denote the value w(SP (T; i; j)\S)by wS(T; i; j).Definition 3.3. Let S be a sugbraph of G. The routing cost of S is de�ned as C(S) =P(i;j)2P(VS) dS(i; j).Definition 3.4. Minimum Routing Cost Spanning Tree Problem (MRCT): Given a graph G =(V;E;w), �nd a spanning tree bTG of G such that C( bTG) is minimum.Definition 3.5. A metric graph G = (V;E;w) is a complete graph in which w(i; j) � 0 andw(i; j) + w(j; k) � w(i; k) for all i 6= j 6= k 2 V .



6Definition 3.6. The metric closure of G is the complete weighted graph �G = (V;P(V ); �), where�(i; j) := dG(i; j) for all (i; j) 2 P(V ). Note that �G is a metric graph.Definition 3.7. Metric Minimum Routing Cost Spanning Tree Problem (�MRCT): Given ametric graph G, �nd a spanning tree T of G such that C(T ) is minimum.4 A reduction from the general to the metric case.Let G = (V;E;w) and �G = (V;P(V ); �) be its metric closure. In this section, we present analgorithm which can transfer a spanning tree of �G into a spanning tree of G without increasingcost. This implies that we can solve the MRCT problem on G by solving the same problem on�G. An edge (a; b) in �G is termed a bad edge if (a; b) =2 E or w(a; b) > �(a; b). For any bad edgee = (a; b), there must exist a path P 6= e such that w(P ) = �(a; b). Given any spanning tree T of�G, the algorithm iteratively replaces bad edges (if any) in T with edges from the path de�ning theweight of the edge until there are no more bad edges in the tree. Since the resulted tree has nobad edge, it can be thought as a spanning tree of G with the same cost. It will be shown later thatthe iteration will be executed at most O(n2) times and the cost is never increased while replacingthe bad edges. The algorithm listed below details how to obtain Y from T .Algorithm Remove badInput: a spanning tree T of �GOutput : a spanning tree Y of G (i.e. without any bad edge) such that C(Y ) � C(T ).Compute all-pairs shortest paths of G.while there exists a bad edge in T (1)Pick a bad edge (a; b). Root T at a./* assume SP (G; a; b) = (a; x; :::; b) and y is the father of x in T */if b is not an ancestor of x thenY1 = T [ (x; b)� (a; b)Y2 = Y1 [ (a; x)� (x; y)elseY1 = T [ (a; x)� (a; b)Y2 = Y1 [ (b; x)� (x; y)endifif C(Y1) < C(Y2) thenY = Y1elseY = Y2endifT = Y (2)endwhileWe assume that the shortest paths obtained in the beginning of the algorithm have the followingproperty: If the obtained shortest path between a and b is (a; x)[P , then P is the obtained shortestpath between x and b. Note that since x is on the shortest a{b path, �(a; b) = �(a; x) + �(x; b).Claim 4.1. The loop (1) is executed at most O(n2) times.Proof. For each bad edge e = (a; b), let l(e) be the number of edges in SP (G; a; b) and
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Figure 1: Remove bad edge (a; b). Case 1 (top) and Case 2 (bottom).f(T ) = Pbad e l(e). Since l(e) � n � 1, f(T ) < n2. Since l(x; b) < l(a; b) and (a; x) is not abad edge, it is easy to check that f(T ) decreases by at least 1 at each loop iteration.Claim 4.2. Before instruction (2) is executed, C(Y ) � C(T ).Proof. For any node v, de�ne Sv = fujv is an ancestor of u on Tg [ fvg. Also, let C(T; S1; S2) =Pi2S1;j2S2 dT (i; j).Case 1: x 2 Sa � Sb: If C(Y1) � C(T ); the result follows. Otherwise, let S1 = Sa � Sb andS2 = Sa � Sb � Sx. Since the distance between any two vertices both in S1 (or both in Sb) doesnot change, we haveC(T ) < C(Y1)) C(T; S1; Sb) < C(Y1; S1; Sb)) jSbjC(T; a; S1) + jS1jjSbj�(a; b) < jSbjC(T; x; S1) + jS1jjSbj�(x; b)) C(T; a; S1) + jS1j�(a; b) < C(T; x; S1) + jS1j�(x; b)) C(T; a; S1) < C(T; x; S1)� jS1j�(a; x)The last inequality follows from the property of the shortest path lengths alluded to earlier.Also, C(Y2)� C(T ) = (C(Y2; S2; Sx)� C(T; S2; Sx)) + (C(Y2; Sb; S1)�C(T; Sb; S1))Since dY2(i; j) � dT (i; j) for i 2 Sb and j 2 S1, the second term is not positive, andC(Y2)�C(T ) � C(Y2; S2; Sx)� C(T; S2; Sx)= jSxjC(T; a; S2) + jS2jjSxj�(a; x) � jSxjC(T; x; S2)= jSxj((C(T; a; S1)� C(T; a; Sx)) + jS2j�(a; x) � (C(T; x; S1)� C(T; x; Sx)))= jSxj((C(T; a; S1)� C(T; x; S1)) + jS2j�(a; x) + (C(T; x; Sx)� C(T; a; Sx)))< jSxj (�jS1j�(a; x) + jS2j�(a; x))� 0



8Case 2: x 2 Sb. The case is identical to Case 1 if we re-root the tree at b and follow the analysisin Case 1 exchanging the roles of a and b.As a direct consequence of Claim 1 and Claim 2 we obtain the following lemma.Lemma 4.1. Given a spanning tree T of �G, the algorithm Remove bad constructs a spanning treeY of G with C(Y ) � C(T ) in O(n3) time.The above lemma implies that C( bTG) � C( bT �G). Since, for any edge, the weight on the originalgraph is no less than the weight on the metric closure, it is easy to see that C( bTG) � C( bT �G).Therefore, we have the following corollary.Corollary 4.1. C( bTG) = C( bT �G).Corollary 4.2. If there is a (1 + ")-approximation algorithm for �MRCT with time complexityO(f(n)), then there is a (1 + ")-approximation algorithm for MRCT with time complexityO(f(n) + n3).Proof. Let G be the input graph for a MRCT problem. We can construct �G in time O(n3)(see e.g. [7]). If there is a (1 + ")-approximation algorithm for the �MRCT problem, we cancompute in time O(f(n)) a spanning tree T1 of �G such that C(T1) � (1 + ")C( bT �G). UsingAlgorithm Remove bad, we can then construct a spanning tree T2 of G such that C(T2) � C(T1) �(1 + ")C( bT �G) = (1 + ")C( bTG). The overall time complexity is then O(f(n) + n3).5 A PTAS for the �MRCT problem.5.1 Overview. As described in the previous section, the fact that the costs w may not obey thetriangle inequality is irrelevant, since we can simply replace these costs by their metric closure.Therefore, in this and the following sections we may assume that G = (V;E;w) is a metric graph.We remind the reader that n = jV j. Also, for a subgraph G0 of G, we use V (G0) to denote thevertex set of G0.To establish the performance guarantee, we use k{stars, i.e. trees with no more than k internalnodes. In x6 we show that for any constant k, the minimum routing cost k{star can be determinedin polynomial (in n) time. In order to show that a k{star achieves a (1 + �) approximation, weshow that, for any tree T and constant � � 1=2:1. It is possible to determine a �{separator (a particular subtree of T to be de�ned later), andthe separator can be cut into several �{paths such that the total number of cut nodes andleaves of the separator is at most d2� e � 3. (Lemma 5.2)2. Using the separator, T can be converted into a (d2� e�3){star X(T ), whose internal nodes arejust those cut nodes and leaves. The routing cost of X(T ) satis�es C(X(T )) � (1+ �1�� )C(T ).(Lemma 5.5)By using T = bTG, � = �1+� and �nding the best (d2� e � 3){star K, we obtain C(K) �C(X( bTG)) � (1 + �1�� )C( bTG) = (1 + �)C( bTG), i.e. the desired approximation.



95.2 The �{spine of a tree.Definition 5.1. Let T be a spanning tree of G and S be a connected subgraph of T . A branch ofS is a connected component of T n S. Let � � 1=2 be a positive number. If jV (B)j � �n for everybranch B of S, then S is a �{separator of T . A �{separator S is minimal if any proper subgraphof S is not a �{separator of T .Intuitively, a �{separator is like a \center" of the tree. Starting from any node, there aresu�ciently many nodes which can not be reached without touching the separator. To illustrate theconcept of separator, we examine the simplest case for � = 1=2. For any tree T , there always existsa 1/2{separator which contains only one vertex. That is, we can always cut a tree at a node c suchthat each branch contains at most half of the nodes. Such a node is usually called the centroid ofthe tree in the literature. Note that this also shows the existence of a minimal �{separator for any� � 0:5.If we construct a star X centered at the centroid c, the routing cost will be at most twice thatof T . This can be easily shown as follows. First, if i and j are two nodes not in a same branch,dT (i; j) = dT (i; c) + dT (j; c). Consider the total distance of all ordered pairs of nodes on T . Thisvalue is exactly 2C(T ) from the de�nition. For any node i, since each branch contains no morethan half of the nodes, the term dT (i; c) will be counted in the total distance at least n times, n=2times for i to others and n=2 times for others to i. Hence, we have 2C(T ) � nPi dT (i; c). SinceC(X) = (n� 1)Pi dG(i; c), it follows that C(X) � 2C(T ). The idea in this paper can be thoughtas a generalization of the above method. However, the proof is quite more involved.Definition 5.2. Let T be a spanning tree of G and S be a connected subgraph of T . For anyvertex i in S, V B(T; S; i) denotes the set of vertex i and the vertices in the branches connected toi.Definition 5.3. Let P = SP (T; i; j) in which jV B(T; P; i)j � jV B(T; P; j)j. We de�neP a = jV B(T; P; i)j, P b = jV B(T; P; j)j, and P c = n � jV B(T; P; i)j � jV B(T; P; j)j. AssumeP = (i; r1; r2; : : : ; rh; j). De�ne Q(P ) = P1�x�h jV B(T; P; rx)j � dT (rx; i).The above notations are de�ned to simplify the expressions. P a and P b are the numbers ofvertices that are hanging o� the two end points of the path. Note that we always assume P a � P b.In the case that P contains only one edge, P c = 0. The notations are illustrated in Figure 2.Lemma 5.1. Let S be a minimal �{separator of T . If i is a leaf of S, jV B(T; S; i)j > �n.Proof. If S contains only one vertex, the result is trivial. Otherwise, if jV B(T; S; i)j � �n, deletingi from S we still get a �{separator. This is a contradiction to S being minimal.Definition 5.4. Let 1 � k � n. A k{star is a spanning tree of G which has no more than kinternal nodes. The set of all k{stars is denoted by k�(G). T is a minimum k{star if T 2 k�(G)and C(T ) � C(Y ) for all Y 2 k�(G).We now turn to the notions of �{path and �{spine. Informally, a �{path is a path such thatnot too many nodes (at most �n=2) are hanging o� its internal nodes. A �{spine is a set of edge-disjoint �{paths, whose union is a minimal �{separator. That is, a �{spine is obtained by cuttingthe minimal �{separator into �{paths. In the case that the minimal �{separator contains just onenode, the only �{spine is the empty set.
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Figure 3: Trees with maximum value for the size of the minimum cut and leaf set.Definition 5.5. Given a spanning tree T of G, and 0 < � � 0:5, a �{path of T is a path P suchthat P c � �n=2.Definition 5.6. Let 0 < � � 0:5: A �{spine Y = fP1; P2; :::; Phg of T is a set of pairwise edge-disjoint �{paths in T such that S = S1�i�h Pi is a minimal �{separator of T . Furthermore, forany pair of distinct paths Pi and Pj in the spine, we require that either they do not intersect or,if they do, the intersection point is an endpoint of both paths.Definition 5.7. Let Y be a �{spine of a tree T . CAL(Y ) (which stands for the cut and leaf setof Y ) is the set of the endpoints of the paths in Y . In the case that Y is empty, the cut and leafset contains only one node which is the �{separator of T . Formally CAL(Y ) = fuj9P 2 Y; v 2 T :P = SP (T; u; v)g if Y is not empty, and otherwise CAL(Y ) = fuju is the minimal �{separator g.Two trees achieving the maximum value for the size of the minimum CAL set for � = 1=3(jCAL(Y )j = 3) and � = 1=4 (jCAL(Y )j = 5) are depicted in Figure 3. Next, we show that forany tree, there always exists a (1/3){spine Y1 such that jCAL(Y1)j � 3, and a (1/4){spine Y2 suchthat jCAL(Y2)j � 5.Lemma 5.2. For any constant 0 < � � 0:5; and spanning tree T of G, there exists a �{spine Y ofT such that jCAL(Y )j � d2=�e � 3.



11Proof. Let S be a minimal �{separator of T . S is a tree. Let U1 be the set of leaves in S, U2be the set of vertices which have more than two neighbors in S and U = U1 [ U2. Let h = jU1j.Clearly, jU j � 2h�2. Let Y1 be the set of paths obtained by cutting S at all the vertices in U2. Forexample, for the tree on the right side of Figure 3, U1 = f2; 3; 4g; U2 = f1g; Y1 contains SP (T; 1; 2),SP (T; 1; 3) and SP (T; 1; 4). For any P 2 Y1; if P c > �n=2 then P is called a heavy path. It is easyto check that Y1 satis�es the requirements of a �{spine except that there may exist some heavypaths. Suppose P is not a �{path. We can break it up into �{paths by the following process. First�nd the longest pre�x of P starting at one of its endpoints and ending at some internal vertex, isay, in the path, that determines a �{path. Now we break break P at vertex i. Then we repeatthe breaking process on the remaining su�x of P starting at i stripping o� the next �-path and soon. In this way P can be cut into �-paths by breaking it in at most d2P c= (�n)e� 1 vertices. Sincethere are at least �n nodes hanged at each leaf,XP2Y1 P c < n� h�nAssume U3 to be the minimal vertex set for cutting the heavy paths to result in a �{spine Y of T .We have jU3j � d2 (n� h�n) = (�n)e � 1 = d2=�e � 2h� 1So, jCAL(Y )j = jU j+ jU3j � d2=�e � 3.5.3 Lower bound.Definition 5.8. The routing load of an edge e in T is the number eaeb of pairs in T connected bya path containing e.The following lemma is immediate.Lemma 5.3. For any spanning tree T of G, C(T ) =Pe2T eaebw(e):Lemma 5.4. Let Y be a �{spine of a spanning tree T of G and S = SP2Y P be a minimal �{separator of T . Then C(T ) � (1� �)n Pv2V dT (v; S) + PP2Y �P b(P a + P c)w(P ) + (P a � P b)Q(P )�.Proof. Since ea � (1� �)n for any edge e 2 T n S, we haveC(T ) = Xe2T eaebw(e)� Xe2TnS(1� �)nebw(e) +Xe2S eaebw(e)� (1� �)nXv2V dT (v; S) + XP2Y Xe2P eaebw(e)Now we simplify the second term. Assume P = (r0; r1; r2; : : : ; rh) in which jV B(T; P; r0)j �jV B(T; P; rh)j. Let jV B(T; P; ri)j = ni for 1 � i � h� 1 and ei = (ri�1; ri) for 1 � i � h:Xe2P eaebw(e)= hXi=10@P a + P c � h�1Xj=i nj1A0@P b + h�1Xj=i nj1Aw(ei)



12� hXi=1 P b (P a + P c)w(ei) + (P a � P b) hXi=1 h�1Xj=i njw(ei) + hXi=10@h�1Xj=i nj1A0@P c � h�1Xj=i nj1Aw(ei)� P b(P a + P c)w(P ) + (P a � P b) h�1Xj=1 nj 0@ jXi=1w(ei)1A= P b (P a + P c)w(P ) + (P a � P b)Q(P )5.4 From trees to stars.Lemma 5.5. For any constant 0 < � � 0:5; there exists a spanning tree X 2 (d2=�e � 3)�(G) suchthat C(X) � 11��C( bTG).Proof. Let T = bTG = (V;E;w) and n = jV j. Also, let Y = fPij1 � i � hg be a �{spine of T inwhich jCAL(Y )j � d2=�e�3. Note that the set of all the edges in Y form a �{separator S. AssumePi = SP (T; ui; vi) and jV B(T; Pi; ui)j � jV B(T; Pi; vi)j.We construct a spanning tree whose internal nodes are exactly the cut and leaf set of the �{spine we just identi�ed. We connect these nodes by short-cutting paths along the spine to includea set of acyclic edges with the same skeletal structure as the spine. All vertices in subtrees hangingo� the cut and leaf nodes of the spine are connected directly to their closest node in the spine.Along a �{path in the spine, all the internal nodes and nodes in subtrees hanging o� internal nodesare connected to one of the two endpoints of this path (note that both are in the cut and leaf setof the spine) in such a way as to minimize the resulting routing cost. This is the spanning treeused to argue the upper bound on the routing cost in the proof.More formally, construct a subgraph R � G with vertex set CAL(Y ) and edge set Er =f(ui; vi)j1 � i � hg. Trivially, R is a tree. Let f(i) be an indicator variable such that if�P ai � P bi �P ci w(Pi) � n (2Q(Pi)� P ci w(Pi)) � 0 then f(i) = 1; else f(i) = 0: The indicatorvariable f(i) determines the endpoint of Pi to which all the internal nodes and nodes hangingo� such internal nodes will be directly connected. We construct a spanning tree X of G where theedge set Ex is determined by the following rules:1. R � X2. If q 2 V B(T; S; r) then (q; r) 2 Ex; for any r 2 fui; vij1 � i � hg:3. For the vertex set Vi = V � V B(T; Pi; ui)� V B(T; Pi; vi); if f(i) = 1 then f(q; ui)jq 2 Vig �Ex; else f(q; vi)jq 2 Vig � Ex. That is, the vertices in Vi are either all connected to ui or allconnected to vi:It is easy to see that X 2 (d2=�e � 3)�(G). Let's consider the cost of X.C(X) = Xe2Ex eaebw(e)= Xe2Er eaebw(e) + (n� 1) Xe2Ex�Er w(e)



13First, for any e = (ui; vi) 2 Er;eaebw(e) � (P ai + f(i)P ci )�P bi + (1� f(i))P ci �w(Pi)= P ai P bi w(Pi) + �f(i)P bi + (1� f(i))P ai �P ci w(Pi)Recall that for subset of edges S � T , wS(T; i; j) stands for the value w(SP (T; i; j) \ S). Second,from triangle inequality,Xe2Ex�Er w(e) � Xv2V dT (v; S) + hXi=1 Xv2Vi (f(i)wS(T; v; ui) + (1� f(i))wS(T; v; vi))= Xv2V dT (v; S) + hXi=1 (f(i)Q(Pi) + (1� f(i)) (P ci w(Pi)�Q(Pi)))So, C(X) � hXi=1 P ai P bi w(Pi) + nXv2V dT (v; S)+ hXi=1minfP bi P ci w(Pi) + nQ(Pi); P ai P ci w(Pi) + n(P ci w(Pi)�Q(Pi))gSince the minimum of two numbers is not larger than their weighted mean, we haveminfP bi P ci w(Pi) + nQ(Pi); P ai P ci w(Pi) + n (P ci w(Pi)�Q(Pi))g� �P bi P ci w(Pi) + nQ(Pi)� P aiP ai + P bi + (P ai P ci w(Pi) + n (P ci w(Pi)�Q(Pi))) P biP ai + P biThen,C(X) � hXi=1 P ai P bi w(Pi) + nXv2V dT (v; S) + hXi=1 �2P ai P bi P ci + nP bi P ci �w(Pi)P ai + P bi + hXi=1 (P ai � P bi )nQ(Pi)P ai + P bi= nXv2V dT (v; S) + hXi=1 w(Pi)P ai + P bi ��P ai P bi + P bi P ci �n+ P ai P bi P ci �+ hXi=1 (P ai � P bi )nQ(Pi)P ai + P biThe simpli�cation in the last inequality uses the observation that for any i, we have P ai +P bi +P ci =n. From Lemma 5.4,C(X) � C(T ) max1�i�h( 11� � ; nP ai + P bi + P ai P ci(P ai + P bi )(P ai + P ci ))Since P ci � �n=2; nP ai + P bi + P ai P ci(P ai + P bi )(P ai + P ci )� nP ai + P bi + P ciP ai + P bi= n+ P cin� P ci � 2 + �2� � � 11� �



14In the following section we will show that it is possible to determine the minimum k{star of agraph in polynomial time. In fact, we have the following:Lemma 5.6. The minimum k{star of a graph G can be constructed in time O(n2k).The proof is delayed to the next section. The following theorem establishes the time-complexityof our PTAS.Theorem 5.1. There exists a PTAS for the �MRCT problem, which can �nd a (1+")-approximation solution in O(n�) time complexity where � = 2 d2="e � 2.Proof. From Lemma 5.5, there exists a spanning tree X 2 (d2=�e � 3)�(G) such that C(X) �11��C( bTG). For �nding a (1+")-approximation solution, we set 1=� = (1=")+1 and �nd a minimumk{star with k = d2=�e � 3 = d2="e � 1: The time complexity is O(n�) where � = 2 d2="e � 2 fromLemma 5.6.From Corollary 4.2 in x4, we immediately derive the following.Corollary 5.1. There exists a PTAS for the MRCT problem, which can �nd a (1+")-approximation solution in O(n�) time complexity where � = 2 d2="e � 2.6 Finding the best k{star.In this section we describe an algorithm for �nding the minimum routing cost k{star in G for agiven value of k. As mentioned before, given an accuracy parameter � > 0, we apply this algorithmfor k = d2� � 1e, and return the minimum routing cost k{star as a (1 + �){approximate solution.For a given k, to �nd the best k{star, we consider all possible subsets S of vertices of size k,and for each such choice, �nd the best k{star where the remaining vertices have degree one.6.1 A polynomial-time method. First, we verify that the overall complexity of this step ispolynomially bounded for any �xed k. Any k{star can be described by a triple (S; �;L), whereS = fv1; : : : ; vkg � V is the set of k distinguished vertices which may have degree more than one,� is a spanning tree topology on S, and L = (L1; : : : ; Lk), where Li � V n S is the set of verticesconnected to vertex vi 2 S.Let l = (l1; : : : ; lk) be a nonnegative k{vector2 such that Pki=1 li = n � k. We say that ak{star (S; �;L) has the con�guration (S; �; l) if li = jLij for all 1 � i � k. For a �xed k, the totalnumber of con�gurations is O(n2k�1) since there are �nk� choices for S,kk�2 possible tree topologieson k vertices, and �n�1k�1� possible such k{vectors (To see this, observe that every such vector canbe put in correspondence with picking k � 1 among n � 1 linearly ordered elements, and usingthe cardinalities of the segments between consecutively picked segments as the components of thevector). Note that any two k{stars with the same con�guration have the same routing load on theircorresponding edges. We de�ne �(S; �; l) to be the minimum routing cost k{star with con�guration(S; �; l).Note that any vertex v in V nS that is connected to a node s 2 S contributes a term of d(v; s)multiplied by its routing load of n � 1. Since all these routing loads are the same, the best wayof connecting the vertices in V n S to nodes in S, is obtained by �nding a minimum-cost way ofmatching up the nodes of V n S to those in S which obeys the degree constraints on the nodes of2any r 2 Z+, an r{vector is an integer vector with r components.



15S imposed by the con�guration, and the costs are the distances d. This problem can be solvedin polynomial time for a given con�guration (by a straightforward reduction to an instance ofminimum-cost perfect matching). The above minimum-cost perfect matching problem, also calledthe assignment problem, has been well studied and several e�cient algorithms can be found in[1]. For instance, by using an O(n3) algorithm for the assignment problem, the overall complexitywould be O(n2k+2) for �nding the best k{star.6.2 A faster method. We now show how the minimum k{stars for the di�erent con�gurationscan be computed more e�ciently by carefully ordering the matching problems for the con�gurationsand exploiting the common structure of two consecutive problems. In particular, we show howwe can obtain the optimal solution of any con�guration in this order by performing a singleaugmentation on the optimal solution of the previous con�guration. Thus, we show (Lemma 6.1)how to compute �(S; �; l) for a given con�guration in time O(nk).Let Wab be the set of all nonnegative a{vectors whose entries add up to a constant b. InWab �Wab, we introduce the relation � as l � l0 if there exist 1 � s; t � a such thatl0i = 8><>: li � 1 if i = sli + 1 if i = tli otherwiseFor a pair l and l0 such as the above, we say that l0 is obtained from l by s and t.Let r = jWabj = �a+b�1a�1 �. The following proposition shows that the elements of Wab can belinearly ordered as l1; : : : ; lr so that li+1 � li for all 1 � i � r � 1.Proposition 6.1. For all positive integers a, b, there exists a permutation �a;b of Wab such that�a;b1 is the lexicographic minimum, �a;br is the lexicographic maximum, and �a;bi+1 � �a;bi for alli = 1; : : : ; r � 1.Proof. By induction. The claim is clearly true when a = 1 for any b. Assume the claim is truefor all b when a = m � 1. For a = m construct the ordering as follows. First the elements forwhich l1 = 0 ordered applying �a�1;b to (l2; : : : ; la). Then the elements for which l1 = 1, orderedaccording to decreasing �a�1;b�1. In general each block for which l1 = h is ordered by applying�a�1;b�h to (l2; : : : ; la), forward or backwards according to the parity of h.Note that �a;bi+1 � �a;biwithin one block. Furthermore, at block boundaries the part (l2; : : : ; la) is either a lexicographicminimum or maximum so that it is feasible to increase by one l1. Finally, it is obvious that the �rstand the last of the constructed ordering are the lexicographic minimum and maximum respectively.According to proposition 6.1 we can order the elements ofWk;(n�k) as l1; : : : ; lr, where r = �n�1k�1�.Note that l1 = (0; : : : ; 0; n� k) and lr = (n� k; 0; : : : ; 0). In the remainder of this section, we shallprove the following lemma:Lemma 6.1. �(S; �; li+1) can be computed from �(S; �; li) in O(nk) time.Proof. We shall show that �(S; �; li+1) can be found from �(S; �; li) by means of a shortest pathcomputation. A similar argument is used in [1] (see Exercise 10.20) for solving a minimum cost
ow problem given the solution of another minimum cost 
ow problem which di�ers by only oneunit capacity arc.



16For convenience, let us rename the vertices so that S = f1; : : : ; kg. Let li = (jL1j; : : : ; jLkj)and (S; �;L) = �(S; �; li). Let us de�ne an auxiliary weighted digraph D(L) = (V;A; �) in whichthe arc set is A = f(u; v)ju 2 V n S; v 2 Sg [ f(u; v)ju 2 S; v 2 Lug and �(u; v) = w(u; v) if u =2 S,and �(u; v) = �w(u; v) if u 2 S. For a node in S, the weight on an outgoing arc re
ects the costreduction for removing a leaf from its neighbors, and the weight on a incoming arc re
ects theincrease in cost for connecting a leaf to the node.It is immediate to see that any cycle (not necessary simple) in the graph describes a way ofchanging (S; �;L) into another k{star with the same con�guration, while any path changes it intoa k{star whose con�guration is obtained from li by the endpoints of the path. Furthermore, thedi�erence in cost between the new and the old con�guration is given by the length of the cycle orthe path.Because (S; �;L) is optimal for its con�guration, there is no negative length cycle in D(L).Now, if li+1 is obtained from li by s and t, then any k{star with con�guration li+1 can be obtainedby a path from s to t and possibly some disjoint cycles. Since there is no negative length cycle, it isclear that there exists a simple shortest path from s to t which changes �(S; �; li) into �(S; �; li+1).We now show how such a shortest path can be computed in O(kn) time.Consider any shortest path (u1; v1; u2; : : : ; vh�1; uh) between two nodes ui 2 S and vi 2 V n Sin D(L). Take two consecutive edges (ui; vi) and (vi; ui+1) in the path. Since the pathis shortest, vi must be such as to minimize the sum of the two edge lengths. Recall that�(ui; vi) = �w(ui; vi) and �(vi; ui+1) = w(vi; ui+1). Then, we have that the sum of the twoedge lengths is minvi2Lifw(vi; ui+1) � w(ui; vi)g. Therefore, to �nd the shortest path from s to ton D(L), it is enough to construct a complete digraph D0(L) with vertex set S and lengths �0, inwhich �0(i; j) = minv2Lifw(v; j) � w(i; v)g. It is easy to see that the length of the shortest pathfrom s to t on D0(L) is the same as the one on D(L). Given the graph D0(L), a shortest s{t path(and also the corresponding path on D(L)), can be found in O(k2) time. Finally, to constructD0(L), for each vertex i 2 S, we have to �nd k� 1 minima (one for each other j 2 S), each over aset of li elements. Adding up, the total time complexity is (k�1)Pki=1 li = (k�1)(n�k) = O(nk).We are now able to prove Lemma 5.6, i.e. that a minimum k{star can be found in time O(n2k).Proof. When S and � are �xed, to �nd an optimum k{star we begin by �(S; �; l1), which is readilyobtained by setting Lk = V n S. Then, using Lemma 6.1, we compute the optimal k{stars forcon�gurations l2; : : : ; lr, and report the best overall.In general, a minimum routing cost k{star in G can be found in time O(n2k), given by �nk�choices for S, kk�2 possible tree topologies, and for each �xed S and � , �n�1k�1� con�gurations, ofcost O(nk) each.7 Approximating optimal communication spanning trees.We begin with a few de�nitions following Bartal [3]. Let V be a set of n points and let M be ametric space de�ned over V . The distance between i and j in M is denoted by dM (i; j). A metricN over V dominates another metricM over V if for every pair i; j 2 V , we have dN (i; j) � dM (i; j).Definition 7.1. A metric N over V �-approximates a metric M over V if it dominates M andfor every i; j 2 V , we have dN (i; j) � � � dM (i; j).De�ne a tree (or additive) metric over V as a metric space corresponding to paths in a tree whichcontains all the points of V . Note that we allow the tree de�ning the additive metric to containpoints other than those in V .



17We are interested in tree metrics that approximate any given metric M . However, even forthe simple metric induced by arranging the nodes of V in a cycle, if we restrict ourselves toapproximating this by tree metrics, � = 
(jV j) [3, 16]. Hence we turn to the following notion.Definition 7.2. A set of metric spaces S over V , �-probabilistically-approximates a metric spaceM over V , if every metric space in S dominates M and there exists a probability distribution overmetric spaces N 2 S such that for every i; j 2 V , E(dN (i; j)) � � � dM (i; j).Bartal's main result is the following.Theorem 7.1. (Bartal '96) Any metric space on V can be O(log2 jV j) -probabilistically-approximated by a set of tree metrics on V . Furthermore, the tree metrics and the distributionover them can be computed in polynomial time.As has been observed earlier [12], it is not hard to transform the tree metrics in this theoreminto spanning tree metrics, namely, those that do not contain any extra points other than thosein V . We use the above theorem to approximate the given metric M by spanning tree metricsN . By using a spanning tree N randomly picked from this collection according to the givendistribution as the solution, the expected value of its communication cost is Pij rijdN (i; j) �O(log2 jV j)Pij rijdM (i; j) by linearity of expectation. By repeatedly picking a few trees and usingthe best one, this bound is achieved with high probability, giving the result in Theorem 1.2. Asmentioned earlier, this bound has been improved and derandomised in [4, 6].Acknowledgements.Thanks to Sampath Kannan for describing the relevance of the threshold objective for multiplealignments. We also thank Tao Jiang and Howard Karlo� for suggesting the merger of two di�erentworks to obtain this joint paper. Finally, we thank the referees for their valuble comments.References[1] R.K. Ahuja, T.L. Magnanti, and J.B. Orlin, Network Flows { Theory, Algorithms, and Applications,Prentice-Hall , 1993.[2] V. Bafna, E. L. Lawler and P. Pevzner, Approximation algorithms for multiple sequence alignment,Proceedings of the 5th Combinatorial Pattern Matching conference, LNCS 807 (1994), pp. 43{53.[3] Y. Bartal, Probabilistic approximation of metric spaces and its algorithmic applications, Proceedingsof the 37th Annual IEEE Symposium on Foundations of Computer Science, (1996), pp. 184{193.[4] Y. Bartal, On approximating arbitrary metrics by tree metrics, Proceedings of the 30th Annual ACMSymposium on Theory of Computing, (1998), pp. 161-168.[5] H. Carrillo and D. Lipman, The multiple sequence alignment problem in biology, SIAM J. Appl. Math.,49 (1989), pp. 197{209.[6] M. Charikar, C. Chekuri, A. Goel and S. Guha, Rounding via trees: Deterministic approximationalgorithms for group Steiner trees and k-median, Proceedings of the 30th Annual ACM Symposium onTheory of Computing, (1998), pp. 114-123.[7] T.H. Cormen, C.E. Leiserson, and R.L. Rivest, Introduction to Algorithms, the MIT Press, 1994.[8] D. Feng and R. Doolittle, Progressive sequence alignment as a prerequisite to correct phylogenetictrees, J. Molec. Evol., 25 (1987), pp. 351{360.[9] D. Gus�eld, E�cient methods for multiple sequence alignment with guaranteed error bounds, Bulletinof Mathematical Biology, 55 (1993), pp. 141{154.[10] T. C. Hu, Optimum communication spanning trees, SIAM J. Comput., 3 (1974), pp. 188-195.
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