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Abstract. Problem definition: Omnichannel retailing has led to the use of traditional stores
as fulfillment centers for online orders. Omnichannel fulfillment problems have two compo-
nents: (1) accepting a certain number of online orders prior to seeing store demands and (2)
satisfying (or filling) some of these accepted online demands as efficiently as possible with
any leftover inventory after store demands have been met. Hence, there is a fundamental
trade-off between store cancellations of accepted online orders and potentially increased
profits because of more acceptances of online orders. We study this joint problem of online
order acceptance and fulfillment (including cancellations) to minimize total costs, including
shipping charges and cancellation penalties in single-period and limited multiperiod set-
tings. Academic/practical relevance:Despite the growing importance of omnichannel fulfill-
ment via online orders, our work provides the first study incorporating cancellation penal-
ties along with fulfillment costs. Methodology: We build a two-stage stochastic model. In
the first stage, the retailer sets a policy specifying which online orders it will accept. The sec-
ond stage represents the process of fulfilling online orders after the uncertain quantities of
in-store purchases are revealed. We analyze threshold policies that accept online orders as
long as the inventories are above a global threshold, a local threshold per region, or a hybrid.
Results: For a single period, total costs are unimodal as a function of the global threshold
and unimodal as a function of a single local threshold holding all other local thresholds at
constant values, motivating a gradient search algorithm. Reformulating as an appropriate
linear program with network flow structure, we estimate the derivative (using infinitesimal
perturbation analysis) of the total cost as a function of the thresholds. We validate the perfor-
mance of the threshold policies empirically using data from a high-end North American re-
tailer. Our two-location experiments demonstrate that local thresholds perform better than
global thresholds in a wide variety of settings. Conversely, in a narrow regionwith negative-
ly correlated online demand between locations and very low shipping costs, global thresh-
old outperforms local thresholds. A hybrid policy only marginally improves on the better of
the two. In multiple periods, we study one- and two-location models and provide insights
into effective solution methods for the general case.Managerial implications: Our methods
provide effective algorithms to manage fulfillment costs for online orders, demonstrating a
significant reduction over policies that treat each location separately and reflecting the sig-
nificant advantage of incorporating shipping in computing thresholds. Numerical studies
provide insights as to why local thresholds performwell in a wide variety of situations.

Supplemental Material: The online appendix is available at https://doi.org/10.1287/msom.2021.1024.

Keywords: omnichannel retail • stochastic programming • infinitesimal perturbation analysis • dynamic programming

1. Introduction
Omnichannel retailing, the combination of online and
traditional store channels, uses traditional stores as
shipping centers for originating online orders and cus-
tomer pickup points for online orders, thus using the
inventory at the store in a pooled manner across chan-
nels. Online orders arrive over time, but satisfying
them (with the store inventory) is usually done in a
periodic manner after also accounting for in-store or-
ders, which are given strict priority. Thus, a key

decision is the number of online orders to accept, with
the understanding that some may not be satisfied (as
when the leftover inventory after filling in-store de-
mands is zero) and may have to be cancelled by the
retailer.1 Using proprietary data from high-end North
American retailers, we observed cancellation rates
above 20%, whereas inventory positions of the most
popular Stock-Keeping Units (SKUs) across physical
store locations varied from a few units to over a hundred
units, motivating the potential for better-performing joint
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acceptance and fulfillment policies. We study a new
set of research questions related to acceptance and ful-
fillment of these online orders in omnichannel retail
operations, taking into consideration shipping costs
when they are filled and cancellation costs when they
are not.

1.1. Omnichannel Fulfillment Model
Fixed exogenous inventory I i is available at each loca-
tion i in a system of N locations. At each location i,
there are two streams of demand, online (DO

i ) and
physical (DP

i ), which both draw from the same pool of
inventory. Physical demand is fulfilled with higher
priority than online demand, and online orders are
cancelled if there is not sufficient inventory to fill
them. There is a cost, c, associated with canceling an
order, and there is also a penalty cost, p, associated
with not accepting an order that could have been
filled. The shipping cost per unit is sij from location i
to location j.

The goal for the retailer is to set a policy that mini-
mizes total costs in expectation. We capture this pro-
cess through a two-stage stochastic model. The first
stage of the problem occurs as online orders arrive at
the retailer. The retailer must decide whether to accept
or reject each order as it arrives, in an online manner.
Many retailers already use threshold policies to man-
age their online sales channels, so it is natural to focus
on this policy class. More complex policies might uti-
lize the arrival times of orders, but this is not our focus
in this analysis. The first stage concludes after all on-
line orders have arrived and are accepted or rejected
by the retailer.

We consider two types of threshold policies, local
thresholds and global thresholds. Local threshold pol-
icies have a parameter for each location, allowing the
retailer fine-tuned control over which areas are ac-
cepting online orders. Global threshold policies have a
single parameter for the full network of stores. Global
threshold policies allow the retailer more control over
the total number of online orders accepted but less
fine-tuned control than with local thresholds over
which orders are accepted.2

Definition 1. A local threshold policy [S1, : : : ,Sn] ac-
cepts the first Si online orders from location i ∈ [n] and
rejects all remaining orders. A global threshold policy
S accepts the first S online orders (from all locations)
and rejects all remaining orders.

Setting the acceptance thresholds too high increases
the risk of eventual cancellation of these accepted online
orders, whereas setting the thresholds to conservatively
low levels results in incurring unnecessary rejection
penalty costs on leftover inventory that could have
been used to fill rejected online orders, thus setting up a
trade-off for the optimal thresholds.

After the first stage concludes, the retailer learns the
amount of in-store demand it received as the online
orders arrived. The retailer then must decide whether
to cancel or fulfill each accepted online order and
from which store inventory will be used to fill these
orders. This second stage can be naturally formulated
as a network flow optimization problem:

minimize pmin
∑n
i�1

I i −min (I i,DP
i ) −

∑n
j�1

Fij

( )
,

(

∑n
i�1

(DO
i − Ai)

)
+∑n

i�1
ciCi +

∑n
j�1

sjiFji

( )

such that min (DP
i , I i) + Ri +

∑n
j�1

Fij � I i, ∀i ∈ [n]

Ci +
∑n
j�1

Fji � Ai, ∀i ∈ [n]

Ci,Ri,Fij ≥ 0, ∀i, j: (1)

In this formulation, Ai is the number of online orders
accepted from location i in the first stage, and it is set
differently in local and global policies. For local
threshold policies, we have each region i accepting up
to Si orders giving Ai �min {DO

i ,Si}. In the global
threshold policy, we set Ai �DO

i as long as
∑

iD
O
i ≤ S,

the global threshold. Otherwise, for a given set of on-
line demand realizations {DO

i }i, there are many ways
of truncating them to accept only S. For concreteness,
we assume that the demand arrivals occur uniformly
over the first stage and hence, scale the demands pro-
portionally so that the total is S. In other words, when∑

iD
O
i > S, we set Ai � DO

i∑
iD

O
i
· S. We denote the objec-

tive function for the second-stage program as
G(S1, : : : ,Sn) in the local threshold case and G(S) in the
global threshold case. The first-stage problem is to set
the corresponding thresholds to minimize the ex-
pected value of G in both cases.

Consider first the objective function:

pmin
∑n
i�1

I i −min I i,DP
i

( )
−∑n

j�1
Fij

( )
,
∑n
i�1

DO
i − Ai

( )( )

+∑n
i�1

ciCi +
∑n
j�1

sjiFji

( )
:

The expression
∑n

i�1(I i −min (I i,DP
i ) −∑n

j�1 Fij) is the
amount of remaining inventory after all orders have
been fulfilled or cancelled. I i is the starting inventory
at location i, DP

i is the in-store demand at location i,
and Fij is the number of filled online orders received
at location j and filled from inventory at location i.
The expression

∑n
i�1(DO

i −Ai) is the number of online
orders that were rejected. DO

i is the amount of online
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demand at location i, and Ai is the number of online
orders accepted from location i in the first stage.
Consequently, min (∑n

i�1(I i −min (I i,DP
i ) −∑n

j�1 Fij),∑n
i�1 (DO

i −Ai)) is the number of rejected online orders
that could have been fulfilled had they been accepted.
The objective function assigns a cost of p to each of
these orders, reflecting the sale price of the item. The
selling price is an upper bound on the opportunity
cost because an accepted order may incur shipping
costs in being fulfilled from leftover inventory in an-
other location. The expression

∑n
i�1 ciCi reflects the

sum of all cancellation penalties. ci is the cost parame-
ter of a cancelled order from location i, and Ci is the
decision variable for the number of online orders can-
celled from location i. We assume that the cancella-
tion cost is high enough that the retailer would never
want to cancel any order it could possibly fill (i.e.,
c >max {sji}).3 Lastly, the expression

∑n
i�1

∑n
j�1 sjiFji

represents the shipping costs for all online orders that
were accepted and fulfilled. sji is the unit shipping
cost from location j to i, and Fji is the decision variable
for the number of online orders filled from inventory
at j and shipped to customers at i.

The constraints of the form min (DP
i ,I i) +Ri +∑n

j�1 Fij � I i express that all inventory at location i
must be used to fulfill in-store demand, be saved, or
be used to fulfill online demand. Ri is a decision vari-
able reflecting the amount of inventory that is left
over. The constraints of the form Ci +∑n

j�1 Fji � Ai re-
flect that all accepted orders must be either cancelled
or fulfilled. This is the omnichannel fulfillment prob-
lem we study in the rest of this paper.

1.2. Summary of Contributions
1.We formulate an analytical model for omnichannel

fulfillment that incorporates uncertainty because of in-
ventory pooling across sales channels as a multiloca-
tion, two-stage stochastic optimization problem.

2. We introduce local threshold and global threshold
policy classes for the first-stage problem and present a
sampling-based optimizationmethod to set these policies.

3. We show that the expected retailer costs are unim-
odal as a function of a single global threshold or of a
single local threshold holding all other local thresholds
constant, allowing us to do a gradient-based search
(Section 2 for a single-location case and Section 3 for
multiple locations).

4. Our optimization method uses infinitesimal per-
turbation analysis (IPA) to estimate derivatives of the
objective function with respect to these threshold poli-
cy parameters (Section 4). To obtain derivative esti-
mates for the IPA, we rely on the dual values of a linear
program related to the second-stage problem, which
we reformulate appropriately to derive the required
estimates.

5. We present empirical results from numerical ex-
periments to provide insights and demonstrate the
effectiveness of policies generated by our methods
(Section 5). Through a partnership with a retail analyt-
ics firm, we use retail industry data to generate realistic
problem instances. We conduct a series of experiments
on two-location instances to demonstrate how certain
instance attributes lead to strong performance of one
class of threshold attributes relative to the other. We
find that local threshold policies have better perfor-
mance than global threshold policies in a majority of
situations. However, this advantage is diminished and
sometime reversed, especially at low shipping costs,
when online demands are negatively correlated and
variance of physical demand is high.

6. We use retail data from a high-end North Ameri-
can retailer to formulate realistic full-network problem
instances through which we show that both local
thresholds and global thresholds achieve a consider-
able reduction in costs compared with other simple
baseline policies currently employed by the retailer.

7. We formulate an extension to multiple periods.
We develop exact methods for single-location, multi-
period, and the two-location, two-period cases. We
propose a look-ahead heuristic and compare it with
myopic and optimal policies.

1.3. Related Work
The recent edited volume by Gallino and Moreno
(2019) provides a comprehensive survey of literature
related to omnichannel operations, with the chapter
by Jasin et al. therein being the closest to this paper.
Our work is related to the following streams of litera-
ture: (a) overbooking, (b) fulfillment of online orders
from stores, and (c) multilocation transshipment. We
briefly review here the closest papers to our work.

Harsha et al. (2019) models how customer demand
responds to changes in price, allowing the retailer to
optimally set clearance prices in all sales channels by
solving an integer program. In our work, prices are
fixed, and our focus is on fulfillment with uncertain
inventory and stochastic demand. Other aspects of
omnichannel retailing, such as the costs and benefits
of “buy online and pick up in store” policies (Gao and
Su 2017), information sharing (Gao and Su 2016), in-
ventory optimization (Govindarajan et al. 2017), and
multichannel price optimization (Cattani et al. 2006,
Harsha et al. 2019), have been studied by the opera-
tions management community, but our study is the
first attempt to formulate and study stochastic models
of cancellations caused by omnichannel fulfillment,
where inventory at a location (which is a retail store
and not a warehouse) is shared across the walk-in cus-
tomers who are given priority in any period and on-
line orders that have been accepted in that period.
Note that although the store inventory is shared
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across the online and physical walk-in demands, the
strict prioritization of the latter makes it less of an in-
ventory rationing problem (or the uncertain/phantom
inventory situation) and more like an overbooking
problem. Indeed, this feature of accepting online or-
ders that risk not being fulfilled, even considering
transshipments from other locations, is reminiscent of
the multiclass overbooking model with substitutions
of Karaesmen and Van Ryzin (2004); however, the
specifics of the mechanisms and the related stochastic
considerations are different. Furthermore, our analy-
ses use different techniques that have been successful
in other areas within operations management, includ-
ing transshipment problems by Herer et al. (2006) and
sensitivity analysis by Glasserman and Tayur (1995).

Models that study fulfillment (Acimovic and
Graves 2014, Jasin and Sinha 2015) in an e-commerce
setting in real time so as to minimize the cost of pick-
ing and shipping items do not consider the possibility
of optimally choosing which online orders to fulfill,
even though they typically study multiple products
and the effect of consolidation of different products in
an order during fulfillment. The models of Alishah
et al. (2015) consider the omnichannel setting of fulfill-
ing an order from a combination of a single omnichan-
nel fulfillment location and a single offline store in a
continuous time setting and show that for the ration-
ing decision of whether to use offline inventory for
online demand, threshold-type policies are optimal
for fulfillment. DeValve et al. (2021) consider the value
of adding flexibility to a network in terms of cost re-
duction for spillover fulfillment. Bayram and Cesaret
(2021) considered the fulfillment problem with one ful-
fillment center and multiple stores and proposed an ef-
ficient Markov Decision Process–based heuristic.

The multilocation transshipment problem has been
previously formulated and studied in Herer and
Rashit (1999) and Herer et al. (2006). This work
presents a stochastic multiperiod model, and the theo-
retical result is that optimal inventory replenishment
policies in this model are “order-up-to S” policies. Re-
duced costs of a linear program are used in this paper
to iteratively update safety stock values. The optimi-
zation algorithms presented in our paper use dual val-
ues of a linear program to update our threshold poli-
cies, although the methodology of our work and the
problem context are quite different from the settings
of Herer and Rashit (1999) and Herer et al. (2006).

Our models of omnichannel fulfillment thus incor-
porate some of the complexities considered in the
multilocation transshipment problem and the multi-
class overbooking problem, as they include order can-
cellations as a major component that are the result of
accepting online orders, which themselves should
take into account the possibility of transshipments.

2. Single-Location Model
Note that for a single-location instance, local threshold
and global threshold policies are equivalent. In this sec-
tion, we remove the subscripts denoting store location.
For simplicity, we assume that the shipping cost of ful-
filling an online order from the store in this location is
zero (i.e., s � 0). The second-stage problem is straight-
forward: min (I −min (I ,D P),min (OO,S)) accepted
online orders are filled, and the rest are cancelled. Us-
ing this observation, we can rewrite the optimization
problem (1) in a simpler form (Figure 1). The objective
function simplifies to minimizing pmin (I −min
(I ,D P) − F,DO −min (DO,S)) + cC:

Proposition 1 (Proof in Online Appendix A). For a single-
location instance of the omnichannel fulfillment model, F �
min (DO,S,I −min (I ,D P)) is satisfied in any optimal
solution.

By Proposition 1 and the constraint C + F � A,
we see that for any optimal solution, C �min (DO,S)
−min (DO,S,I −min (I ,D P)) and F �min (DO,S,I
−min(I ,D P)). Substituting these values, the value of
the objective function of (1) at an optimal solution
becomes

pmin (I −min (I ,D P)
−min (DO,S,I −min (I ,D P)),DO −min (DO,S))
+ c(min (DO,S) −min (DO,S,I −min (I ,D P))):

Consequently, we can combine the two stages of deci-
sion making:

S∗ � min
S

EDO,D P[p ·min [I −min (I ,D P)
−min (DO,S,I −min (I ,D P)),DO −min (DO,S)]
+ c · (min [DO,S] −min [DO,S,I −min [I ,D P])]:

This has a closed-form optimal solution.

Theorem 1 (Proof in Online Appendix A). For the model,

S∗ � I − F−1P c
c+p
( )( )+

:

Note that the optimal threshold for this problem takes a
similar form to the solution to the newsvendor problem.

An important consequence of this theorem is that
the optimal threshold depends only on the distribu-
tion of physical demand, not that of online demand.

The proof of the optimal threshold also provides in-
sight on the structure in this optimization problem.
The theorem is proved by showing that G(S), the ex-
pected value of the optimization problem as a func-
tion of threshold S, is unimodal and finding the point
where the derivative of G(S) with respect to S changes
signs. The derivative of G(S) reduces to

P[S < D O](cP[D P ≥ I − S] − pP[D P < I − S]):
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The factor in this expression, cP[D P ≥ I − S] − pP
[D P < I − S], is nearly identical to the derivative of
the classical newsvendor problem’s expected objective
with respect to the quantity purchased. This reveals a
close connection between the omnichannel fulfillment
problem studied and the classical newsvendor model.
Additionally, it is the presence of the other multiplica-
tive factor, P[S <DO], that makes the function G(S)
nonconvex (although still unimodal).

3. Structural Properties of the
Multiple-Location Model

Theorem 2 states that the expected objective function
value as a function of a global threshold is unimodal,
and Theorem 4 provides an efficient optimization al-
gorithm for our fulfillment model, contingent on an
oracle that produces unbiased gradient estimates. We
use the same proof technique to show that when all
but one Si of a local threshold policy are fixed, the ex-
pected value of the model as a function of the free lo-
cal threshold parameter is unimodal. In Section 4, we
show how to compute these estimates, demonstrating
an efficient optimization procedure to the thresholds.

The intuition behind these proofs comes from ex-
tending our observations about single-location instan-
ces in Section 2 to the more general multiple-location
setting. We observed that the optimal threshold policy
for single-location instances is the c

c+p fractile of the
in-store demand distribution. The online demand dis-
tribution influences the shape of the expected cost as a
function of the threshold, although it does not influ-
ence the value of the optimal threshold. An informa-
tive way to think about this property is to consider the

marginal effect on cost with respect to the threshold.
For realizations where online demand is below the
threshold, this marginal effect is zero, and this mar-
ginal effect will have the same nonzero value for all
realizations where online demand is above the thresh-
old. Then, the sign of this marginal effect on cost is de-
termined entirely by the demand distribution restrict-
ed to realizations where online demand is greater
than the threshold value.

We lift these observations to the multiple-store set-
ting and use them to analyze the marginal effect of
increasing the threshold. This marginal effect on pen-
alties for missed sale opportunities is negative and
decreasing in magnitude, and we use Lemma 1 to es-
tablish that the marginal effect on fulfillment costs (in-
cluding cancellation costs) is also always increasing in
the threshold. These properties are sufficient to argue
that the total expected cost as a function of global
threshold S (or local threshold Sk at location k with all
other local threshold elements fixed) is unimodal.

Lemma 1 (Proof in Online Appendix B). In a minimum-
cost, single-commodity flow problem with multiple sources,
one sink, and integer supplies, demands, and capacities, the
objective value of a minimum cost feasible flow as a func-
tion of the supplies at the source nodes is supermodular.

Theorem 2 (Proof in Online Appendix B). G(S), the ex-
pected value of the objective function of the omnichannel fulfill-
ment model as a function of global threshold S, is unimodal.

We apply a similar argument to show that when all
but one Si of a local threshold policy are fixed, the ex-
pected value of the model as a function of Si is
unimodal.

Figure 1. (Color online) Examples of Outcomes in a Single-LocationModel
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Theorem 3 (Proof in Online Appendix B). G(Sk), the ex-
pected value of the objective function of the omnichannel
fulfillment model as a function of local threshold Sk, is un-
imodal when all other local threshold parameters, Sj for
j≠ k, are fixed values.

Theorems 2 and 3 establish that the expected value
of the objective function as a function of a single glob-
al or local threshold variable is unimodal. We con-
clude this section by demonstrating that this property
is sufficient to show that global threshold policies and
single thresholds of local threshold policies can be set
optimally and efficiently. Let L(S) and L(Sk) be the lin-
ear interpolation of the integer values of functions
L(S) and L(Sk), defined in Theorems 2 and 3.

Lemma 2. L(S) and L(Sk) are quasiconvex and Lipschitz
continuous.

Proof. Observe that L(S) and L(Sk) are unimodal func-
tions because G(S) and G(Sk) are unimodal functions
and have global minima at integer values. The quasi-
convexity of functions L(S) and L(Sk) follows trivially
from Theorems 2 and 3, as these are unimodal func-
tions of a single variable. The Lipschitz continuity of
these functions is also trivial, as the absolute value of
the slope of these functions cannot exceed the maxi-
mum of cost parameters c, p, and sij. w

These technical conditions allow us to apply theorem
5.1 of Hazan et al. (2015) to prove that L(S) and L(Sk) can
be efficiently minimized. The theorem proves that the
stochastic normalized gradient descent algorithm will
find an ε-optimal minimum L(S) and L(Sk) with poly 1

ε

( )
unbiased gradient estimates and optimization steps.

Theorem 4. An ε-optimal minimum L(S) and L(Sk) can be
obtained with poly 1

ε

( )
unbiased gradient estimates and opti-

mization steps by the stochastic normalized gradient de-
scent algorithm.

4. Optimization Methods for the
Single-Period, Multiple-Store Model

We now present an IPA algorithm that converges to op-
timal policies for certain policy classes. This IPA meth-
od can be used to obtain unbiased gradient estimates of
global threshold and local threshold policy parameters
for the omnichannel fulfillment model. Our key insight
is that we can use dual values of an linear program (LP)
related to the second-stage problem to produce unbi-
ased estimates of the derivative of the objective function
in the threshold parameters. We apply this method to
set both global and local threshold policies.

4.1. Second-Stage Assignment Problem
Recall the original assignment problem modeled in LP
(1) defined in Section 1.1. We would like to compute

derivative estimates using the dual values of this con-
straint set. However, we cannot do this with this LP
because the value that changes when relaxing the
right-hand side of this constraint, Ai, also appears in
the LP’s objective function.

We formulate an alternative LP with equivalent op-
timal solutions, in which we can compute gradient es-
timates more straightforwardly:

max
∑n
i�1

pmin (DP
i , I i) − ciCi +

∑n
j�1

( p − sji)Fji
( )

such that min (DP
i , I i) + Ri +

∑n
j�1

Fij � I i, ∀i ∈ [n]

Ci +
∑n
j�1

Fji � Ai, ∀i ∈ [n]

Ci,Ri,Fij ≥ 0, ∀i, j: (2)

We can immediately observe that it has an economic
interpretation consistent with that of the original
LP (1). The first term in the objective function,

∑n
i�1

pmin (DP
i ,I i), reflects a profit of p for each unit sold in

store. The remaining terms of the objective function,
−ciCi +∑n

j�1(p− sji)Fji, reflect a profit of p for each unit
sold online, with costs deducted for cancellations and
shipping costs. This interpretation of LP (2) may at
first seem counterintuitive because p was originally
defined as the penalty cost for missed sales. However,
we can observe that the damage incurred by the retail-
er from missing a sale is the profit it would get from
making an additional sale, which explains why the
economic interpretations of LPs (1) and (2) are consis-
tent with each other. Both interpretations implicitly
assume that the retailer gets no value from holding on
to excess inventory. In particular, recall that we as-
sume that if any cancellations occur, then there is no
remaining inventory. This is equivalent to assuming
that maxi,j∈[n]sij < p+ c. In other words, the maximum
ship cost in the network is small enough that it is al-
ways preferable to fill an online order (paying at most
maxi,j∈[n]sij) rather than cancel the order (and incur a
cancellation cost of c plus an additional missed sale
penalty of p).

Proposition 2 (Proof in Online Appendix C). As long as
maxi, j∈[n]sij < p+ c, for any optimal solution to the original
minimization LP (1), there is an optimal solution to the
maximization LP (2) that yields an identical assignment of
orders to stores.

This correspondence means that we can find the op-
timal thresholds for the maximization problem and
use these to compute the optimal (expected) costs for
the minimization problem. In this way, we can use the
dual values of the maximization LP to optimize our
policy in the first-stage problem.
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The original minimization problem placed assump-
tions that the cancellation cost must be high enough
that the retailer would never want to cancel an order
they could possibly fill. Without this assumption, it is
unclear what it means to “unnecessarily reject” an or-
der; there could be orders that could theoretically be
filled but doing so would not be the profit-maximizing
decision for the retailer. This new maximization LP
formulation models the full profits received by the re-
tailer from both online and in-store sales, rather than
just costs, so it is no longer necessary to make this as-
sumption if we wish to use only this formulation of
the second-stage problem.

Maximization LP (2) provides sensitivity informa-
tion from the constraints Ci +∑n

j�1 Fji � Ai, ∀i ∈ [n]
using LP dual values. To access this sensitivity in-
formation, we will express these constraints as inequa-
lity constraints: Ci +∑n

j�1 Fji ≤ Ai, ∀i ∈ [n]and Ci +∑n
j�1

Fji ≥ Ai, ∀i ∈ [n]: Then, we will dualize the first set of
inequalities to obtain the following LP:

max
∑n
i�1

(
pmin

(
DP

i ,I i
)− (

ci +M
)
Ci +MAi

+∑n
j�1

(
p− sji −M

)
Fji

)

such that min (DP
i ,I i) +Ri +

∑n
j�1

Fij � I i, ∀i ∈ [n]

Ci +
∑n
j�1

Fji ≥ Ai, ∀i ∈ [n]

Ci,Ri,Fij ≥ 0, ∀i, j: (3)

We show in Proposition 3 that this LP (3) has the
same optimal solution as the original second-stage
and maximization LPs. This means we will be able
to use the dual values of constraints Ci +∑n

j�1 Fji ≥
Ai, ∀i ∈ [n] to obtain gradient estimates for the omni-
channel fulfillment model.

Proposition 3 (Proof in Online Appendix C). The linear
program (3) has the same optimal solution as the linear pro-
gram (2) when M > p.

Using the network flow formulation of the original
cost-minimization problem, we obtain Proposition 4.

Proposition 4 (Proof in Online Appendix C). The mini-
mization LP (1) is integral.

4.1.1. Infinitesimal Perturbation Analysis Method. Our
IPA algorithm can be viewed as a stochastic normal-
ized gradient descent method. We begin by specifying
a starting policy P and a value U, which will be the
number of samples we use to compute a single gradi-
ent estimation iteration.U demand samples are drawn,
and online orders are accepted and rejected according

to policy P for each of the U samples. We assume that
policy P is a local or global threshold policy, but the
method may apply to additional policy classes (such
as a hybrid policy we define at the end of this section).
Then, we solve the maximization assignment LP to ful-
fill the accepted orders in each of the demand samples.
We use the dual values of the maximization assign-
ment LP to compute unbiased estimates of the gra-
dients of the fulfillment profit with respect to the poli-
cy parameters (Si in the case of local thresholds). We
then update the threshold parameters with their nor-
malized gradients, multiplied by a step size value.

4.1.2. Local Threshold Derivative Estimates. We com-
pute derivative estimates by looking at the dual
values corresponding to the LP constraints Ci +∑n

j�1
Fji ≥ Ai, ∀i ∈ [n] from linear program (3), where Ai

and Ci are the number of accepted and cancelled on-
line orders at location i, respectively, and Fji is the
number of online orders at location i filled from inven-
tory from store j. The dual value from one of these
constraints indicates the rate of increase in the objec-
tive function from relaxing the constraint. For the case
of local threshold policies, if demand at location i ex-
ceeds threshold Si, then this dual value is precisely the
gradient on the total profit of the LP with respect to
threshold Si. We average these gradient estimates
over the U samples to get an unbiased estimate of the
gradient each time we update the threshold values.

Lemma 3. The expected value of p− g(i)1[Si <DO
i ] where

g(i) is the optimal dual variable corresponding to constraint
i, Ci +∑n

j�1 Fji ≥ Ai, ∀i ∈ [n], from linear program (3) is
the negative partial derivative of the expected value of the
objective of the multiple-store model with respect to Si.

Proof. Let g(i) be the optimal dual variable corre-
sponding to constraint i. Let Π∗(D P,DO) �∑n

i�1
(pmin (DP

i ,I i) − (ci +M)C∗
i +MAi +∑n

j�1(p− sji −M)F∗ji),
the optimal objective value of linear program (3). It is

clear by inspection that ∂Π∗(D P,DO)
∂Si

� −g(i)1[Si <DO
i ]. If

Si <DO
i , then Ai � Si, and so, an infinitesimal change

to Si will cause Ai to change an equal amount in the
same direction. An immediate consequence of linear
programming duality theory is that the optimal dual
value of a constraint is equal to marginal change
to the optimal objective value from relaxing this

constraint. More precisely, ∂Π∗(D P,DO)
∂Si

� ∂Π∗(D P,DO)
∂Ai

∂Ai
∂Si

�
∂Π∗(D P,DO)

∂Ai
� p− g(i). In the other case, Si ≥DO

i , and so,
an infinitesimal change in Si does not change Ai.
∂Π∗(D P,DO)

∂Si
� ∂Π∗(D P,DO)

∂Ai

∂Ai
∂Si

� ∂Π∗(D P,DO)
∂Ai

0 � 0. Therefore,

taking expectations, we conclude ∂E[Π∗(D P,DO)]
∂Si

�
p−E[g(i)1[Si <DO

i ]]. w
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Theorem 5. From theorem 5.1 of Hazan et al. (2015), us-
ing p− g

|g| as the normalized gradient, our algorithm obtains

an ε-optimal local threshold policy with poly 1
ε

( )
total sam-

ples of linear program (3).

Proof. The following follows directly from the conver-
gence Theorem 4 and the properties of the optimal
dual variables in linear program (3) established in
Lemma 3. w

4.1.3. Global Threshold Derivative Estimates. We use
the same dual values used to estimate derivatives
with respect to local threshold parameters, those cor-
responding to constraints Ci +∑n

j�1 Fji ≥ Ai, ∀i ∈ [n]
from linear program (3), to estimate derivatives of the
objective function with respect to a global threshold
parameter. The dual value from one of these con-
straints indicates the rate of increase in the objective
function from relaxing the constraint. For a global
threshold policy, if total demand exceeds threshold S,
then the derivative of the total profit of the LP with re-
spect to threshold S is the sum of these dual values,
weighted by the probabilities that the first rejected or-
der is from each store.

Lemma 4. Suppose λi is the mean online demand at location i,
and fOi , the distribution from which random variable DO

i is
drawn is a Poisson distribution. Also suppose that g(i) is the dual
value of constraint Ci +∑n

j�1 Fji ≥ Ai after solving the maximi-
zation LP (3) for a demand sample, andG(S) is the expected value
of the omnichannel fulfillment model with global threshold S.

Then, dG(S)dS � E p−∑n
i�1

λi∑n
j�1λj

(−g(i))1 S <
∑n

k�1D
O
i

[ ][ ]
.

Proof. Among instances when the first rejected order
is at location i, −g(i) is the unbiased derivative esti-
mate, so in general, the unbiased derivative estimate
is the weighted sum of dual values across all loca-
tions, weighted by arrival probability. w

Note that the Poisson arrival assumption is impor-
tant here. This ensures that the probability of where the
first order arrives after the threshold is filled can be
computed independently of S. In general, this works
for arrival distributions that can be proportionally
thinned over time.We average these gradient estimates
over the U samples to get an unbiased estimate of the
gradient each timewe update the threshold values.

Theorem 6. From theorem 5.1 of Hazan et al. (2015), us-
ing p−∑n

i�1
λi∑n
j�1λj

(−g(i))1 S <
∑n

k�1D
O
i

[ ]
as the normalized

gradient, our algorithm obtains an ε-optimal global threshold
policy with poly 1

ε

( )
total samples of linear program (3).

Proof. This result follows directly from the conver-
gence Theorem 4 and the properties of the optimal

dual variables in linear program (3) established in
Lemma 4. w

4.2. Hybrid Policy
In addition to the thresholds Si at each location i, we
also use a global threshold S, which affects the final
number of accepted orders as follows. Each location i
tentatively accepts Ãi �min{DO

i ,Si} online orders (no
different from the local threshold policy). If

∑
iÃi ≤ S,

then the final accepted amount is Ai � Ãi. Otherwise,
we shrink each Ãi proportionally until their sum de-
creases to S as follows: Ai � S∑

iÃi
Ãi. In our numerical

study of the local and global threshold policies, we
found that in nearly all cases the hybrid policy closely
tracked either local thresholds or global thresholds,
whichever method performs better on the instance.

5. Computational Results on
One-Period Models

We assess the empirical performance of these policies on
full-size and two-store problem instances. This will give
us insight into the strengths of each policy class while
also verifying that our IPAmethod is of practical use.

5.1. Complete Network Results
We use demand distributions that are estimated from
sales and inventory data of an upscale North American
retailer. We use the demand data across the full retail
network from the top 20 bestselling items at this retail-
er to generate a realistic instances. A typical instance
will have 30–40 store locations. The cancellation cost
parameter is set to two times the price parameter, and
ship costs are proportional to distance. Inventories are
set to two units at each retail location to generate in-
stances where careful supervision of online fulfillment
is necessary. For each of these test instances, we com-
pare local threshold and global threshold policies with
siloed fulfillment and reactive fulfillment policies.

Definition 2. The siloed fulfillment policy treats each
store location as a separate retail network and com-
putes the optimal global threshold policy for each
store as its own instance.

Siloed fulfillment policies might be used in practice
if a retailer is not aware or sophisticated enough to im-
plement a coordinated full-network ship from store
program.

Definition 3. The reactive fulfillment policy is the local
threshold policy that uses the thresholds from the si-
loed fulfillment policy as its threshold parameters.

Reactive fulfillment policies use the same set of
thresholds for the first-stage problem as those computed
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by the siloed fulfillment policy, but the retailer is still
able to execute long-distance shipments when solving
the second-stage problem.

The four fulfillment algorithms are tested in 100 tri-
als for each of the 20 items to generate the results de-
scribed in this section and Table 1. We find that across
our test instances, local thresholds and global thresh-
olds provide significant (78% and 75%, respectively)
improvement over the siloed fulfillment and reactive
fulfillment policies.

5.2. Insights from Two-Store Instances
We are specifically interested in four questions.

1. What is the effect of balanced and imbalanced
inventory?

2. How does themagnitude of in-store demand affect
performance?

3. Does the relative performance of policies vary
with cancellation costs?

4. What conditions result in good performance of
global thresholds?

To answer each of these questions, we run our poli-
cies across several instances that vary in a deliberate
way across a small number of specific parameters. To
assess the effect of inventory balance, we vary how
evenly inventory is distributed between stores, wheth-
er this inventory is aligned with demand, and wheth-
er the total amount of inventory available modulates
with this effect. We investigate the effect of in-store
demand magnitude by testing our algorithms on four
different in-store demand levels, each tested on in-
stances with four different inventory levels. Lastly, we
test our algorithms on an instance where cancellation
cost c is varied from 50% to 400% of the unnecessary
rejection penalty p to understand the impact of the ra-
tio of cancellation cost to rejection penalty on the rela-
tive performance of our methods. We conduct each of
these two-store experiments on demand distributions
fit to 10 real-life items.

5.2.1. Inventory Balance. For each item, we fit Poisson
demand distributions for its two top-selling store loca-
tions (with respect to online demand). We allow in-
ventory to vary at three levels ranging from 50% of
mean total demand to 150% of mean total demand.
We also let inventory balance vary from 25% to 75%
of total inventory in the first location, across three

conditions. This results in nine trials for each item
evaluated. Our primary finding is that local thresh-
olds provide the greatest improvement over global
thresholds when inventory is not aligned with de-
mand. We also observe that this effect is magnified by
low inventory levels. As the total amount of starting
inventory increases, the performances of the two
methods become very similar.

We report overall results in Table 2, averaged by in-
ventory balance condition. Each inventory balance
condition is evaluated at three total inventory levels
per item, and 10 items are tested. Every individual in-
stance is evaluated by taking the average cost of each
policy over 10,000 samples of demand. We call the in-
ventory balance conditions “25%:75%,” “50%:50%,”
and “75%:25%.” In these conditions, the first percent-
age refers to the percent of total inventory located at
the location with the higher online demand rate, and
the second percentage indicates the percent of total in-
ventory located at the location with the lower online
demand rate.

Across all instances, local thresholds slightly out-
perform global thresholds, and both threshold policies
substantially outperform the two benchmark policies,
siloed fulfillment and reactive fulfillment. The gap be-
tween our IPA threshold policies (local thresholds
and global thresholds) and these benchmarks grows
in absolute terms yet shrinks in percentage terms as
inventory is most out of balance with online demand.

5.2.2. Magnitude of In-Store Demand. To answer this
question, we set inventory equal at each location, but
we tested four levels of inventory at each location: 5,
10, 15, and 20. For each inventory level, we test three
Poisson rate parameters of in-store demand: 25%,
50%, and 75% of inventory. This results in 12 trials for
each item. We observe that local thresholds outper-
form global thresholds across all scenarios, but the
performance of local threshold policies is more sensi-
tive to increases in in-store demand. The summary re-
sults are in Table 3.

5.2.3. Impact of Cancellation Costs. In this experi-
ment, we test three inventory levels: 5, 10, and 15 units
at each store location. For each of these inventory lev-
els, we compare our policies at the following cancella-
tion costs: 20, 40, 60, and 80. This results in 12 total

Table 1. Average Fulfillment Costs Across 20 Full-Network
Instances

Siloed
fulfillment

Reactive
fulfillment

Global
threshold

Local
threshold

Average cost 471 369 116 104
Saving, % — 21.5 75.3 77.9

Table 2. Overall Average Costs of Each Inventory Balance
Condition for Inventory Balance Experiments

Siloed fulfill Reactive fulfill Global Local

25%:75% 157.9 145.7 128.0 117.2
50%:50% 64.7 53.2 51.1 46.4
75%:25% 53.1 46.2 40.6 35.4
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trials for each item. The price of the item is set to 20
for all trials. The overall results from these experi-
ments are presented in Table 4.

5.2.4. Global Thresholds Performance. In this section,
we explore potentially artificial scenarios that result in
global threshold policies outperforming local thresh-
old policies to see which extreme situations could lead
to this. We consider a set of two-store instances where
inventory is fixed at 20 at both locations. c � p � 20,
and the shipping cost between the two stores is 0.5.
Demand distributions are multivariate normal, and
we will vary the covariance matrix across several con-
ditions. The in-store demand distribution has mean
demand 15 at each location, and values along the di-
agonal of the covariance matrix are 1.5, 6, and 10.5
across three conditions tested. The covariance of
in-store demand between the two locations is zero.
The online demand distribution has mean demand 5
at each location, and the values along the diagonal of
the covariance matrix are five. The covariance be-
tween the two stores is set such that the correlation co-
efficients of online demand are –0.7, 0, and 0.7 across
the three conditions tested. Results are in Table 5.

Several factors influence the results of these trials in
favor of the global threshold policies. For one, we set
shipping costs to be relatively low. If shipping costs
are zero, then the model becomes equivalent to a
single-location instance, and local threshold will no
longer outperform global threshold; however, this
alone is not always enough to give global threshold a
distinct advantage. In particular, for global threshold
to have an advantage, online demand rates should be
in a narrow range where there is enough demand to
differentiate the policies but not enough demand for a
local threshold policy to always accept up to its

threshold value at all locations. The average costs at
each demand rate are plotted in Figure 2, confirming
that the advantage global threshold policies have are
in a narrow range.

Negatively correlated online demand hurts local
threshold policies by cancellations, whereas global
threshold policies are largely unaffected especially at
low shipping costs. Our results are consistent with this
observation, where global threshold policies have 19%
lower cost than local threshold policies when online
demand has a correlation coefficient of –0.7, compared
with cost decreases of 7% and 4% for correlation coeffi-
cients 0 and 0.7, respectively. Similarly, global thresh-
old policies have 13% lower cost than local threshold
policies when in-store variance is 1.5, compared with
cost decreases of 10% and 1% for variances of 6 and
10.5, respectively.

5.3. Hybrid Thresholds
We compare the performance of the hybrid threshold
with local and global thresholds in a two-location in-
stance in Table 6 across a range of shipping costs s.
The global threshold policy outperforms the local
counterpart for small s but becomes worse because of
increased shipping costs incurred in reconciliation.

Table 4. Overall Average Costs of Each Cancellation
Penalty Condition for Cancellation Cost Magnitude
Experiments

Cancel penalty Siloed fulfill Reactive fulfill Global Local

20 60.6 50.9 52.5 45.7
40 71.3 60.1 58.8 53.1
60 77.4 66.4 62.7 57.1
80 81.8 71.1 65.8 60.0

Table 5. Average Cost of Each Covariance Condition

In-store
variance Online ρ

Siloed
fulfill

Reactive
fulfill Global Local

1.5 −0.7 41.2 26.6 16.5 22.8
6 −0.7 61.2 36.8 30.7 34.2
10.5 −0.7 74.1 42.4 37.2 40.4
1.5 0 32.1 20.0 15.5 19.9
6 0 56.0 31.8 28.9 31.8
10.5 0 67.9 38.5 37.1 38.5
1.5 0.7 25.3 15.9 15.5 15.9
6 0.7 51.1 31.2 29.1 29.6
10.5 0.7 65.6 38.2 36.4 36.7

Figure 2. (Color online) Average Objective Value as the
Mean Online Demand Parameter Is Shifted

Table 3. Overall Average Costs of Each In-Store Demand
Condition for Demand Magnitude Experiments

Demand, % Siloed fulfill Reactive fulfill Global Local

25 54.4 47.0 50.8 41.7
50 58.8 47.1 51.2 43.9
75 63.1 47.9 52.5 46.9
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Additional experiments confirm that the hybrid im-
proves upon the better of local and global only mar-
ginally in a wide variety of settings.

6. Multiperiod Models
In this section, we extend our approach to the
N-location, T-period model. The details of the one-
location, T-period model are as follows. (a) In any giv-
en period, we accept a maximum number of online
orders. (b) Physical demand in this time period is ful-
filled first. (c) Remaining inventory, if any, is used to
satisfy online orders. (d) Remaining online orders, if
any, are cancelled. All future online orders and physi-
cal demands are lost as there is no inventory left at the
location. Note that our model prioritizes current period
online orders over the next period’s physical demands.

The multilocation, multiperiod model we consider
here, likewise, treats online orders in a given period
with priority over future period physical demand at
the same location. That is, we allow transshipments at
the end of each period, but they are not obligated to
satisfy demands at other locations. Thus, because
transshipments are costly, online orders at a location
may be cancelled, although inventory exists in another
location, as it is profitable to keep that inventory in its
location to satisfy local demand later. On the other
hand, if another location has sufficiently high invento-
ry, some transshipment may indeed take place at the
end of each period to (partially or completely) satisfy
the online demand elsewhere, after its own physical
demand and online demands are satisfied. That is, at
the end of each period, online orders at a location are
satisfied as best as possible with local inventory, may
be satisfied completely by transshipped inventory, or
cancelled. Online orders are not carried over from pe-
riod to another. Because transshipment is allowed in

every period, there is no reason to “pretransship” to
balance inventories across locations.

A T-period problem begins with the first period
and ends after period T. All references to variables in
different periods use the period number as the super-
script and retain the subscript to denote the location
(e.g., the inventories at location j at the end of period t
are denoted Itj with I0j being the initial inventory, and

demands at location j over time are denoted by DO,t
j

(online) and DP,t
j (physical)). The online order accep-

tance thresholds in location j over time are S1j , : : : ,S
T
j .

We study only (time-varying) local threshold policies
in this section.

We employ a profit-maximization formulation and
focus on local threshold policies that were effective in
the single-period case for realistic data. The global
threshold and hybrid variants for this case can be ad-
dressed in a similar vein.

6.1. Single-Location, Multiperiod Model
We first characterize the optimal period 1 threshold
for the T-period model similar to Theorem 1. Then,
we introduce some heuristics and compare their per-
formance. We suppress the subscript corresponding
to the single location.

6.1.1. Characterization of the Optimal Threshold. The
additional complexity in analyzing the optimal period
1 threshold for the multiperiod model is because of
the optimal threshold S2 for the second period de-
pending on the demand realization in period 1.

Define Π(I, t) to be the maximum expected profit
for the single-location, t-period model with initial in-
ventory I. Let I1 � (I0 −A1 −D P,1)+ be the (random)

Table 6. Impact of Increasing Shipping Costs s When c � 40,p � 20, I � 20,DO �DP � 10

s Reactive Local Global Hybrid s Reactive Local Global Hybrid

5 20
Revenue (physical) 400.33 399.8 399.71 400.27 Revenue (physical) 399.90 399.83 399.81 399.92
Revenue (online) 329.36 322.62 325.50 324.97 Revenue (online) 329.56 315.13 325.55 320.89
Revenue (total) 729.69 722.42 725.21 725.24 Revenue (total) 729.46 714.96 725.36 720.81
Shipping cost 3.76 3.61 5.05 4.48 Shipping cost 15.08 13.15 20.33 14.9
Cancellation cost 40.89 33.06 32.05 31.86 Cancellation cost 40.55 26.41 31.96 29.22
Opportunity cost 20.14 27.08 24.40 24.77 Opportunity cost 20.1 34.72 24.31 28.92
Profit 685.04 685.75 688.11 688.90 Profit 673.83 675.4 673.07 676.69
Total cost 64.79 63.74 61.50 61.11 Total cost 75.73 74.28 76.6 73.04

10 40
Revenue (physical) 400.02 399.89 400.06 399.88 Revenue (physical) 399.85 399.89 399.88 399.84
Revenue (online) 329.63 322.59 325.48 323.72 Revenue (online) 329.61 315.07 315.44 315.08
Revenue (total) 729.65 722.48 725.54 723.60 Revenue (total) 729.46 714.96 715.32 714.92
Shipping cost 7.55 7.21 10.15 8.26 Shipping cost 30.21 26.28 37.54 26.31
Cancellation cost 40.66 32.97 32.16 30.85 Cancellation cost 40.6 26.42 24.1 26.32
Opportunity cost 20.09 27.12 24.20 26.02 Opportunity cost 20.13 34.69 34.41 34.69
Profit 681.44 682.3 683.23 684.49 Profit 658.65 662.26 653.68 662.29
Total cost 68.29 67.30 66.51 65.14 Total cost 90.93 87.39 96.05 87.33
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remaining inventory at the end of period 1. As in The-
orem 1, the following theorem involves finding the
condition under which the derivative of the expected
profit is zero. A key quantity here is ∂

∂IΠ(I,T − 1),
which measures how the optimal expected profit of
the (T – 1)-period problem would change, given a unit
change in its initial inventory I.

Theorem 7 (Optimality Condition; Proof in Online
Appendix D). Let I0 be the initial inventory. Then, the op-
timal period 1 threshold S1 for the single-location, T-period
model satisfies

S1 � max 0, I0 − F−1P,1
c

c + p − p̃(S1)
( ){ }

,

where p̃ � p̃(S1) � E ∂
∂IΠ(I1,T− 1) |DO,1 > S1
[ ]

and FP,1 is
the cumulative density function of D P,1.

Note that for T � 2, this differs from the optimal
single-period threshold (Theorem 1) only in having an
extra p̃ term in the denominator. Further, observe that
p̃(S) ∈ [0,p] for any S because ∂

∂IΠ ∈ [0,p]. Hence,
1 ≥ c

c+p−p̃ ≥ c
c+p, and we obtain the following monoto-

nicity result.

Corollary 1. Consider a single-location, single-period in-
stance X and a single-location, T-period instance Y with ar-
bitrary T ≥ 1. Suppose X and Y have the same c,p, I0 and
FP,1. Then, the optimal period 1 thresholds S∗(X),S∗(Y) sat-
isfy S∗(X) ≥ S∗(Y):

We note that when the online demand is infinite,
there exists an optimal policy with a first-stage opti-
mal threshold equal to zero as long as T > 1 via a sim-
ple transfer argument that defers the thresholds S in
all but the last period to the last. Our limited simula-
tion experiments confirm that even when online de-
mand is not infinite, the first-stage optimal thresholds
are nonincreasing with T, the number of periods of
independently and identically distributed demand.
However, these effects may arise because there is no
(holding) cost for deferring fulfillment and also because
depleting inventory using online orders before fulfilling
physical demands in future periods incurs no penalty
in this model. The study of the more realistic multiper-
iod models with different profit margins for online and
offline orders as well as holding costs between periods
is left for future work.

6.1.2. Algorithms. We first present a dynamic pro-
gramming (DP) approach for n � 1 and arbitrary T.
Our DP estimates Π(I, t) for every combination I ≤ Imax

and t ≤ T as follows.
Define V(S,D, I, t) to be the maximum expected net

profit (i.e., revenue minus cancellation and shipping
costs) if the period 1 threshold is S and demand vector

(physical and online) is D, with inventory I and t peri-
ods. By definition of Π, we have Π(I, t) �maxSED

[V(S,D, I, t)], and our goal is to findΠ(I0,T).
Proposition 5 (Bellman Equation). Denote the period 1
demand vector D � (DO,DP). Let I1 � I1(D,S) be the re-
maining inventory after period 1 and π(I,D,S) be the one-
period profit. Then, V(S,D, I, t) �Π(I1, t− 1) +π(I,D,S),
and hence, Π(I, t) �maxS ED[Π(I1, t− 1) +π(I,D,S)]:

6.1.2.1. Heuristics. Because the run time of the DP
scales linearly in T, we propose two efficient heuristics.
First, consider a myopic approach; at each period,
view this period as the last period, and set the thresh-
old using the closed-form formula in Theorem 1. How-
ever, because such a heuristic fails to consider future
demands, it is inclined to set high thresholds and take
unnecessary cancellation risks. To circumvent this is-
sue, we propose another heuristic (the look-ahead poli-
cy) that pretends that the remaining t-period situation
can be viewed as a two-period model, with the second
period being an aggregation of the remaining (t− 1)
periods. In our numerical validation in Figure 3, our
look-ahead policy behaves similarly to the optimal
policy in choosing thresholds at lower initial invento-
ries but yields close to optimal profit overall. In con-
trast, the myopic heuristic may be significantly worse
(in the worst case, by 15%).

6.2. Two-Location, Two-Period Model
The two-location, two-period model becomes signifi-
cantly more difficult because of the optimal shipping
decisions. In the one-period,N-location model, if there
is any backlog, an optimal seller would ship the avail-
able inventory from surplus locations to avoid as
many cancellations as possible, as long as the margin
after shipping is higher than cancellation fee (which is
usually true in practice and assumed throughout).
Hence, the shipping problem reduces to a network
flow problem.

In the two-period case, however, by shipping from
location 1 to 2, at the end of period 1, we lose some
“potential” of earning at location 1 in period 2. In par-
ticular, it is better not to ship when the loss of poten-
tial at location 1 outweighs the immediate benefit of
avoiding cancellations at 2. This intertwining nature
makes the general N, T version significantly harder.

Define the value function V(S,D, I, t) to be the maxi-
mum expected profit if in period 1, the threshold vec-
tor is S and the demand vector (physical and online)
is D, with inventory I and t periods to go. Fix t ∈ {1, 2}
and inventory I, and write V(S,D) � V(S,D, I, t) for
simplicity. Define the potential Π(I, t) �maxSED[V(S,
D, I, t)]. Our objective is to maximize ED[V(S,D, I, t)].
Again, our approach relies on a Bellman-type equa-
tion (which can be generalized directly for any N, T).
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Proposition 6 (General Bellman Equation). Let D be the
period 1 demands at the two locations. Let I1(S,D, I,x) be
the inventory at the end of period 1, after implementing a
shipping decision x, with initial inventory I and period 1
demand D and thresholds S. Let π(S,D, I,x) be the one-
period profit with shipping decision x excluding the ship-
ping costs. Then,

V(S,D, I, 2) � max
x

π(S,D, I,x) − sTx
{

+Π
(
I1
(
S,D, I,x

)
, 1
)}
, (4)

where the maximum is taken over feasible shipping deci-
sions x. Further,Π(I, 2) �maxSED[V(S,D, I, 2)]:

We describe how to find an optimal shipping deci-
sion x∗ (for N � T � 2). Let A � (A1,A2) and R �
(R1,R2) be the number of accepted orders and the re-
maining inventory after fulfilling physical orders in pe-
riod 1 at the two locations, respectively. The nontrivial

case is when Ri > Ai at one location i and Rj < Aj at the
other location j, where in addition to determining
whether to ship items, we must also determine how
many to ship. W.l.o.g suppose R2 < A2 and R1 > A1.
The optimal shipping decision strikes the best trade-
off between the drop of potential at location 1 and
avoiding cancellations at 2. Formally, let x∗ be the
units shipped from location 1 to 2 in an optimal poli-
cy. Then, x∗ � argmax {(p+ c− s)x+Π(I11 � R1 −A1 −
x, I12 � 0, t � 1) : 0 ≤ x ≤min {R1 −A1,A2 −R2}}:

Rather than enumerate over all S, a faster approach
to find the optimal S is by IPA. Our IPA-based proce-
dure views the expected profit as a function of the peri-
od 1 threshold vector S � (S1,S2) and returns S where
the gradient (almost) vanishes. It is not hard to com-
pute an explicit formula for ∇SV(S,D, I, t). Figure 4
confirms that the thresholds with almost vanishing gra-
dients computed by our IPA-based heuristic almost
match that of a brute-force approach.

Figure 3. (Color online) Comparison Between Policies forN � 1,T � 3 when c � 20,p � 10, I � 30,DP � 5,DO � 10

Note. The myopic policy selects the higher thresholds and incurs more cancellation risk; hence, it yields lower profit.

Figure 4. (Color online) The Gradient Norms of the Expected Value Function, ED[V(S,D)], for Different Period 1 Thresholds
S � (S1,S2)when p � c � 10, s � 5, I � 15, andDP, i

t � 5,DO, i
t � 10 for i � 1,2, t � 1,2
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6.2.1. Models for General N, T. As illustrated, the key
difficulties in extending our methods for the case of
multiperiod, multilocation fulfillment is the require-
ment to encode the future profit potential of holding
back excess inventory rather than ship it to fulfill
backlogged orders elsewhere in the network. For the
two-location, T-period case, we can adapt the look-
ahead heuristic of one location by synthetically merg-
ing the remaining (t− 1) periods into one and using
the IPA-based approach that we proposed for
N � T � 2. At sufficiently high inventories, we expect
myopic policies to be effective in practice for the gen-
eral multiperiod problem. At lower inventories, the
look-ahead heuristic may help reduce the loss of prof-
its of the myopic policy. We leave the detailed study
of the general N, Tmodel for future work.

7. Conclusion
In this paper, we introduce a new stochastic two-stage
model for omnichannel fulfillment. We incorporate
new risks that occur when fulfillment operations are
combined for in-store and online demand. We obtain a
closed-form optimal solution for a one-period, single-
location model. We then study the one-period, multi-
ple-location setting, with local threshold and global
threshold policies. We also present a sampling-based
IPA algorithm to optimize threshold policies within
each of these policy classes. Next, we evaluate our meth-
ods in a variety of test instances based on North Ameri-
can retailers and find that our IPA-optimized local
threshold policies consistently outperform global thresh-
old policies and other benchmark policies under realistic
conditions. In a synthetic two-location setting, we ex-
plored several factors and discuss how changes along
these dimensions affect the performance of our policies.
We extend our study to multiple periods and find that
at high inventories, myopic policies are effective, where-
as at lower inventories, a look-ahead heuristic may help.
Extending our work to the full generality of multiperiod
models and investigating alternate multiperiod formula-
tions are important directions for future work.

Endnotes
1 See, for example, https://forums.bestbuy.com/t5/BestBuy-com-
Knowledge-Base/Why-Was-My-Order-Cancelled/ta-p/956598.
2 In Section 4.2, we define a hybrid policy that uses both local
thresholds and an additional global threshold to moderate the local
acceptances proportionally to capture the best of both controls.

3 We note that for the retailer to not cancel any order it can possi-
bly fill from any other location, it suffices for the maximum ship-
ping cost to be at most the sum of the cancel cost and the opportu-
nity cost of a lost sale, which translates to the weaker condition
maxi, j ∈[n]sij < p + c.
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