
Geometry of Online Packing Linear Programs?

Marco Molinaro and R. Ravi

Carnegie Mellon University

Abstract. We consider packing LP’s with m rows where all constraint coeffi-
cients are normalized to be in the unit interval. The n columns arrive in random
order and the goal is to set the corresponding decision variables irrevocably when
they arrive to obtain a feasible solution maximizing the expected reward. Previ-
ous (1 − ε)-competitive algorithms require the right-hand side of the LP to be
Ω(m

ε2
log n

ε
), a bound that worsens with the number of columns and rows. How-

ever, the dependence on the number of columns is not required in the single-row
case and known lower bounds for the general case are also independent of n.
Our goal is to understand whether the dependence on n is required in the multi-
row case, making it fundamentally harder than the single-row version. We refute
this by exhibiting an algorithm which is (1− ε)-competitive as long as the right-
hand sides areΩ(m

2

ε2
log m

ε
). Our techniques refine previous PAC-learning based

approaches which interpret the online decisions as linear classifications of the
columns based on sampled dual prices. The key ingredient of our improvement
comes from a non-standard covering argument together with the realization that
only when the columns of the LP belong to few 1-d subspaces we can obtain
small such covers; bounding the size of the cover constructed also relies on the
geometry of linear classifiers. General packing LP’s are handled by perturbing the
input columns, which can be seen as making the learning problem more robust.

1 Introduction

Traditional optimization models usually assume that the input is known a priori. How-
ever, in most applications the data is either revealed over time or only coarse information
about the input is known, often modeled in terms of a probability distribution. Conse-
quently, much effort has been directed towards understanding the quality of solutions
that can be obtained without full knowledge of the input, which led to the development
of online and stochastic optimization [6, 7]. Emerging problems such as allocating ad-
vertisement slots to advertisers and yield management in the internet are of inherent
online nature and have further accelerated this development [1].

Linear programming is arguably the most important and thus well-studied optimiza-
tion problem. Therefore, understanding the limitations of solving linear programs when
complete data is not available is a fundamental theoretical problem with a slew of ap-
plications, including the ad allocation and yield management problems above. Indeed,
a simple linear program with one uniform knapsack constraint, the Secretary Problem,

? Full version available at http://arxiv.org/abs/1204.5810. The first author is supported by NSF
grant CMMI1024554 and the second author is supported in part by NSF award CCF-1143998.

2 Marco Molinaro and R. Ravi

was one of the first online problems to be considered and an optimal solution was al-
ready obtained by the early 60’s [13, 15]. Although the single knapsack case is currently
well-understood under different models of how information is revealed [4], much less
is known about problems with multiple knapsacks and only recently algorithms with
solution guarantees have been developed [1, 10, 14].
The Model. We study online packing LP’s in the random permutation model. Consider
a fixed but unknown LP with n columns a1, a2, . . . , an ∈ [0, 1]m, whose associated
variables are constrained to be in [0, 1], and m packing constraints:

OPT = max

n∑
t=1

πtxt

n∑
t=1

atxt ≤ B (LP)

xt ∈ [0, 1] .

We knowB in advance but columns and their associated πt’s are presented in uniformly
random order, and when a column is presented we are required to irrevocably choose
the value of its corresponding variable. We assume that the number of columns n is
known.1 The goal is to obtain a feasible solution while maximizing its value. We use
OPT to denote the optimum value of the (offline) LP.

By scaling down rows as necessary, we assume without loss of generality that all
entries of B are the same, which we also denote with some overload of notation by B.
Due to the packing nature of the problem, we also assume without loss of generality that
all the πt’s are non-negative and all the at’s are non-zero: we can simply ignore columns
which do not satisfy the first property and always set to 1 the variables associated to
the remaining columns which do not satisfy the second property. Finally, we assume
that the columns at’s are in general position: for all p ∈ Rm, there are at most m
different t ∈ [n] such that πt = pat. Notice that perturbing the input randomly by a tiny
amount achieves this property with probability one, while the effect of the perturbation
is absorbed in our approximation guarantees [1, 11].
Related work. The random permutation model has grown in popularity [4, 11, 16] since
it avoids strong lower bounds of the pessimistic adversarial-order model [8] while still
capturing the lack of total information about the input. Different online problems have
already been studied in this model, including bin-packing [19], matchings [16, 18], the
AdWords Problem [11] and different generalizations of the Secretary Problem [2, 4, 5,
17, 23]. Closest to our work are packing problems with a single knapsack constraint. In
[20], Kleinberg considered the B-Choice Secretary Problem, where the goal is to select
at most B items coming online in random order to maximize profit. The author pre-
sented an algorithm with competitive ratio 1−O(1/

√
B) and showed that 1−Ω(1/

√
B)

is best possible. Generalizing the B-Choice Secretary Problem, Babaioff et al. [3] con-
sidered the Secretary Knapsack Problem and presented a (1/10e)-competitive algo-
rithm. Notice that in both cases the competitive ratio does not depend on n.

Despite all these works, results for the more general online packing LP’s considered
here were only recently obtained by Feldman et al. [14] and Agrawal et al. [1]. The

1 Knowing n up to 1± ε factor is enough; this is required for non-trivial competitive ratios [11].

Geometry of Online Packing Linear Programs 3

first paper presents an algorithm that obtains with high probability a solution of value
at least (1 − ε)OPT whenever B ≥ Ω(m logn

ε3) and OPT ≥ Ω(πmaxm logn
ε), where

πmax is the largest profit. In the second paper, the authors present an algorithm which
obtains a solution of expected value at least (1− ε)OPT under the weaker assumptions
B ≥ Ω(mε2 log

n
ε) or OPT ≥ Ω(πmaxm

2

ε2 log n
ε). One other way of stating this result is

that the algorithm has competitive ratio 1−O(
√
m log(n) logB/

√
B); this guarantee

degrades as n increases. The current lower bound on B to allow (1 − ε)-competitive
algorithms isB ≥ logm

ε2 , also presented in [1]. We remark that these algorithms actually
work for more general allocation problems, where a set of columns representing various
options arrive at each step and the solution may choose at most one of the options.

Both of the above algorithms use a connection between solving the online LP and
PAC-learning [9] a linear classification of its columns, which was initiated by Deva-
nur and Hayes [11] in the context of the AdWords problem. Here we further explore
this connection and our improved bounds can be seen as a consequence of making the
learning algorithm more robust by suitably changing the input LP. Robustness is a topic
well-studied in learning theory [12, 21], although existing results do not seem to apply
directly to our problem. We remark that a component of robustness more closely related
to the standard PAC-learning literature was also used by Devanur and Hayes [11].

In recent work, Devanur et al. [10] consider the weaker i.i.d. model for the general
allocation problem. While in the random permutation model one assumes that columns
are sampled without replacement, in the i.i.d. model they are sampled with replacement.
Making use of the independence between samples, Devanur et al. substantially improve
requirement on B to Ω(log(m/ε)ε2) while showing that the lower bound Ω(logmε2) still
holds in this model. We remark, however, that these models can present very different
behaviors: as a simple example, consider an LP with n columns, m = 1 constraints
and budget B = 1, where only one of the columns has π1 = a1 = 1 and all others
have πt = at = 0; in the random permutation model the expected value of the optimal
solution is 1, while in the i.i.d. model this value is 1 − (1 − 1/n)n → 1 − 1/e. The
competitiveness of the algorithm of [10] under the random permutation model is still
unknown and was left as an open problem by the authors.
Our results. Our focus is to understand how large B is required to be in order to allow
(1− ε)-competitive algorithms. In particular, the requirements for B in the above algo-
rithms degrade as the number of columns in the LP increases, while the the lower bound
does not. With the trend of handling LP’s with larger number of columns (e.g. columns
correspond to the keywords in the ad allocation problem, which in turn correspond to
visits of a search engine’s webpage), this gap is very unsatisfactory from a practical
point of view. Furthermore, given that guarantees for the single knapsack case do not
depend on the number of columns, it is important to understand if the multi-knapsack
case is fundamentally more difficult. In this work, we give a precise indication of why
the latter problem was resistant to arguments used in the single knapsack case, and
overcome this difficulty to exhibit an algorithm with dimension-independent guarantee.

We show that a modification of the DPA algorithm from [1] that we call Robust DPA
obtains a (1− ε)-competitive solution for online packing LP’s with m constraints in the
random permutation model whenever B ≥ Ω(m

2

ε2 log m
ε). Another way of stating this

result is that the algorithm has competitive ratio 1−O(m
√
logB/

√
B). Contrasting to

4 Marco Molinaro and R. Ravi

previous results, our guarantee does not depend on n and in the case m = 1 matches
the bounds for theB-Choice Secretary Problem (up to lower order terms) and improves
[3] for large B. We remark that we can replace the requirement B ≥ Ω(m

2

ε2 log m
ε) by

OPT ≥ Ω(πmaxm
3

ε2 log m
ε) exactly as done in Section 5.1 of [1].

High-level outline. As mentioned before, we use the connection between solving an on-
line LP and PAC-learning a good linear classification of its columns; in order to obtain
the improved guarantee, we focus on tightening the bounds for the generalization error
of the learning problem. More precisely, solving the LP can be seen as classifying the
columns into 0/1, which corresponds to setting their associated variable to 0/1. Consider
a family X ⊆ {0, 1}n of linear classifications of the columns. Our algorithms sample a
set S of columns and learn a classification xS ∈ X which is ‘good’ for the columns in
S (i.e., obtains large proportional revenue while not filling up the proportionally scaled
budget too much). The goal is to upper bound the probability that xS is not good for the
whole LP; this is typically done via a union bound over the classifications in X [1, 11].

To obtain improved guarantees, we refine this bound using an argument akin to
covering: we consider witnesses (Section 2.2), which are representatives of groups of
‘similar’ bad classifications that can be used to bound the probability that any clas-
sification in the group is learned; for that we need to use a non-standard measure of
similarity between classifications which is based on the budget of the LP. The prob-
lem is that, when the columns (πt, a

t)’s do not lie in a two-dimensional subspace of
Rm, the set X may contain a large number of mutually dissimilar bad classifications;
this is a roadblock for obtaining a small set of witnesses. In stark contrast, when these
columns do lie in a two-dimensional subspace (e.g.,m = 1), these classifications have a
much nicer structure which admits a small set of witnesses. This indicates that the latter
learning problem is intrinsically more robust than the former, which seem to precisely
capture the increased difficulty in obtained good bounds for the multi-row case.

Motivated by this discussion, we first consider LP’s whose columns at’s lie in few
one-dimensional subspaces (Section 2). For each of these subspaces, we are able to
approximate the classifications induced in the columns lying in the subspace by con-
sidering a small subset of the induced classifications; patching together these partial
classifications gives us a witness set for X . However, this strategy as stated does not
make use of the fact that the subspaces are embedded in an m-dimensional space, and
hence leads to large witness sets. By establishing a connection between the ‘useful’
patching possibilities with faces of a hyperplane arrangement in Rm (Lemma 7), we
are able to make use of the dimension of the host space and exhibit witness sets of
much smaller sizes, which leads to improved bounds.

For a general packing LP, we perturb the columns at’s to make them lie in few one-
dimensional subspaces that form an ‘ε-net’ of the space, while not altering the feasibility
and optimality of the LP by more than a (1 ± ε) factor (Section 3). Finally, we tighten
the bound by using the idea of periodically recomputing the classification, following [1]
(Section 4). We remark that omitted proofs are presented in the full version [22].

2 OTP for almost 1-dim columns

In this section we describe and analyze the algorithm OTP (One-Time Pricing) over
LP’s whose columns are contained in few 1-dimensional subspaces of Rm. The overall

Geometry of Online Packing Linear Programs 5

goal is to find an appropriate dual (perhaps infeasible) solution p for (LP) and use it to
classify the columns of the LP. More precisely, given p ∈ Rm, we define x(p)t = 1 if
πt > pat and x(p)t = 0 otherwise. Thus, x(p) is the result of classifying the columns
(πt, a

t)’s with the homogeneous hyperplane in Rm+1 with normal (−1, p). The motiva-
tion behind this classification is that it selects the columns which have positive reduced
cost with respect to the dual solution p, or alternatively, it solves to optimality the La-
grangian relaxation that uses p as multipliers.
Sampling LP’s. In order to obtain a good dual solution p we use the (random) LP con-
sisting on the first s columns of (LP) with appropriately scaled right-hand side.

max

s∑
t=1

πσ(t)xσ(t) ((s, δ)-LP)

s∑
t=1

aσ(t)xσ(t) ≤
s

n
δB

xσ(t) ∈ [0, 1] t = 1, . . . , s.

min
s

n
δB

m∑
i=1

pi +

s∑
t=1

ασ(t)

((s, δ)-Dual)

paσ(t) + ασ(t) ≥ πσ(t) t = 1, . . . , s

p ≥ 0

α ≥ 0.

Here σ denotes the random permutation of the columns of the LP. We use OPT(s, δ)
to denote the optimal value of (s, δ)-LP and OPT(s) to denote the optimal value of
(s, 1)-LP.

The static pricing algorithm OTP of [1] can then be described as follows.2

1. Wait for the first εn columns of the LP (indexed by σ(1), σ(2), . . . , σ(εn)) and
solve (εn, 1− ε)-Dual. Let (p, α) be the obtained dual optimal solution.

2. Use the classification given by p as above by setting xσ(t) = x(p)σ(t) for t =
εn + 1, εn + 2, . . . for as long as the solution obtained remains valid. From this
point on set all further variables to zero.

Note that by definition this algorithm outputs a feasible solution with probability
one. Our goal is then to analyze the quality of the solution produced, ultimately leading
to the following theorem.

Theorem 1. Fix ε ∈ (0, 1]. Suppose that there are K ≥ m 1-dim subspaces of Rm
containing the columns at’s and that B ≥ Ω

(
m
ε3 log

K
ε

)
. Then algorithm OTP returns

a feasible solution with expected value at least (1− 5ε)OPT.

Let S = {σ(1), . . . , σ(εn)} be the (random) index set of the columns sampled by
OTP. We use pS to denote the optimal dual solution obtained by OTP; notice that pS is
completely determined by S. To simplify the notation, we also use xS to denote x(pS).

Notice that, for all the scenarios where xS is feasible, the solution returned by OTP
is identical to xS with its components xSσ(1), . . . , x

S
σ(εn) set to zero. Given this obser-

vation and the fact that E[
∑
t≤εn πσ(t)x

S
σ(t)] ≤ εOPT, one can prove that the following

proposition implies Theorem 1.

Proposition 1. Fix ε ∈ (0, 1]. Suppose that there are K ≥ m 1-dim subspaces of Rm
containing the columns at’s and that B ≥ Ω

(
m
ε3 log

K
ε

)
. Then with probability at least

(1− ε), xS is a feasible solution for (LP) with value at least (1− 3ε)OPT.
2 To simplify the exposition, we assume that εn is an integer.

6 Marco Molinaro and R. Ravi

2.1 Connection to PAC learning
We assume from now on that B ≥ Ω(mε3 log

K
ε). Let X = {x(p) : p ∈ Rm+} ⊆

{0, 1}n denote the set of all possible linear classifications of the LP columns which
can be generated by OTP. With slight overload in the notation, we identify a vector
x ∈ {0, 1}n with the subset of [n] corresponding to its support.

Definition 1 (Bad solution). Given a scenario, we say that xS is bad if it does not
satisfy the properties of Proposition 1, namely xS is either infeasible or has value less
than (1− 3ε)OPT. We say that xS is good otherwise.

As noted in previous work, since our decisions are made based on reduced costs
it suffices to analyze the budget occupation (or complementary slackness) of the so-
lution in order to understand its value. To make this precise, given x ∈ {0, 1}n let
ai(x) =

∑
t∈x a

t
i be its occupation of the ith budget and let aSi (x) =

1
ε

∑
t∈x∩S a

t
i be

its appropriately scaled occupation of ith budget in the sampled LP (recall |S| = εn).

Lemma 1. Consider a scenario where xS satisfies: (i) for all i ∈ [m], ai(xS) ≤ B and
(ii) for all i ∈ [m] with pSi > 0, ai(xS) ≥ (1− 3ε)B. Then xS is good.

Moreover, since we are making decisions based on the optimal reduced cost for the
sampled LP, our solution satisfies the above properties for the sampled LP.

Lemma 2. In every scenario, xS satisfies the following: (i) for all i ∈ [m], aSi (x
S) ≤

(1− ε)B and (ii) for every i ∈ [m] with pSi > 0, aSi (x
S) ≥ (1− 2ε)B.

Given that ai(x) = E[aSi (x)] for all x, the idea is to use concentration inequalities
to argue that the conditions in Lemma 1 hold with good probability. Although concen-
tration of aSi (x) for fixed x can be achieved via Chernoff-type bounds, the quantity
aSi (x

S) has undesired correlations; obtaining an effective bound is the main technical
contribution of this paper.

Definition 2 (Badly learnable). For a given scenario, we say that x ∈ X can be badly
learned for budget i if either (i) aSi (x) ≤ (1 − ε)B and ai(x) > B or (ii) aSi (x) ≥
(1− 2ε)B and ai(x) < (1− 3ε)B.

Essentially these are the classifications which look good for the sampled (εn, 1−ε)-
LP but are actually bad for (LP). Putting Lemmas 1 and 2 together and unraveling the
definitions gives that

Pr
(
xS is bad

)
≤ Pr

 ∨
i∈[m],x∈X

x can be badly learned for budget i

 .

Notice that the right-hand side of this inequality does not depend on xS , it is only a
function of how skewed aSi (x) is as compared to its expectation ai(x) (over all x ∈ X).

Usually the right-hand side in the previous equation is upper bounded by taking a
union bound over all its terms [1]. Unfortunately this is too wasteful: when x and x′

are ‘similar’ there is a large overlap between the scenarios where aSi (x) is skewed and
those where aSi (x

′) is skewed. In order to obtain improved guarantees, we introduce in
the next section a new way of bounding the right-hand side of the above expression.

Geometry of Online Packing Linear Programs 7

2.2 Similarity via witnesses
First, we partition the classifications which can be badly learned for budget i into two
sets, depending on why they are bad: for i ∈ [m], let X+

i = {x ∈ X : ai(x) > B}
and X−i = {x ∈ X : ai(x) < (1 − 3ε)B}. In order to simplify the notation, given a
set x we define skewmi(ε, x) to be the event that aSi (x) ≤ (1 − ε)B and skewpi(ε, x)
to be the event that aSi (x) ≥ (1 − 2ε)B. Notice that if x ∈ X+

i , then skewmi(ε, x) is
the event that aSi (x) is significantly smaller than its expectation (skewed in the minus
direction), while for x ∈ X−i skewpi(ε, x) is the event that aSi (x) is significantly larger
than its expectation (skewed in the plus direction). These definitions directly give the
equivalence

Pr

 ∨
i,x∈X

x can be badly learned for budget i

 = Pr

 ∨
i,x∈X+

i

skewmi(ε, x) ∨
∨

i,x∈X−i

skewpi(ε, x)

 .

In order to introduce the concept of witnesses, consider two sets x, x′, say, in X+
i .

Take a subset w ⊆ x ∩ x′; the main observation is that, since at ≥ 0 for all t, for
all scenarios we have aSi (w) ≤ aSi (x) and aSi (w) ≤ aSi (x

′). In particular, the event
skewmi(ε, x)∨ skewmi(ε, x

′) is contained in skewmi(ε, w). The set w serves as a wit-
ness for scenarios which are skewed for either x or x′; if additionally ai(w) reasonably
larger than (1− ε)B, we can then use concentration inequalities over skewmi(ε, w) in
order to bound probability of skewm(ε, x) ∨ skewm(ε, x′). This ability of bounding
multiple terms of the right-hand side of (2.2) simultaneously is what gives an improve-
ment over the naive union bound.

Definition 3 (Witness). We say thatW+
i is a witness set forX+

i if: (i) for allw ∈ W+
i ,

ai(w) ≥ (1−ε/2)B and (ii) for all x ∈ X+
i there isw ∈ W+

i contained in x. Similarly,
we say thatW−i is a witness set for X−i if: (i) for all w ∈ W−i , ai(w) ≤ (1− 3ε/2)B
and (ii) for all x ∈ X−i there is w ∈ W−i containing x.

As indicated by the previous discussion, given witness sets W+
i and W−i for X+

i

and X−i , we directly get the bound

Pr

 ∨
i,x∈X+

i

skewm(ε, x) ∨
∨

i,x∈X−i

skewp(ε, x)

 ≤ Pr

 ∨
i,w∈W+

i

skewm(ε, w) ∨
∨

i,w∈W−i

skewp(ε, w)

 .

(2.1)

Putting together the last three displayed equations and using Chernoff-type bounds,
we can get an upper estimate on the probability that xS is bad in terms of the size of
witnesses sets.

Lemma 3. Suppose that, for all i ∈ [m], there are witness sets for X+
i and X−i of size

at most M . Then Pr(xS is bad) ≤ 8mM exp
(
− ε

3B
33

)
.

One natural choice of a witness set for, say,X+
i is the collection of all of its minimal

sets; unfortunately this may not give a witness set of small enough size. But notice that
a witness set need not be a subset of X+

i (or even X). Allowing elements outside X+
i

gives the flexibility of obtaining witnesses which are associated to multiple “similar”
minimal elements of X+

i , which is effective in reducing the size of witness sets.

8 Marco Molinaro and R. Ravi

2.3 Small witness sets for almost 1-dim columns
Given the previous lemma, our task is to find small witness sets. Unfortunately, when
the (πt, a

t)’s lie in a space of dimension at least 3, X+
i and X−i may contain many

(Ω(n)) disjoint sets [22], which shows that in general we cannot find small witness sets
directly. This sharply contrasts with the case where the (πt, a

t)’s lie in a 2-dimensional
subspace of Rm+1, where one can show that X is a union of 2 chains with respect to
inclusion. In the special case where the at’s lie in a 1-dimensional subspace of Rm, we
show that X is actually a single chain (Lemma 5) and therefore we can takeW+

i as the
minimal set of X+

i andW−i as the maximal set of X−i .
Due to the above observations, we focus on LP’s whose at’s lie in few 1-dimensional

subspaces. In this case, X+
i and X−i are sufficiently well-behaved so that we can find

small (independent of n) witness sets.

Lemma 4. Suppose that there are K ≥ m 1-dimensional subspaces of Rm which con-
tain the at’s. Then there are witness sets forX+

i andX−i of size at most (O(Kε log K
ε))

m.

To prove this lemma, assume its hypothesis and partition the index set [n] into
C1, C2, . . . , CK such that for all j ∈ [K] the columns {at}t∈Cj

belong to the same
1-dimensional subspace. Equivalently, for each j ∈ [K] there is a vector cj of `∞-norm
1 such that for all t ∈ Cj we have at = ‖at‖∞cj . An important observation is that
now we can order the columns (locally) by the ratio of profit over budget occupation:
without loss of generality assume that for all j ∈ [K] and t, t′ ∈ Cj with t < t′, we
have πt

‖at‖∞ ≥
πt′

‖at′‖∞
.3

Given a classification x, we use x|Cj to denote its projection onto the coordinates in
Cj ; so x|Cj

is the induced classification on columns with indices in Cj . Similarly, we
defineX|Cj

= {x|Cj
: x ∈ X} as the set of all classifications induced in the columns in

Cj . The most important structure that we get from working with 1-d subspaces, which
is implied by the local order of the columns, is the following.

Lemma 5. For each j ∈ [K], the sets in X|Cj
are prefixes of Cj .

To simplify the notation fix i ∈ [m] for the rest of this section, so we aim at provid-
ing witness sets for X+

i and X−i . The idea is to group the classifications according to
their budget occupation caused by the different column classes Cj’s. To make this for-
mal, start by covering the interval [0, B+m] with intervals {I`}`∈L, where I0 = [0, εB4K)

and I` = [εB4K (1+ ε
4)
`−1, εB4K (1+ ε

4)
`) for ` > 0 and L = {0, . . . , dlog1+ε/4 8K

ε e} (note
that since B ≥ m, we have B + m ≤ 2B). Define B`i,j as the set of partial classifi-
cations y ∈ X |Cj

whose budget occupation ai(y) lie in the interval I`. For v ∈ LK

define the family of classifications Bvi = {(y1, y2, . . . , yK) : yj ∈ Bvji,j}. The Bvi ’s
then provide the desired grouping of the classifications. Note that the Bvi ’s may include
classifications not in X and may not include classifications in X which have occupation
ai(.) greater than B +m.

Now consider a non-emptyBvi . Letwvi be the inclusion-wise smallest element inBvi .
Notice that such unique smallest element exists: since X|Cj

is a chain, so is Bvji,j , and
hence wvi is the product (over j) of the smallest elements in the sets {Bvji,j}j . Similarly,

3 Notice that this ratio is well-defined since by assumption at 6= 0 for all t ∈ [n].

Geometry of Online Packing Linear Programs 9

let wvi denote the largest element in Bvi . Intuitively, wvi and wvi will serve as witnesses
for all the sets in Bvi .

Finally, define the witness sets by adding the wvi and wvi ’s of appropriate size cor-
responding to meaningful Bvi ’s: set W+

i = {wvi : v ∈ LK ,Bvi ∩ X 6= ∅, ai(wvi) ≥
(1− ε/2)B} andW−i = {wvi : v ∈ LK ,Bvi ∩ X 6= ∅, ai(wvi) ≤ (1− 3ε/2)B}.

It is not too difficult to see that, say,W+
i is a witness set for X+

i : If x ∈ X+
i belongs

to some Bvi , thenwvi belongs toW+
i and is easily shown to be a witness for x. However,

if x does not belong to any Bvi , by having too large ai(x), the idea is to find x′ ⊆ x
which belongs to some Bvi and to X , and then use wvi as witness for x. We note that
ignoring induced classifications with occupation larger than B +m and ignoring Bvi ’s
which do not intersectX is very important for guaranteeing thatW+

i andW−i are small.

Lemma 6. The setsW+
i andW−i are witness sets for X+

i and X−i .

Bounding the size of witness sets. Clearly the witness sets W+
i and W−i have size at

most |L|K . Although this size is independent of n, it is still unnecessarily large since
it only uses locally (for each Cj) the fact that X consists of linear classifications; in
particular, it does not use the dimension of the ambient space Rm. Now we sketch the
argument for an improved bound, and details are provided in the full version.

First notice that the partial classification x(p)|Cj
is completely defined by the value

pcj . Thus, if J ⊆ [K] is such that the directions {cj}j∈J form a basis of Rm then
knowing pcj for all j ∈ J completely determines the whole classification x(p). Sim-
ilarly, if we know that x(p)|Cj

∈ Bvji for all j ∈ J , then for each j /∈ J we should
have fewer possible Bvji ’s where the partial classification x(p)|Cj can belong to; this
indicates that some of the sets {Bvi }v∈LK do not contain any element from X , which
implies a reduced size for the witness sets.

In order to capture this idea, we focus on the space of dual vectors p and define the
sets P `j = {p ∈ Rm+ : x(p)|Cj

∈ B`i,j} and P v = {p ∈ Rm+ : x(p) ∈ Bvi }. Notice
that P v =

⋂
j P

vj
j and that Bvi is empty iff P v is. The main step is to show that each

P `j is a polyhedron with ‘few’ facets, which uses the definition of x(p) and Lemma 5.
We then consider the arrangement of the hyperplanes which are facet-defining for the
P `j ’s and conclude that the P v’s are given by unions of the cells in this arrangement;
classical bounds on the number of cells in a hyperplane arrangement in Rm then allow
us to upper bound the number of nonempty P v’s. This gives the following.

Lemma 7. At most (O(Kε log K
ε))

m of the Bvi ’s contain an element from X .

This implies that bothW+
i andW−i have size at most (O(Kε log K

ε))
m, which then

proves Lemma 4. Finally, applying Lemma 3 we conclude the proof of Proposition 1.

3 Robust OTP
In this section we consider (LP) with columns that may not belong to few 1-dimensional
subspaces. Given the results of the previous section we would like to perturb the columns
of this LP so that it belongs to few 1-dim subspaces, and such that an approximate so-
lution for this perturbed LP is also an approximate solution for the original one. More
precisely, we obtain a set of vectors Q ⊆ Rm and transform each column at into a col-
umn ãt which is a scaling of a vector inQ, and we let the rewards πt remain unchanged.

10 Marco Molinaro and R. Ravi

The crucial observation is that the solutions of an LP are robust to slight changes in the
the constraint matrix.

Lemma 8. Consider real numbers π1, . . . , πn and vectors a1, . . . , an and ã1, . . . , ãn

in Rm+ such that ‖ãt − at‖∞ ≤ ε
m+1‖a

t‖∞. If x is an ε-approximate solution for (LP)
with columns (πt, ãt) and right-hand side (1 − ε)B, then x is a (1 − 2ε)-approximate
solution for (LP).

Perturbing the columns. To simplify the notation, set δ = ε
m+1 ; for simplicity of expo-

sition we assume that 1/δ is integral. When constructing Q we want the rays spanned
by the each of its vectors to be “uniform” over Rm+ . Using `∞ as normalization, let Q
be a δ-net of the unit `∞ sphere, namely let Q be the vectors in {0, δ, 2δ, 3δ, . . . , 1}m
which have `∞ norm 1. Note that |Q| = (O(mε))

m.
Given a vector at ∈ Rm we let ãt = ‖at‖∞qt, where qt is the vector in Q closest

(in `∞) to at

‖at‖∞ . By definition of Q, for every vector v ∈ Rm with ‖v‖∞ = 1 there
is a vector q ∈ Q with ‖v − q‖∞ ≤ δ. It then follows from positive homogeneity of
norms that the ãt’s satisfy the property required in Lemma 8: ‖at − ãt‖∞ ≤ δ‖at‖∞.

Algorithm Robust OTP. One way to think of the algorithm Robust OTP is that it works
in two phases. First, it transforms the vectors at into ãt as described above. Then it
returns the solution obtained by running the algorithm OTP over the LP with columns
(πt, ã

t) and right-hand side (1 − ε)B. Notice that this algorithm can indeed be imple-
mented to run in an online fashion.

Putting together the discussion in the previous paragraphs and the guarantee of OTP
for almost 1-dim columns given by Theorem 1 with K = |Q| = (O(mε))

m, we obtain
the following theorem.

Theorem 2. Fix ε ∈ (0, 1] and suppose B ≥ Ω
(
m2

ε3 log m
ε

)
. Then algorithm Robust

OTP returns a solution to the online (LP) with expected value at least (1− 10ε)OPT.

4 Robust DPA

In this section we describe our final algorithm, which has an improved dependence on
1/ε. Following [1], the idea is to update the dual vector used in the classification as new
columns arrive: we use the first 2iεn columns to classify columns 2iεn+1, . . . , 2i+1εn.
This leads to improved generalization bounds, which in turn give the reduced depen-
dence on 1/ε. The algorithm Robust DPA (as the algorithm DPA) can be seen as a
combination of solutions to multiple sampled LP’s, obtained via a modification of OTP
denoted by (s, δ)-OTP.

Algorithm (s, δ)-OTP. This algorithm aims at solving the program (2s, 1)-LP and can
be described as follows: it finds an optimal dual solution (p, α) for (s, (1− δ))-LP and
sets xσ(t) = x(p)σ(t) for t = s+ 1, s+ 2, . . . , t′ ≤ 2s such that t′ is the maximum one
guaranteeing

∑2s
t=s+1 a

σ(t)xσ(t) ≤ s
nB (for all other t’s it sets xσ(t) = 0).

The analysis of (s, δ)-OTP is similar to the one employed for OTP. The main dif-
ference is that this algorithm tries to approximate the value of the random LP (2s, 1)-
LP. This requires a partition of the bad classifications which is more refined than simply

Geometry of Online Packing Linear Programs 11

splitting intoX+
i andX−i , and witness sets need to be redefined appropriately. Nonethe-

less, using these ideas we can prove the following guarantee for (s, δ)-OTP. Again let
S = {σ(1), σ(2), . . . , σ(s)} be the random index set of the first s columns of the LP,
let T = {σ(s+ 1), σ(s+ 2), . . . , σ(2s)} and U = S ∪ T .

Proposition 2. Suppose that there are K ≥ m 1-dim subspaces of Rm containing the
columns at’s. Fix an integer s and a real number δ ∈ (0, 1/10) such that δ2sB

n ≥
Ω(m ln K

δ). Then algorithm (s, δ)-OTP returns a solution x satisfying aTi (x) ≤ B
for all i ∈ [m] with probability 1 and with expected value E[

∑
τ∈U πτxτ] ≥ (1 −

3δ)E[OPT(2s)]− E[OPT(s)]− δ2OPT.

Algorithm Robust DPA. In order to simplify the description of the algorithm, we assume
in this section that log(1/ε) is an integer.

Again the algorithm Robust DPA can be thought as acting in two phases. In the first
phase it converts the vectors at into ãt, just as in the first phase of Robust OTP. In the
second phase, for i = 0, . . . , log(1/ε) − 1, it runs (ε2in,

√
ε/2i)-OTP over (LP) with

columns (πt, ãt) and right-hand side (1− ε)B to obtain the solution xi. The algorithm
finally returns the solution x consisting of the ‘union’ of xi’s: x =

∑
i x

i.
Note that the second phase corresponds exactly to using the first ε2in columns to

classify the columns ε2in + 1, . . . , ε2i+1n. This relative increase in the size of the
training data for each learning problem allow us to reduce the dependence of B on ε
in each of the iterations, while the error from all the iterations telescope and are still
bounded as before. Furthermore, notice that Robust DPA can be implemented to run
online.

The analysis of Robust DPA reduces to that of (s, δ)-OTP. That is, using the def-
inition of the parameters of (s, δ)-OTP used in Robust DPA and Proposition 2, it is
routine to check that the algorithm produces a feasible solution which has expected
value (1− ε)OPT. This is formally stated in the following theorem.

Theorem 3. Fix ε ∈ (0, 1/100) and suppose that B ≥ Ω(m
2

ε2 ln m
ε). Then the algo-

rithm Robust DPA returns a solution to the online LP (LP) with expected value at least
(1− 50ε)OPT.

5 Open problems
A very interesting open question is whether the techniques introduced in this work
can be used to obtain improved algorithms for generalized allocation problems [14].
The difficulty in these problems is that the classifications of the columns are not linear
anymore; they essentially come from a conjunction of linear classifiers. Given this ad-
ditional flexibility, having the columns in few 1-dimensional subspaces does not seem
to impose strong enough properties in the classifications. It would be interesting to find
the appropriate geometric structure of the columns in this case.

Of course a direct open question is to improve the lower or upper bound on the
dependence on the right-hand side B to obtain (1 − ε)-competitive algorithms. One
possibility is to investigate how much the techniques presented here can be pushed
and what are their limitations. Another possibility is to analyze the performance of the
algorithm from [10] under the random permutation model.

12 Marco Molinaro and R. Ravi

References

1. S. Agrawal, Z. Wang, and Y. Ye. A dynamic near-optimal algorithm for online linear pro-
gramming. http://arxiv.org/abs/0911.2974.

2. M. Babaioff, M. Dinitz, A. Gupta, N. Immorlica, and K. Talwar. Secretary problems: weights
and discounts. In SODA, 2009.

3. M. Babaioff, N. Immorlica, D. Kempe, and R. Kleinberg. A knapsack secretary problem
with applications. In APPROX-RANDOM, 2007.

4. M. Babaioff, N. Immorlica, D. Kempe, and R. Kleinberg. Online auctions and generalized
secretary problems. SIGecom Exchanges, 7(2), 2008.

5. M. Bateni, M. Hajiaghayi, and M. Zadimoghaddam. Submodular secretary problem and
extensions. In APPROX-RANDOM, 2010.

6. J. R. Birge and F. Louveaux. Introduction to Stochastic Programming. Springer Series in
Operations Research and Financial Engineering. Springer, 1997.

7. A. Borodin and R. El-Yaniv. Online computation and competitive analysis. Cambridge
University Press, 1998.

8. N. Buchbinder and J. S. Naor. Online primal-dual algorithms for covering and packing.
Mathematics of Operations Research, 34:270–286, May 2009.

9. F. Cucker and D. X. Zhou. Learning Theory: An Approximation Theory Viewpoint. Cam-
bridge University Press, 2007.

10. N. R. Devanur, K. Jain, B. Sivan, and C. A. Wilkens. Near optimal online algorithms and
fast approximation algorithms for resource allocation problems. In EC, 2011.

11. N. R. Devenur and T. P. Hayes. The adwords problem: online keyword matching with bud-
geted bidders under random permutations. In EC, 2009.

12. L. Devroye and T. Wagner. Distribution-free performance bounds for potential function
rules. IEEE Transactions on Information Theory, 25:601–604, 1979.

13. E. B. Dynkin. The optimum choice of the instant for stopping a Markov process. Soviet
Mathematics Doklady, 4, 1963.

14. J. Feldman, M. Henzinger, N. Korula, V. S. Mirrokni, and C. Stein. Online stochastic packing
applied to display ad allocation. In ESA, 2010.

15. J. P. Gilbert and F. Mosteller. Recognizing the Maximum of a Sequence. Journal of the
American Statistical Association, 61(313):35–73, 1966.

16. G. Goel and A. Mehta. Online budgeted matching in random input models with applications
to adwords. In SODA, 2008.

17. S. Im and Y. Wang. Secretary problems: Laminar matroid and interval scheduling. In SODA,
2011.

18. R. M. Karp, U. V. Vazirani, and V. V. Vazirani. An optimal algorithm for on-line bipartite
matching. In STOC, 1990.

19. C. Kenyon. Best-fit bin-packing with random order. In SODA, 1996.
20. R. Kleinberg. A multiple-choice secretary algorithm with applications to online auctions. In

SODA, 2005.
21. S. Kutin and P. Niyogi. Almost-everywhere algorithmic stability and generalization error. In

Uncertainty in Artificial Intelligence, pages 275–282, 2002.
22. M. Molinaro and R. Ravi. Geometry of online packing linear programs.

http://arxiv.org/abs/1204.5810.
23. J. A. Soto. Matroid secretary problem in the random assignment model. In SODA, 2011.

