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Abstract. Problem definition: The classic newsvendor model yields an optimal decision for 
a “newsvendor” selecting a quantity of inventory under the assumption that the demand is 
drawn from a known distribution. Motivated by applications such as cloud provisioning 
and staffing, we consider a setting in which newsvendor-type decisions must be made 
sequentially in the face of demand drawn from a stochastic process that is both unknown 
and nonstationary. All prior work on this problem either (a) assumes that the level of non
stationarity is known or (b) imposes additional statistical assumptions that enable accurate 
predictions of the unknown demand. Our research tackles the Nonstationary Newsvendor 
without these assumptions both with and without predictions. Methodology/results: In the 
setting without predictions, we first design a policy that we prove (via matching upper and 
lower bounds) achieves order-optimal regret; ours is the first policy to accomplish this with
out being given the level of nonstationarity of the underlying demand. We then, for the first 
time, introduce a model for generic (i.e., with no statistical assumptions) predictions with 
arbitrary accuracy and propose a policy that incorporates these predictions without being 
given their accuracy. We upper bound the regret of this policy and show that it matches the 
best achievable regret had the accuracy of the predictions been known. Managerial implica
tions: Our findings provide valuable insights on inventory management. Managers can 
make more informed and effective decisions in dynamic environments, reducing costs and 
enhancing service levels despite uncertain demand patterns. This study advances under
standing of sequential decision-making under uncertainty, offering robust methodologies 
for practical applications with nonstationary demand. We empirically validate our new pol
icy with experiments based on three real-world data sets containing thousands of time- 
series, showing that it succeeds in closing approximately 74% of the gap between the best 
approaches based on nonstationarity and predictions alone.
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1. Introduction
The newsvendor problem is a century-old model 
(Edgeworth 1888) that remains fundamental to the 
practice of operations management. In its original 
instantiation, a “newsvendor” is tasked with selecting a 
quantity of inventory before observing the demand for 
that inventory, with the demand itself randomly drawn 
from a known distribution. The newsvendor incurs a 
per-unit underage cost for unmet demand and a per- 
unit overage cost for unsold inventory. The objective is 
to minimize the total expected cost, and the classic result 
is that the optimal inventory level is a certain problem- 
specific quantile (depending only on the underage and 
overage costs) of the demand distribution.

This paper is concerned with a modern instantiation of 
the same model, consisting of a sequence of newsvendor 
problems over time, each with unknown demand distri
butions that vary over time. Although this version of the 
problem is arguably ubiquitous in practice today, it may 
be worth highlighting a few motivating examples: 
• Cloud provisioning: Consider a website that provi

sions computational resources from a commercial cloud 
provider to serve its web requests. Such provisioning is 
typically done dynamically, say, on an hourly basis, with 
the aim of satisfying incoming requests at a sufficiently 
high service level. Thus, the website faces a single news
vendor problem every hour, with an hourly “demand” 
that can (and does) vary drastically over time.

1 
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• Staffing: A more traditional example is staffing, 
say, for a brick-and-mortar retailer, a call center, or an 
emergency room. Each day (or even each shift) requires 
a separate newsvendor problem to be solved, with 
demand that is highly nonstationary.

Despite its ubiquity, this problem is far from resolved 
precisely because the demand (or sequence of demand 
distributions) is both nonstationary and unknown; indeed, 
the repeated newsvendor with stationary but unknown 
demand was solved by Levi et al. (2015), and the same 
setting with known but nonstationary demand can be 
treated simply as a sequence of completely separate 
newsvendor problems. At present, there are by and 
large two existing approaches to this problem: 

1. Limited nonstationarity: One approach is to design 
policies that “succeed” under limited nonstationarity; 
that is, the cost incurred by the policy should be parame
terized by some carefully chosen measure of nonstatio
narity (e.g., quadratic variation) and nothing else. This 
approach has proved fruitful across a diverse set of pro
blems ranging from dynamic pricing (Keskin and Zeevi 
2017) to multiarmed bandit problems Besbes et al. (2014) 
to stochastic optimization (Besbes et al. 2015). Most rele
vant here, the recent work of Keskin et al. (2023) applies 
this lens to the newsvendor setting (we will discuss this 
work in detail momentarily). This approach yields poli
cies with theoretical guarantees that are quite robust; no 
assumption on the demand (beyond the limited nonsta
tionarity) is required. However, this is far removed from 
practice, where the next approach is more common.

2. Predictions: The second approach is to utilize 
some sort of predictions of the unknown demand. These 

predictions can be generated from simple forecasting 
algorithms for univariate time series all the way to 
state-of-the-art machine-learning models that leverage 
multiple time series and additional feature informa
tion. Therefore, these predictions may contain much 
more information than past demand data points, such 
as various features/contexts, or even black-box-type 
information that is nonidentifiable. In addition to being 
the de facto approach in practice, the use of predic
tions in newsvendor-type problems is well studied, 
and in fact, provable guarantees exist for many speci
fic prediction-based approaches (Ban and Rudin 2019, 
Huber et al. 2019, Oroojlooyjadid et al. 2020, Zhang 
et al. 2024). All such guarantees rely on (at the very 
least) the demand and potential features being gener
ated from a known family of stochastic models so that 
the framework and tools of statistical learning theory 
can be applied. Absent these statistical assumptions, it is 
unclear a priori whether the resulting predictions will 
be sufficiently accurate to outperform robust policies 
such as those generated in the previous approach. As a 
concrete example of this, see Figure 1, which demon
strates on a real set of retail data that prediction accu
racy may vary drastically and unexpectedly, even when 
those predictions are generated according to the same 
procedure and applied during the same time period.

To summarize, the repeated newsvendor with 
unknown, nonstationary demand (which from here 
on we refer to as the Nonstationary Newsvendor) admits 
policies with nontrivial guarantees, which can be made 
significantly better or worse by following predictions. 
This suggests the opportunity to design a policy that 

Figure 1. (Color online) Daily Number of Customers (in Solid Line) from September 2014 to January 2015, at Two Different 
Stores in the Rossmann Drug Store Chain 

Notes. Predictions (in dashed line), starting November 2014, are generated using Exponential Smoothing with the same fitting process. The store 
in the upper subfigure has substantially more accurate predictions (R2 � 0:88) than that of the lower subfigure (R2 � 0:11).

An et al.: The Nonstationary Newsvendor with Predictions 
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uses predictions optimally in the sense that the predic
tions are utilized when accurate and ignored when 
inaccurate. Ideally, such a policy would run without 
knowledge of (a) the accuracy of the predictions and 
(b) the method with which they are generated. This is 
precisely what we accomplish in this paper.

1.1. The Nonstationary Newsvendor, With and 
Without Predictions

The primary purpose of this paper is to develop a pol
icy that optimally incorporates predictions (defined in 
the most generic sense possible) into the Nonstationary 
Newsvendor problem. Naturally, a prerequisite to this is 
a fully solved model of the Nonstationary Newsvendor 
without predictions. At present, this prerequisite is 
only partially satisfied (via the work of Keskin et al. 
2023), so a nontrivial portion of our contributions will 
be to fully solve this problem.

Without predictions, the Nonstationary Newsven
dor consists of a sequence of newsvendor problems 
indexed by periods t ∈ 1, : : : , T, each with unknown 
demand distribution Dt. The level of nonstationarity is 
characterized via a variation parameter v ∈ [0, 1], where 
v�0 essentially amounts to stationary demand, and 
v�1 is effectively arbitrary (in a little more detail: a 
deterministic analog of quadratic variation is applied 
to the sequence of means {E[D1], : : : ,E[DT]}, and v ∈
[0, 1] is the exponent such that this quantity equals Tv). 
Finally, we measure the performance of any policy 
using regret, which is the expected difference in the 
total cost incurred by the policy versus that of an opti
mal policy that “knows” the demand distributions. At 
minimum, we aim to design a policy that achieves sub
linear (i.e., o(T)) regret, because such a policy would 
incur a per-period cost that is on average no worse 
than the optimal, as T grows. We will in fact design pol
icies that achieve order-optimal regret with respect to the 
variation parameter v.

To this base problem, we introduce the notion of pre
dictions. In each period, we receive a prediction at of 
the mean demand µt � E[Dt] before selecting the order 
quantity. Our predictions are generic; no assumption is 
made on how they are generated. We measure the accu
racy of the predictions through an accuracy parameter 
a ∈ [0, 1], defined such that 

PT
t�1 |at�µt | � Ta. Notice 

that when a�0 the predictions are almost perfect, and 
when a�1 the predictions are effectively useless. We 
will characterize a precise threshold on a (which 
depends on v) that determines when the predictions 
should be utilized. Our primary challenge will be to 
design a policy that makes use of the predictions only 
when they are sufficiently accurate and without having 
access to a. As to the variation parameter v, we will sep
arately consider policies that do and do not have access 
to v; this distinction will turn out to be the critical factor 
in classifying what is and is not achievable.

1.2. Our Contributions
Our primary contributions can be summarized as 
follows. 

1. Nonstationary Newsvendor (without predictions): 
We completely solve the Nonstationary Newsvendor 
problem. This consists of first constructing a policy and 
proving an upper bound on its regret:
Theorem 1 (Informal). There exists a policy that achieves 
Õ(T(3+v)=4) regret1 without knowing v.

We then show that this regret is minimax optimal up 
to logarithmic factors.

Proposition 1 (Informal). No policy can achieve regret bet
ter than O(T(3+v)=4), even if v is known.

As alluded to earlier, Keskin et al. (2023) previously 
initiated the study of the Nonstationary Newsvendor. 
Our results are distinct in terms of both modeling and 
theoretical contributions. We will expound these dis
tinctions more carefully later on. 
• Modeling: The most crucial difference in our 

model is that we allow both the demand and the set of 
possible ordering quantities to be discrete. This is cer
tainly of practical concern (e.g., physical inventory, 
employees, and virtual machines are all indivisible 
units of demand), but moreover, we will show that the 
results of Keskin et al. (2023) require both the demand 
and set of feasible ordering quantities to be continuous. 
Thus, there is no overlap in our theoretical results.
• Results: Keskin et al. (2023) succeeded in designing 

a policy that achieved order-optimal regret, but cru
cially, their policy required that the variation parameter 
v be known. In addition to being concerning from a 
practical standpoint, this leaves open the theoretical 
question of what exactly is achievable in settings for 
which v is unknown. Our results show that the same 
regret can be achieved without knowing v.

2. Nonstationary Newsvendor with Predictions: We 
construct a policy that optimally leverages predictions; 
that is, it is robust to unknown prediction accuracy. To 
be precise, the previous contribution offers a policy 
that achieves Õ(T(3+v)=4) regret, and predictions yield a 
simple policy that achieves O(Ta) regret, so we would 
expect that the best possible regret is the minimum of 
these two quantities. We show this formally.

Proposition 2 (Informal). No policy can achieve regret bet
ter than O(Tmin{(3+v)=4, a}), even if v and a are known.

Our main algorithmic contribution is a policy that 
achieves this lower bound (up to log factors) without 
knowing the prediction accuracy:

Theorem 2 (Informal). There exists a policy that achieves 
regret Õ(Tmin{(3+v)=4, a}), knowing v, and without knowing a.

Finally, because our policy relies on knowledge of 
the variation parameter v, the remaining question is 

An et al.: The Nonstationary Newsvendor with Predictions 
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whether the same regret is achievable if both v and a 
are unknown. We show that in fact predictions cannot 
be incorporated in any meaningful way in this case.

Proposition 3 (Informal). If v and a are unknown, then no 
policy can achieve regret better than O(Tmax{(3+v)=4, a}) for 
all v, a ∈ [0, 1].

Our theoretical results are summarized in the Table 1. 
Each entry has a corresponding policy that achieves the 
stated regret, along with a matching lower bound. 

3. Empirical Results: Finally, we demonstrate the 
practical value of our model (namely, the Nonstation
ary Newsvendor with Predictions) and our policy via 
empirical results on three real-world data sets that 
span our motivating applications above: daily web traf
fic for Wikipedia.com (of various languages), daily foot 
traffic across the Rossmann store chain, and daily visi
tors at a certain Japanese restaurant. These data sets 
together contain more than 1,000 individual time series 
on which we generate predictions of varying quality, 
using four different popular forecasting and machine- 
learning algorithms. We apply our policy and compare 
its performance against the two most-natural baseline 
policies: our optimal policy without predictions and 
the simple policy that always utilizes the predictions 
(these correspond to the two “existing approaches” 
described previously). A snapshot of our results, for 
the Rossmann stores depicted in Figure 1, is given in 
Table 2.

More generally, on any given experimental instance 
(i.e., a time series and a set of predictions), the mini
mum (maximum) of the costs incurred by these two 
baselines can be viewed as the best (worst) we can 
hope for. Thus we measure performance in terms of 
the proportion of the gap between these two costs 
incurred by our policy, so if this “optimality gap” is 
close to 0, then our policy performs almost as good as 
the better one of the two baselines. Note that randomly 
selecting between the two baseline policies yields an 
(expected) optimality gap of 0.5. We find that in the 
Rossmann data set, the average optimality gap is 0.26 
when the predictions are accurate and 0.28 when the 
predictions are inaccurate. In the Wikipedia data set, 
the average optimality gap is 0.40 when the predictions 
are accurate and 0.07 when the predictions are inaccu
rate. In the Restaurant data set, the average optimality 

gap is 0.10 when the predictions are accurate and 0.39 
when the predictions are inaccurate. This demonstrates 
that our policy performs well, irrespective of the qual
ity of the predictions.

1.3. Literature Review
The earliest works on the newsvendor model assume 
that the demand distribution is known (Arrow et al. 
1958, Scarf et al. 1960). This has since been relaxed, 
with the resulting approaches being divided into para
metric and nonparametric ones. Among parametric 
approaches, much work is Bayesian, where a prior dis
tribution is assumed over the parameters. Scarf (1959) 
applied the Bayesian approach to inventory models, 
and later this was studied in many works (Karlin 1960, 
Iglehart 1964, Azoury 1985, Lovejoy 1990). Liyanage 
and Shanthikumar (2005) introduced another paramet
ric approach called operational statistics, which, unlike 
the Bayesian approach, does not assume any prior 
knowledge on the parameter values, instead using past 
demand observations to directly estimate the optimal 
ordering quantity.

Nonparametric approaches have been developed in 
recent years. The first example is the sample average 
approximation (SAA) method, first proposed by Kley
wegt et al. (2002) and Shapiro (2003). Levi et al. (2007) 
applied SAA to the newsvendor problem, and Levi et al. 
(2015) improved significantly upon their bounds. Other 
nonparametric approaches have included stochastic 
gradient descent algorithms (Burnetas and Smith 2000, 
Kunnumkal and Topaloglu 2008, Huh and Rusmevi
chientong 2009) and the concave adaptive value estima
tion (CAVE) method (Godfrey and Powell 2001, Powell 
et al. 2004). With the development of machine learning, 
Ban and Rudin (2019) and Oroojlooyjadid et al. (2020) 
proposed machine-learning/deep-learning algorithms 
using demand features and historical data.

All of the above studies treated the newsvendor in a 
static environment. There are two common approaches 
to nonstationarity. The first is to model (stochastically) 
the nonstationarity and utilize past demand observa
tions according to the model. One common way is to 
model the nonstationarity as a Markov chain. For exam
ple, Treharne and Sox (2002) applied this idea to inven
tory management, and Aviv and Pazgal (2005) and 
Chen et al. (2019a) applied this idea to revenue manage
ment. Another approach is to bound the nonstationarity 

Table 1. Summary of Main Theoretical Results (Each Entry 
Has a Corresponding Policy That Achieves the Stated 
Regret, Along with a Matching Lower Bound)

Without 
predictions

With predictions of 
unknown accuracy

Known variation Õ(T(3+v)=4) Õ(Tmin{(3+v)=4, a})

Unknown variation Õ(T(3+v)=4) Õ(Tmax{(3+v)=4, a})

Table 2. Continuation of Figure 1: Costs Incurred by an 
Optimal Policy That Makes No Use of Predictions, a Policy 
That Relies Entirely on Predictions, and Our Policy

No prediction Prediction Our policy

Upper store $28,303 $14,454 $14,454
Lower store $23,460 $35,600 $23,899

An et al.: The Nonstationary Newsvendor with Predictions 
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via a variation budget, which has been applied to sto
chastic optimization (Besbes et al. 2015), dynamic pric
ing (Keskin and Zeevi 2017), multiarmed bandit (Besbes 
et al. 2014), and the newsvendor problem (Keskin et al. 
2023), among others. Some of these works are applicable 
in the sense that our problem can be mapped to their set
tings (e.g., multiarmed bandit, such as in Besbes et al. 
2015, Karnin and Anava 2016, Luo et al. 2018, and 
Cheung et al. 2022), but these connections do not appear 
to be fruitful. In particular, the multiarmed bandit 
papers cited above typically considered a limited-feedback 
setting rather than the full-feedback setting explored in 
this work. Related to feedback, whereas our study pro
vides a complete characterization of the regret behavior 
for the nonstationary newsvendor problem with uncen
sored demand, practical applications often involve cen
sored demand. The nonstationary newsvendor problem 
under censored demand is an interesting direction for 
future research.

Beyond the bandit literature, it is worth mentioning 
recent work on online convex optimization (OCO) with 
limited nonstationarity. When the level of nonstatio
narity is known, the standard first-order OCO algo
rithms can be modified with carefully chosen restarts 
and updating rules (Besbes et al. 2015, Yang et al. 2016, 
Chen et al. 2019b). There are also recent works that con
cern unknown nonstationarity, such as Zhang et al. 
(2018), Baby and Wang (2019), Bai et al. (2022), and 
Huang and Wang (2023). Finally, as mentioned before, 
Keskin et al. (2023) is particularly relevant, so we delay 
a careful comparison with Sections 2 and 3.

The second common practice is to use predictions. A 
recent line of work has looked to help decision-making 
by incorporating predictions into online optimization 
problems such as revenue optimization (Munoz and 
Vassilvitskii 2017, Balseiro et al. 2022, An et al. 2024), 
caching (Rohatgi 2020, Lykouris and Vassilvitskii 2021), 
online scheduling (Lattanzi et al. 2020), and the secre
tary problem (Dütting et al. 2021). In this paper, we 
combine the nonstationarity framework and the predic
tion framework on the newsvendor problem.

Finally, most previous works involving algorithms 
with predictions have analyzed algorithms’ perfor
mances using competitive analysis (see, e.g., Mahdian 
et al. 2012, Antoniadis et al. 2020, Balseiro et al. 2022, 
and Jin and Ma 2022) and obtained optimal 
consistency-robustness trade-offs, where consistency is 
an algorithm’s competitive ratio when the prediction 
is accurate and robustness is the competitive ratio 
regardless of the prediction’s accuracy. However, 
competitive ratio transfers to a regret bound that is 
linear in T. In contrast, we do regret analysis under 
this framework and design an algorithm that has 
near-optimal worst-case regret without knowing the 
prediction quality. Other papers with regret analyses 
under the prediction model have included Munoz 

and Vassilvitskii (2017) (revenue optimization in auc
tions), Hao et al. (2023) (Thompson sampling), Hu 
et al. (2024) (constrained online two-stage stochastic 
optimization), and An et al. (2024) (online resource 
allocation).

2. Model: The Nonstationary Newsvendor 
(Without Predictions)

We begin this section with a formal description of the 
Nonstationary Newsvendor along with a comparison 
with the problem of the same name from Keskin et al. 
(2023). Consider a sequence of newsvendor problems 
over T time periods labeled t � 1, : : : , T. At the begin
ning of each time period t, the decision-maker selects 
a quantity qt ∈Q, where Q is a fixed subset of R+
bounded above by a quantity we denote as Qmax.2 Then 
the period’s demand dt is drawn from an (unknown) 
demand distribution Dt, which depends on the time 
period t. These demand distributions are independent 
over time. Finally a cost is incurred; specifically, there is 
a (known) per-unit underage cost bt ∈ [0, bmax] and a 
(known) per-unit overage cost ht ∈ [0, hmax] so that the 
total cost is equal to

bt(dt� qt)
+
+ ht(qt� dt)

+, 

where x+ �max{0, x}. The decision-maker observes the 
realized demand dt

3 and thus the cost. Note that requir
ing qt ∈Q does not impose any restriction on modeling, 
because Q could simply be selected to be R (as in much 
of the literature). In fact, introducing Q allows for model
ing important practical concerns such as batched inven
tory or even simply the integrality of physical items. As 
we will discuss momentarily, this is a nontrivial concern 
insofar as theoretical guarantees are concerned.

To complete our description of the Nonstationary 
Newsvendor, we will need to (a) impose a few assump
tions on the demand distributions and then (b) describe 
how “nonstationarity” is quantified. These are, respec
tively, the subjects of the following two subsections.

2.1. Demand Distributions
We will assume that the demand distributions come 
from a known parameterized family of distributions D.

Assumption 1. Every demand distribution Dt comes from 
a family of distributions D satisfying the following: 

(a) D � {Dµ : µ ∈ [µmin,µmax]}; that is, D is parameter
ized by a scalar µ taking values in some bounded interval.

(b) Each distribution Dµ ∈D is sub-Gaussian.4

Assumption 1 is fairly minimal. Parsing it in reverse, 
the sub-Gaussianity in part (b) allows for many 
commonly-used variables, such as the Gaussian distri
bution and any bounded random variable, while let
ting us eventually apply Hoeffding-type concentration 
bounds. Part (a) is particularly minimal at the moment, 
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because µ represents an arbitrary parameterization of 
D, but will become meaningful when combined with 
Assumption 2. The choice of the symbol “µ” might sug
gest that µ represents the mean of Dµ, and indeed this 
is what we will assume from here on. But it should be 
emphasized that our taking µ � E[Dµ] is strictly for 
notational convenience (because we will frequently 
need to refer to the means of these distributions); if µ
were any other parameterization of D, we could simply 
define a mapping from µ to the mean values.

Now define C(µ, b, h, q) to be the expected newsven
dor cost when selecting quantity q ∈Q, given underage/ 
overage costs b and h, and demand distribution Dµ:

C(µ, b, h, q) � Ed~Dµ
[b(d� q)+ + h(q� d)+]:

The critical assumption, with respect to the parameteri
zation in Assumption 1(a), is that the expected cost is 
well behaved as a function of µ.

Assumption 2. For every b ∈ [0, bmax], h ∈ [0, hmax], and 
q ∈Q, the function C(·, b, h, q) is Lipschitz on its domain 
[µmin,µmax]; that is, there exists ℓ ∈ R+ such that for every 
µ1,µ2 ∈ [µmin,µmax], we have

|C(µ1, b, h, q)�C(µ2, b, h, q) | ≤ ℓ |µ1�µ2 | :

Note that in the above description, the Lipschitz con
stant ℓ may depend on b, h, and q, but by continuity, 
there exists a single ℓ so that the above holds for all b, h, 
and q simultaneously.

Some useful examples of families D satisfying Assump
tions 1 and 2 are the following:5

1. Dµ ~ N (µ,σ2), the family of normal distributions 
with fixed variance σ2. In this case, ℓ �O(σ(bmax + hmax)). 
A relaxation is that the variances may vary (continu
ously) with µ.

2. Dµ � µ+ ɛ, where ɛ is any mean-zero, sub- 
Gaussian variable.

3. The Poisson distribution is frequently used to 
model demand (because arrivals are often modeled as a 
Poisson process). Although the Poisson distribution is 
not sub-Gaussian, any reasonable truncation satisfies our 
assumptions. For example, Dµ ~ min{Poisson(µ), Kµ}
for some constant K. Here, K can be taken to be large 
enough so that the truncation happens with small proba
bility (in fact, this probability is O(e�Kµ)).

To understand the reasoning behind Assumption 2, 
consider the problem faced at some time t. The optimal 
choice for the decision-maker here is

q∗t ∈ arg min
q∈Q

Ct(µt, q), (1) 

where µt is the mean of Dt (i.e., Dt ~ Dµt
), and Ct(µ, q) �

C(µ, bt, ht, q) to simplify the notation.6 Because Dt is 
unknown, it is likely that some qt ≠ q∗t will ulti
mately be selected, and we could measure the subop
timality of this decision (i.e., regret, to be defined soon): 

Ct(µt, qt)�Ct(µt, q∗t). It would be natural then to try 
to characterize this suboptimality as a function of 
|qt� q∗t | , but in fact all of the algorithms we will con
sider “work” by making an estimate µ̂t of µt and then 
selecting q̂t ∈ arg minq∈Q Ct(µ̂t, q). So motivated, the 
purpose of Assumption 2 is to allow us to “translate” 
error in our estimate of µt to (excess) costs. The follow
ing structural lemma makes this precise and will be 
used throughout the paper.

Lemma 1. Fix any b and h (we will suppress them from 
the notation). For any Dµ1

, Dµ2
∈D, let q∗1 ∈ arg minq∈Q 

C(µ1, q) and q∗2 ∈ arg minq∈QC(µ2, q). Then, we have

C(µ1, q∗2)�C(µ1, q∗1) ≤ 2ℓ |µ1�µ2 | :

Lemma 1 states that estimation error of the mean µt 
translates linearly to excess cost. The proof of Lemma 1
appears in Online Appendix A.

Aside: Comparison with Keskin et al. (2023). The final 
component in describing the Nonstationary Newsvendor 
is defining a proper quantification of nonstationarity. 
Before doing so, we delineate the modeling differences 
between our Nonstationary Newsvendor and that of 
Keskin et al. (2023). There are two primary differences. 

1. The demand distributions Dt in Keskin et al. 
(2023) are assumed to be of the form Dt � µt + ɛt, where 
µt is the mean of Dt that drifts across time and ɛt is 
the noise distribution that is i.i.d., continuous, and 
bounded. Effectively, the demand distributions fall into 
a nonparametric family of distributions with the same 
“shape.” In contrast, our demand distributions fall into 
a parametric family of distributions, albeit not necessar
ily of the same “shape.”

2. Our set of allowed order quantities Q is bounded 
but otherwise arbitrary. In particular, it need not contain 
the optimal unconstrained order quantity arg minq∈R 
C(µ, q) for each µ (or any µ, for that matter). Keskin et al. 
(2023) assumed that Q � R+.7

Besides the practical reasons why discrete quantities 
arise in practice (nondivisible items, batched inventory, 
etc.), the primary consequence of either of the two dif
ferences above is that they preclude a critical lemma 
used in Keskin et al. (2023) (and in fact by Levi et al. 
2007) that states that C(µ1, q∗2)�C(µ1, q∗1) (as defined in 
our Lemma 1) scales as (q∗1� q∗2)

2. This scaling does not 
necessarily hold when either the demand distribution 
or Q is discrete. These relaxations in assumptions yield 
different lower bounds in the worst-case regret from 
Keskin et al. (2023), which we will discuss in detail later.

2.2. Demand Variation
Just as in Keskin et al. (2023) (and Keskin and Zeevi 
2017 before that), we measure the level of nonstationar
ity via a deterministic analog of quadratic variation for 
the sequence of means µ1, : : : ,µT. Specifically, define a 
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partition of the time horizon {1, : : : , T} to be any subset 
of time periods {t0, : : : , tK}, where 1 ≤ t0 <⋯< tK ≤ T. 
Here, the subset can have any size between 1 and T, 
that is, 0 ≤ K ≤ T� 1. Then, for any sequence of means 
m � {µ1, : : : ,µT}, its demand variation is

Vm � max
0≤K≤T�1

max
{t0,: : :,tK}∈P

XK

k�1
|µtk
�µtk�1

|2

( )

, (2) 

where P is the set of all partitions.
To motivate the use of partitions in the definition of 

Vm, it is worth contrasting with a measure that may feel 
more natural, namely, the sum of squared differences 
(SSD) between consecutive terms, 

PT
t�2 (µt�µt�1)

2, 
which corresponds to taking the densest possible parti
tion {1, 2, : : : , T}. The maximum in the definition of Vm 

is not necessarily achieved by selecting the densest pos
sible partition but rather by setting t0, : : : , tK to be the 
periods when the sequence µ1, : : : ,µT changes direction. 
Thus, the demand variation penalizes trends, or consec
utive increases/decreases, more so than the SSD. For 
example, the mean sequences m1 � {1, 2, 3, 4, 5} and 
m2 � {1, 0, 1, 0, 1}, respective variations Vm1 � (5� 1)2 �
16 and Vm2 � 12 + 12 + 12 + 12 + 12 � 5, despite having 
identical SSDs.

All of our theoretical guarantees (upper and lower 
bounds) will be parameterized by Vm. This quantity of 
course depends on T, and so it is natural to allow Vm to 
grow T. It will turn out that the most natural parame
terization of this growth is via what we will simply call 
the variation parameter v ∈ [0, 1], such that Vm � BTv, 
where B is some constant (which we take to be equal 
to 1 from here on). We denote the set of demand distri
bution sequences {D1, : : :DT} whose means m � {µ1, 
: : : ,µT} satisfy Vm ≤ Tv as

D(v) � {{D1, : : :DT} : Dt ∈D for all t and Vm ≤ Tv}:

In the next section, we will show via a minimax lower 
bound that nontrivial guarantees are achievable only 
when v< 1 and provide an algorithm that achieves the 
same bound.

Aside: Time-Series Modeling. At this point, we have 
fully described our model for the Nonstationary News
vendor. All that remains is to define our performance 
metric, which we will do in the next subsection. We 
conclude this subsection with an important practical 
consideration with respect to time series models and 
our variation parameter.

Consider, as an example, the following class of time 
series models:

dt � R(t) + S(t) + ɛt: (3) 

Here, R(t) represents a deterministic (and usually sim
ple, e.g., linear) function representing some notion of 
“trend,” and S(t) represents a deterministic, periodic 

function representing some notion of “seasonality.” 
Finally, all stochastic behavior is captured by the ran
dom variables ɛt, which are assumed to be independent 
and mean-zero. This time series model is classic and 
yet drives forecasting algorithms (e.g., exponential 
smoothing) that are still competitive in modern fore
casting competitions (Makridakis and Hibon 2000).

The above model raises an important practical issue; 
if there exists any (nontrivial) trend R(·) or seasonality 
S(·), then the demand variation of the sequence of 
means that µt � R(t) + S(t) would scale at least as T, 
meaning that v�1, and no meaningful guarantee will 
be achievable. Our main observation is that time series 
effects like trend and seasonality are easily detected 
and estimated so that in any practical setting, estimates 
R̂(·) and Ŝ(·) should be available and used to “de- 
trend” and “de-seasonalize” the data. Concretely, the 
Nonstationary Newsvendor would take place on the 
sequence

d̃t � d(t)� R̂(t)� Ŝ(t) � (R(t)� R̂(t)) + (S(t)� Ŝ(t)) + ɛt:

The resulting sequence of means µt � (R(t)� R̂(t)) +
(S(t)� Ŝ(t)) does not stem from the trend and seasonal
ity but rather the error in estimating the trend and 
seasonality. It is this error that is assumed to be nonsta
tionary but with reasonable variation parameter.

2.3. Performance Metric: Regret
We conclude this section by formally defining our per
formance metric for any policy. A policy is simply a 
sequence of mappings π � {π1, : : : ,πT}, where each πt is 
a mapping from d1, : : : , dt�1 to an order quantity qt ∈Q 
at time t (by convention, π1 is a constant function).8 We 
measure the performance of a policy by its regret. Fix a 
sequence of demand distributions D � {D1, : : : , DT}. Fol
lowing the earlier notation from (1), the regret incurred 
by a policy that selects order quantities q1, : : : , qT is

EπD
XT

t�1
(Ct(µt, qt)�Ct(µt, q∗t))

" #

, 

where the expectation is with respect to the random
ness of the realized demands. Recall that the demand 
distributions are independent, so q∗t as defined in (1) 
depends only on Dt. In words, the regret measures the 
difference between the (expected) total cost incurred 
by the policy and that of a clairvoyant that knows the 
underlying demand distributions D � {D1, : : : , DT}.9

We will be concerned with the worst-case regret of 
a policy across families of instances (i.e., sequences 
of demand distributions) controlled by the variation 
parameter v:

Rπ(T) � sup
D∈D(v)

EπD
XT

t�1
(Ct(µt, qt)� Ct(µt, q∗t))

" #

:
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Note that if the worst-case regret Rπ(T) of some policy 
is sublinear in T, then that policy is essentially cost- 
optimal on average as T goes to infinity. In the next sec
tion, we will prove a lower bound on the achievable 
across all policies and describe an algorithm that achieves 
this lower bound.

3. Solution to the Nonstationary 
Newsvendor (Without Predictions)

This section contains a complete solution (i.e., match
ing lower and upper bounds on regret) to the Nonsta
tionary Newsvendor. We begin with the lower bound.

Proposition 1 (Lower Bound: Nonstationary Newsvendor). 
For any variation parameter v ∈ [0, 1] and any policy π 
(which may depend on the knowledge of v), we have

Rπ(T) ≥ cT(3+v)=4, 

where c > 0 is a universal constant.

Proposition 1 is a corollary of a more general lower 
bound (Proposition 2 in the next section); it will turn 
out that the Nonstationary Newsvendor is a special 
case of the Nonstationary Newsvendor with predic
tions, so the proof is omitted. Proposition 1 states that 
the regret of any policy is at least Ω(T(3+v)=4). It is useful 
to contrast this with two existing results. 

1. Stationary Newsvendor: In the special case of i.i.d. 
demand, it is known that the optimal achievable regret 
is Θ(T1=2). Example 1 in Besbes and Muharremoglu 
(2013) demonstrates the lower bound, and the SAA 
method of Levi et al. (2007, 2015) achieves the upper 
bound. This point might appear to be incompatible with 
our result, which states a lower bound of Ω(T3=4) when 
v�0, but in fact the case of v�0 is more general than 
i.i.d. demand because it allows O(T0) �O(1) demand 
variation, whereas i.i.d. demand amounts to zero de
mand variation. Indeed, our proof of Proposition 1, 
for the special case of v�0, utilizes instances for 
which the demand distribution is allowed to change 
T1=2 times (by an amount of T�1=4, resulting in O(1) 
variation).

As an aside, this discussion raises a natural question. 
Is the disconnect here between stationary (i.i.d.) demand 
and variation parameter v�0 a consequence of our use 
quadratic variation, and would the same disconnect arise 
for other measures of demand variation? In Online 
Appendix E, we answer both questions in the affirmative 
by showing that if the exponent 2 in the demand varia
tion (Equation (2)) is instead some θ ≥ 0, then Proposi
tion 1 generalizes to a lower bound of Ω(T(1+θ+v)=(2+θ)). 
Thus, for any θ > 0, the case of variation parameter v�0 
is meaningfully more general than stationary demand.

2. Continuous Newsvendor: A similar “story” plays 
out in the setting of Keskin et al. (2023), which recall 
(among other key differences with our model, as described 

in Section 2.1) requires the additional assumption that 
both the demand distributions and the possible order 
quantities be continuous. Keskin et al. (2023) showed an 
optimal achievable regret of Θ(T(1+v)=2), which could be 
contrasted with the stationary (i.i.d.) setting for which an 
Ω(log T) lower bound exists (Besbes and Muharremoglu 
2013). Table 3 summarizes these lower bounds.

In the next two subsections, we will first analyze a 
simple algorithm that achieves the lower bound of 
Proposition 1 when the variation parameter v is known 
and then use this as a building block for an algorithm 
that achieves the same bound when v is unknown.

3.1. Upper Bound with Known Variation 
Parameter v

If we assume that v is known, then designing a policy 
that achieves regret matching Proposition 1 is fairly 
straightforward. In fact, a simple policy based on aver
aging a fixed number of past demand observations 
does the job (Keskin et al. 2023 used the same policy). 
That policy, which we call the Fixed-Time-Window 
Policy, is defined in Algorithm 1.

Algorithm 1 (Fixed-Time-Window Policy)
Inputs: variation parameter v ∈ [0, 1] and scaling 
constant κ > 0
Initialization: n← ⌈κT(1�v)=2⌉
for t � 1, : : : , n do

select qt ∈Q arbitrarily;
for t � n+ 1, : : : , T do

µ̂t←
1
n
Pt�1

s�t�n ds (if µ̂t ∉ [µmin,µmax], round µ̂t to 
the nearest value in [µmin,µmax]);
qt← arg minq∈Q Ct(µ̂t, q).

The Fixed-Time-Window Policy uses a carefully 
selected “window” size n that is on the order of T(1�v)=2. 
At each time period t, it constructs an estimate µ̂t of the 
mean by averaging the observed demands from the 
previous n periods and then selects the optimal order 
quantity corresponding to µ̂t. Note that Algorithm 1
also includes a “scaling constant” κ; this should be 
thought of as a practical tuning parameter, but for the 
coming theoretical result, it can be chosen arbitrarily 
(e.g., κ�1 suffices).

The following result bounds the worst-case regret of 
the Fixed-Time-Window Policy.

Lemma 2 (Upper Bound: Nonstationary Newsvendor with 
Known v). Fix any variation parameter v ∈ [0, 1]. The Fixed- 

Table 3. Summary of Newsvendor Lower Bounds Under 
Different Settings

Continuous General

Stationary (i.i.d.) log T T1=2

Nonstationary T(1+v)=2 T(3+v)=4
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Time-Window Policy πfixed achieves worst-case regret
Rπ

fixed
(T) ≤ CT(3+v)=4, 

where C ≤ 3 max{bmax, hmax}(δ+Qmax) + ℓ
�
2
ffiffiffi
κ
√
+

ffiffiffiffiffi
π

36e
p

δffiffi
κ
√
�
, 

and δ � sup
Dµ∈D
‖Dµ ‖ψ2

.

As promised, Lemma 2 shows that the Fixed-Time- 
Window Policy achieves regret that matches the lower 
bound in Proposition 1. Its proof can be found in Online 
Appendix B and amounts to bounding the estimation error 
incurred by demand noise (which is worse for smaller time 
windows) and demand mean variation (which is worse for 
larger time windows). The exact time window used in the 
policy comes from balancing these two sources of error.

3.2. Upper Bound with Unknown Variation 
Parameter v

The lower bound in Proposition 1 holds for policies that 
“know” v. Naturally, it also holds for policies that do not 
know v, but an unanswered question at the moment is 
whether (a) the lower bound should be even larger when 
v is unknown or (b) there exists a policy that matches 
Proposition 1 without knowing v. We show here that case 
(b) holds by constructing such a policy.10 Our policy, 
which we call the Shrinking-Time-Window Policy (Algo
rithm 2), at a high level uses the Fixed-Time-Window 
Policy with the smallest variation parameter that is con
sistent with the demand observed so far. In more detail: 

1. It begins with a discrete set of candidate variation 
parameters V � {v1, : : : , vk}:

vj � 1+ 1
logT

� �j�1 1
logT

, j � 1, : : : , k, (4) 

where k is chosen so that vk�1< 1≤ vk. V is defined spe
cifically so that the variation parameters are increasing 
(vj�1 < vj) and so that it discretizes the interval [0, 1] at 
a sufficiently fine granularity.

2. At any time period t, there is a “current” candi
date parameter vi (initialized to be v1 at t� 1) that is 
assumed to be the true variation v, and so the corre
sponding Fixed-Time-Window Policy is applied; a time 
window of

ni � ⌈κT(1�vi)=2⌉ (5) 

is used, and an estimate of µt is made:

µ̂i
t �

1
ni

Xt�1

s�t�ni

ds, rounded to the nearest value
in [µmin,µmax]: (6) 

3. The index i of the “current” candidate parameter 
vi is incremented at any period in which the policy gath
ers sufficient evidence that vi < v. This is possible 
because of the following observation; if vi ≈ v, then by 
Lemma 2 we have that for any vj>vi, the regret incurred 
by the Fixed-Time-Window Policy corresponding to vj 
is O(T(3+vj)=4), and thus the cumulative difference between 
the estimated mean demands ( | µ̂i

t� µ̂
j
t |) cannot exceed 

O(T(3+vj)=4). Thus, if this is observed for some vj>vi, 
then we can conclude that vi < v, and i is incremented.

Algorithm 2 (Shrinking-Time-Window Policy)
Inputs: scaling constants κ > 0, and γ sufficiently large 
(Equation (8) in Online Appendix C);
Initialization: Set V � {v1, : : : , vk} and {n1, : : : , nk}

according to Equations (4) and (5);
for t � 1, : : : , T3=4 do

select qt ∈Q arbitrarily;
Initialize i← 1 and tif← T3=4 + 1;
for t � T3=4 + 1, : : : , T do

if 
Pt

s�tif
| µ̂i

s� µ̂
j
s | ≥ 2(γ

ffiffiffiffiffiffiffiffiffiffiffi
log T

p
+

ffiffiffi
κ
√
)T(3+vj)=4 for 

some j> i then
i← i+ 1;
tif← t;

qt← arg minq∈Q Ct(µ̂
i
t, q).

This policy’s regret matches (up to log factors) the 
lower bound in Proposition 1:

Theorem 1 (Upper Bound: Nonstationary Newsvendor with 
Unknown v). For any variation parameter v ∈ [0, 1], the 
Shrinking-Time-Window Policy πshrinking achieves worst- 
case regret

Rπ
shrinking

(T) ≤ CT(3+v)=4log5=2T, 

where C ≤ 3 max{bmax, hmax}(δ+Qmax) + 12e1=4ℓ(γ+
ffiffiffi
κ
√
)+

e1=4CLemma 2, and CLemma 2 is the constant in Lemma 2.

The proof of Theorem 1 can be found in Online 
Appendix C.

This concludes our discussion of the Nonstationary 
Newsvendor. In the next section, we turn to the second 
subject of this paper, which is the same problem with 
predictions.

4. The Nonstationary Newsvendor with 
Predictions

As described in the Introduction, it is likely that when 
the Nonstationary Newsvendor is faced with practice, 
some notion of a “prediction” of future demand will be 
made. Such predictions can come from a diverse set 
of sources ranging from simple human judgment to 
forecasting algorithms built on previous demand data 
to more sophisticated machine-learning algorithms 
trained on feature information. The process of sourcing 
or constructing such predictions is orthogonal to our 
work. Instead, we treat these predictions as given to us 
endogenously (and in particular, we make no assump
tion on the accuracy of these predictions) and attempt 
to use these predictions optimally.

4.1. Model
The Nonstationary Newsvendor with Predictions prob
lem assumes all of the setup, assumptions, and notation 
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of the previous Nonstationary Newsvendor problem. In 
addition, at each time period t, we assume that the 
decision-maker receives a prediction at before selecting 
an order quantity qt ∈Q.11 This prediction is meant to be 
an estimate of µt, and so we measure the prediction error 
of a sequence a � {a1, : : : , aT} with respect to a sequence 
of means simply as

XT

t�1
|at�µt | :

Note that, unlike demand variation, we have not used 
partitions here (and in fact, introducing partitions 
would not have any effect because we are measuring 
absolute rather than squared differences). Intuitively, 
we do not want to require the sequence of errors to be 
meaningful time series; the predictions are generic, and 
their accuracy is allowed to change rapidly. Just as for 
the demand variation, the prediction error is expected 
to grow with the time horizon T, and the proper 
parameterization of this growth is via an exponent; we 
call the accuracy parameter the smallest a ∈ [0, 1] such 
that the prediction error is at most Ta. We will always 
assume that a is unknown to the decision-maker.

Algorithm 3 (Prediction Policy)
for t � 1, : : : , T do

µ̂t← at (if µ̂t ∉ [µmin,µmax], round µ̂t to the near
est value in [µmin,µmax]);
qt← arg minq∈Q Ct(µ̂t, q).

Naturally, the notion of a policy π expands to include 
the predictions π � {π1, : : : ,πT}, where each πt is a 
mapping from d1, : : : , dt�1 and a1, : : : , at to an order 
quantity qt ∈Q. The simplest policy, which “should” be 
used if the prediction error is known to be sufficiently 
small, is to simply behave as if the predictions were per
fect. We call this the Prediction Policy (Algorithm 3). The 
following observation collects a few (likely unsurprising) 
facts about the performance of this policy with respect 
to worst-case regret (generalized in the “obvious” man
ner to incorporate prediction accuracy via the accuracy 
parameter a):

Observation 1 (Upper and Lower Bounds: Prediction 
Policy). Fix any variation parameter v ∈ [0, 1] and any 
accuracy parameter a ∈ [0, 1]. 

a) The Prediction Policy πprediction achieves worst- 
case regret

Rπ
prediction

(T) ≤ CTa, 

where C ≤ 2ℓ.
b) For any policy π (which may depend on the 

knowledge of a) that is solely a function of the predic
tions (i.e., does not depend on the observed demands), 
we have

Rπ(T) ≥ cTa, 
where c> 0 is a universal constant.

Observation 1a states that the Prediction Policy trans
lates prediction error directly to regret (incidentally, it 
does this without “knowing” a). There are, of course, 
other ways in which the predictions could be used, but 
Observation 1b essentially states that there is nothing to 
be gained by doing so (even if a is known). The proof of 
Observation 1a appears in Online Appendix A. Obser
vation 1b is a direct corollary of Proposition 2, which is 
given in the next subsection.

4.2. Extreme Cases
What exactly is achievable for the Nonstationary News
vendor with Predictions depends heavily on whether v 
and a are known to the policy. To see this, it is worth 
first considering the two extremes.
Case 1: Known v and a.

A simple policy is available when v and a are both 
known. Compare the quantities (3+ v)=4 and a. If the for
mer quantity is smaller, apply the Fixed-Time-Window 
Policy. If the latter is smaller, apply the Prediction Policy. 
Lemma 2 and Observation 1 together imply that this 
achieves a worst-case regret of O(Tmin{(3+v)=4, a}). This is 
optimal, as demonstrated by the following result.

Proposition 2 (Lower Bound: Known v and a). Fix any 
variation parameter v ∈ [0, 1] and any accuracy parameter 
a ∈ [0, 1]. For any policy π (which may depend on the 
knowledge of v and a), we have

Rπ(T) ≥ cTmin{(3+v)=4, a}, 

where c > 0 is a universal constant.

The proof of this result can be found in Online 
Appendix D and relies on an explicit construction of a 
family of problem instances. Our construction breaks 
the total time horizon into cycles wherein the demand 
distribution is i.i.d. We tune the length of each cycle to 
be small enough so that it is (provably) hard to detect 
the change in demand distributions, and the predic
tions are essentially useless for most time periods in 
the cycle and large enough so that the demand varia
tion is within Tv and the prediction error is within Ta.
Case 2: Unknown v and a.

At the opposite extreme, if v and a are both unknown, 
is it still possible to achieve O(Tmin{(3+v)=4, a}) worst-case 
regret? The answer is no.

Proposition 3 (Lower Bound: Unknown v and a). For any 
policy that does not depend on the knowledge of v or a, there 
exists a problem instance such that a ≠ (3+ v)=4, and the 
policy incurs regret at least cTmax{(3+v)=4, a} on the instance, 
where c > 0 is a universal constant.

Proposition 3 states that the best we can hope for, 
when v and a are unknown, is a worst-case regret of at 
least Ω(Tmax{(3+v)=4, a}).12 Note that Proposition 3 shows 
that there exists a pair of v and a, and a corresponding 
problem instance, such that this lower bound holds. 

An et al.: The Nonstationary Newsvendor with Predictions 
10 Manufacturing & Service Operations Management, Articles in Advance, pp. 1–16, © 2025 INFORMS 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
8.

23
7.

82
.1

12
] 

on
 0

3 
A

pr
il 

20
25

, a
t 1

3:
19

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



This is in contrast to a result showing that for any pair 
of v and a, there exists a problem instance such that the 
lower bound holds, as is common in the literature (see, 
e.g., theorem 1 of Keskin and Zeevi 2017). This lower 
bound is easily achieved, for example, by applying the 
Shrinking-Time-Window Policy or the Prediction Pol
icy (or any blind randomization of the two). The proof 
of Proposition 3 is in Online Appendix F. In contrast 
to Case 1, the lower bound construction here relies 
heavily on the fact that we do not know which one of 
(3+ v)=4 and a is smaller.

4.3. Final Solution
We have finally reached the problem that motivates 
this entire paper: designing an optimal policy for the 
Nonstationary Newsvendor with Predictions when the 
prediction error a is unknown. We will assume that v is 
known, because when v is unknown, Proposition 3
rules out the possibility of using the predictions to 
improve on what is already achievable without predic
tions. On the other hand, by Proposition 2, the absolute 
best we could hope for is a policy that achieves a 
worst-case regret of O(Tmin{(3+v)=4, a}). In words, we 
would like a policy that, without knowing a, achieves 
the same regret had a been known. Our main result is 
the design of such a policy.

Our policy is called the Prediction-Error-Robust Pol
icy (PERP) and is given in Algorithm 4. PERP utilizes 
the Fixed-Time-Window policy πfixed in Section 3 as an 
estimate of the true mean to track the quality of the pre
dictions over time.

Algorithm 4 (Prediction-Error-Robust Policy (PERP))
Inputs: variation parameter v ∈ [0, 1] and scaling 
constants κ > 0, γ sufficiently large (Equation (9) in 
Online Appendix C).
Initialization: n← ⌈κT(1�v)=2⌉;
for t � 1, : : : , n do
πt← π

prediction
t ;

for t � n+ 1, : : : , T do
µ̂fixed

t ← 1
n
Pt�1

s�t�n ds;
µ̂a

t ← at;
if 
Pt

s�n+1 | µ̂
a
s � µ̂

fixed
s | ≥ (γ

ffiffiffiffiffiffiffiffiffiffiffi
logT

p
+

ffiffiffi
κ
√
+ 1) ·T(3+v)=4, 

then
πt← πfixed

t ;
break

else
πt← π

prediction
t .

Theorem 2 (Upper Bound: Known v and Unknown a). For 
any variation parameter v ∈ [0, 1] and any accuracy param
eter a ∈ [0, 1], the Prediction-Error-Robust Policy πPERP 

achieves worst-case regret,

Rπ
PERP
(T) ≤min{3CLemma 2

ffiffiffiffiffiffiffiffiffiffiffi
log T

p
·T(3+v)=4, 2ℓ ·Ta}, 

where CLemma2 is the constant in Lemma 2 (and 2ℓ matches 
the constant in Observation 1a).

The intuition behind PERP is to follow the predic
tions until a time that is late enough to have evidence 
that the prediction quality is bad (compared with the 
Fixed-Time-Window Policy) but early enough to not 
incur much regret caused by the poor quality of the 
predictions. Because we do not observe the true past 
mean µt after time period t, we naturally use µ̂fixed

t 
from the Fixed-Time-Window policy πfixed as an esti
mation of µt and in turn keep tracking the cumulative 
difference in the prediction quality |at�µt | . We care
fully choose the parameters in πPERP so that this estima
tion is not accurate only with a small probability, and 
we can identify that the prediction quality is bad if this 
cumulative difference is too large. By Proposition 2, 
any policy can achieve only worst-case regret on the 
order of Tmin{(3+v)=4, a}, so PERP is order optimal.

Aside: Unknown v and Known a. There are four possi
ble scenarios depending on the knowledge of v and a: 
known/unknown v and known/unknown a. So far, 
we have discussed three of them: known v and a (Prop
osition 2), unknown v and a (Proposition 3), and known 
v and unknown a (Theorem 2). For the sake of com
pleteness, we discuss the remaining case of unknown v 
and known a in Online Appendix H, where we give a 
policy that achieves worst-case regret Õ(Tmin{(3+v)=4, a}). 
This is order optimal by Theorem 2.

5. Experiments
Finally, we describe a set of experiments we performed 
to evaluate our policy (PERP) for the Nonstationary 
Newsvendor with Predictions. In all of our experi
ments, we compared PERP against the Shrinking-Time- 
Window Policy (NO-PRED) and the Prediction Policy 
(PURE-PRED). The main takeaways are as follows: 

1. PERP’s performance is robust with respect to the 
quality of the predictions without knowing the predic
tion quality beforehand. Specifically, the (newsvendor) 
cost it incurs is consistently “close” to the lower of the 
costs incurred by NO-PRED and PURE-PRED.

2. PERP performs especially well when the absolute 
difference between the costs of NO-PRED and PURE- 
PRED is large, that is, when the “stakes” are highest.

5.1. Experiments on Synthetic Data
The objective of our first batch of experiments was 
to fix one of the two theoretical parameters (v or a) 
and test PERP’s performance as the other parameters 
change. To generate demand sequences, we used the 
parametric time series model that corresponds to triple 
exponential smoothing (Holt Winters), a classic model 
for time series data in the family of Equation (3). We 
give the exact formulas and our choices of parameters 
in Online Appendix I; for more on triple exponential 
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smoothing, see Winters (1960). In our experiment, each 
demand sequence consisted of the demands for the 
next 365 time periods, with the realized demands gen
erated as Poisson variables with the corresponding 
means. We ran two sets of experiments: 
• Fixed v: We fixed a single set of parameters for the 

demand sequence and generated 1,000 different predic
tions of this demand sequence, each from a set of 
“predicted” parameters with different accuracy. Thus 
the variation parameter v was fixed, and the accuracy 
parameter a varied across instances.
• Fixed a: We generated 1,000 demand sequences 

by selecting the parameters randomly. We then gener
ated predictions by changing each parameter 10% and 
using the corresponding sequence. Thus the variation 
parameter v varied across instances, but the accuracy 
parameter a was (roughly) fixed.

For each demand sequence and corresponding pre
diction, we ran NO-PRED, PURE-PRED, and PERP with 
equal overage and underage costs and scaling con
stants κ � γ � 1. Because the experiment was synthetic, 
the true underlying demand distribution was known at 
each time period. Therefore we also ran OPT as a 

benchmark, which simply ordered the optimal quantile 
at each time period. The variation parameter v in PERP 
was calculated using the past demands of the prefixed 
30 time periods by the definition in Section 2.2. We cal
culated the parameters v and a by their definitions 
(given in Sections 2.2 and 4.1, respectively), scaled 
appropriately to make them lie in [0, 1]. The resulted 
scatter plots are shown in Figure 2. In (a), v is fixed, so 
the cost of NO-PRED (blue dots) is approximately the 
same for all instances. The cost of PURE-PRED (orange 
dots) is approximately exponential in a, which follows 
by Observation 1a. In (b), a is fixed, so the cost of PURE- 
PRED is approximately the same for all instances. The 
cost of NO-PRED is approximately exponential in v, 
which follows by Theorem 1. Note that in both (a) and 
(b), the cost of PERP (green dots) is close to the minimal 
cost of NO-PRED and PURE-PRED across all instances, 
showing that PERP’s performance is robust in both v 
and a.

5.2. Experiments on Real Data
We used real-world data sets to represent the “demand” 
sequences in our experiments. Figure 3 depicts example 

Figure 2. (Color online) The Costs of NO-PRED, PURE-PRED, PERP, and OPT When (a) the Variation Parameter v is Fixed and 
(b) the Accuracy Parameter a is Fixed 

Note. Each dot represents the cost of the corresponding policy on a given instance.

Figure 3. (Color online) An Example of a Single Time Series from Each Data Set 

Note. In (c), the dashed line represents an additional feature: daily online reservations.
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time series from each of these data sets. All data sets 
include multiple daily time series and are publicly 
available: 
• Rossmann:13 Daily number of customers that vis

ited each of 1,115 stores in the Rossmann drug store 
chain during a 781-day period from 2013 to 2015.
• Wikipedia:14 Daily web traffic across Wikipedia. 

com pages of nine different languages for an 803-day 
period from 2015 to 2017.
• Restaurant:15 Daily number of visitors and online 

reservations across 185 restaurants in Japan, during a 
478-day period from 2016 to 2017. We treated the num
ber of visitors as the “demand” and the reservations as 
a predictive feature.

Each instance of our experiment represented a single 
Nonstationary Newsvendor with Predictions problem, 
with the realized demands taken from a single time 
series in our data (a single Rossmann store, a single lan
guage on Wikipedia, or a single restaurant). The over
age and underage costs were constant within each 
instance, and without loss of generality the two costs 
for an instance can be characterized by the correspond
ing critical quantile (specifically, the ratio of the under
age cost to the sum). The time horizon for each instance 
was a set number of days taken from the end of the 
time series, with the preceding days used to train one of 
four prediction methods. These predictions were also 
updated over the course of the instance at a set fre
quency. For the Wikipedia data set, this yielded a total 
of 2,880 possible instances, all of which were tested. The 
Rossmann data set has multiple orders of magnitude 

more instances, so we randomly sampled 1,000 from 
this set. For the Restaurant data set, we used a single 
prediction method to generate two sets of predictions 
for each restaurant; one only utilized the number of 
past visitors, and the other incorporated the number of 
reservations as a feature, which gave 740 instances. 
Table 4 describes all of the instances used.

For each instance, we applied NO-PRED, PURE- 
PRED, and PERP with scaling constants κ � γ � 1, and 
the variation parameter v in PERP was calculated using 
the past demands of the training data by the definition 
in Section 2.2. To generate predictions, we used four 
popular forecasting methods ranging from classic to 
the state-of-the art: 
• Exponential Smoothing (Holt Winters): A classic 

algorithm based on a (linear) trend and seasonality 
decomposition as in Equation (3), known for its sim
plicity and robust performance. It is frequently used as 
a benchmark in forecasting competitions (Makridakis 
and Hibon 2000). Tuning parameter: seasonality of 
length 50.
• ARIMA: Another classic algorithm that is rich 

enough to model a wide class of nonstationary time 
series. Tuning parameters: (p, q, r) � (3, 2, 5).
• Prophet: A recent algorithm developed by Facebook 

(Taylor and Letham 2018) based on a (piecewise-linear) 
trend and seasonality decomposition, as in Equation (3), 
known to work well in practice with minimal tuning. 
Tuning parameters: software default.
• LightGBM: A recent algorithm developed by 

Microsoft (Ke et al. 2017) based on tree algorithms. 

Table 4. Description of Experimental Instances

Rossmann Wikipedia Restaurant

No. of time series 1,115 9 185
Critical quantiles (%) 30,40,50,60,70 95,98,99,99.9 50
Experimental period (days) 300,400,500,600 300,400,500,600,700 100
Prediction update frequency (days) 2,4,10,20 2,4,10,20 5, 10
Total no. of instances 1,000 (sampled) 2,880 (exhaustive) 740 (exhaustive)

Figure 4. (Color online) Histograms of GAPs Across (a) 1,000 Randomly Sampled Instances on the Rossmann Data Set, (b) 2,880 
Instances on the Wikipedia Data Set, and (c) 740 Instances on the Restaurant Data Set 
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LightGBM formed the core of most of the top entries in 
the recent $100,000 M5 Forecasting Challenge (Makri
dakis et al. 2022). Tuning parameters: software default.

For the Restaurant data set, we used Prophet as the 
forecasting method, with and without the reservations 
as an additive linear feature. We treated the outputs of 
these methods as predictions of the mean demand. To 
estimate the demand distribution around this mean, we 
used the empirical distribution of the residuals of the 
same predictions on the training period.16 In practice, 
even if the prediction quality is good, the predictions of 
the first few days might incur large costs because of 
noise/instability of the predictions, which may cause 
PERP to misidentify the prediction quality. Therefore, 
we restricted PERP to following the predictions for the 
first 20 days, allowing switches only afterward.

Results. Each instance yields three total costs: one 
incurred by PERP and two incurred by the benchmark 
algorithms (NO-PRED and PURE-PRED). The primary 
performance metric that we report is a form of optimal
ity gap. For an instance I, let costPURE�PRED(I) be the 
cost of PURE-PRED, and similarly define costNO�PRED 

(I), costPERP(I). Then, the optimality gap (GAP) of PERP 
is defined as

GAP(I) � costPERP(I)�min{costPURE�PRED(I), costNO�PRED(I)}
|costPURE�PRED(I)� costNO�PRED(I) |

:

If we think of PERP as trying to achieve the minimum 
of the costs incurred by the two benchmark policies, 
then GAP measures the excess cost that PERP incurs on 
top of this minimum, which is normalized so that 
GAP � 0 implies that the minimum has been achieved, 
and GAP � 1 implies that the maximum of the two 
costs was incurred.17

Experiments on the data sets yielded the histograms 
in Figure 4. For each instance I, the value on the 
horizonal axis is log(costPURE�PRED(I)=costNO�PRED(I)), 
which is greater than 0 if NO-PRED has a lower cost 
and less than 0 if PURE-PRED has a lower cost. In the 
1,000 Rossman instances NO-PRED had a lower cost 
82.7% of the time, in the 2,880 Wikipedia instances NO- 
PRED had a lower cost 81.9% of the time, and in the 740 
Restaurant instances NO-PRED had a lower cost 64.3% 
of the time. The values on the vertical axis are the 
GAPs. Note that most GAPs are small when the 

Table 5. Summary of Experimental Results

Rossmann Wikipedia Restaurant

Average GAP with good predictions 0.26 0.40 0.10
Average GAP with bad predictions 0.28 0.07 0.39

Figure 5. (Color online) Histograms of the GAPs for (a) 173 Rossmann Instances (left), 522 Wikipedia Instances (Middle), and 
476 Restaurant Instances (Right) for Which PURE-PRED Has Lower Cost and (b) 827 Rossmann Instances (Left), 2,358 Wikipedia 
Instances (Middle), and 264 Restaurant Instances (Right) for Which NO-PRED Has Lower Cost 
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absolute values of the log difference are large. This 
shows that PERP performs very well when the differ
ence of costs between NO-PRED and PURE-PRED is 
large. On the other hand, there are instances where 
PERP has large GAPs, and in particular there are 
instances with GAPs equal to 1 when the log difference 
of costs is close to 0. This happens because when the 
log difference of costs is close to 0, the cost of NO-PRED 
and the cost of PURE-PRED are close, so PERP may 
misidentify the prediction quality. Still, because the 
maximum cost and the minimum cost of the other two 
policies are close, even the GAPs are large in these 
instances, and PERP does not perform badly.

We further divide the instances according to which of 
NO-PRED and PURE-PRED had lower cost in Table 5
and Figure 5. For comparison, if we did not know the 
prediction quality beforehand, uniformly random choos
ing between NO-PRED and PURE-PRED had an expected 
GAP of 0.5. Therefore, PERP outperforms this natural 
benchmark in all cases of all data sets.

6. Conclusion
We proposed a new model incorporating predictions 
into the nonstationary newsvendor problem. We first 
gave a complete analysis of the Nonstationary News
vendor (without predictions) by proving a lower regret 
bound and developing the Shrinking-Time-Window 
Policy, which was the first policy that achieved the 
lower bound up to log factors without knowing the 
variation parameter. We then considered the Nonsta
tionary Newsvendor with Predictions and proposed 
the Prediction-Error-Robust Policy, which does not 
need to know the prediction quality beforehand and 
achieves nearly optimal minimax worst-cast regret.

Endnotes
1 The Õ(·) notation hides logarithmic factors.
2 All of our results carry through if Q is allowed to depend on t.
3 The demand is not censored here, as is the case in all of the moti
vating examples in the Introduction. The censored version of our 
problem is an interesting but separate subject.
4 A random variable X is sub-Gaussian with sub-Gaussian norm ‖X‖ψ2 

if P( |X | > x)≤2 exp(�x2=‖X‖2
ψ2
) for all x ≥ 0: For sub-Gaussian vari

ables, we have E[ |X | ]≤3‖X‖ψ2
.

5 Unfortunately, Assumption 2 is not guaranteed to hold. For exam
ple, for the family of distributions

Dµ ~
µ, µ ∈ [0, 1]
µ + Bernoulli(0:5)� 0:5, µ ∈ (1, 2],

�

the function C(µ, 1, 1, 1) is discontinuous (and thus not Lipschitz) at 
µ�1.
6 As a sanity check, the classical result for the newsvendor problem 
(Arrow et al. 1958, Scarf et al. 1960) states that if Q � R, then q∗t is 
the bt=(bt + ht)-th quantile of Dt.
7 Although not stated explicitly, the results in Keskin et al. (2023) 
require Q only to contain points arbitrarily close to every optimal 
unconstrained order quantity.

8 Note that we are not considering randomized policies here, but all 
of our theoretical results (the lower bounds, in particular) hold even 
when randomization is allowed.
9 Note that this is different from a clairvoyant that knows the real
ized demands d1, : : : , dT . Such a clairvoyant would incur zero cost.
10 As a final comparison to Keskin et al. (2023), they do not consider 
the unknown v setting.
11 We are taking the predictions to be entirely deterministic, so for 
example, at is not allowed to depend on the previously observed 
demands d1, : : : , dt�1. Our results hold if we extend to the setting in 
which the predictions are stochastic (and adapted to the demand 
filtration).
12 Indeed, it implies that no algorithm can achieve regret O(Tf (v, a)) for 
a function f : [0, 1] × [0, 1] → [0, 1] satisfying f (v, a)≤max{(3+ v)=4, a}
for all v, a ∈ [0, 1] and f (v, a)<max{(3+ v)=4, a} for some v, a ∈ [0, 1].
13 Available at https://www.kaggle.com/competitions/rossmann- 
store-sales/data.
14 Available at https://www.kaggle.com/competitions/web-traffic- 
time-series-forecasting/data.
15 Available at https://www.kaggle.com/competitions/recruit-rest 
aurant-visitor-forecasting/.
16 That is, if the training data consist of Ttrain periods, which without 
loss we index as {t ��Ttrain + 1, Ttrain + 2, : : : , �1, 0}, then the demand 
distribution at any time t was estimated to be 

µ̂t +Uniform({ds � µ̂s : s ��Ttrain + 1, Ttrain + 2, : : : , �1, 0}):
17 GAP may technically be outside of [0, 1].
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