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a b s t r a c t

Given an undirected graph with nonnegative edge weights, the max–min weighted T -join problem
is to find an even cardinality vertex subset T such that the minimum weight T -join for this set is
maximum. The problem is NP-hard even on a cycle but permits a simple exact solution on trees. We
present a 2/3-approximation algorithm based on a natural cut packing upper bound by using an LP
relaxation and uncrossing, and relating it to the T -join problem using duality.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

The T -join problem is an important generalization of matching
problems. Given an undirected graph with an even subset T of its
vertices, a T -join is a subgraph in which the subset of vertices with
odd degree is exactly T . Given edge weights, the weighted T -join
problem is to find a T -join of minimum weight. With nonnegative
edge weights, the problem can be reduced to finding a minimum
weight perfect matching on the metric completion of the vertices
in T .

In this paper, we consider the max–min weighted T -join prob-
lem: Given an undirected graph G = (V , E) with nonnegative
weights w on the edges, find an even cardinality subset T of ver-
tices such that theminimumweight T -join for this set ismaximum.
The unweighted case of the problem when all weights are either
unit or infinity has been well studied [6]: the main result there
characterizes the size of the max–min T -join by relating it to the
minimum number of odd ears in an ear decomposition, and also
to the minimum number of edges in the graph whose contraction
makes it factor critical. The resulting min–max equality also gives
a polynomial-time algorithm for the max–min T -join problem in
unweighted (or unit-weighted) graphs.

While the question of the weighted case was left open by
Frank [6], Ageev [1] settled the complexity and showed it to be NP-
hard. The version that he showed NP-hard is the following: Given
anundirected graphwith nonnegativeweights on the edges, define
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a join to be a subset of edges such that the number of edges in
the join from any cycle is at most half the cardinality of the cycle;
Ageev showed that finding the join ofmaximumweight is NP-hard.
However, the max–min weighted T -join problem we consider is
not the same as the weighted max join of Ageev: In particular, for
a subset of (weighted) edges to be a minimum weight T -join for
some set of vertices T , it must be the case that for any cycle, the T -
joinmust intersect the cycle in at most half theweight of the cycle;
otherwise, by taking the symmetric difference of the edges in the
T -join and this cycle, its weight can be reduced, contradicting the
fact that it was a minimum weight T -join. Thus for the max–min
weighted T -join problemwe study, a feasible minimum-weight T -
join is a subset of edges such that the weight of the edges in the
T -join from any cycle is at most half the total weight of the cycle.
(One can refer to theweighted version that Ageev showedNP-hard
simply as the max weighted join problem, since the solution to his
problem does not necessarily correspond to any even cardinality
vertex set T .)
Our results. We observe that the max–min weighted T -join
problem has an easy solution in a tree. We then show a 2

3 -
approximation algorithm for the max–min weighted T -join
problem using a simple cut packing upper bound. We close with
some extensions and open problems.
Related work. Max–min optimization problems over the choice of
the set of demand elements (such as the set of vertices to be
included in T in our case) have been studied before in the context of
robust optimization under demand uncertainty [9]. The cardinality
version they study is of the form ‘‘Which k demand elements
result in the corresponding minimization problem having the
largest value?’’ For example, in a capacitated graph, find the k
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sources whose separation from a given sink costs the most. This
latter problem is an instance of monotone submodular function
maximization under a cardinality constraint and has a (1 −
1
e )-approximation algorithm [13,5]. However, problems that do
not fit in the submodular framework have also been analyzed
in this cardinality model such as set cover [4], Steiner forest
and multicut [9]; these papers derive approximation algorithms
whose performance nearly matches that of the corresponding
minimization problem. Our work has the same flavor but imposes
no cardinality constraint on the set of demand vertices (T -vertices)
chosen except that it is even.

Max–min optimization has also been studied widely in other
less closely related areas of study. The max–min objective arises
in bottleneck optimization problems [10], where the minimum
weight element in the solution is sought to be maximized.
Max–min problems arise in the area of robust optimization under
data uncertainty, where the minimized object is fixed (such as
a spanning tree) and the max is taken over the various data
scenarios (e.g., of edge costs) [15]. Yet another stream of work
uses max–min objectives as a condition of fairness in choosing
an efficient solution for multiple criteria (such as the load on
various edges in a routingproblem)—see, e.g., [12]. Ourworkdiffers
from these in that the maximization is over the choice of demand
elements to include in the optimization problem, rather than over
the various cost scenarios or over alternate solutions of the same
underlying optimization problem with fixed demands.

The max–min weighted T -join problem is distantly related to
the analysis of Christofides’ 3

2 -approximation algorithm for the
metric version of the symmetric traveling salesperson problem [2].
This method finds a connected Eulerian subgraph which is then
shortcut by using an Euler tour with no increase in weight due to
the metric condition. To obtain the Eulerian subgraph, the method
first finds a minimumweight spanning tree (MST) and then finds a
minimum-weight T -join of the odd degree vertices in theMST, and
uses their union as the Eulerian subgraph. The max–min weighted
T -join problem characterizes the worst set of vertices that could
arise as T in this method, and hence may prove useful in analysis
of adaptations of Christofides’ method.

1.1. Optimal solution on trees

Proposition 1.1. For a weighted tree, defining T to be the odd degree
vertices in the tree results in the minimum weight T-join being the
whole tree.

Recall that for a given subset T of even cardinality, a T -cut is a
cut in the graphwhere each shore has an odd number of vertices in
T . Given the parity of the degrees in a T -join, any such T -cut must
have an odd number of edges (and hence at least one edge) in any
T -join for this set T .

Wewill check that defining the odddegree vertices of a treeH to
be the set T obeys the above property. For any tree edge e, observe
that each component of H \ {e} has an odd number of odd degree
vertices. Otherwise, the parity of the number of edges leaving such
a set (which is the unique edge e and hence is odd) will be even.
Thus, every tree edge defines a T -cut when T is the set of odd-
degree vertices in H . As argued above, every cut corresponding to
a tree edgemust be crossed by any T -join. Thus the whole tree H is
itself a minimum T -join for this definition of T . Since trivially one
cannot obtain a T -join that is larger than the weight of the whole
tree for any T , this also shows that this is an optimal solution to the
max–min weighted T -join problem on the tree.

1.2. NP-hardness

Sebő [14] showed that themax–minweighted T -join problem is
weakly NP-hard even on a cycle by a reduction from the PARTITION
problem. Let a1, . . . , an be an instance of PARTITION. To reduce this
to the weighted max–min T -join problem, consider a cycle of size
nwith edge-weights a1, . . . , an in an arbitrary order. It is now easy
to check that the maximum weight of a T -join problem on this
instance is a1+···+an

2 if and only if the given instance of PARTITION is
feasible, and is strictly smaller otherwise. This follows in particular
from the condition alluded above that any feasible T -join to our
problem is a subset of edges such that the weight of the edges in
the T -join from this cycle is at most half the total weight of the
cycle.

2. The 2
3 -approximation algorithm

Let G = (V , E) be a graph with vertex set V and edge set E,
where each edge has a nonnegativeweight w(·). In this section, we
present an approximation algorithm for the max–min weighted
T -join problem on G. The algorithm is based on an upper bound
obtained by linear programming duality.

2.1. A linear programming upper bound

For a vertex subset S ⊆ V , we denote by δS the set of edges
between S and V \ S. For a vertex subset T ⊆ V of even cardinality,
δS is called a T -cut if |S ∩ T | is odd. Let QT denote the set of vertex
subsets that determine a T -cut and do not contain a specified
vertex r ∈ V , i.e., QT = {S | r ∉ S ⊆ V , |S ∩ T | odd}. Edmonds
and Johnson [3] have shown that the following linear program, for
nonnegative weights w(·), has an integral optimal solution, which
corresponds to a minimum weight T -join.

(TJ) Minimize

e∈E

w(e)x(e)

subject to

e∈δS

x(e) ≥ 1, ∀S ∈ QT ,

x(e) ≥ 0, ∀e ∈ E.

The dual linear program is as follows.

(TCP) Maximize

S∈QT

yS

subject to

S:e∈δS

yS ≤ w(e), ∀e ∈ E,

yS ≥ 0, ∀S ∈ QT .

We now provide an upper bound on the weight of a max–min
T -join over all possible sets T . To do this, we consider the following
linear program.

(CP) Maximize


S⊆V\{r}

yS (1)

subject to

S:e∈δS

yS ≤ w(e), ∀e ∈ E, (2)

yS ≥ 0, ∀S ⊆ V \ {r}. (3)

Note that (CP) and (TCP) differ only in the set of y-variables in
them: The former contains one for every subset while the latter
has variables only for the odd T -sets. The linear program (CP) finds
the maximum fractional packing of cuts in the weighted edges of
the given graph. To see why this is an upper bound on the value
of any T -join, observe that an arbitrary feasible solution of (TCP)
is feasible to (CP) for any choice of T . Therefore, the optimal value
of (CP) is greater than or equal to the optimal value of (TCP), and
by the strong duality, to the optimal value of (TJ), which is equal to
theminimum T -joinweight by the integrality [3]. Thus the optimal
value of the linear program (CP) provides an upper bound on the
maximum value of a minimum T -join weight. Let zCP denote the
optimal value of (CP). We summarize this discussion below.
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Proposition 2.1. For any graph with nonnegative edge weights, the
max–min weighted T-join has weight at most the value zCP for this
graph.

The linear program (CP) has an exponential number of variables.
However, the separation problemof the dual linear programof (CP)
is efficiently solvable as it reduces to amin-cut problem. Therefore,
one can solve (CP) in polynomial time via the ellipsoid method [8].
Alternatively, one canmakeuse of a compact extended formulation
for the dual of (CP).

We now argue that (CP) admits an optimum cut packing y∗ such
that Ψ = {S | y∗

S > 0} forms a laminar family. This requires
that any pair Si, Sj ∈ Ψ must obey that either Si ⊂ Sj, Sj ⊂ Si
or Si ∩ Sj = ∅ (recall that all sets S in Ψ do not contain r). This
follows from a simple uncrossing argument: Whenever we have
two sets Si and Sj that are given positive value by y∗ and cross, i.e.,
Si ∩ Sj, Si \ Sj, Sj \ Si are all nonempty, then we can change the value
of y∗ as follows: Let ϵ = min(y∗

Si
, y∗

Sj
). Reduce the y∗ value of both Si

and Sj by ϵ and increase by ϵ the y∗ values of the cuts defined by the
shores Si ∩ Sj and Si ∪ Si. It is easy to verify from the submodularity
of the cut function that this change does not result in overpacking
the edge weights as constrained by (2). Moreover, it is not hard to
see that the change increases the value of


S y

∗

S · |S|2 [11]. Thus
choosing an optimal solution y∗ that maximizes


S y

∗

S · |S|2 will
necessarily give a solution with no pair of crossing sets. Such a
cross-free family of sets is laminar as claimed.

2.2. Constructing an approximate solution

In this section, we show how to obtain an even cardinality
vertex subset T for which the minimum T -join weight is at least
2
3 of the upper bound zCP.

Note that a triangle with unit weights shows that the gap
between the above upper bound and a max–min weighted T -join
can be as low as 2

3 . In fact, the maximum cut packing has value 3
2 ,

while a max–min weighted T -join consists of a single edge with T
being the set of end-vertices of this edge. By connectingmany such
triangles at a commonvertex, the example generalizes for any large
number of vertices. We show that this bound can be realized by an
algorithm.

Our algorithm starts by solving the linear program (CP) and
using the solution to obtain an optimal uncrossed solution. First,
we observe that even though the number of variables in (CP) is
exponential, the number of nontrivial constraints is polynomial
(as many as the number of edges) and hence at any extreme
point solution, the number of nonzero variables is also at most the
number of edges. This extremepoint solution to (CP)will in general
be made of crossing cuts, but they can be uncrossed in polynomial
time using the methods in [11]. This leads to an optimal uncrossed
solution y∗ such that the familyΨ of shores with positive y∗

S values
is a laminar family.

We then naturally represent this family Ψ as a tree H whose
root is r and leaves are the vertices ofV\{r}. The tree has an internal
node for every set S ∈ Ψ . A leaf v has S ∈ Ψ as its parent if S is the
smallest member in Ψ that contains v. Note that if the singleton
cut {v} has positive y∗-value, we make a new internal node for the
set {v} even though there is a separate leaf node for this vertex v
as well in H . Every internal node S has as its parent the internal
node corresponding to the smallest set R ∈ Ψ such that S ( R.
All the maximal sets in Ψ and the leaves that do not belong to any
member of Ψ are assigned r as their parent. (Note that r is a vertex
of the graph G that is not represented in the leaves and is not in the
shore of any of the cuts representing the internal nodes of H .)

The problem of defining T can now be rephrased in the tree H ,
where we think of assigning nodes of V for inclusion in the set T .
First, we use the fact that for any assignment of the leaves to T , any
T -cut must be crossed by any T -join. Thus an assignment of the
leaves to T to maximize the number of cuts in the given packing
Ψ that are T -cuts gives a lower bound on the size of the resulting
T -join. We denote an internal node of H corresponding to a subset
S as a node having weight y∗

S . Thus the problem of defining T is
now one of assigning the leaves of H to T such that we maximize
the total weight of the internal nodes that have an odd number of
leaves in T in the subtree under them.

The algorithm below defines a way to choose the subset of
leaves so as to get a 2

3 fraction of the total node weight of the tree.
In particular, we show the following.

Proposition 2.2. Given an undirected tree H with nonnegative
weights g(·) on its internal nodes, one can find in polynomial time a
subset T of the leaves of H such that the total weight of internal nodes
whose subtrees contain an odd number of leaves in T is at least 2

3 of
that of the total node weight of the tree.

Proof. First, we observe that the tree can be assumed to be binary
(i.e., each internal node has at most two children) without loss of
generality. This is because high degree nodes can be replaced by
any binary subtree rooted at the high-degree node and having the
children of the high-degree node as the leaves; all new internal
nodes are assigned zero weight. It is easy to check that under any
assignment of the leaves to T , the binary version of the original tree
accumulates the same node weight of internal nodes with an odd
number of T nodes under them.

Next, we argue that we can find subsets T1, T2, T3 (not
necessarily disjoint) of the leaf nodes of the tree H such that every
internal node of the tree has an odd number of leaf descendants
in exactly two of the three sets T1, T2, T3. We show how we can
construct these sets T1, T2, T3 recursively as we work our way
bottom up in the tree.

At each leaf node l, two of the three sets T l
1, T

l
2, T

l
3 are the

singleton {l} and the other one is empty. For an internal node swith
only one child l, we assign T s

1 = T l
1, T

s
2 = T l

2, T
s
3 = T l

3. At an internal
node swith two children p and q, we showhow to compose the sets
T p
1 , T p

2 , T p
3 and T q

1 , T q
2 , T q

3 to get the sets T s
1, T

s
2, T

s
3 . Note that T p

∗ is a
subset of the leaves in the subtree rooted in p, T q

∗ is a subset of the
leaves in the subtree rooted at q and hence T s

∗
will be a subset of

the leaves in the union of these two subtrees. Assume without loss
of generality that the nodes p and q have an odd number of leaf
nodes in the sets T p

1 , T p
2 and T q

1 , T q
2 , respectively. Now consider the

following assignment:

T s
1 = T p

2 ∪ T q
3 ,

T s
2 = T p

3 ∪ T q
1 ,

T s
3 = T p

1 ∪ T q
2 .

Since T p
2 has an odd number of leaves and T q

3 has an even number
of leaves, their union T s

1 has an odd number of leaves. Similarly, T s
2

has an odd number of leaveswhile T s
3 has an even number of leaves

as required (see Fig. 1 for an example). Finally, we apply the same
assignment rule to the root r and adopt T1 = T r

1 , T2 = T r
2 , T3 = T r

3 .
Since every internal node has an odd number of leaves in ex-

actly two out of T1, T2, T3, if we denote by Ls the set of leaves of
H in the subtree rooted at s, and Odd(Ls ∩ Ti) to be the indicator
variable for whether the subtree rooted at s has an odd number of
leaves in the set Ti, we get

3
i=1


s∈I

g(s) · Odd(Ls ∩ Ti) =


s∈I

2g(s),

where I denotes the set of internal nodes. Therefore, one of the
three sets Ti must satisfy that


s∈I g(s)·Odd(Ls∩Ti) ≥

2
3


s∈I g(s),

completing the proof. �
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Fig. 1. In the above example, if we start with T a
1 = {a}, T a

2 = {a}, T a
3 = ∅, T b

1 =

{b}, T b
2 = {b}, T b

3 = ∅, and T c
1 = {c}, T c

2 = {c}, T c
3 = ∅, we get T s

1 = {a}, T s
2 =

{b}, T s
3 = {a, b} and furthermore T r

1 = {b}, T r
2 = {a, b, c}, T r

3 = {a, c}.

Let T be the set Ti chosen at the end of the proof of
Proposition 2.2. If T contains an odd number of vertices, then we
add r to T . Thuswe obtain an even sized subset T ⊆ V that satisfies
S∈QT

y∗

S ≥
2
3


S⊆V\{v}

y∗

S .

Restricting y∗ on QT yields a feasible solution to (TCP). This
implies that the minimum weight T -join is at least 2/3 of the cut
packing upper bound zCP. Combining this with Proposition 2.1, we
have obtained a 2/3-approximation algorithm for the max–min
weighted T -join problem.

3. Extensions and open problems

3.1. Max–min point-to-point connection

Given an undirected graph with nonnegative weights on the
edges, and two disjoint sets S (sources) and D (destinations) of
equal size, an S–D connector is a subgraph in which every con-
nected component has an equal number of sources and destina-
tions. The S–D connector problem has been well studied. Goemans
andWilliamson [7] give a primal–dual 2-approximation algorithm
for the problem. The primal is a cut-covering formulation requiring
that every cutwith an unequal number of S andD vertices on either
shoremust be crossed; the dual is thus amaximumpacking of such
unbalanced cuts (that have different numbers of S and D vertices
in either shore). The primal–dual approximation algorithm guar-
antees that for any choice of S and D, the minimum weight of an
S–D connector is at most twice the maximum weight packing of
S–D unbalanced cuts.

Our result extends to the max–min version of the problem
where the goal is to choose two disjoint subsets of vertices of equal
size as sources S anddestinationsD (i.e., identify S,D ⊆ V such that
S ∩ D = ∅ and |S| = |D|) so that the minimum weight of a set of
S–D connector is maximum.

Note that any packing of unbalanced S–D cuts for any choice of
S and D is feasible for (CP), and hence the maximum cut packing
objective value of (CP), zCP, is an upper bound on the dual cut
packing value for any S–D connector. We use the same algorithm
as for the max–min weighted T -join problem to find an even sized
subset T , and use any bipartition of this set T into twoparts of equal
size as the sets S and D for this problem. Note that any T -cut has an
oddnumber of vertices in T andhence is necessarily unbalanced for
any such S and D. Thus our choice of the sets S,D results in having
an unbalanced cut packing of weight at least 2

3 zCP.
For any source–destination pair S and D, let w(Conn(S,D))

and w(Pack(S,D)) denote the minimum weight of the integral
S–D connector and the optimal value of its fractional linear
programming dual respectively. Let (S̃, D̃) be the pair found by
our algorithm and (S∗,D∗) be a pair that maximizes the minimum
weight of the S–D connector. Note that w(Pack(S∗,D∗)) ≤ zCP and
that w(Conn(S,D)) ≤ 2w(Pack(S,D)) for any sets S,D using [7].
We then have

w(Conn(S̃, D̃)) ≥ w(Pack(S̃, D̃)) ≥
2
3
zCP

≥
2
3
w(Pack(S∗,D∗)) ≥

2
3

·
1
2
w(Conn(S∗,D∗)).

Thus we have demonstrated sets S,D that give a 1
3 approximation

for the max–min weighted S–D connector problem.

3.2. Open questions

An alternate way to define a max–min T -join is as the subset
of edges of maximum total weight such that negating the sign
of the weights of these edges leaves a graph where there are no
negative weight cycles (a conservative weighting). Observe that
taking the odd degree vertices of this subgraph whose weights
have been negated defines a set T for which this subset is a
minimum weight T -join. It is interesting to investigate if this
alternate characterization can lead to improved algorithms for the
max–min weighted T -join problem for special classes of graphs
such as series–parallel graphs.

What is the complexity of the max–min size-k-matching
problem? Given a complete undirected graph with nonnegative
edge costs, the goal in this problem is to find a subset of 2k
vertices such that the minimum cost perfect matching among
these vertices is maximum. The metric version of this problem is
also interesting as a special case.
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