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Motivated by applications in the manufacturing and service industries, we consider two
models for coordinating scheduling with lead-time quotation: a basic model with a

single customer type, and an enhanced model where an additional second customer type
expects immediate service or production. In both models, revenues obtained from the cus-
tomers are sensitive to the lead time, there is a threshold of lead time above which the cus-
tomer does not place an order, and the quoted lead times are 100% reliable. These models
are related to well-known scheduling problems, which have been studied in both offline and
online settings.
We introduce the immediate quotation case and study it with the (traditional) online version.

We provide complexity results for the offline case, and perform competitive analysis for
the online cases. A natural question of bridging the gap between the online and quotation
models leads us to the delayed quotation model, which we study briefly. The analysis of these
models provides useful qualitative insights as well.
(Lead-Time Quotation; Online Algorithms; Competitive Ratio; Complexity; Scheduling )

1. Introduction
In this paper, we study the problem of scheduling and
reliable lead-time quotation for orders with availabil-
ity intervals and lead-time sensitive revenues (SLTQ).
Each order has an arrival time, or release time, and a
latest acceptable start time for processing; the differ-
ence between the two times is the availability interval
or the maximum acceptable lead time. We use the term
lead time to denote the time between starting the pro-
cessing of the order and the order’s arrival time. Rev-
enues from orders decrease as the (quoted) lead times
increase. Our basic model has one type of customer,

while the enhancedmodel has a second (“urgent”) type
of customer as well.
For both the basic and enhanced models, we con-

sider four versions of SLTQ based on what informa-
tion is known and when a decision has to be made.
Offline (F-SLTQ). In the offline model, all informa-

tion about the orders is known in advance. This might
be the case if the demand process is very predictable,
leading to good forecasts, or if most customers place
their orders in advance.
Online (O-SLTQ). Orders arrive over time. The deci-

sions about accepting, rejecting, or scheduling an
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order have to be made based only on the information
about the orders that have arrived so far, without any
knowledge of future orders. This would be the case if
the demand is not known in advance, and if forecast-
ing is very difficult. The decisions about an order can
be made anywhere between the order’s arrival time
and latest acceptable start time. This is the traditional
online version.
Quotation (Q-SLTQ). This is a stringent online

model, in which the decision about accepting/
rejecting an order must be made and a lead time
must be quoted immediately when the order arrives.
The quoted lead times are 100% reliable, i.e., the pro-
cessing of the order has to start within the quoted
lead time.
Delayed Quotation (D-SLTQ). This is also a strin-

gent online model, in which decisions about accept-
ing/rejecting an order and lead-time quotation have
to be made within q time units after the order arrives,
where q is smaller than the maximum acceptable lead
time. This model is between the online and the quo-
tation models.
To be clear, O-SLTQ, Q-SLTQ, and D-SLTQ are all

online, i.e., orders arrive over time and decisions are
made without any knowledge of future orders. Any
quotation algorithm is a delayed quotation algorithm,
which in turn is a traditional online algorithm, and
this is a one-way inclusion.
The offline model is studied by methods from

mathematical programming. To evaluate the perfor-
mance of algorithms for the three online models, we
use competitive analysis (Sleator and Tarjan 1985). In
a competitive analysis, an (deterministic) online algo-
rithm A is compared to an optimal offline algorithm.
An optimal offline algorithm knows all the infor-
mation about the orders in advance and can serve
them, obtaining the maximum possible total revenue.
Given an instance I , let zA�I� denote the total revenue
obtained by using algorithm A, and let z∗�I� denote
the revenue obtained by an optimum offline algo-
rithm, for instance I . For maximization problems, we
call an online algorithm c-competitive, if

z∗�I�≤ czA�I�+a

for any instance I (see Borodin and El-Yaniv 1998 for
a review of competitive online algorithms). The factor
c is also called the competitive ratio of A.

Most of the previous research on the competitive
analysis of online scheduling algorithms considers
models similar to O-SLTQ, where the scheduling
decisions about an order can be delayed; see Hall
et al. (1996), Hoogeveen and Vestjens (1996), and
Keskinocak (1998). In many cases, this delay has no
bound as the orders do not have latest acceptable
start or completions times. To the best of our knowl-
edge, quotation models for scheduling problems have
not received much attention within the context of
competitive analysis. The importance of coordinat-
ing scheduling and quotation cannot be ignored in
today’s industrial supply-chain management. In fact,
it is well accepted in many industries that accurate
lead-time quotation is as important as cost and quality
as a performance measure on which customers eval-
uate suppliers; see Handfield and Nichols (1999) and
Stalk and Hout (1990).
There is additional value in studying the various

versions, offline and online, in a unified manner. By
comparing the online and offline models, we can eval-
uate the value of investing in improved information
gathering and forecasting methods. Similarly, by com-
paring the quotation and delayed quotation models,
we can analyze the benefits of delaying decisions for
a while.
Summarizing, our contributions are the following.

We model an important problem within the schedul-
ing framework. We introduce the quotation version in
the online setting. For the basic and enhanced mod-
els, we find competitive ratios for O-SLTQ, Q-SLTQ,
and D-SLTQ. We briefly present some results on poly-
nomially solvable instances of F-SLTQ. Our analysis
also reveals interesting qualitative insights. We now
briefly describe two applications that motivated this
work.

1.1. Motivation
We are motivated by the following real-world appli-
cations. The issues that are described in these exam-
ples are typical in the industrial supply chains, where
the customer is also a company, rather than an indi-
vidual consumer.
Consider a company that produces and supplies

customized rolls (tools in steel mills) to the rapidly
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growing segment of mini-mills worldwide that pro-
duce specialty steel. Because the roll-manufacturing
processes are mature, and the production of the dif-
ferent variety of rolls requires similar technology,
the processing times are nearly deterministic and,
within each family of products, nearly equal. The key
challenge in managing this business is thus not in
manufacturing, but rather in the interface between
manufacturing and customer service representatives
(CSRs), the functional group that accepts orders and
guarantees lead times to the customers who demand
customized rolls and whose order process is not easily
predictable. Because of the high variety of rolls differ-
ing in finish or diameter, no inventory is kept. Instead,
the rolls are built to order. When an order arrives, a
CSR quotes a lead time. For longer lead times, it is
common practice to give price breaks, so as not to lose
customers who have secondary options from where
to obtain their rolls. In the past, CSRs have guaran-
teed lead times without taking into account the shop
floor status, leading to, among other things, increased
expediting, increased use of overtime, missing the
promised due dates, and losing important customers.
To remedy this situation, the firm has now decided to
coordinate the interface between manufacturing and
CSRs. Our model here was motivated to aid in this
interface.
A similar problem exists at the customers of these

roll-manufacturers as well. A specialty alloy division
of a large company is a major producer and distribu-
tor of steel products and high-performance alloys for
aerospace, automotive, electronics, and other indus-
tries worldwide. The division produces a large num-
ber of steel products to satisfy its customers’ needs.
Each product is produced by routing steel through a
series of processing steps needed to give it the desired
characteristics. One-third of production is made to
stock, and two-thirds is made to order. With the cur-
rent order inquiry process, the CSR can quote price,
lead time, etc., immediately to the customer if that
customer has placed the same order earlier. Other-
wise, the response time can take anywhere from 24
hours to a week, depending on whether or not a new
route must be created. Currently, only about 50% of
the orders get quotes immediately upon arrival, and

this company would like to provide quick response
to more orders to improve customer service.
Similar examples exist in the automotive supply

chains, in the construction industry, and in the paper
industry, as well as in service companies that provide
spare-part kits to customers (Stalk and Hout 1990).
Many examples also abound at the individual con-
sumer level: dry-cleaning services, obtaining univer-
sity transcripts, rush orders for document services
and package delivery. The models studied here have
been motivated by projects and discussions at plants
of General Electric (GE), ASKO, Sintermet, TRACO,
and Blazer Diamond, among others.

1.2. The Models
Our basic model has a single customer type and is
an appropriate model when the customer orders are
similar to each other. Orders arrive over time, and rj
is the release time (earliest start time) or arrival time of
order j. We assume that all arrival times are integers.
Each order j has a processing time pj = p, a maximum
acceptable lead time lj = l, and a penalty (or revenue
that is lost) wj = w for each unit of time the order
waits before its processing starts. The function R�d�
represents the net revenue for (quoted) lead time d, if
the order is accepted. We concentrate on the following
revenue function:

R�d�=
{
�l−d�w for d < l

0 otherwise�
(1)

In this revenue function, d denotes the lead time in the
offline and online models, and the quoted lead time in
the quotation and delayed quotation models. If d ≥ l
for an order, then the customer goes to another ven-
dor. From the supplier’s point of view, the supplier
has the option of rejecting an order: If it is not pos-
sible or desirable to start processing a type i order
within l− 1 time units of its arrival (due to a busy
schedule or in anticipation of future orders), there is
no benefit in accepting the order. (Our results on alter-
native nonincreasing revenue functions can be found
in Keskinocak 1997.)
In F-SLTQ and O-SLTQ, revenues from orders lin-

early decrease as the lead time increases. In Q-SLTQ
and D-SLTQ, revenues linearly decrease as the quoted
lead time increases. In Q-SLTQ and D-SLTQ, the
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Table 1 Summary of Results for O-SLTQ and Q-SLTQ

Online Quotation

Section Topic LB UB LB UB

2.1 Basic model, p = 1 1 1 1�5 1.618
2.2 Basic model, p > 1

√
2 1�618 1�5 1.618

3.1 Enhanced model, p = 1�w < l 1.28 1�618 1�5 max�1+ w
l
�1�755	

3.1 Enhanced model, p = 1�w ≥ l 1 1 2 2.35
3.2 Enhanced model, p > 1 max�

√
2� w

l
	 ∗ ∗ max�

√
2�1�755 w

l
	

4 DLTQ, basic model, p = 1 1 1 min�1�618� 1
1−
2

	

4 DLTQ, enhanced model, R′ w/l 1/(if qi ≥ p−1)

quoted lead times are 100% reliable, i.e., once a lead
time is quoted, the promised product or service has
to be started within the quoted lead time. (Note that
in Q-SLTQ and D-SLTQ, although lead times must
be quoted immediately and within q time units after
an order arrives, respectively, the actual start time
for processing can be decided later, any time within
the quoted lead time. In some cases, the actual lead
time may be shorter than the quoted lead time; how-
ever, the revenues are always based on the quoted
lead time.) If an order is accepted, its processing
must be completed without interruption, i.e., preemp-
tion is not allowed. Our objective is to schedule the
orders and quote lead times to maximize the total rev-
enue. Our models incorporate, through simplifying
assumptions, many features present in the real-world
situations that motivated this work.
The enhancedmodel adds a second type of customer

to the basic model. This is motivated by our observa-
tions that in some cases there is an urgent customer
class in addition to the normal customer type. Urgent
orders require very short lead times, whereas normal
orders can tolerate relatively longer lead times. We
model urgent orders as Type 1, which must be pro-
cessed immediately upon acceptance (l1 = 1). The nor-
mal orders are modeled as Type 2, which can wait
up to a deadline (l2 > 1) before their processing starts.
Also, urgent orders have a higher unit revenue com-
pared with normal orders (w1 ≥ w2). Orders within
each type have equal processing times, equal maxi-
mum acceptable lead times, and equal penalties.
In all models, we assume that there is a single

machine or server. Note that SLTQ (with mul-
tiple types of customers) generalizes the well-
known scheduling problem of minimizing the sum

of weighted completion times subject to release
times (Keskinocak 1997), denoted by 1	rj 	

∑
wjCj (see

Graham et al. 1979 for a taxonomy of scheduling
problems).

1.3. Summary of Results
Our main focus is on O-SLTQ and Q-SLTQ, and
the results are summarized in Table 1. The special
case of p = 1 (unit-length orders) provides a build-
ing block for the general p case, and so is studied
first within each model. LB denotes the lower bound
and UB denotes the upper bound on the competitive
ratio of online and quotation algorithms. We construct
instances (with “cruel” adaptive adversaries, where
at each time the adversary knows all the actions
taken by the online algorithm so far and, based on
this knowledge, constructs the worst possible input
of arrivals so as to maximize the competitive ratio)
to show the lower bounds. We provide algorithms,
with analysis, to show the upper bounds. For a quo-
tation LB entry by “*”, we can substitute the online
lower bound for that problem. Similarly, for an online
UB entry “*”, we can substitute the quotation upper
bound for that problem.
Recall that D-SLTQ bridges the gap between

O-SLTQ and Q-SLTQ. The results on D-SLTQ are dis-
cussed briefly in §4. Our results on polynomially
or pseudopolynomially solvable instances of F-SLTQ
(offline case, with m types of orders) are summa-
rized in Table 2; L=maxi�li� stands for the maximum
acceptable lead time and n stands for the number of
orders in the problem. A blank box in Table 2 means
that this aspect can be arbitrary. We do not discuss
F-SLTQ in depth here because of space considerations,
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Table 2 Polynomially Solvable Cases of F-SLTQ

ri pi li wi Result

equal equal equal O�n logn�
equal equal O�n6�

li ≤ pi +pj O�n2L2�

1 O�n6�

equal equal O�n6�

as well as to retain a focus on the three online cases;
see Keskinocak (1997) for details.

1.4. Some Qualitative Insights
Some insights we gain by studying and comparing
the offline, online, quotation, and delayed quotation
models follow.
1. SLTQ is similar to, but more difficult than, some

well-known scheduling models. We show that O-SLTQ
is quantifiably harder than the online version of
1	rj� pj = 1	∑wjCj .
2. Comparing O-SLTQ with F-SLTQ. In some cases,

online scheduling decisions can be made quite effi-
ciently with good performance guarantees, and some-
times optimally. Thus, in these situations we do not
require advance information about future demand.
3. Comparing Q-SLTQ with O-SLTQ. Our results also

show that the quotation version, where we have to
make decisions immediately when an order arrives,
can be much harder than the traditional online ver-
sion. So, the difficulty does not only lie in not know-
ing the demand, but in how soon we have to make a
decision when an order arrives.
4. How to manage quotation. To obtain high rev-

enues, we need to reserve capacity—equivalently,
leave space—for future orders, even if there is only a
single type of orders.
5. The enhanced model requires a different strategy than

the basic model. In the case of two types of customers,
we need to reserve capacity in two different ways:
(1) We don’t promise capacity beyond a certain num-
ber of periods from now, and (2) within the periods we
promise capacity, we reserve some capacity for high-
margin customers. In contrast, in the single-type case,
it is sufficient not to promise capacity after �l periods,
where l is the maximum acceptable lead time of an
order (but not reserve space in the first �l periods).

6. Comparing D-SLTQ with Q-SLTQ. Partially delay-
ing the quotation decision can improve perfor-
mance significantly. We are able to quantify the
improvement, as well as show results that indicate a
continuous improvement as delay increases for our
basic model.
7. Sometimes the delay in D-SLTQ has to be significant.

We show a threshold rule for the enhanced model:
After a certain delay, there is significant benefit.
An example of a real-world implementation where

the insights obtained here have been used is in a lam-
inate plant where quoting accurate lead times and
coordinating them with scheduling was central to
the plant management strategy. In one of the prod-
uct lines (“the rigid line”), the basic model studied
here was considered appropriate as the 10 main cus-
tomers that accounted for over 80% of the demand
were nearly homogeneous. The availability interval
was 3 weeks, set by industry standards. Based on our
models, the laminate manufacturer negotiated with
the customers a maximum of 1-week delay in quota-
tion. In another product line (“the multilayer line”),
where the enhanced model was considered appropri-
ate, the manufacturer did not negotiate strongly for a
delay in quotation as it was not possible to delay the
quotation to the point where significant benefits could
be realized. Furthermore, the order entry group that
quotes lead time now uses the schedule information
when deciding on the lead time, in a D-SLTQ setting
for rigid line and a Q-SLTQ setting for the multilayer
line. For low-volume, low-margin customers, the
O-SLTQ model is appropriate, whereas for replenish-
ing their own warehouses (since reliable forecasts are
available) F-SLTQ is appropriate. The details of the
implementation, along with other plant improvement
activities such as maintenance, work force schedul-
ing and reorganization, quality programs, and prod-
uct redesign, are described in Tayur (1998).

1.5. Literature Review
Most of the literature in machine-scheduling prob-
lems focuses on sequencing decisions only (see
Pinedo 1995 for a review on machine-scheduling
problems), assuming that the due dates are preset
and/or there is no availability interval (there may be a
release time, but usually there is no latest start or com-

268 Management Science/Vol. 47, No. 2, February 2001



KESKINOCAK, RAVI, AND TAYUR
Scheduling and Reliable Lead-Time

pletion time). Minimizing (weighted) tardiness, num-
ber of tardy jobs, lateness, flow times, and completion
times are among common objectives. Once the due
dates are set, different rules are used for sequencing,
such as earliest due date, minimum slack, and critical
ratio (Baker 1984). In contrast, we consider the com-
bined problem of due date setting and scheduling,
where we need to quote a due date and then sched-
ule an order to ensure that it is completed before the
quoted due date.
Combined due date setting and sequencing prob-

lems are considered in Baker and Bertrand (1981,
1982), Bertrand (1983), Bookbinder and Noor (1985),
Conway (1965), Elion and Chowdhury (1976),
Miyazaki (1981), Ragatz and Mabert (1984), and
Weeks (1979), where the performance of differ-
ent rules are compared via simulation. Analytical
procedures are discussed in Chand and Chhajed
(1992), Cheng (1984), Duenyas (1995), Seidman et al.
(1981), Seidman and Smith (1981), Kapuscinski and
Tayur (1997), and Wein (1991). In all of these papers
it is assumed that the customer will place an order no
matter how late the quoted due date is. In our model,
we assume that each order is available for processing
within a certain time interval and an order will be
lost if it is not processed within its interval of avail-
ability. See Cheng and Gupta (1989) for a review of
scheduling research involving due date determination
decisions.
A variant of SLTQ is scheduling of intervals (SOI),

where l= 1 for all the orders. The online case is stud-
ied in Faigle and Nawijn (1994) and Woeginger (1995),
and the offline version is considered in Arkin and
Silverberg (1987). Another variant of F-SLTQ is stud-
ied in Hall and Magazine (1994), where Ri�d� is a pos-
itive constant, say Ki, if d ≤ li, and zero otherwise.

1.6. Organization
The paper is organized as follows. In §2, we study the
basic model with single customer type, first with unit-
length orders followed by the case of nonunit-length
orders. In §3, we study the enhanced model with two
customer types, first with unit-length orders followed
by nonunit-length orders. In §4, we study the delayed
quotation problem. We conclude in §5. Some of the
proofs are presented in the appendix for improved
readability.

1.7. Preliminaries
We define some terms that are frequently used in the
paper.
Let � denote the schedule generated by an online

(quotation) algorithm. To do the competitive analysis,
it is sometimes convenient to divide � into “phases”
where each phase consists of a sequence of consecu-
tively scheduled orders. Phase i starts at time ti, if the
following conditions hold:
1. An order is scheduled to time ti and the arrival

time of that order is also ti.
2. All the accepted orders that arrived before ti are

processed before ti (i.e., no more accepted, but not yet
processed, orders).
Let Bi denote the ordered set of orders scheduled in

phase i. Note that the orders in Bi are served consec-
utively, and there may be some idle time after the last
order in Bi before the next phase starts. Let t′i be the
completion time of the last order in Bi. Let z∗i be the
maximum revenue one could make from the orders
that arrived in phase i and zi be the revenue made by
the algorithm.

2. Basic Model
2.1. Online and Quotation Results for the Basic

Model with Unit Processing Times
Consider the following algorithm.1

Algorithm O-HRR (Online Highest Remaining
Revenue). Whenever the machine is idle and there are
orders available for scheduling, pick an order j with
the largest remaining revenue (denoted by remj�t� if
we are in time t) and schedule it next. In case of ties,
choose the order with the largest wj .

We first show that Algorithm O-HRR is an opti-
mum algorithm for O-SLTQ when we have unit-
length orders. (Thus, LB and UB are both equal
to 1.) We then show a lower bound of 1.5 for
the competitive ratio of any algorithm for Q-SLTQ
with unit-length orders. Thus, we show that even
in this special case, online quotation algorithms are

1 We use the first letter of the algorithm name as O and Q to denote
online and quotation algorithms, respectively.
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quantifiably harder to design than traditional online
algorithms.
We present an online quotation algorithm (called

Q-FRAC) with competitive ratio at most 1.618 for
Q-SLTQ with unit-length orders. We provide an exam-
ple to show that our analysis about the performance
of this algorithm is tight.
Our first proposition follows the standard pairwise

interchange argument.

Proposition 1. Algorithm O-HRR is optimal for the
basic model with unit-length orders.

The result of Proposition 1 implies that for the
basic model with unit-length orders, an online algo-
rithm that does not have any information about future
orders is as good as an optimum offline algorithm that
knows all the data in advance. This is because when
we commit capacity, we do so only for one unit of
time and we have all the information we need. Next,
we see that quotation (the Q-SLTQ version), in con-
trast, can benefit from more information.
To see the basic trade-off in quotation decisions, let

us consider the following scenario. Suppose that in
some period, part of our future capacity is already
reserved for the orders that arrived earlier, and a new
order arrives. Even if we quote the shortest possible
lead time for the newly arrived order, the revenue we
will get from this order is not going to be too high. If
we accept this order, we will further utilize our capac-
ity (for a low revenue). If new orders arrive in the
future (which could give us higher revenue provided
that we can quote short lead times) we may not be
able to quote short lead times for those orders. On the
other hand, if we do not accept this order now, we
lose the revenue from this order. If we do not receive
enough orders in the future, we may end up with
unutilized capacity.
Based on the above, we create an instance to show

a lower bound on the competitive ratio of quotation
algorithms for Q-SLTQ.

Proposition 2. The competitive ratio of any quota-
tion algorithm for Q-SLTQ with unit-length orders is at
least 1.5.

Proof. Consider an instance where l= 2 and w= 1.
At time 0, the machine is available and two orders

arrive. Any optimal algorithm should schedule one
of these orders to time 0. If the algorithm rejects
the second order, no more orders arrive, so we have
z∗/z = 3/2 = 1�5. If the algorithm decides to accept
the second order, then this order must be scheduled
to time 1. In this case, two orders arrive at time 1.
One of them is lost, because the machine is busy at
time 1. In general, if the algorithm accepts the second
order, which arrived at time t, it must be scheduled
to time t+1 and two more orders arrive at time t+1.
If the algorithm rejects the second order at time t,
no more orders arrive. Suppose that the algorithm
rejected the second order at t ≥ 1. We have z = 2+ t

and z∗ = 2�t + 1�+ 1 = 2t + 3� z∗/z ≥ 5/3 for t ≥ 1.
Hence, z∗/z≥ 1�5 for t ≥ 0. �

Thus, the fact that we have to commit capacity at
the time an order arrives makes the problem harder.
We now complement this lower bound of 1.5 with an
upper bound, by analyzing the following algorithm.

Algorithm Q-FRAC (Quotation-FRACtio-nal rev-
enue). Choose 0 < � < 1. At time t, schedule each
order to the earliest available position, only if a rev-
enue of at least �l can be obtained. Reject all the other
orders that arrived at time t.

The main idea of Algorithm Q-FRAC is to accept
orders only if they yield a certain fraction ��� of the
maximum possible revenue (l in this case), so as to
reserve capacity for orders that may arrive at a later
time and bring more revenue. If we think of the next
l time periods as our planning window, this means
that we can promise our capacity for the first �1−
��l periods of the planning window, but we should
keep the capacity of the last �l periods free for future
orders. Our analysis chooses the value of this fraction
to optimize the worst-case performance.

Theorem 1. If �= 0�618, then Algorithm Q-FRAC has
competitive ratio z∗/z≤ 1/�= 1�618 for the case of single
type unit-length orders.

Proof. Consider an arbitrary phase i. (Refer to § 1.7
for definition and associated notation.) Note that for
any order accepted by the algorithm, we get a revenue
at least �l. We consider two cases:
Case 1. t′i−ti ≤ �1−��l� In this case, we have exactly

k= t′i−ti arrivals during the time interval $ti� ti+1�, and
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the maximum possible revenue one can get is kl. By
the choice of the algorithm, we get revenue at least
k�l for this time interval.
Case 2. t′i − ti > �1−��l. By the choice of the algo-

rithm, we cannot have any arrivals between t′i − �1−
��l and ti+1. The revenue we get during the interval
$ti� t

′
i� is at least

zi ≥
l�l+1�

2
− �l��l−1�

2
+�l�t′i− ti− �1−��l��

The first two terms of the right-hand side above
give us a lower bound for the revenue of the first
�1−��l orders scheduled in Bi (if they all arrived at
time ti). The last term gives a lower bound for the rev-
enue of the remaining orders. By rearranging terms,
we have

zi ≥
�l−��2

2
l2+ �1+��

2
l+�l�t′i− ti��

The maximum revenue z∗i one can get from the
arrivals in $ti� t

′
i� is

z∗i ≤ l�t′i− ti− �1−��l�+ l�l+1�
2

�

During $ti� t
′
i− �1−��l%, the maximum revenue one

can get is l�t′i− ti− �1−��l�, hence the first term of the
right-hand side above. Because there are no arrivals
between t′i − �1−��l and ti+1, the maximum revenue
one can get between t′i − �1−��l and ti+1 is l�l+1�/2,
which is the second term of the right-hand side above.
By rearranging terms, we have

z∗ ≤ l�t′i− ti�+
(
�− 1

2

)
l2+ l

2
�

To balance the requirements of the two cases, we set

�− 1
2

�1−��2
2

= 1
�

and obtain � = 0�618. Thus, for � = 0�618 the ratio
z∗i /zi is at most 1/�= 1�618 for any phase i, implying
that the competitive ratio of this algorithm is at most
1/�. �

Our first example shows that our analysis of Algo-
rithm Q-FRAC is tight.

Example 1. Consider the case where all the orders
are Type 2. At time 0, l orders arrive. At time t� t =
1� � � � �n, only one order arrives. For very large n>> l,
the optimum solution is to schedule only one order
at each time, to obtain a total revenue z∗ = nl. The
preceding algorithm will schedule at time 0 �1−��l

orders to the first �1−�� periods, and then the order
that arrives at time t will be scheduled to time t+�1−
��l� t = 1� � � � �n. The revenue of this schedule is

z= �1−��2

2
l2+ �1+��

2
l+�ln�

The ratio z∗/z approaches 1/� for large n.

2.2. Online and Quotation Results for the Basic
Model with Nonunit Processing Times

In contrast to the optimal performance of O-HRR for
unit processing times, we show a lower bound of

√
2

for the competitive ratio of any online algorithm for
O-SLTQ in case of nonunit processing times. (Thus,
the nonunit processing time case is harder than the
unit-length case for O-SLTQ.) In this setting, there is
an incentive to invest in better forecasting or obtain-
ing advance information about orders. On the other
hand, for Q-SLTQ, the upper bound carries over to
this case from the p = 1 case. This indicates that
Q-SLTQ does not get harder because of nonunit pro-
cessing times. (The lower bounds always carry over
from O-SLTQ to Q-SLTQ.)

Proposition 3. If p > 1, then the competitive ratio of
any online algorithms for O-SLTQ is at least

√
2.

Proof. Consider an instance with l = p. The
machine is free at time 0, and an order arrives.
Because all the orders are of the same type and
because the machine is free at time 0, any good online
algorithm should start processing this order immedi-
ately. If the processing of this order starts later, this
will not only decrease the revenue one can obtain
from this order, but may also delay the process-
ing of other orders that might arrive later. At time
t = �

√
2− 1�l another order arrives. If the algorithm

decides to reject this order, no more orders arrive and
we have

z∗/z= l+ l�
√
2−1�
l

=√
2�
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If the algorithm accepts this order, it will start pro-
cessing it at some time t ≥ p. Then, at time p+ 1
another order will arrive (and can make revenue at
most 1, since it can be scheduled only after the cur-
rent order’s processing is completed). In this case z≤
l+1+ l�

√
2−1�� z∗ = 2l and z∗/z≥√

2 for large l. �

Proposition 4. If p > 1, then the competitive ratio of
any quotation algorithm for Q-SLTQ is at least 1.5.

Proof. The proof is similar to the proof of Propo-
sition 2 and can be constructed by using an instance
where p = 2 and l = 4. We skip the details. �

Theorem 2. If �= 0�618, then Algorithm Q-FRAC has
competitive ratio z∗/z ≤ 1/� = 1�618 for single type with
p > 1.

The proof of Theorem 2 is similar to the proof of
Theorem 1. We skip the details.
In summary, O-SLTQ is more difficult than F-SLTQ

only when p > 1 (and so can benefit from informa-
tion), while Q-SLTQ is hard primarily because of when
a decision has to be made.

3. Enhanced Model
Recall that in the enhanced model there are two types
of customers—an urgent type who would like the
product immediately, and a normal type whose avail-
ability window is longer.
First we study the case where all the orders have

unit processing times. Without loss of generality we
assume that there is at most one Type 1 arrival (urgent
type) in each time period and that w1 = w ≥ 1 and
w2 = 1. Let l1 = 1 and l2 = l. Note that the maximum
revenue one can make from a Type 1 order is w and
the maximum revenue one can make from a Type 2
order is l. We distinguish between the cases w< l and
w ≥ l.
• w < l. The lower bound for O-SLTQ is 1.2808. The
lower bound on Q-SLTQ is 1.5. This indicates that
Q-SLTQ may be harder than O-SLTQ. We present an
online algorithm for O-SLTQ with competitive ratio
1.618. We also present a quotation algorithm with
competitive ratio at most max�1+�w/l��1�755�≤ 2. We
use techniques similar to those applied in the basic
model; the algorithms are a hybrid of the earlier idea

of scheduling an order only if it yields at least a cer-
tain fraction of the maximum revenue (like Algorithm
Q-FRAC), along with the idea of scheduling the more
profitable type of order first.
• w ≥ l. We show that Algorithm O-HRR is an opti-
mum online algorithm for O-SLTQ. We show that any
quotation algorithm must have competitive ratio of at
least 2. We present a quotation algorithm for Q-SLTQ
with competitive ratio of at most 2.3524. Here, we
use an interesting new idea of scheduling the less
profitable orders by leaving evenly spaced gaps to
allow for scheduling of the more profitable orders
with shorter deadline, should they arrive later.

Online version, O-SLTQ.
The following propositions show that when p = 1,

the online version of the enhanced model is harder
than the corresponding basic model only if w < l.
This is because when w ≥ l and an urgent order
arrives, it is optimal to schedule it, and, if it does not
arrive, then scheduling the normal orders based on
remaining revenue is optimal (since the commitment
of capacity is only one time unit). In the w < l case,
however, the static priority of urgent orders over nor-
mal orders is neither immediate nor optimal.

Proposition 5. If w ≥ l, then Algorithm O-HRR is
optimal for the enhanced model with unit-length orders.

Proposition 6. Any online algorithm for O-SLTQ has
competitive ratio at least 1.2808 if w < l.

Consider an algorithm that gives priority to the jobs
with largest unit revenue, instead of largest remaining
revenue.

Algorithm O-HUR (Online Highest Unit Revenue).
Whenever the machine is idle and there are orders
available for scheduling, pick an order j with the
largest wj and schedule next. In case of ties, choose
the order with the largest remj�t�.

One can see that O-SLTQ is harder than the online
version of 1	rj� pj = 1	∑wjCj by noting that Algo-
rithm O-HUR finds the optimum solution for the lat-
ter problem while any online algorithm for O-SLTQ
has competitive ratio of at least 1.2808, even if there
are only two types of orders.
We now find an upper bound for the case w < l.

Consider the following algorithms.
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Algorithm O-1HRR (Online 1-first then O-HRR). If
a Type 1 order is available at time t, schedule that
order. Otherwise, schedule an order with the largest
remaining revenue.

Algorithm O-HYBRID. Let � = �
√
5−1�/2. If w ≥

�l, use Algorithm O-1HRR; otherwise, use Algorithm
O-HRR.

Theorem 3. The competitive ratio of Algorithm O-
HYBRID is at most 1.618.

The theorem follows from Propositions 7 and 8.
Proposition 7 shows that if w ≥ ��

√
5−1�/2�l, then

Algorithm O-1HRR has competitive ratio of at most
1.618. Proposition 8 shows that if w ≤ ��

√
5−1�/2�l,

then Algorithm O-HRR has competitive ratio of at
most 1.618.

Proposition 7. The competitive ratio of Algorithm
O-1HRR is at most l/w.

Proof. Consider an arbitrary instance I , where the
algorithm scheduled k Type 1 orders (i.e., there were
Type 1 arrivals in k periods) and made revenue z =
C +wk. We claim that the optimum solution is z∗ ≤
C + lk. To see why this is the case, consider another
instance I ′, where there is a Type 2 arrival instead of
every Type 1 arrival. Let z′ be the optimum solution
for I ′. z′ is clearly better than z∗, and can be obtained
by scheduling the order with the largest remaining
revenue at any time. But then z′ = C + lk ≥ z∗ and
z∗/z≤ l/w.

Observation. Suppose that in an optimum solu-
tion an order j is scheduled at time t, with remain-
ing revenue remj �t�, although there was another order
k available for scheduling at time t, with remk�t� >
remj �t�. Then, order k must also be accepted and
scheduled later in the optimum solution.

Proposition 8. The competitive ratio of Algorithm O-
HRR is 1+ �w/l��

Proof. Consider an arbitrary phase i. Suppose
that x of the Type 1 orders that are rejected during
phase i by Algorithm O-HRR are accepted in the opti-
mum solution. The algorithm rejected these Type 1
orders, because some Type 2 orders with remain-
ing revenue > w were available when they arrived.

(If there were no Type 1 arrivals, then zi would be
the optimum solution.) By scheduling these x Type 1
orders, the optimum algorithm made wx more rev-
enue during this phase. In the best case, the Type 1
orders are scheduled to the interval $t′i−x� t′i%, and the
x Type 2 orders are scheduled immediately after t′i .
Therefore, the optimum algorithm will lose at least
1+ 3+ · · ·+ 2x− 1 = x2 due to those x Type 2 orders
(cf. previous observation).
Let zi and z∗i denote the revenue made by the algo-

rithm and by the optimum solution in phase i, respec-
tively. We have z∗i ≤ zi+xw−x2, and z∗i /zi ≤ 1+��wx−
x2�/zi�. During the first x periods of phase i, the rev-
enue made by the algorithm is at least l+�l−1�+· · ·+
�l−x+1�≥ 2l−x

2 x (This happens when all these orders
arrive in period ti). Hence, zi ≥ ��2l−x�/2�x and

z∗i
zi

≤ 1+ wx−x2

2l−x
2 x

= 1+ 2w−2x
2l−x

≤ 1+ w

l
�

Because this is true for any phase, the competitive
ratio of this algorithm is at most 1+ �w/l�. �

Quotation version, Q-SLTQ.
Next we turn to quotation algorithms.

Algorithm Q-FRAC-HYBRID. Choose 0< �< 1. If
there is a Type 1 arrival at time t: Schedule the Type
1 order if there are no Type 2 orders available for
scheduling; otherwise, schedule the Type 1 order only
if w > �l. If there are Type 2 arrivals at time t, sched-
ule the Type 2 orders to the earliest available posi-
tions, as long as you will make at least �l revenue for
each order scheduled. Reject all the remaining Type 2
orders.

The proof of the next theorem is in the appendix.

Theorem 4. If w < l and �= 0�56984, then Algorithm
Q-FRAC-HYBRID has competitive ratio z∗/z ≤max�1+
�w/l�� �1/���.

Note that for w = l, we have an online algorithm
that gives the optimum solution, but any quotation
algorithm has a competitive ratio of at least 2, as
shown by Proposition 9. This indicates that the quo-
tation version continues to be harder than the online
version in the enhanced model.

Proposition 9. If w ≥ l, then any online quotation
algorithm for Q-SLTQ has a competitive ratio of z∗/z≥ 2.
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We now turn to construct a good algorithm for
Q-SLTQ. Here is the intuition. First, recall that w is
the largest revenue we can make from a Type 1 order
and l is the largest revenue we can make from a Type
2 order. If w ≥ l, the revenue we can make from a
Type 1 order can be arbitrarily larger than the rev-
enue we can make from a Type 2 order. Also note that
a Type 1 order is lost if it is not scheduled immedi-
ately at its arrival. Therefore, in the quotation version,
it is crucial to leave some capacity free for possible
future Type 1 arrivals, while we accept and quote lead
times for Type 1 orders. As in the single type case,
we will accept Type 2 orders only if they yield a cer-
tain fraction ��� of the maximum possible revenue (l
in this case) to reserve capacity for other Type 1 or
Type 2 orders that may arrive at a later time (and
bring more revenue). If we think of the next l time
periods as our planning window, this means that we
should keep the capacity of the last �l periods free
for future orders. However, due to the possible rev-
enue difference between Type 1 and Type 2 orders,
reserving capacity only in this fashion is not enough.
Therefore, we also need to leave “gaps” (i.e., reserve
capacity) between Type 2 orders while we quote lead
times. These “gaps” may be filled later with Type 1
orders or high-revenue Type 2 orders. So, in our pro-
posed algorithm Q-GAP, in addition to leaving the
last �l periods, we also leave ' fraction of the first
�1−��l periods in the planning window free while
quoting lead times for Type 2 orders.

Algorithm Q-GAP. Choose 0 ≤ � ≤ ' ≤ 0�5. If the
machine is available, schedule a Type 1 order as soon
as it arrives. Quote lead times for Type 2 orders leav-
ing the machine free for at least ' fraction of the time
(as evenly as possible), if you will make at least �l
revenue for each order. If the machine is available and
there are no new arrivals, “pull” the order with the
earliest quoted due date (which must be Type 2) and
process it.

Our analysis chooses the values of � and ' to opti-
mize the worst case performance of the algorithm.

Theorem 5. If � = 0�4251, Algorithm Q-GAP has
competitive ratio at most 1/� = 2�3524 for unit-length
orders.

Proof. We first prove the theorem for l > 3. Con-
sider an arbitrary phase i. By the definition of the
phases and the choice of the algorithm, there are no
arrivals in $t′i� ti+1%. If no Type 2 order is scheduled in
that phase, then it consists of a single Type 1 order,
and we have z∗i = zi.
If Type 2 orders are scheduled in phase i, let ni be

the number of Type 1 orders scheduled during the
interval $ti� t′i%. Because we leave the machine free for
at least ' fraction of the time, and because a Type 2
order is “pulled” only if there is no Type 1 arrival
(hence, increasing the free space), at least ' fraction
of all Type 1 arrivals are scheduled in a phase.
Consider the following two cases:
Case 1. t′i− ti−ni < �1−���1−'�l. This means that

the number of Type 2 arrivals during this phase was
t′i − ti − ni (and all of them are scheduled), because
otherwise the algorithm would schedule more Type 2
orders. Furthermore, the maximum number of Type 1
arrivals in this phase is �1/'�ni, which is at most �t′i−
ti�, and hence ni ≤ �t′i− ti�'. So, we have

z∗i ≤ �t′i− ti−ni�l+w
1
'
ni and

zi ≥ �t′i− ti−ni��l+wni�

Therefore, z∗i /zi ≤max
{
1
�
� 1
'

}
�

Case 2. t′i− ti−ni ≥ �1−���1−'�l,

zi ≥
(
l�l+1�

2
− �l��l−1�

2

)
�1−'�

+ �t′i− ti−ni− �1−���1−'�l��l+wni�

We claim that the first term of the right-hand side
above denotes the minimum revenue made from the
first �1−���1−'�l Type 2 orders scheduled in phase
i. The second term denotes the minimum revenue
made from the remaining Type 2 orders. The last term
denotes the revenue made from the Type 1 orders.
After rearranging terms, we get

zi ≥ �1−'��1−��2
l2

2

+ �1−'��1+��
l

2
+��t′i− ti−ni�l+wni�

Before computing an upper bound on z∗i , again
note that there are no arrivals in $t′i� ti+1%. Let
(= �+'−�'.

z∗i ≤ �t′i− ti−ni�l+
1
'
wni+

(l�(l+1�
2

�
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The first two terms of the right-hand side give an
upper bound on the maximum revenue one could
make during the interval $ti� t′i%. The third term of the
right-hand side is an upper bound on the maximum
revenue one could make from Type 2 orders that were
rejected by the algorithm but could be scheduled after
t′i . The algorithm rejected such orders that arrived in
$ti� t

′
i%, if they had remaining revenue less than �l. If

we did not leave ' fraction of the time free, and if
we scheduled such an order after t′i , we could make
at most �l+'�1−��l, which is equal to (l giving the
third term. After rearranging terms, we get

z∗i ≤ (2
l2

2
+(

l

2
+ �t′i− ti−ni�l+

1
'
wni

and

z∗i
zi

≤max
{

(2

�1−'��1−��2
�

(

�1−'��1+��
�
1
�
�
1
'

}
�

If we choose �= ' and solve for (2/��1−'��1−��2�=
1/�, we get �= 0�4251.
For � = 0�4251, z∗i /zi ≤ 1/� in any phase i, and the

competitive ratio of this algorithm is at most 1/� =
2�3524.
Now we do the analysis for l ≤ 3 and �= 0�4251. If

there is no Type 1 arrival, but there are Type 2 arrivals
in a given period, the revenue made by the algorithm
in that time period is l. The maximum revenue one
could make from the orders that arrived in that time
period is l�l+ 1�/2. If there is a Type 1 arrival in a
given period, the revenue made by the algorithm is
w, whereas the maximum revenue one could make
from the orders that arrived in that time period is
w+ l�l− 1�/2. Since w ≥ l, we have z∗i /zi ≤ max��l+
1�/2�1+ �l−1�/2�≤ 2 for l ≤ 3. �

We created an example where the ratio z∗/z goes
to 1/��1− �2��1− ��� (which is equal to 2.1231 for
� = 0�4251), which shows that the analysis of this
algorithm is almost tight.
Next we turn to p> 1. First, we show a lower bound

for the competitive ratio of any online algorithm. This
same lower bound can be used for any quotation
algorithm as well.

Proposition 10. Any online algorithm with p > 1 has
a competitive ratio of at least max�

√
2�w/l�.

Next, we show that the performance of Q-FRAC is
within a constant of this lower bound. The proof of
Theorem 6 is similar to the proof of Theorem 4.

Theorem 6. Algorithm Q-FRAC has a competitive
ratio of at most max�2�1�75488�w/l�� with p > 1.

4. Delayed Quotation Problems
In terms of decision making, the online and quota-
tion versions consider two extremes. In this section
we consider the delayed quotation problem (D-SLTQ),
which generalizes Q-SLTQ by allowing a waiting time
qi for decision making, such that 0≤ qi < li (for a type
i order). Interestingly, an emerging topic of interest
within the computer science community is the study
of online models with a “look ahead” feature, which
parallels the delayed quotation feature of our model
(Keskinocak 1998).
We have at least two options on how we think a

customer behaves in this setting.
• No change in the revenue function. The first option
is that the revenue function remains the same, i.e.,
revenue is lost for every unit of time an order waits
before its processing starts.
• The revenue function is more lenient. In this case, if
the quoted lead time is less than qi, then the full rev-
enue is obtained. Decisions have to be made within
qi time periods, but revenues start to decrease only if
the quoted lead time is longer than qi. Furthermore
the availability interval is now qi+ li, i.e., longer by qi
units. One such revenue function is the following:

R′
i�d�=



wi�li−max�0�

d−qi�� if d<li+qi i=1�2

0 otherwise�

(2)

In both of these delayed quotation models, without
loss of generality we can assume that q = �1−(��l−1�
for some 0 ≤ ( ≤ 1. If q = l− 1 �( = 0�, D-SLTQ with
revenue function R reduces to the standard online
scheduling problem O-SLTQ. If q = 0 �( = 1�, then
D-SLTQ is equivalent to the immediate quotation
model Q-SLTQ.
First, let us consider D-SLTQ for our basic model

with a single type of customer. To quantify the impact
of delaying the quotation decision on performance,
we first design a new algorithm, Q-HRR, which is a
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modified version of O-HRR. Theorem 7 shows that by
using Algorithms Q-FRAC and Q-HRR together, we
can obtain an increase in the revenues as q increases.

Algorithm Q-HRR (Quotation version of O-HRR).
At time t, from the set of orders available for schedul-
ing, choose the one with the largest remaining rev-
enue and process. Reject all the orders with remaining
revenue ≤ (l. (These are the orders whose quotation
time is over.)

Theorem 7. Consider D-SLTQ in the basic model with
unit-length orders and let q = �1− (��l− 1�. There is an
online quotation algorithm with competitive ratio at most
min�1�618�1/�1−(2��.

Proof. Let � denote the schedule generated by
Algorithm Q-HRR. Again, we do the analysis by
dividing � into phases. Phase i starts at time ti, if the
following conditions hold:
1. An order is scheduled to time ti and the arrival

time of that order is also ti.
2. There are no orders waiting for quotation at

time ti.
Let t′i be the start time of the last order scheduled

in phase i.
Note that the machine will always be busy during the
interval $ti� t′i%. Let z

∗
i be the maximum revenue one

could make from the orders that arrived during phase
i and zi be the revenue made by the algorithm. Now,
consider the following two cases:
Case 1. t′i−ti < �1−(�l. This means that the number

of arrivals in this phase was exactly t′i − ti (and all of
them are scheduled). Hence, z∗i = zi in this phase.
Case 2. t′i − ti ≥ �1− (�l In this case we made the

maximum possible revenue, except possibly losing (l
orders at the end of the phase. The minimum revenue
we made during this phase is

zi ≥
l�l+1�

2
− (l�(l−1�

2
and we lost at most

(l�(l−1�
2

�

Therefore,
z∗i ≤ zi+

(l�(l−1�
2

and z∗

z
≤ l2+ l

�1−(2�l2+ �1+(�l
≤ 1
1−(2

�

The ratio decreases, as ( decreases, i.e., as q increases.
If (≤ 0�618, then Algorithm Q-HRR gives z∗/z≤ 1�618.
So, one can use Algorithm Q-FRAC for ( > 0�618, and
Algorithm Q-HRR for (≤ 0�618. �

The result of Theorem 7 quantifies the increase
in revenues, as the waiting time q = �1− (��l − 1�
increases. For ( ≤ 0�618, we are able to show that
revenues increase quadratically as the waiting time
increases linearly. One can compare the revenue
increase with the “cost” of asking a customer to wait
for a quote, and decide whether it is worth delaying
the decision.
The following two results show how delayed quo-

tation impacts the revenues for the second revenue
function R′ in the enhanced model. In this case,
we observe that there is a sharp decrease in the
worst-case performance guarantees, once the waiting
time exceeds a threshold of q = p−1.
First, we show that if qi ≤ p − 1 for one of the

types, then delaying the quotation decision does not
improve the worst-case performance.

Proposition 11. If qi < p− 1 for some i, then w/l is
a lower bound on the competitive ratio of any quotation
algorithm for the enhanced model with revenue function R′.

Proof. Consider an instance where l1 = l2 = 1� q1 <
p− 1, and q2 = p. At time 0, the machine is idle and
a Type 2 order arrives. Any online algorithm has two
options, either it will reject the order, or it will accept
it and start processing it at some time t < p+1. (The
decisions can be made within p time units.) If the
algorithm rejects the order, another Type 2 order will
arrive at time p, and the Type 2 orders will continue
to arrive every p time periods, as long as the algo-
rithm rejects them. If the algorithm does not accept
any of these Type 2 orders, we have z= 0 and z∗ = t/p

at time t. If the algorithm decides to accept a Type 2
order that arrived at time t, it will start processing
that order at time t′ < t+p and no more Type 2 orders
will arrive. Then, at time t′ + 1 a Type 1 order will
arrive. In this case, since the machine is busy for the
next p− 1 time periods, this Type 1 order is lost and
we have z= 1 and z∗ = t/p+w. �

A similar lower bound can be shown for revenue
function R.
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Next, we consider a modified version of Algorithm
Q-GAP.

Algorithm Q-LONG-GAP. Choose 0 ≤ ��' ≤ 0�5.
Schedule a Type 1 order to the earliest available posi-
tion. Quote lead times for Type 2 orders based on the
following conditions:
1. Leave the machine free for p period long inter-

vals, for at least ' fraction of the time (as evenly as
possible).
2. If the revenue you will make from a Type 2 order

is less than �l, reject that order. If the machine is
available and there are no new arrivals, “pull” the
order with the earliest quoted due date (which must
be Type 2) and process it.
The following result shows that once the decisions

can be delayed longer than a threshold of p− 1, rev-
enues increase significantly as the competitive ratios
decrease sharply to a constant.

Theorem 8. If q1 = q2 = p−1� l1 = 1, and �= 0�4251,
then Algorithm Q-LONG-GAP has a competitive ratio of
at most 1/� for revenue function R′.

The proof of Theorem 8 is similar to the proof of
Theorem 5.
In summary, we see that delaying the decision can

be beneficial, although the benefit may be monotone
in some cases, and a threshold type for others.

5. Conclusion
Motivated by real applications, we considered the
problem of scheduling and lead-time quotation when
revenues are decreasing with lead times and the
orders have an availability interval. We studied, for a
basic model and an enhanced model, four versions—
F-SLTQ, O-SLTQ, Q-SLTQ, and D-SLTQ—that dif-
fer in what information is known and when deci-
sions have to be made. We have provided complexity
results for the offline case, and competitive analyses
for the online cases. Several useful qualitative insights
about the relative difficulty of the versions leads to
improved managerial decision making about when to
collect more information and when to delay a quo-
tation decision. The insights have been used as part
of real-world implementations of accurate lead-time
quotation; see Tayur (1998) for an example.

Our approach for measuring the performance of
online algorithms was to use competitive analysis,
in which the performance of an online algorithm
is compared with the performance of an optimum
offline algorithm, which knows the input sequence in
advance. Although competitive analysis allows us to
obtain theoretical bounds on the “worst-case” perfor-
mance of online algorithms, this approach so far has
not had much impact on the development of real sys-
tems. One reason is that (in practice) the orders in the
near future are at least partially predictable, but com-
petitive analysis assumes that an online algorithm has
no information about the future. Another reason is
that in practice the probability that a problem instance
will cause an online algorithm to realize its worst-
case performance may be very small. For example,
in the SLTQ context it is very unlikely that a group
of clients will select the release times and the lead
times in order to frustrate the decision marker. How-
ever, to have a good competitive ratio an online algo-
rithm still has to be designed to perform well in such
worst possible instances. Despite its limitations, we
believe that this approach is a good alternative and
complements other existing methods (such as queue-
ing) widely used within our community.
Future research considers computational testing to

find average-case performance of the algorithms as
well as study randomized algorithms. The study of a
general case that includes nonequal processing times
with m> 2 types is also underway.

Appendix
Proof of Theorem 4. The proof is similar to the proof of

Theorem 1. In every phase, at most one Type 1 order is scheduled.
If a phase consists of Type 1 orders only, then it has exactly one
order in it. In that case, we have z∗i = zi.

If at least one Type 2 order is scheduled in a phase i, we consider
two cases:

Case 1. t′i − ti ≤ �1−��l. In this case, we can have at most k =
t′i − ti Type 2 arrivals during the interval $ti� ti+1�. All the Type 2
orders that arrived in this time interval are accepted and scheduled
in the order of nondecreasing arrival times. If there were no Type 1
arrivals during this period, this would be the optimum solution
(this can be shown by a simple interchange argument). However,
there may be some Type 1 orders, which are rejected due to the
Type 2 orders scheduled consecutively by the algorithm. Consider
an instance I ′ with the same Type 2 arrivals as in this phase, but
also with a Type 1 arrival in each period. Let z′ be the optimum
solution for that instance. Clearly, z′ ≥ z∗i . If the optimum algorithm
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accepts x of those Type 1 orders I ′, then it will make an extra wx

revenue. As before, the optimum algorithm will lose at least 1+3+
· · ·+2x−1= x2 due to those x Type 2 orders. (This lower bound is
attained if all of the x Type 1 orders are consecutively scheduled in
the interval $t′i−x� t′i %, which minimizes the revenue loss due to the
delayed Type 2 orders.) x ≤ k, since there are k periods. We have
z∗i ≤ z′ ≤ zi+wx−x2 and

zi ≥ l+ �l−1�+· · ·+ �l−k+1�≥ lk− k2

2
≥ lx− x2

2
�

Hence, z∗i /zi ≤ 1+ �w/l�.
Case 2. t′i − ti > �1−��l. By the choice of the algorithm, we can-

not have any Type 2 arrivals between t′i − �1−��l and ti+1. Further-
more, we cannot have any Type 1 arrivals between t′i and ti+1. By
the definition of the phases, only the first order in Bi may be a
Type 1 order, and all the other orders must be Type 2 orders.

If the first order is a Type 1 order, the revenue (denoted by zi)
we will get for this time interval will be at least

zi ≥w+ l�l−1�
2

− �l��l−1�
2

+�l�t′i − ti− �1−��l��

For the first order, which is of Type 1, we get revenue w; for the
following �1−��l−1 orders, which must be of Type 2, we get rev-
enue at least

l�l−1�
2

− �l��l−1�
2

)

finally, for each of the remaining orders, we get revenue at least
�l, which gives us the last term of the above right-hand side. Since
w ≥ �l by the choice of the algorithm, we have

zi ≥
�1−��2

2
l2+ �3�−1�

2
l+�l�t′i − ti��

If all the orders in Bi are Type 2 orders, then the revenue we will
get for this time interval will be at least

zi ≥
l�l+1�

2
− �l��l−1�

2
+�l�t′i − ti− �1−��l��

The first two terms of the right-hand side above give us a lower
bound for the revenue of the first �1− ��l orders scheduled in
Bi , and the last term gives a lower bound for the revenue of the
remaining orders. By rearranging terms, we have

zi ≥
�1−��2

2
l2+ �1+��

2
l+�l�t′i − ti��

The maximum revenue is

z∗i ≤ l�t′i − ti�+
�l��l−1�

2
�

During $ti� t
′
i %, the maximum revenue one can get is l�t′i − ti�, hence

the first term of the right-hand side above. Since there are no
Type 2 arrivals between t′i− �1−��l and ti+1, and no Type 1 arrivals
between t′i and ti+1, the maximum revenue one can get between t′i
and ti+1 is

�l��l−1�
2

�

which is the second term of the right-hand side above. By rearrang-
ing terms, we have

z∗ ≤ l�t′i − ti�+
�2

2
l2− �

2
l�

If we choose � = 0�56984, then for the interval $ti� ti+1�, the ratio
z∗/z is at most 1/�. �
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