
Operations Research Letters 50 (2022) 129–132

Contents lists available at ScienceDirect

Operations Research Letters

www.elsevier.com/locate/orl

Approximation algorithm for the 2-stage stochastic matroid base 

problem ✩

Takuro Fukunaga a, R. Ravi b, Oleksandr Rudenko c, Ziye Tang b,∗
a Faculty of Science and Engineering, Chuo University, Japan
b Tepper School of Business, Carnegie Mellon University, USA
c Department of Mathematical Sciences, Carnegie Mellon University, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 14 January 2021
Received in revised form 10 January 2022
Accepted 12 January 2022
Available online 17 January 2022

Keywords:
Two-stage stochastic matroid base problem
Greedy algorithm
Submodular set cover

We consider the 2-stage stochastic matroid base problem, where an initial set of elements is bought by 
paying their first-stage deterministic cost and then extended to a matroid base in the second stage after 
the scenario realization. The second-stage costs are unrelated to the first-stage costs and represented 
explicitly via a polynomial number of scenarios. The objective is to pick the initial element set so as 
to minimize the expected total cost incurred. For a rank-r matroid under k scenarios we present an 
O (log r + log k)-approximation algorithm by adapting the greedy algorithm for finding a minimum-weight 
matroid base.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND 
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

We consider the 2-stage stochastic recourse model for the ma-
troid base problem. In this problem, we are given the deterministic 
first-stage cost as well as the second-stage cost distribution of ma-
troid elements. The matroid base is formed as follows: in the first 
stage, we pick a subset of independent elements by paying their 
first-stage costs. After the second-stage scenario is realized, we 
take the recourse action by augmenting the initial set with addi-
tional elements in order to form a matroid base. The goal is to 
select the first-stage set of elements so that the expected total 
cost is minimized when augmented with second-stage elements. 
Typically the recourse action entails making rapid decisions to the 
revealed scenario and is thus more costly than the initial action. 
Thus there is a trade-off between selecting the initial elements 
with cheaper costs under imprecise information, and deferring the 
selection to the revealed second-stage with higher costs.

The 2-stage stochastic recourse model has been considered for 
many combinatorial optimization problems. We refer the inter-
ested reader to the survey by Swamy and Shmoys [3] and refer-
ences therein for an in-depth review. We note a special case of our 
problem, the 2-stage stochastic minimum spanning tree problem is 

✩ This material is based upon research supported in part by the U. S. Air Force 
Office of Scientific Research under award number FA9550-20-1-008, and JST PRESTO 
under grant number JPMJPR1759.

* Corresponding author.
E-mail addresses: fukunaga@ise.chuo-u.ac.jp (T. Fukunaga), ravi@andrew.cmu.edu

(R. Ravi), 4rudenko@gmail.com (O. Rudenko), ziyet@andrew.cmu.edu (Z. Tang).
https://doi.org/10.1016/j.orl.2022.01.004
0167-6377/© 2022 The Author(s). Published by Elsevier B.V. This is an open access artic
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
considered by Dhamdhere, Ravi and Singh [1], where they present 
a randomized O (log n + log k)-approximation algorithm for n-node 
graph with k scenarios. They also showed that the problem is 
hard to approximate within a factor �(log n) unless P = NP, which 
means that their approximation factor is hard to improve when 
k = �(nc) for a constant c. Their algorithm is based on LP round-
ing which seems difficult to generalize to the matroid case. To the 
best of our knowledge, no approximation algorithm is known for 
the matroid case.

Our contribution. For a rank-r matroid with k scenarios in the 
second (recourse) stage, we present a deterministic O (log r+ log k)-
approximation algorithm by adapting the simple greedy algorithm. 
This matches the performance guarantee of the randomized al-
gorithm by Dhamdhere et al. for the special case of the 2-stage 
stochastic minimum spanning tree problem.

Our paper is organized as follows: in Section 2 we formally de-
fine the 2-stage stochastic matroid base problem; in Section 3 we 
recall and prove some matroid properties needed to analyze the 
algorithm performance; in Section 4 we describe and analyze the 
performance of our greedy algorithm.

2. Problem definition

Let M = (E, I) be a matroid where E denotes the element 
set and I ⊆ 2E denotes the family of independent sets. Let r de-
note the matroid rank and B denote the family of matroid bases. 
Let c0(e) denote the first-stage deterministic cost for each ele-
ment e ∈ E . In this work, we choose the polynomial-scenario model
(termed in [3]) to represent the scenario distribution. More specif-
le under the CC BY-NC-ND license 

https://doi.org/10.1016/j.orl.2022.01.004
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/orl
http://crossmark.crossref.org/dialog/?doi=10.1016/j.orl.2022.01.004&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:fukunaga@ise.chuo-u.ac.jp
mailto:ravi@andrew.cmu.edu
mailto:4rudenko@gmail.com
mailto:ziyet@andrew.cmu.edu
https://doi.org/10.1016/j.orl.2022.01.004
http://creativecommons.org/licenses/by-nc-nd/4.0/


T. Fukunaga, R. Ravi, O. Rudenko et al. Operations Research Letters 50 (2022) 129–132
ically, we are given k scenarios with the corresponding probability 
pi (so that p1 + . . . + pk = 1) and the cost functions ci(e) for each 
element e ∈ E for i = 1, . . . , k.

The matroid base is formed as follows: in the first stage, we 
pick a subset E0 of independent elements by paying their first-
stage costs. After the second-stage is realized as scenario i, we 
take the recourse action by augmenting E0 with set Ei in order 
to form a base. The goal is to select the first-stage set of elements 
to E0 in order to minimize the expected total cost incurred, i.e. ∑

e∈E0
c0(e) + ∑k

i=1 pi
∑

e∈Ei
ci(e).

3. Properties of matroids

Roughly speaking, our algorithm employs a greedy strategy of 
adding elements to the first stage solution so that they improve 
the expected cost of completing the current solution in the second 
stage. In particular, we will choose greedily an element whose ratio 
of first-stage cost to the reduction in the expected completion cost 
is the smallest. To relate the cost of the elements added this way 
to that of the optimum we relate the ratio cost of the element to 
that of the optimum solution at this stage. To do this, we prove 
in this section that the reduction in the cost of an optimal base 
by contracting a subset of elements as a function of this set of 
elements is submodular.

Notation. We fix the cost function c ∈ RE on a matroid M =
(E, I) throughout this section. For a subset F ⊂ E , let c(F ) :=∑

e∈F c(e). We let c∗(M) denote the minimum cost of a base of 
M . For any F ⊆ E , M/F is the matroid obtained by contracting F , 
and T F denotes a minimum cost base of M/F . We simply write T∅

as T . For ease of presentation, we assume that no two elements of 
E have the same cost. By this assumption, the minimum cost base 
of M/F is unique for any F ⊆ E .

The following property is well-known:

Lemma 1 (Weak elimination property of circuits). Let C, C ′ be two dis-
tinct circuits of a matroid such that there exists an element e ∈ C ∩ C ′ . 
Then, C ∪ C ′ \ {e} is dependent.

The following theorem generalizes the matroid base exchange 
property:

Theorem 1 ([2]). Let A and B be two bases of a matroid. For any parti-
tion A = A1 	 · · · 	 Ak, there exists a partition B = B1 	 · · · 	 Bk such 
that (A \ Ai) ∪ Bi is a base for each i = 1, . . . , k.

We now study the property of contracted matroids.

Lemma 2. For any X, Y ⊆ E with X ⊆ Y where Y ∈ I , we have T Y ⊆
T X

Proof. We prove the lemma for X = ∅; if X 
= ∅, then it suffices 
to apply the lemma to M/X . Let E \ Y = {e1, . . . , em}. We suppose 
that they are sorted so that c(e1) < c(e2) < · · · < c(em). When the 
greedy algorithm computes T Y of M/Y , it checks these elements in 
the increasing order of their indices, and each element is added to 
the solution when this addition does not violate the independence 
of the solution. Let Ti be the solution kept by the algorithm when 
ei is going to be checked. Ti+1 = Ti ∪ {ei} if Ti ∪ {ei} ∪ Y ∈ I , and 
Ti+1 = Ti otherwise. Similarly, define T ′

i as the solution kept by 
the algorithm applied to M when ei is going to be checked.

We prove by induction that Ti ⊆ T ′
i \ Y holds for any i. When 

i = 1, the claim follows because T1 = ∅ = T ′
1 \ Y . Let i > 1 and 

suppose that the condition holds for any i′ < i. Suppose for a con-
tradiction that ei−1 ∈ Ti and ei−1 /∈ T ′

i . Then T ′
i−1 ∪ {ei−1} has the 

circuit C including ei−1. Because ei−1 ∈ Ti implies that Ti−1 ∪{ei−1}
130
includes no circuit of M/Y , at least one element in C \ ({ei−1} ∪ Y )

is not included in Ti−1. We denote the set of such elements by K . 
For each element e′ ∈ K , Ti−1 ∪ {e′} has a circuit Ce′ of M/Y . Then, 
by the weak elimination property of circuits, (C \ K ) ∪ (

⋃
e′∈K (Ce′ \

{e′})) is dependent. This contradicts the fact that Ti−1 ∪{ei−1} is in-
dependent because (C \ K ) ∪ (

⋃
e′∈K (Ce′ \ {e′})) ⊆ Ti−1 ∪ {ei−1}. �

Lemma 3. Let F ∈ I , and define h : 2F → R+ by h(X) = c∗(M) −
c∗(M/X) for each X ⊆ F . Then, h is monotone (nondecreasing) submod-
ular.

Proof. The monotonicity of h is immediate from the definition of 
h. Hence we prove the submodularity of h in this proof. Let X, Y ⊆
F . By Lemma 2, T X∪Y ⊆ T X ⊆ T X∩Y ⊆ T and T X∪Y ⊆ TY ⊆ T X∩Y . In 
this proof, we assume without loss of generality that the elements 
in X ∪ Y are not included in T ; if e ∈ X ∪ Y is included in T , 
then we make a new element e′ parallel to e, and replace e in X
and in Y by e′ . In a similar vein, if X ∩ Y 
= ∅, then it suffices 
to consider M/(X ∩ Y ) instead of M . Therefore, we assume that 
X ∩ Y = ∅, and hence h(X ∩ Y ) = 0. In the following, we prove 
h(X) + h(Y ) ≥ h(X ∪ Y ).

Each of X ∪Y and T \T X∪Y includes a base of M/T X∪Y . Then, by 
applying Theorem 1 to X ∪ Y and T \ T X∪Y , there exists a partition 
T \ T X∪Y = X ′ 	 Y ′ such that each of X ′ ∪ Y and X ∪ Y ′ includes a 
base of M/T X∪Y . By the definition of T X∪Y , each of T X∪Y ∪ X ′ ∪ Y
and T X∪Y ∪ X ∪ Y ′ includes a base of M .

Observe that h(X ∪ Y ) = c(T ) − c(T X∪Y ) = c(X ′) + c(Y ′). Since 
T X∪Y ∪ Y ′ = T \ X ′ includes a base of M/X , we have c(T X ) ≤
c(T ) − c(X ′). Thus, h(X) = c(T ) − c(T X ) ≥ c(X ′). Similarly, since 
T X∪Y ∪ X ′ = T \ Y ′ includes a base of M/Y , we have c(T Y ) ≤
c(T ) − c(Y ′). This implies h(Y ) = c(T ) − c(T Y ) ≥ c(Y ′). Combining 
these inequalities gives h(X) + h(Y ) ≥ h(X ∪ Y ). �

Based on the submodularity of h, we can prove the follow-
ing lemma, which is the key to analyzing the performance of our 
greedy algorithm in Section 4.

Lemma 4. For any independent set F ∈ I of M = (E, I), there exists an 
element e ∈ F such that

c0(e)∑k
i=1 pi(c∗

i (M) − c∗
i (M/e))

≤ c0(F )∑k
i=1 pi(c∗

i (M) − c∗
i (M/F ))

. (1)

Proof. Let F = {e1, e2, . . . , el}, and let e ∈ arg mine′∈F c0(e′)/∑k
i=1 pi(c∗

i (M) − c∗
i (M/e′)). We prove that this e satisfies (1).

For any E ′ ⊆ F , let h(E ′) = c∗
i (M) − c∗

i (M/E ′). Then, for any i =
1, 2, . . . , k,

c∗
i (M) − c∗

i (M/F )

=
l∑

j=1

(
c∗

i

(
M/{e1, e2, . . . , e j−1}

) − c∗
i

(
M/{e1, e2, . . . , e j}

))

=
l∑

j=1

(
h

({e1, e2, . . . , e j}
) − h

({e1, e2, . . . , e j−1}
))

holds. By the submodularity of h proven in Lemma 3, the right-
hand side is at most

l∑
j=1

(
h({e j}) − h(∅)

) =
l∑

j=1

(
c∗

i (M) − c∗
i (M/e j)

)
.

Therefore,



T. Fukunaga, R. Ravi, O. Rudenko et al. Operations Research Letters 50 (2022) 129–132
c0(e)∑k
i=1 pi(c∗

i (M) − c∗
i (M/e))

≤
∑l

j=1 c0(e j)∑l
j=1

∑k
i=1 pi

(
c∗

i (M) − c∗
i (M/e j)

)

≤ c0(T )∑k
i=1 pi(c∗

i (M) − c∗
i (M/F ))

. �

4. Algorithm

4.1. Overview

Recall r is the matroid rank and k is the number of scenarios. 
Our algorithm consists of two steps. First we perform a prepro-
cessing step so that the second stage cost in the worst case is at 
most rk times the optimal second stage cost. This step is achieved 
by choosing certain elements in the first stage so that we can for-
bid the use of costly elements in each scenario in the second stage 
while still keeping the problem feasible. We employ the greedy al-
gorithm for the submodular set cover from [4] to show that the 
elements chosen in this step have a bounded cost. In the second 
step, we run a simple greedy algorithm to pick elements until the 
second stage cost becomes comparable to the optimal second stage 
cost. The restriction that the worst-case second stage cost is at 
most rk times the optimal allows us to bound the cost of the first 
stage; the first stage aims to reduce the second stage costs from 
up to rk times optimal to a constant factor of optimal, by paying 
roughly the cost of an optimal solution for reducing the expected 
second-stage costs by a constant factor.

4.2. Preprocessing

In the preprocessing step we aim to solve the following prob-
lem.

Definition 1 (Matroid base extension). Let M = (E, I) be a matroid, 
and let F1, . . . , Fk ⊆ E be given subsets of E . We are also given 
a weight w(e) for each e ∈ E . Then, we want to find a minimum 
weight subset F ⊆ E such that F ∪ Fi includes a base of M for each 
i = 1, 2, . . . , k.

In the following, we present an O (log k)-approximation algo-
rithm based on a reduction to the submodular set cover problem.

Definition 2 (Submodular set cover). In the submodular set cover 
problem, we are given a monotone (nondecreasing) submodular 
function f on a ground set I and a nonnegative weight of each el-
ement in I . Then the problem requires finding a minimum weight 
subset I ′ of I such that f (I ′) = f (I).

Wolsey [4] shows that there exists a greedy algorithm which 
achieves an approximation ratio of O (log maxi∈I f ({i})) for the 
submodular set cover problem.

Theorem 2. There exists an O (logk)-approximation algorithm for the 
matroid base extension problem.

Proof. We claim that the matroid base extension problem can be 
reduced to an instance of the submodular set cover problem. De-
fine a function f : 2E → R+ by f (F ) = ∑k

i=1 rM/Fi (F ) for each 
F ⊆ E , where rM/Fi is the rank function of the matroid M/Fi . Then 
F is feasible to the matroid base extension problem if and only if 
f (F ) = f (E). Note that maxe∈E f ({e}) ≤ k, and thus this reduction 
gives an O (log k)-approximation for the matroid base extension 
problem. �
131
Algorithm 1 Preprocess(M, {ci}k
i=1, b).

Input: M: matroid; ci : cost function for scenario i; b: estimate of expected second-
stage cost

Output: A subset of elements A
1: Let Fi := {e ∈ E : pi ci(e) ≤ b} for i = 1, . . . , k
2: Let A be the output of the O (log k)-approximation algorithm for the matroid 

base extension problem with above Fi and weight function c0 � Theorem 2

Algorithm 2 O (log r + log k)-approximation algorithm.
Input: M: matroid; ci : cost function for scenario i = 0, 1, . . .k
Output: B ⊂ E
1: Guess a and b such that a/2 ≤ c0(E∗

0) ≤ a and b/2 < ∑k
i=1 pic∗

i (M/E∗
0) ≤ b for 

some optimal solution E∗
0 .

2: A ← Preprocess(M, {ci}k
i=1, b) � Algorithm 1

3: Set M ′ := M/A, j := 0 and T0 := ∅. For any F ⊂ E\A, let g(F ) :=∑k
i=1 pic∗

i (M ′/F ).

4: while g(T j) − b > g(T0)−b
rk and ∃e with c0(e) ≤ a in M ′/T j do

5: In M ′/T j , find an element e j such that c0(e j) ≤ a and it minimizes 
c0(e j)/(g(T j) − g(T j ∪ {e j})).

6: Let T j+1 = T j ∪ {e j}. Increase j by 1
7: Let B be an arbitrary maximal independent set of A ∪ T j

Algorithm 1 outlines the preprocessing step. Let E∗
0 be the set 

of elements chosen by an optimal solution in the first stage. Then 
the second stage cost of the optimal solution is 

∑k
i=1 pic∗

i (M/E∗
0). 

In the preprocessing, we guess this value within a constant 
factor. We let b be the guessed value, and we assume that 
b/2 <

∑k
i=1 pic∗

i (M/E∗
0) ≤ b. For each i ∈ [k], we define Fi =

{e ∈ E : pici(e) ≤ b}. Then, we solve the matroid base extension 
problem with weights w := c0 by the O (log k)-approximation al-
gorithm. Let A be the obtained solution. This solution satisfies the 
following property.

Lemma 5. c0(A) = O (log k) · c0(E∗
0) and 

∑k
i=1 pic∗

i (M/A) ≤ rkb.

Proof. When the ith scenario is realized, no element e ∈ E \ Fi is 
chosen by the optimal solution in the second stage since other-
wise, the second stage cost of the solution is at least pi ci(e) > b. 
Hence E∗

0 ∪ Fi includes a base of M for each i ∈ [k]. This means 
that E∗

0 is a feasible solution for the matroid base extension prob-
lem, and thus c0(A) = O (log k) · c0(E∗

0).
Since A is feasible for the matroid base extension problem, Fi

includes a base of M/A for each i ∈ [k]. Since each element of Fi
has cost of at most b/pi , the cost of the base is at most rb/pi . 
Hence 

∑k
i=1 pic∗

i (M/A) ≤ ∑k
i=1 pi · (rb/pi) = rkb. �

4.3. Main part

Our algorithm is described in Algorithm 2. This algorithm out-
puts the set of elements chosen in the first stage. The guesses of 
a and b in line 1 can be enumerated in polynomial time by using 
binary search over the range of values of the optimal solution cost.

Let l + 1 be the number of iterations in Algorithm 2 (thus the 
output of the algorithm is a maximal independent set of A ∪ Tl+1).

Lemma 6. c0(A ∪ Tl+1) = O (log r + log k) · c0(E∗
0).

Proof. By applying Lemma 4 where we set M to be M ′/T j and F
to be E∗

0, we have that ∀ j = 0, . . . , l,

c0(e j)

g(T j) − g(T j+1)
≤ c0(E∗

0)

g(T j) − g(T j ∪ E∗
0)

, (2)

where g is defined in line 3 of Algorithm 2. As a result, we can 
relate g(T j+1) to g(T j) as follows:



T. Fukunaga, R. Ravi, O. Rudenko et al. Operations Research Letters 50 (2022) 129–132
g(T j+1) − b = g(T j) − b − (g(T j) − g(T j+1))

≤ g(T j) − b − c0(e j)

c0(E∗
0)

· (g(T j) − g(T j ∪ E∗
0))

≤
(

1 − c0(e j)

c0(E∗
0)

)(
g(T j) − b

)

≤ e−c0(e j)/c0(E∗
0)

(
g(T j) − b

)
,

where the second inequality follows from g(T j ∪ E∗
0) ≤ g(E∗

0) =∑k
i=1 pic∗

i (M ′/E∗
0) ≤

∑k
i=1 pic∗

i (M/E∗
0) ≤ b. Therefore,

g(Tl) − b ≤ e−∑l−1
j=0 c0(e j)/c0(E∗

0)
(g(T0) − b) .

Notice that g(Tl) − b > (g(T0) − b)/(rk) holds since the algo-
rithm did not terminate in the l-th iteration. Hence, by taking 
the log and arranging the terms in the above inequality, we have ∑l−1

j=0 c0(e j) < (log r + log k) · c0(E∗
0).

Notice that Tl+1 = {e0, e1, . . . , el}. We have c0(el) ≤ a ≤ c0(E∗
0)

by the definition of el and a. Hence, c0(Tl+1) ≤ (1 + log r + log k) ·
c0(E∗

0). Moreover, c0(A) = O (log k) · c0(E∗
0) by Lemma 5. Therefore, 

the lemma is proved. �
Lemma 7. 

∑k
i=1 pic∗

i (M/(A ∪ Tl+1)) ≤ 4 
∑k

i=1 pic∗
i (M/E∗

0).

Proof. If line 4 becomes true in Algorithm 2, since a is an upper 
bound on c0(E∗

0), we have E∗
0 ⊂ Tl+1 ∪ A. Therefore the lemma is 

trivially true.
Otherwise, by the termination condition of the while loop in 

Algorithm 2,

k∑
i=1

pic
∗
i (M ′/Tl+1) ≤

(
1 − 1

rk

)
b + 1

rk

k∑
i=1

pic
∗
i (M ′/T0).

Moreover, 
∑k

i=1 pic∗
i (M ′/T0) = ∑k

i=1 pic∗
i (M ′) =∑k

i=1 pic∗
i (M/A) ≤

rkb holds, where the last inequality follows from Lemma 5. There-
fore,

k∑
i=1

pic
∗
i (M ′/Tl+1) ≤

(
1 − 1

rk

)
b + b ≤ 4

k∑
i=1

pic
∗
i (M/E∗

0). �

Theorem 3. Algorithm 2 achieves an approximation factor within 
O (log r + log k).

Proof. The cost of the solution output by Algorithm 2 is c0(B) +∑k
i=1 pic∗

i (M/B). Since B is a maximal independent set of A ∪Tl+1, 
c0(B) ≤ c0(A ∪ Tl+1) and M/B = M/(A ∪ Tl+1). Thus the cost of the 
solution is at most c0(A ∪ Tl+1) + ∑k

i=1 pic∗
i (M/(A ∪ Tl+1)). More-

over, this is at most O (log r + log k) · c0(E∗
0) + 4 

∑k
i=1 pic∗

i (M/E∗
0)

by Lemmas 6 and 7. Since the optimal objective value is c0(E∗
0) +∑k

i=1 pic∗
i (M/E∗

0), this means that the approximation factor of Al-
gorithm 2 is O (log r + log k). �
References

[1] K. Dhamdhere, R. Ravi, M. Singh, On two-stage stochastic minimum spanning 
trees, in: International Conference on Integer Programming and Combinatorial 
Optimization, Springer, 2005, pp. 321–334.

[2] M. Lasoń, List coloring of matroids and base exchange properties, Eur. J. Comb. 
49 (2015) 265–268.

[3] C. Swamy, D.B. Shmoys, Approximation algorithms for 2-stage stochastic opti-
mization problems, ACM SIGACT News 37 (1) (2006) 33–46.

[4] L.A. Wolsey, An analysis of the greedy algorithm for the submodular set covering 
problem, Combinatorica 2 (4) (1982) 385–393.
132

http://refhub.elsevier.com/S0167-6377(22)00010-4/bibD7523B00F3D1D43C1728281639730361s1
http://refhub.elsevier.com/S0167-6377(22)00010-4/bibD7523B00F3D1D43C1728281639730361s1
http://refhub.elsevier.com/S0167-6377(22)00010-4/bibD7523B00F3D1D43C1728281639730361s1
http://refhub.elsevier.com/S0167-6377(22)00010-4/bib3A89ADCF2C6E0D3E932A3CDACFFAABC0s1
http://refhub.elsevier.com/S0167-6377(22)00010-4/bib3A89ADCF2C6E0D3E932A3CDACFFAABC0s1
http://refhub.elsevier.com/S0167-6377(22)00010-4/bibFEAC5C3C530C3812A439365A5FBAD05Fs1
http://refhub.elsevier.com/S0167-6377(22)00010-4/bibFEAC5C3C530C3812A439365A5FBAD05Fs1
http://refhub.elsevier.com/S0167-6377(22)00010-4/bib86888255C4DC3F6C1F1C5DEF176BE8AAs1
http://refhub.elsevier.com/S0167-6377(22)00010-4/bib86888255C4DC3F6C1F1C5DEF176BE8AAs1

	Approximation algorithm for the 2-stage stochastic matroid base problem
	1 Introduction
	2 Problem definition
	3 Properties of matroids
	4 Algorithm
	4.1 Overview
	4.2 Preprocessing
	4.3 Main part

	References


