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tant since multiplication is a commonly used and ex-pensive operation. Designing fast parallel multipliersis particularly critical for specialized chips which sup-port multiplication intensive operations such as digitalsignal processing and graphics. Thus there have beenmany research projects and papers on the design offast parallel multipliers; these results are surveyed in[1, 3, 13]. Continuing research in the area has ledto a steady improvement in the designs for PartialProduct Reduction Trees (PPRTs) for parallel multi-plier designs as evidenced in the progression of work in[14, 2, 12, 10, 11, 6]. However, almost all of this priorwork focused on �nding good basic building blocks(compressors) using adders which could then be con-nected in a regular pattern to build a multiplier. Incontrast, our approach is to design a faster multiplierby �nding a globally optimal way of interconnectinglow-level components.We now discuss the design problem in more detail(a complete description is given in Section 2). Af-ter computing the partial products, the multiplicationproblem for two n-bit numbers can be reduced to twoproblems. First use a PPRT to add (2n�1) columns ofbits, producing two bits for each column (carrys areincorporated from each column to the next). Thenadd the two (2n�1)-bit numbers produced using a �-nal adder, which we will call a carry-propagate adder(See Figure 1). The basic problems we address hererelate to designing fast PPRTs.In [4] the Three Dimensional Method (TDM) forglobally designing the PPRT of a parallel multipliercircuit is described. The goal of the TDM is to pro-duce a minimum delay PPRT using full adders ((3,2)adders) and a small number of half adders ((2,2)adders). In [4] it was shown that the TDM has theadvantages of minimizing the number of devices re-quired for the PPRT and allowing standard ASICformats and utilities for generating layouts for tree-based circuits to be used. The speed improvements
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Figure 1: The basic design of the multiplier,modelled after the long multiplication methodfor multiplying two binary numbers. Columni has weight 2i. Each column of bits is addedin a circuit that generates two sum bits and anumber of carry bits that feed into the addercircuit for the next column. The output bitsfrom the columns are summed in a fast adderto produce the �nal result of the multiplication.are achieved by carefully modelling the relationshipsof the output delays to the input delays in an adder,and then interconnecting the adders in a globally op-timal way. They describe a linear-time heuristic forconstructing PPRTs which outperform the best cur-rent designs. However, the question of whether the al-gorithm always derives the optimalTDM-based PPRTwas left open. In this paper we describe a number ofnew techniques for designing and analyzing PPRTs.Speci�cally, we describe:(i) An optimal class of circuits which can be used inconstructing PPRTs.(ii) A linear time algorithm for producing a delay-optimal circuit which sums a set of input bits.(iii) A program which �nds optimal PPRT circuits.Using the program we have found optimal PPRTcircuits for multiplying two numbers of size up to 40bits. With improvements we will be able to solvelarger problems. Our results show that the heuristic in[4] gives PPRT circuits with optimal or near-optimaloverall delay. Our program �nds PPRT circuits withbetter delay pro�les. The techniques we developedallow the program to sharply prune the search spaceof PPRT circuits, and thus allow optimal circuits oflarger sizes to be designed.The basic component we use in our PPRT design isa Full Adder which takes three input bits availableat times a � b � d and produces a sum at times = max(b + x2; d + x3) (x2 � x3 � 0) and a carry

at time c = d + y3 (y3 � 0). We denote such a fulladder by g = (a; b; d), and use subscripting to refer toa speci�c adder (e.g., gi = (ai; bi; di) with sum out-put si and carry output ci). This very general modelapplies to current technology and is likely to hold forany foreseeable technologies. Except where noted, ourresults hold for this general model, and in fact applyso long as the function for c is non-decreasing in d, andthe function for s is non-decreasing in b and also non-decreasing in d for �xed b. Some of our results apply tomore restricted cases that reect current technology.Based on current technology, the time used by anadder to generate its outputs from its inputs can benormalized to XOR delay units, corresponding to thenumber of XOR gates (or approximate equivalent) tra-versed by the input signals. Thus, the values \x2 = 1"and \x3 = 2" can be used as the delays for the sum,corresponding to the number of XOR gates traversedby the b and d inputs, respectively. Similarly, the value\y3 = 1" can be used for the carry delay, correspond-ing to the time needed for the d input to traverse twoNAND gates, each having delay roughly half that ofan XOR gate [3]. Under these conditions the globaloptimization problem can be viewed as minimizing thenumber of equivalent XOR gates on the longest pathin the PPRT circuit. Thus our results apply to anytechnology as long as the number of equivalent XORgates on a path remains the critical delay of the cir-cuit, and the relative delays of XOR and NAND gatesremain unchanged. Both these assumptions have con-tinued to hold during the rapid development of logictechnologies in the past [3]. For conciseness, we willrefer to the case with the normalized values of x2 = 2,x3 = 1, y3 = 1 as the standard problem.Optimizing for delay using the full adder model de-scribed above leads to improved performance in realcircuit designs. In [4] designs in 1 micron CMOS-ASICtechnology were simulated using a timing simulatorfrom LSI Logic [15]. The simulated delays closelymatched those predicted by using the delays of thestandard full adder model described above, and thenew design outperformed competing designs by 11-25%. Thus the optimization problem we address hereseems to be a sound model of actual circuit delays, andcan provide substantial improvements in performance.The PPRT designs we develop use local connectionsbetween gates and are similar in overall structure toclassical PPRT designs. Thus there should be no spe-cial problems in their layout or wiring.Our work di�ers from that of Paterson, Pippenger,and Zwick [7, 8, 9], who also looked at adding multiplecolumns of bits down to two bits per column. How-ever, they only considered designs where each columnuses an identical circuit, rather than designs whichoptimize across all columns which is our focus. Usingglobal optimization, we are able to design multipli-cation circuits whose delays beat the upper boundsprovable for their more restricted circuits.In the next section, we describe the multiplier de-sign problem in more detail. In Section 3 we studyproperties of optimal carry vectors and present furtherproperties of circuits used in optimal TDM designs. In



Section 4, we study the objective of minimizing onlythe delay of an output bit in designing adder circuitsand present an optimal strategy for doing this. In Sec-tion 5, we present a lower bound for the global problemderived by analyzing a relaxed version of the prob-lem. In Section 6 we describe our program which usesthe prior results to search for optimal PPRT circuits.Finally, in Section 7 we present some open problemsrelated to this work.2 The multiplier settingWe now give a more detailed description of thePPRT design problem. In the long multiplicationmethod, we compute the product of the �rst num-ber with each bit of the second and arrive at 2n � 1addition problems (one along each column of the longmultiplication table), the result of which gives the �nalvalue of the multiplication. We number the columnsgenerated in the long multiplication table right to left(least signi�cant to most signi�cant) starting with 0and ending with 2n� 2 (See Figure 1).In constructing a PPRT for use in a mutiplier fortwo n-bit numbers, we assume that all of the n2 par-tial product bits are available at time 0. The examplesgiven in this section will all assume the standard prob-lem, although the principles apply generally.All the bits in column i represent ith signi�cant bitsin the product, and thus have weight 2i. A full adderworking on three inputs of weight 2j for any j � 0produces a sum bit of weight 2j and a carry bit ofweight 2j+1. Thus the carry bits from the full adderssumming the bits in column i represent bits of weight2i+1 and are fed as inputs to the addition problem incolumn i + 1. The sorted list of times at which thecarry bits are produced in the circuit for a columnis called the carry vector for that column. Thus theinputs for each column consist of the partial productbits for that column available at time zero and thecarry bits from the previous coulumn available at thetimes designated in the carry vector. The TDM thusconsists of constructing the circuits for the columns inorder of increasing signi�cance based on the derivedinput times. The problem of building a fast PPRT us-ing the TDM therefore reduces to one of �nding addercircuits for the columns that yield the two sum bitswith little delay and generate \good" carry vectors.2.1 Two addition problemsThe PPRT of a parallel multiplier adds the bits ineach column i until only two bits of weight 2i remain(as well as all the carry bits of weight 2i+1). Thesebits are used to form two (2n� 1)-bit numbers X andY , where Xi and Yi, the bits of weight 2i in X andY respectively are the two output bits from column i.X and Y are then fed into a carry propogate adderthat adds two (2n� 1)-bit numbers to produce the �-nal multiplication value (See Figure 1). In the TDMeach column circuit takes as input the partial productbits corresponding to that column and any carry bitsgenerated by the previous column and adds them toproduce two sum bits and a number of carry bits for
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B: Carry vector = (2 2 3 4)A: Carry vector = (1 2 3 4)Figure 2: Circuit A produces a better carry vec-tor than circuit B while B achieves better �naldelay than A in summing all the input bits totwo bits.input to the next column. Figure 2 (A) illustrates acircuit which takes 10 input bits of weight 2i. Thecircuit produces two output bits of weight 2i at times4 and 5, and four carry bits of weight 2i+1 at times1, 2, 3, and 4. The total time to carry out the multi-plication is the time to generate partial product bits,complete the column additions in the PPRT, and addthe �nal (2n� 1)-bit numbers. Our goal in the multi-plier design is to decrease this total time by minimiz-ing the time when the last sum bit from any columnis produced.2.2 Adjusting the parityIt is not possible to produce two sum bits from acircuit that uses full adders alone when the numberof bits to be summed is odd. Consider, e.g., the casewhen three bits are to be summed. Using a full adderon these bits produces a single sum bit. A full adder\consumes" three of the bits to be summed and pro-duces one new bit to be summed, thus reducing thenumber of bits to be summed by two. If we start withan even number of bits to be summed, we can use fulladders to get down to two sum bits as required foreach column. Note that if we have 2(k + 1) bits tobe summed, we can do this using k full adders each ofwhich produces a carry bit. However, starting with anodd number of bits results in a state where only onebit remains.We �x this parity problem using a half adder, whichtakes two input bits and produces a sum and a carrybit. We denote by (a; b) a half adder that takes in twobits at times a � b, and produces a sum bit at time s =b+v2 (v2 � 0) and a carry bit at time c = b+w2 (w2 �0) [4]. As in the case of full adders, for analysis relatingto current technology we use values corresponding tonormalized XOR delay units, i.e., v2 = 1 and w2 = 0:5(for one AND gate). Since the half adder reduces thenumber of bits to be summed by one, a single halfadder �xes the parity problemwhen the number of bitsto be summed is odd. Following [4], we use the halfadder on the earliest two inputs in the input vector,to change the parity of the number of bits to be even.To add (2k + 1) bits for a column in this way, we usea single half adder and (k � 1) full adders generatinga total of k carry bits. The number of input bits and



gates for the columns are shown in Table 1. Note thatthe number of half adders and full adders used variesonly with the size of the multiplication, and not withthe manner in which they are inter-connected.Table 1: Number of Input Bits and Gates in aPPRT for n-bit Multiplication (2 � k � 2n� 2)Column k: k � n� 1 k = n n + 1 � k# 0 Bits k + 1 k � 1 2n � k � 1# Carry-In Bits k � 2 k � 2 2n � k � 1Total Input Bits 2k � 1 2k � 3 4n � 2k � 2# Half Adders 1 1 0# Full Adders k � 2 k � 3 2n � k � 2Total Half Adders n � 1Total Full Adders (n � 1)(n � 3)2.3 Circuit notation and de�nitionsWe now present a formal de�nition of a the TDM.De�nition. A TDM PPRT uses column circuitsto produce two sum bits for each column (except col-umn 0). The circuit for each colum uses the mini-mum number of full adders (plus one half adder onthe smallest inputs when the number of inputs is odd)needed to produce the output bits from the partialproduct bits for that column and the carry-out bits (ifany) from the previous column.The following de�nitions and notation will be usedto simplify our discussion of column circuits. (For con-ciseness we will use circuit to mean a column circuitin a TDM PPRT.) We denote by I the vector repre-senting the bits input to a circuit. We use C(I) todenote the circuit C applied to input vector I. Thevalues in I correspond to the times at which the sig-nals are available in non-decreasing order. If C has mfull adders and I consists of k input bits then C(I)will produce a vector Vs of the times when the k�2msum bits become available in non-decreasing order anda similar vector Vc for the m carry bits.We use the following de�nition when comparing in-put or output vectors:De�nition. For two vectors V = (v1; v2; :::; vk),U = (u1; u2; :::; uk), we say that V dominates U i�vi � ui 8i 2 f1; 2; :::; kg. We write V � U to denotethat V dominates U . If the two vectors are unequalthen V strictly dominatesU , and we can write V <U . Two vectors are incomparable if there exists i; jsuch that vi < ui and vj > uj . A vector V 2 S issaid to be undominated in S if no other vector in Sstrictly dominates it.For example, if U = (1; 2; 3), V = (2; 2; 3), andW = (1; 2; 4) then U < V , U < W , and V and W areincomparable.We also extend the de�nition of dominance to cir-cuits and gates: If m-adder circuits C(I) and C 0(I)produce vectors Vc and Vs, and V 0c and V 0s , respec-tively, then C(I) dominates C 0(I) i� Vc � V 0c andVs � V 0s , and we use the notation C(I) � C 0(I). C(I)

strictly dominates C 0(I) if C(I) � C 0(I) and Vc 6= V 0cor Vs 6= V 0s , and we can write C(I) < C 0(I). If nom-adder circuit for I strictly dominates C(I), then wesay that C(I) is an undominated circuit. Note thatan undominated column circuit for input I need notbe part of an optimal PPRT since two circuits C(I)and C 0(I) may be incomparable. However, if we con-struct a multiplier circuit by summing the bits in eachcolumn i (which are the original bits of weight 2i andthe carry bits from column i � 1), it is clear that wecan always construct an optimal circuit by using anundominated circuit for each column.Similar to the case for circuits, we say that for twogates gi and g0i, gi dominates g0i (gi � g0i) if ci � c0i andsi � s0i. Note that in the case of gates we remove therestriction that the inputs be the same. This leads usimmediately to the following observation:Observation 2.1 The outputs si and ci of gate gi de-pend only on bi and di. Therefore gi dominates gj ifbi � bj and di � dj.We now introduce notation that simpli�es our anal-ysis of circuits on the gate level. Given an input vectorI we consider strategies for constructing circuits for I.In our constructions it is convenient to think of the cir-cuits as being constructed in the following way: The�rst gate, g1, has all three of its inputs from I0 = I,we now update I0 to I1 which has the three inputs tog1 removed, but s1, the output sum bit of g1, is added.We then construct g2 using three inputs from I1, andupdate I1 to get I2, and so on.2.4 Trade-o� between delay and goodcarry vectorsWe now examine the problem of designing the col-umn circuits for the TDM PPRT. Suppose we aim toproduce the two bits from each of the columns withindelay d. Then the circuit for each column must, forits given input vector I, produce the two sum bits indelay d0 � d along with a \good" carry vector. An op-timal carry vector in this case must be undominatedin the set of carry vectors for circuits C(I) which pro-duce their sum bits in time � d0. We now will showthat such a carry vector may not be undominated inthe set of all carry vectors generated by circuits for I.There is often a trade-o� between making the carryvector good in the sense that it is undominated andminimizing the delay of the output bits in a circuit.For example, in Figure 2 circuit A generates a carryvector that strictly dominates the carry vector of cir-cuit B but does not achieve as good a delay for thetwo sum bits. The design of the PPRT thus involvesa judicious choice of the delay of the sum bits pro-duced in each of the columns coupled with a strategyfor �nding a circuit that achieves that delay and pro-duces an undominated carry vector. I.e., a PPRT withoptimal delay will have column circuits each of whichproduces an undominated output vector consisting ofthe carry vector concatenated with the larger of thetwo sum outputs.



2.5 3-greedy approachIn [4] a heuristic for TDM design is proposed thatwe will call the 3-greedy approach. The 3-greedy ap-proach is as follows: take for the inputs of each gategi the three smallest values in Ii�1. For example, theadder circuit shown in Figure 2 (A) is 3-greedy. Gateg1 = (0; 0; 0) takes as its inputs the three smallest val-ues in I0 = I = (0; 0; 0; 0; 1; 1; 1;1;2;4), and generatesa sum bit at time 2. Thus I1 = (0; 1; 1; 1; 1;2; 2; 4),and we build gate g2 = (0; 1; 1). Similarly, I2 =(1; 1; 2; 2; 3;4), g3 = (1; 1; 2), I3 = (2; 3; 3; 4), g4 =(2; 3; 3), and Vs = (4; 5). Also, Vc = (1; 2; 3; 4).Note that the 3-greedy strategy produces undom-inated circuits since the 3-greedy approach producesthe lexicographically smallest carry vector, but it maybe possible to produce circuits with better sum delaysusing other strategies.3 Optimal column-addition circuitsIn this section, we consider circuits that sum a vec-tor of input bits and produce undominated output vec-tors. As mentioned earlier, the optimal PPRT uses acircuit of this form to sum the bits in each column.We show that we need only consider a restricted classof addition circuits that have certain nice properties.We will now discuss the 2-greedy strategy which isde�ned as follows: always construct gate gi using thetwo smallest values in Ii�1 plus a third value in Ii�1.The key fact which we will prove is that for any col-umn circuit C(I), there exists a 2-greedy column cir-cuit C0(I) which dominates C(I). Thus in searchingfor optimal combinations of column circuits, we canrestrict our attention to 2-greedy circuits.3.1 The 2-greedy strategyIn this section we prove several properties of 2-greedy circuits. We begin with a few de�nitions.De�nition. A lexicographic ordering of the gatesof a circuit C(I) (or, loosely, a lexicographical orderingof C(I)) is one in which for each pair of gates gi =(ai; bi; di) and gj = (aj ; bj; dj), gi precedes gj in theordering whenever:� ai < aj ; or� ai = aj and bi < bj; or� ai = aj , bi = bj, and di < dj.If ai = aj , bi = bj , and di = dj then the gates canappear in either order. We assume that all the circuitsC(I) which we discuss have their gates numbered inlexicographic order. We shall show that for any 2-greedy circuit there always exists a construction orderwhich is also a lexicographic order.The following de�nitions give some of the ways thatgates can be related to each other:De�nition. Gate gj is an immediate descen-dant of gate gi if si is an input to gj. Similarly, gj isa descendant of gi if gj is an immediate descendantof gi or of a gate gk that is a descendant of gi.De�nition. Two gates are said to be indepen-dent if neither gate is a descendent of the other.

We begin by proving that when constructing a gategi we can always use three values in Ii�1 rather thanusing an input which is the sum bit from a highernumbered gate. A circuit is feedback-free i� when thegates are numbered in lexicographic order, no gate gihas an input which is the sum bit from gj where j > i.Lemma 3.1 For any circuit C(I) which is notfeedback-free, there is a feedback-free circuit C0(I) suchthat C0(I) � C(I).Proof. If C(I) is not feedback-free then there ex-ists a gate gi with input sj , where i < j. We nowshow that we can restructure the circuit C(I) to makeit feedback-free without degrading the outputs of thecircuit. By de�nition, ai � aj < sj . Thus sj = bi orsj = di.Case 1. sj = di.Case 1a. bi � bj.gj = (aj ; bj; dj)cj = dj + y3sj = max(bj + x2; dj + x3)gi = (ai; bi; sj)ci = sj + y3= max(bj + x2 + y3; dj + x3 + y3)si = max(bi + x2; sj + x3)= max(bi + x2; bj + x2 + x3; dj + 2x3)= max(bj + x2 + x3; dj + 2x3)By rearranging inputs we can get:g0i = (ai; bi; dj)c0i = dj + y3s0i = max(bi + x2; dj + x3)g0j = (aj ; bj; s0i)c0j = s0i + y3= max(bi + x2 + y3; dj + x3 + y3)s0j = max(bj + x2; s0i + x3)= max(bj + x2; bi + x2 + x3; dj + 2x3)Thus by Observation 2.1 g0i dominates gj (since bi �bj). Further, c0j � ci and s0j � si (because bi � bj), sog0j dominates gi. Therefore the sum and carry valuesfrom g0i and g0j are at least as good as those for gj andgi.Case 1b. bi > bj . By rearranging inputs we can getg0i = (ai; bj; dj), and g0j = (aj ; bi; s0i). Now g0i has thesame sum and carry as gj, thus s0i = sj(� bi) and g0jhas the same sum and carry as gi.Case 2. sj = bi. In this case, we rearrange inputs toget g0i = (ai; bj; dj), and g0j = (aj; s0i; di). As above, g0ihas the same sum and carry as gj, thus s0i = sj and g0jhas the same sum and carry as gi.Repeated applications of the above transformationsto the smallest (i; j) pair violating the feedback-freeproperty will convert C(I) to the desired feedback-freecircuit C0(I) � C(I), proving the lemma. 2



Lemma 3.2 For any feedback-free circuit C(I) whichis not 2-greedy there is a 2-greedy circuit C 0(I) such thatC0(I) � C(I).Proof. Similar to the proof of Lemma 3.1, and omit-ted. 2The prior two lemmas show that given any circuitC(I) we can convert it to a circuit C 0(I) � C(I) suchthat if the gates of C0(I) are numbered lexicograph-ically, each gate gj in C0(I) has as inputs the twosmallest values in Ij�1 plus a third input from Ij�1,i.e., C 0(I) can be constructed using the 2-greedy strat-egy.Observation 3.3 Let C be a circuit constructible inlexicographic order using a 2-greedy approach. If gi ap-pears before gj in the lexicographic ordering of C thengi is created before gj in a 2-greedy lexicographic con-struction of C and as a result, ai � bi � aj � bj.3.2 Other constraints on undominatedcircuitsThe following lemmas provide rules for minimizingthe number of circuits that need to be constructed foran input vector I when attempting to �nd all undom-inated circuits C(I). In particular, Corollary 3.8 en-sures that we can restrict our search to certain \regu-lar" circuits for I. The proofs for the following use sim-ilar techniques to the proofs for Lemmas 3.1 and 3.2and are omitted.Lemma 3.4 Let C(I) be a 2-greedy circuit. Then thereis a 2-greedy circuit C0(I) � C(I) in which for each pairof gates gi and gj , if i < j and di � bj, then di � aj .Corollary 3.5 Let C(I) be a 2-greedy circuit. Thenthere is a 2-greedy circuit C 0(I) � C(I) in which foreach pair of gates gi and gj , if i < j and di = bj thenaj = bj = di.Lemma 3.6 Let C(I) be a 2-greedy circuit. Then thereis a 2-greedy circuit C0(I) � C(I) in which for each pairof gates gi and gj , if i < j then di � dj.Lemma 3.7 Let C(I) be a 2-greedy circuit, and letx2 � 2x3. Then there is a 2-greedy circuit C0(I) � C(I)such that for each pair of gates gi and gj, if i < j andbj < di � dj then dj < di + x2 � x3.Note that Lemma 3.7 applies to the standard prob-lem as described earlier, i.e., x2 = 2, x3 = 1, y3 = 1.When x2 � x3 we de�ne the following class of circuits:De�nition: A 2-greedy circuit C for a vector Vthat has no pairs of gates of the form excluded byLemma 3.1, Lemma 3.2, Lemma 3.4, Lemma 3.6, andLemma 3.7 is said to be in regular form, or, loosely,simply said to be regular.Corollary 3.8 If x2 � 2x3, then for any circuit C(I),there is a regular circuit C 0(I) � C(I).

The above lemmas can be used to severely limitan exhaustive search for an optimal solution to thestandard problem, since they allow us to restrict thesearch to regular circuits for each input I.4 Optimal delay circuitsIn this section we consider the problem of �ndingfor a given vector I the minimum delay circuit C(I)that outputs a single sum bit (we will ignore the carryvector). We assume the standard problem previouslydescribed, where x2 = 2 and x3 = 1. We de�ne acanonical circuit for each value of delay that can sumthe maximumnumber of input bits for this delay, andshow that a �tting strategy that attempts to greedily�t the input delays into the canonical circuit can beused to determine an optimal delay circuit for thisset of inputs. Though we describe our strategy forthe problem of summing a set of input bits down toa single bit within minimum delay, our method andanalysis directly extend to the case when the inputbits must be combined in full adders and reduced tosome speci�ed number of bits (possibly greater thanone) within minimum delay.4.1 Canonical circuits for a given delayWe de�ne S(t) as the maximum number of bitsavailable at time zero, which can be added with fulladders to produce a single sum by time t. We canwrite a simple recurrence for S(t) as follows.S(0) = S(1) = 1S(t) = S(t � 1) + 2S(t � 2) t > 1The recurrence follows from the observation that thebest way to accommodate the most inputs completingin delay t is to have the last adder with output t fromthis circuit be (t � 2; t � 2; t � 1). Each of the threeinputs to the last adder in this circuit is the output of acircuit of delay t�2 or t�1 which sums the maximumpossible number of inputs 1. This observation can alsobe used to easily infer that the circuit which sums S(t)input bits available at time zero with delay t is unique.This unique circuit is termed the Canonical circuitfor delay t and is denoted C(t). Note that C(t) canaccommodate several inputs available at time 1, andthat these 1 inputs feed adders of exactly two types:(0,0,1) and (1,1,2). Furthermore, all inputs with delayd for d � 1 feed into gates of the type (d� 1; d� 1; d)or (d; d; d+ 1). An illustration of C(4) is in Figure 3.Note that if our goal is to produce k sum bits withindelay t, then at most kS(t) bits can be summed. Wede�ne the weight of a vector V of input delays asW (V ) = S(v1) + S(v2) + :::+ S(vk).Theorem 4.1 If W (V ) > k � S(t), then inputs withdelay V cannot be summed to k bits in delay d � t.This theorem is useful for proving lower bounds onmultiplier circuits since it bounds the delay for a col-umn given a carry vector.1The recurrence solves to S(t) = 2t+1+(�1)t3 for t � 0.
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Figure 3: The canonical circuit for delay four.4.2 The �tting strategyWe can now describe a �tting strategy to determine,given an input vector I, whether I can be summed toa single bit using a circuit of full adders in delay t.For technical reasons we assume that the input vectorhas an odd number of bits to be summed 2. We usethe canonical circuit C(t), and try to �t the input sig-nals in nonincreasing order of delays into appropriatepositions in C(t). Thus we work on the larger inputsearlier and �t an input with delay t0 into a canonicalsubcircuit for delay t0 in C(t). After �tting a signal,we mark the whole �tted subcircuit and proceed to�t the remaining inputs in the unmarked portions ofC(t). (Input bits of time 0 can be �t into unmarked 1'sin the canonical circuit). If we succeed in �tting all theinput signals, it is easy to derive a circuit that sumsall these inputs in delay t. In the case when all theinput delays cannot be �tted in C(t), we demonstratethat there is no circuit for these inputs completing indelay t.Before we prove the correctness of the �tting strat-egy, we show that any delay optimal circuit can be putin a normal form that resembles the canonical circuits.I.e., that any circuit C of delay t can be modi�ed intoa circuit all of whose adders are drawn from the set(k; k; k+ 1) where 0 � k � t� 2.Lemma 4.2 Suppose C is a circuit that sums a vectorV of inputs within delay t. We can convert C to a circuitwhich sums the vector V (augmented possibly with manyzeros and ones) within delay t, such that every adder inthe modi�ed circuit is of the form (k; k; k+ 1) for somek � 0.Proof sketch. The idea is to show that whenever anadder is not of the required form, we can modify theinputs to that adder by expanding it with canonicalsubcircuits and possibly accommodating a few extra0's to be summed, but not increasing the delay of the�nal sum bit. 22When the number of bits is even, we assume that we sumthe least two bits in a half adder as in the strategy in [4] andthus produce an odd number of bits to sum.

Next we prove the correctness of the �tting strategy.Lemma 4.3 Consider the �tting strategy working ona canonical circuit C(t) and a (sorted) vector V whoseelements lie in the range ft�1; : : : ; t�ig for some i > 0.Suppose the strategy successfully �ts V into C(t). After�tting V , let N be the maximum number of additionalinputs of delay t � i that can be �tted into the currentcircuit C. Then the vector V augmented with N + 1 ormore (t� i)'s cannot be summed in delay t.We can use Lemma 4.3 to show the correctness ofthe �tting strategy.Theorem 4.4 The �tting strategy �nds a delay t cir-cuit for the input vector V if one exists.The following theorem shows that the �tting strat-egy can be implemented e�ciently.Theorem 4.5 Given a sorted input vector, the �ttingstrategy can be implemented to run in time linear in thesize of the input vector.5 A lower boundConsider the design of the multiplier circuit witha full adder that, for inputs a � b � d, produces asum at time s = d + x3 and a carry at time c =d + y3. Note that we do not claim that such a fulladder can be built, but simply use this as a relaxedversion of the original problem. Using techniques as inLemma3.2, we can show that for this relaxed problem,the 3-greedy approach described in Section 2.5 (i.e.,repeatedly putting the three earliest bits into a fulladder) is globally optimal for both sum and carry 3.Note that the 3-greedy strategy can also be consideredcarry-greedy, since this choice of inputs reects a localminimization of the carry vector generated.The optimality of the 3-greedy strategy for the re-laxed problem motivates the following lower bound forthe original problem. Since the relaxed problem is aless constrained problem than the original, the opti-mal delay of a multiplier for the relaxed problem isa lower bound on the delay of the multiplier for theoriginal problem. Furthermore, if we determine usingother techniques a lower bound on the carry vectorbeing input into a certain column in the multiplier,we can apply the 3-greedy strategy to the remainingcolumns under the relaxed sum output model to de-rive a lower bound for the original problem. In thisway, a partial lower bound computation (using, e.g.,arguments as in Lemmas 3.2 to 3.4) can be e�ectivelycompleted using this strategy on a relaxed model ofthe adder gates.6 Program and resultsThe results in the last three sections provide astrong set of tools for searching for a minimum delaymultiplication circuit. We have developed a program3If the number of inputs is even, then we assume as beforethat the two smallest are fed into a half adder.



which does a search over TDM PPRT circuits. Theprogram restricts its search to regular circuits (as de-scribed in Section 3). For each column it considersall carry-vectors which could be input to the column,and for each such input generates all the regular cir-cuits. This set of regular circuits is then pruned tocontain only those circuits with undominated carryvectors and sum delays. The carry vectors from thesecircuits are used as inputs to the next column. Wecan also use the lower bounding techniques from Sec-tions 4 and 5 to prune those carry vectors which mustproduce delays at least as large as our best solutionto date. Using this program we showed that the 3-greedy method gives the optimal maximum delay formost problem sizes up to 44 bits. Further, it is withinone of the optimal in those cases where it is not opti-mal. Our results are summarized in Table 2.Table 2: 3-greedy vs. Optimal Delays for PPRTin Normalized XOR Delays (Standard Prob-lem) Max Delay ProgramBit Size 3-G Opt CPU Time7-8 5 59-10 6 611-12 7 713 7.5 714-16 8 817 9 818-20 9 921 9.5 922 10 9 < 3.3 sec23-26 10 10 < 39 sec27-28 11 10 < 1 min 6 sec29-35 11 11 < 2 min 37 sec36 12 11 < 3 hours 19 min37-44 12 12 < 6 hours45-57 13 ?? > 2 months58 13.5 ??59-76 14 ??77-98 15 ??99-128 16 ??The current version of the program solves a problemof size 16 in a few seconds, but requires hours to solvea 39 bit problem. Further re�nements will need to bemade before we can solve larger problems of size 64bits or larger.7 ConclusionsWe have presented several techniques for analyz-ing the optimality of PPRTs designed using full addercells. Many interesting issues remain open. We plan todo a simulation of a full design using the circuits pro-duced by our program to validate that our abstractmodel of delay results in good performance in prac-tice. We also plan to improve our search program tosolve larger problems, and are investigating parallelsolutions to help speed up the search. Another inter-
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