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Abstract Weconsider the problemof designing efficientmechanisms to share the cost
of providing some service to a set of self-interested customers. In this paper, wemainly
focus on cost functions that are induced by prize-collecting optimization problems.
Such cost functions arise naturally whenever customers can be served in two different
ways: either bybeingpart of a common service solution or bybeing served individually.
One of our main contributions is a general lifting technique that allows us to extend the
social cost approximation guarantee of a Moulin mechanism for the respective non-
prize-collecting problem to its prize-collecting counterpart. Our lifting technique also
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suggests a generic design template to derive Moulin mechanisms for prize-collecting
problems. The approach is particularly suited for cost-sharing methods that are based
on primal-dual algorithms. We illustrate the applicability of our approach by deriving
Moulin mechanisms for prize-collecting variants of submodular cost-sharing, facility
location and Steiner forest problems. All our mechanisms are essentially best possible
with respect to budget balance and social cost approximation guarantees. Finally, we
show that the Moulin mechanism by Könemann et al. (SIAM J Comput 37(5):1319–
1341, 2008) for the Steiner forest problem is O(log3 k)-approximate. Our approach
adds a novel methodological contribution to existing techniques by showing that such
a result can be proved by embedding the graph distances into random hierarchically
separated trees.

Mathematics Subject Classification 90C27 · 68R99 · 91A10

1 Introduction

1.1 Motivation

We consider the problem of sharing the cost of providing some service to a set of self-
interested customers (or users). At an abstract level, such problems can be described
as follows: We are given a set U of k players and a cost function C : 2U → R which
specifies a cost C(S) to establish the service for player set S ⊆ U . Every player i ∈ U
derives a privately held valuation vi from being served. We are interested in finding
a cost-sharing mechanism M that first solicits bids (bi )i∈U from all players and then
determines a set SM ⊆ U of players to service and a payment pi ≤ bi for every player
i ∈ S. The utility ui of player i is defined as vi − pi if i ∈ SM and is 0 otherwise. We
assume that each player i ∈ U wants to maximize his utility. A player might therefore
misreport his actual valuation if this increases his utility.

In such settings, the servicing costC(S) of a subset of players S ⊆ U often naturally
relates to the cost function of an underlying optimizing problem. For example, the cost
of connecting a set of users residing at terminal nodes in a network might be given
as the cost of a Steiner tree on these terminals. The cost of opening warehouses at
selected locations to minimize the transportation costs to all customer sites can be
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Efficient cost-sharing mechanisms for prize-collecting problems 149

defined as the optimal solution cost of a facility location problem. Several classical
optimization problems have been studied in a cost-sharing context in recent years.

In this paper, we focus on a natural extension of the above cost-sharing viewpoint:
We assume that every player i ∈ U can be served in two different ways: either player
i is part of a common service solution which is shared among all participants, or i is
served individually. For example, in the warehouse application mentioned above one
may want to consider the option of building an on-site storage facility for the customer
as an alternative to outsourcing his goods to one of the available warehouses. Such
extensions give rise to cost functions that are captured by so-called prize-collecting
optimization problems (or optimization problems with penalties).

An example of such a problem is the prize-collecting Steiner forest problem (PCSF):
We are given an undirected graph G = (V, E) with edge costs c : E → R

+, a set of
k terminal pairs R = {(si , ti )}i∈[k], and penalties π : R → R

+. A feasible solution
(F, Q) consists of a forest F ⊆ E and a subset Q ⊆ R of terminal pairs such that
for all (si , ti ) ∈ R either si , ti are connected by F or (si , ti ) ∈ Q. The objective is to
compute a feasible solution of minimum cost c(F) + π(Q).

In the cost-sharing context, we associate each terminal pair (si , ti ) ∈ R with a
player i ∈ U whose goal is to connect si and ti . The service provider can choose to
either connect the terminals si and ti through a common network F , or to connect si
and ti individually at a cost of π(i). That is, the servicing cost C(S) for player set
S ⊆ U is defined as the cost of an optimal solution of the prize-collecting Steiner
forest instance with terminal pairs {(si , ti )}i∈S .

1.2 Cost-sharing mechanisms

When it comes to the design of cost-sharing mechanisms, there are several desirable
properties that one would like to achieve. A cost-sharing mechanism M is called
strategyproof if bidding truthfully (i.e., announcing bi = vi ) is a dominant strategy
for every player i ∈ U . If this is true even if players are permitted to collude (formal
definitions will be given in Sect. 2), then we call a mechanism group-strategyproof.
M is budget balanced if the total cost C(S) of servicing the players in S is equal to
the sum of the payments charged to the players in S. Further, M is efficient if it selects
a set SM of players that maximizes v(S) − C(S) among all subsets S ⊆ U .

Classical results in economics [17,34] state that budget balance and efficiency can-
not be achieved simultaneously by any mechanism. Moreover, Feigenbaum et al. [15]
showed that there is no strategyproof mechanism that always recovers a constant frac-
tion of the optimal efficiency and a constant fraction of the incurred cost, even for the
simple fixed-tree multicast problem.

In light of these hardness results, most of the previous work on mechanism design
concentrated on proper subsets of the above design goals. One notable class of such
mechanisms are so-called Moulin mechanisms [29,30]. A Moulin mechanism M(ξ)

is based on a cost-sharing method ξ , which defines a cost share ξi (S) for every player
i ∈ S and every S ⊆ U . Themechanism starts with the entire player set S = U . In each
iteration, it proposes a cost share ξi (S) to every remaining player i ∈ S. If all players
accept their cost shares, it outputs SM = S as the set of served players together with
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the payments (ξi )i∈S and stops. Otherwise, it removes all players that are not willing
to pay their cost shares and continues with the next iteration. Moulin [29] showed that
the mechanism M(ξ) is group-strategyproof if the underlying cost-sharing method ξ

is cross-monotonic, i.e., the cost share of each player increases as other players leave
the game; formally, for every S ⊆ T ⊆ U , ξi (S) ≥ ξi (T ) for every i ∈ S.

Moulin’s framework has been applied to several classical optimization problems
such as submodular cost-sharing [30], fixed-tree multicast [3,14,15], minimum span-
ning tree [22,24], Steiner tree [22], Steiner forest [26], set cover [20], facility location
[32], connected facility location [18,27,32], and machine scheduling [8,10]. Lower
bounds on the budget balance factor that is achievable by a cross-monotonic cost-
sharing mechanism were studied in [20,25,26].

Roughgarden and Sundararajan [36] introduced an alternativemeasure of efficiency
that circumvents the intractability results in [15,17,34] at least partially. The authors
define the social cost Π(S) of a set S ⊆ U as Π(S) = v(U\S) + C(S). A mecha-
nism M is said to be α-approximate if the set SM it outputs has social cost at most
αminS⊆U Π(S). The intuition behind this definition loosely comes from the fact that
v(U ) − Π(S) = v(S) − C(S), which is the traditional definition of efficiency. Since
v(U ) is a constant, a set S has minimum social cost if and only if it has maximum
efficiency.

Roughgarden and Sundararajan [36] then developed a framework to quantify the
extent to which a Moulin mechanism minimizes the social cost. They applied this
framework to show that the Shapley mechanism is O(log k)-approximate for submod-
ular cost functions and that the cost sharing method of Jain and Vazirani [22] for the
Steiner tree problemgives amechanism that isO(log2 k)-approximate. In a subsequent
paper, Chawla et al. [11] applied the framework to show that the Moulin mechanism
of Könemann et al. [26] for the Steiner forest problem is O(log2 k)-approximate. In
a following paper, Roughgarden and Sundararajan [35] proved polylogarithmic upper
and lower bounds for facility location, Steiner tree and rent-or-buy network design
problems.

1.3 Our results and techniques

Oneof ourmain contributions is a general lifting technique that allowsus to prove social
cost approximation guarantees of Moulin mechanisms for prize-collecting problems.
Basically, our approach enables us to lift the approximation guarantee of a Moulin
mechanism M(ξ̄ ) for an optimization problem to a Moulin mechanism M(ξ) for
the prize-collecting variant of the problem. The approach naturally applies to cost-
sharing methods that are based on primal-dual algorithms, where cost shares relate to
dual variables of a linear programming relaxation of the problem and are grown as a
process over time.

Our lifting technique also suggests a generic design template to derive Moulin
mechanisms for prize-collecting problems. Here the high-level idea is to adapt the
cross-monotonic cost-sharing method ξ̄ for the non-prize-collecting problem simply
by “freezing” the cost share of a player i when it reaches his penaltyπ(i). By exploiting
our lifting technique, all one is left to do then is to prove cross-monotonicity and
(approximate) budget balance of the resulting cost-sharing method.
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Efficient cost-sharing mechanisms for prize-collecting problems 151

We illustrate the applicability of our approach by deriving Moulin mechanisms
for prize-collecting variants of submodular cost-sharing, facility location and Steiner
forest problems. Our mechanisms are essentially best possible with respect to both
budget balance and social cost approximation guarantees (for the latter a constant gap
remains). An overview of the specific approximation guarantees obtained in this paper
and the known lower bounds are given in Table 1.

Technically, the most challenging part lies in obtaining a 2-budget balancedMoulin
mechanism that is O(log2 k)-approximate for the Steiner forest problem. Our algo-
rithm is a natural extension of the primal-dual algorithm of Agrawal et al. [1] for
prize-collecting Steiner trees and the cross-monotonic cost-sharingmethod for Steiner
forests presented by Könemann et al. [26]. Despite its simplicity, our algorithm
achieves the same approximation guarantee as the combinatorial algorithm by Haji-
aghayi and Jain [19].

Finally, we show that the Moulin mechanism by Könemann et al. [26] for the
Steiner forest problem is O(log3 k)-approximate. This is achieved by adding a novel
methodological contribution to the framework proposed by Roughgarden and Sun-
dararajan in [36]: We show that such a result can also be proved by embedding the
graph distances into random hierarchically separated trees (HST) [5,13]. Indepen-
dently, Chawla et al. [11] showed (using a more involved analysis) that the Moulin
mechanism derived in [26] is O(log2 k)-approximate.

1.4 Related work

Moulin [29] showed that cross-monotonicity is a sufficient condition to obtain group-
strategyproof cost-sharing mechanisms. He also shows that it is a necessary condition
for submodular cost functions. Immorlica et al. [20] gave a partial characterization of
group-strategyproof cost sharing mechanisms. Pountourakis and Vidali [33] recently
gave a complete characterization of group-strategyproof cost-sharingmechanisms and
thereby settled a major open problem. They showed that group-strategyproof cost-
sharing mechanisms are completely characterized by a certain fence monotonicity
property in combination with a stable allocation rule and a valid tie-breaking rule (see
[33] for definitions). It remains open whether this characterization result can be used
algorithmically in general.

Moulin and Shenker [30] showed that the Shapley value cost sharing mechanism
minimizes the overall welfare loss among all group-strategyproof cost sharing mech-
anisms for submodular cost functions. Dutta and Ray [12] and Jain and Vazirani [23]

Table 1 Summary of results obtained for prize-collecting problems in this paper

Problem Non-prize-collecting Prize-collecting Lower bounds

Submodular cost (1, 2Hk ) [23] (1, 2Hk + 1) (1, Hk ) [36]

Facility location (3, Hk + 3) [32] (3, 3(Hk + 4)) (3, Hk/3) [20,36]

Steiner forest (2, O(log2 k)) [26] (3, O(log2 k)) (2, �(log2 k)) [26,36]

Each pair (β, α) states the budget balance (β) and social cost (α) approximation guarantees for the respective
problem
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gave a cross-monotonic and budget balanced cost-sharing method for the submodular
cost-sharing problem based on a primal-dual algorithm.

Pál and Tardos [32] gave a cross-monotonic and 3-budget balanced cost-sharing
method for the metric facility location problem. Their cost-sharing method is based on
a primal-dual interpretation of the approximation algorithmbyMettu and Plaxton [28].

The problem of computing prize-collecting Steiner trees or forests is APX-
complete [4,6], and hence neither of the two problems admits a PTAS unless P = NP.
The first constant-factor approximation for the prize-collecting Steiner tree problem is
a 3-approximation algorithm by Bienstock et al. [7] based on LP-rounding. Goemans
and Williamson [16] obtain an improved (2 − 1

k )-approximation algorithm using the
primal-dual schema. The current best approximation algorithm for the problem is a
1.9672-approximation algorithm due to Archer et al. [2].

One can easilymodify the algorithmofBienstock et al. [7] to give a 3-approximation
for the prize-collecting Steiner forest problem as well. Hajiaghayi and Jain [19] refine
the LP-rounding idea of Bienstock et al. and obtain an LP-based 2.54-approximation
algorithm for the problem. The authors also present a primal-dual combinatorial
3-approximation algorithm for the problem. This algorithm substantially deviates from
the classical framework of Goemans and Williamson, requiring crucial use of Farkas’
Lemma, wherein the dual variables are both increased and decreased throughout the
execution of the algorithm.

1.5 Organization of the paper

We introduce some additional notation in Sect. 2. Our lifting technique is the subject of
Sect. 3. Subsequently,weuse this technique to deriveMoulinmechanisms for the prize-
collecting variants of submodular cost-sharing, metric facility location and Steiner for-
est problems in Sects. 4, 5 and 6, respectively. Finally, we prove the social cost approx-
imation of the Moulin mechanism in [26] for the Steiner forest problem in Sect. 7.

2 Preliminaries

We use the following notation throughout the paper. Let U be the set of players. The
number of players in U is denoted by k = |U |. Further, let C : 2U → R

+ be a
non-negative cost function on U that assigns to each subset S ⊆ U a cost C(S). The
interpretation is that C(S) refers to the cost of optimally serving the players in S. In
particular, if the cost functionC is defined implicitly by some underlying optimization
problem, thenC(S) refers to the cost of an optimal solution to the problemwith player
set S. We assume that C is non-decreasing, i.e., for every S ⊆ T , C(S) ≤ C(T ), and
C(∅) = 0. For every n ∈ N, we use [n] to refer to the set {1, . . . , n}.

Every player i ∈ U specifies a non-negative bid bi that he is willing to pay for the
service. A cost sharing mechanism M takes the bids (bi )i∈U of all players as input and
computes a set SM ⊆ U of players that receive service and a non-negative payment
pi for every player i ∈ SM ; we implicitly assume that pi = 0 for every i /∈ SM .

We require that a cost sharing mechanism satisfies the following three conditions:

– Individual Rationality: A player is charged only if he receives service and his
payment is at most his bid, i.e., pi = 0 if i /∈ SM and pi ≤ bi if i ∈ SM .
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– No Positive Transfers: A player is not paid for receiving the service, i.e., pi ≥ 0
for all i ∈ SM .

– Consumer Sovereignty: A player is guaranteed to receive service if he is willing
to bid high enough, i.e., there exists a threshold value b∗

i for every player i ∈ U
such that i ∈ SM for all bi ≥ b∗

i .

Every player has a private non-negative valuation vi for receiving the service. The
utility ui of player i is defined as ui = vi − pi if i ∈ SM and ui = 0 otherwise.
We assume that every player’s goal is to maximize his utility ui . We say that M is
strategyproof if bidding truthfully is a dominant strategy for every player. We assume
that players can form coalitions in order to coordinate their bids. A mechanism M is
group-strategyproof if no coordinated bidding of a coalition T ⊆ U can ever strictly
increase the utility of some player in T without strictly decreasing the utility of another
player in T .

A cost sharing mechanism M is β-budget balanced if the output set SM and pay-
ments (pi )i∈U satisfy

1

β
C(SM ) ≤

∑

i∈SM
pi ≤ C(SM ) (1)

The requirement expressed by the first inequality is also called β-cost recovery and
the second one is called competitiveness.

Remark 1 We use the β-budget balance definition in (1) throughout the paper. How-
ever, it is not hard to verify that all ourmechanisms satisfy the stronger β-cost recovery
condition that at least 1/β of the cost of the (not necessarily optimal) solution computed
by the mechanism is recovered.

2.1 Moulin mechanisms

A cost-sharing method ξ is an algorithm that, given any subset S ⊆ U of players,
computes a solution to service S and for each i ∈ S determines a non-negative cost
share ξi (S). In subsequent sections, we sometimes define ξ without explicit reference
to the given player set S and instead define the algorithm for an arbitrary player set
U ; no confusion should arise.

We say that ξ is β-budget balanced if for every S ⊆ U

1

β
· C(S) ≤

∑

i∈S
ξi (S) ≤ C(S).

We call ξ simply budget balanced if it is 1-budget balanced. A cost-sharing method ξ

is cross-monotonic if for any two sets S and T such that S ⊆ T and any player i ∈ S
we have ξi (S) ≥ ξi (T ).

Moulin [29] showed that, given a β-budget balanced and cross-monotonic cost-
sharing method ξ for the underlying problem, the following cost-sharing mechanism
M(ξ) is β-budget-balance and group-strategyproof:
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Initialize S ← U ;1
while S 
= ∅ and ∃i ∈ S with ξi (S) > bi do2

Choose a player i ∈ S with ξi (S) > bi ;3
S ← S\{i} ;4

end5

Let SM ← S be the set of served players ;6

Define pi ← ξi (S) as the payment of player i ∈ SM ;7

return (SM , (pi ))8

Theorem 1 (Moulin Mechanisms [29]) Given a cross-monotonic and β-budget bal-
anced cost sharing method, the Moulin mechanism M(ξ) satisfies individual rational-
ity, no positive transfers and consumer sovereignty, and is group-strategyproof and
β-budget balanced.

The following fact summarizes an important property of Moulin mechanisms (see
also [29,31]).

Fact 2 (Order Invariance Property) Given a cross-monotonic cost-sharing method ξ ,
the final set SM of players output by the Moulin mechanism M(ξ) is independent of
the order of eviction.

2.2 Social cost approximation

Roughgarden and Sundararajan [36] introduced an alternative notion of efficiency for
cost-sharing mechanisms: For a set S ⊆ U , define v(S) = ∑

i∈S vi . Define the social
cost Π(S) of a set S ⊆ U as

Π(S) = v(U\S) + C(S).

Note that the social cost of a set S ⊆ U is evaluated with respect to the optimal
servicing cost C(S). A cost-sharing mechanism M is said to be α-approximate if,
assuming that every player i ∈ U bids truthfully bi = vi , the final set SM output by
M satisfies

Π(SM ) ≤ α · Π(S) ∀S ⊆ U. (2)

Roughgarden and Sundararajan [36] showed that the approximation guarantee of a
Moulin mechanism M(ξ) is intimately related to the summability of the cost sharing
method ξ , which is defined as follows: Assume we are given an arbitrary permutation
σ on the players in U and a subset S ⊆ U of players. We assume that the players in
S are ordered according to σ , i.e., S = {i1, . . . , i|S|} where i j ≺σ ik if and only if
1 ≤ j < k ≤ |S|. We define S j ⊆ S as the (ordered) set of the first j players of S
according to the order σ . A cost-sharing method ξ is α-summable if for every ordering
σ and every subset S ⊆ U

|S|∑

j=1

ξi j (S j ) ≤ α · C(S). (3)

123



Efficient cost-sharing mechanisms for prize-collecting problems 155

Theorem 3 (Social Cost Approximation [36]) Let ξ be a cross-monotonic and β-
budget balanced cost sharingmethod that isα-summable. Then theMoulinmechanism
M(ξ) is (α + β − 1)-approximate with respect to social cost.

Roughgarden and Sundararajan [36] actually showed that the summability of ξ

relates to several efficiency measures for M(ξ) such as additive welfare loss, social
cost, social reward and socialwelfare,with social cost being just one of them.However,
here we focus on the social cost approximation guarantee as defined in (2) and refer
to [36] for more details.

3 Lifting technique

Wepresent a general lifting technique to prove bounds on the social cost approximation
guarantee of Moulin mechanisms for prize-collecting problems.

Suppose we are given a set of players U and a non-negative cost function C̄ :
2U → R

+, where C̄(S) is the cost of serving the players in S ⊆ U . The cost function
C̄ is defined implicitly by an underlying optimization problem P̄ , i.e., C̄(S) is defined
as the cost of an optimal solution of P̄ for player set S ⊆ U . We refer to P̄ as the
non-prize collecting problem.

We generalize P̄ to its prize-collecting variant P as follows. Suppose every player
i ∈ U has a non-negative penalty π(i). Given a subset S ⊆ U , there are two possi-
bilities to serve each player i ∈ S: either i becomes part of a group T ⊆ S whose
members share the common cost C̄(T ) or i is served individually at a cost of π(i).
Put differently, the cost function C of the corresponding prize-collecting problem P
is defined as

C(S) = min
T⊆S

(
C̄(T ) +

∑

i∈S\T
π(i)

)
.

Assume that we have aMoulin mechanism M(ξ̄ ) for the non-prize-collecting prob-
lem P̄ , driven by a cross-monotonic cost sharing method ξ̄ . Then, basically, our
approach allows us to lift the approximation guarantee of M(ξ̄ ) for the non-prize-
collecting problem P̄ to a Moulin mechanism M(ξ) for the prize-collecting problem
P . Our approach applies naturally to primal-dual cost-sharing methods, where cost
shares relate to dual values that are grown over time. Subsequently, we use ξ̄ τ and ξτ

to refer to the cost shares at time τ for problems P̄ and P , respectively.
The main result of this section is summarized in the following theorem.

Theorem 4 (Lifting Theorem) Let ξ be a cross-monotonic and β-budget balanced
cost-sharing method for a prize-collecting problem P . Further, let ξ̄ be a cross-
monotonic cost-sharing method such that M(ξ̄ ) is α-approximate for the correspond-
ing non-prize-collecting problem P̄ . Then the Moulin mechanism M(ξ) is (1 + α)β-
approximate for P if ξ satisfies the following two properties for every S ⊆ U:

1. For every player i ∈ S, ξi (S) ≤ π(i).
2. Let τ0 be the first point of time τ at which ξτ

i (S) = π(i) for some player i ∈ S;
let τ0 = ∞ if no such time exists. Then for every player j ∈ S
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ξτ
j (S) = ξ̄ τ

j (S) ∀τ ∈ [0, τ0).

Our Lifting Theorem gives rise to the following general design template to derive
a Moulin mechanism M(ξ) for a prize-collecting problem P:

1. Let M(ξ̄ ) be an α-approximate Moulin mechanism for the non-prize collecting
problem P̄ , driven by a cross-monotonic cost sharing method ξ̄ that grows cost
shares over time.

2. Derive a cost-sharing method ξ for P by adapting ξ̄ such that Properties 1 and 2
of the Lifting Theorem are satisfied.
A natural way to accomplish Property 1 is to simply “freeze” the cost share of a
player i as soon as he reaches his penalty π(i). Typically, this also ensures that
Property 2 holds because both cost-sharing methods ξ̄ and ξ progress in exactly
the same way until time τ0, when the first player reaches his penalty.

3. Prove that the resulting cost-sharing method ξ is cross-monotonic and β-budget
balanced.

4. Conclude that M(ξ) is a (1 + α)β-approximate and β-budget balanced Moulin
mechanism for the prize-collecting problem P .

The rest of this section is devoted to the proof of Theorem 4.

3.1 Decomposition lemma

Given a subset S ⊆ U of players, we use C |S to refer to the restriction of C to S, i.e.,
C |S : 2S → R

+ with C |S(T ) = C(T ) for all T ⊆ S. Similarly, we use ξ |S to refer to
the restriction of ξ to S.

The following lemma will turn out to be crucial to prove Theorem 4.

Lemma 1 (Decomposition Lemma) Consider a universe U of players, along with a
non-decreasing cost function C and a β-budget balanced and cross-monotonic cost-
sharing method ξ . Given a partition of U into two parts U1 and U2, if the Moulin
mechanism on sub-universe U j is α j -approximate for all j ∈ {1, 2} with respect to
the induced cost-sharing method ξ |Uj and the cost function C |Uj , then the Moulin
mechanism is (α1 + α2)β-approximate for the entire set U with respect to ξ and C.

Proof Let A be the final set of players returned by the Moulin mechanism when run
on U . Since ξ satisfies β-cost recovery, we have C(A) ≤ β

∑
i∈A ξi (A) and hence,

Π(A) = C(A) + v(U\A) ≤
∑

i∈A

β ξi (A) +
∑

i∈U\A
vi . (4)

Define A j = A ∩ Uj as the set of players in Uj that were accepted by the Moulin
mechanism when run on U for j ∈ {1, 2}. Consider a run of the Moulin mechanism
on Uj and let Bj be the final set of players for j ∈ {1, 2}.
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Claim Bj ⊆ A j for all j ∈ {1, 2}.
Proof Let e1, . . . , ep be the elements inUj\A j in the order in which they are dropped
in the Moulin mechanism when run on U . Assume for the sake of contradiction that
Bj 
⊆ A j . Then there exists some l ∈ [p] such that el ∈ Bj . Choose l as the smallest
index with this property and let i = el . Let S be the set of players that are still part of
the game in the Moulin run on U just before i is dropped. Note that by the choice of
l we have S ⊇ {el , . . . , ep} ∪ A j ⊇ Bj . Thus

vi < ξi (S) ≤ ξi ({el , . . . , ep} ∪ A j ) ≤ ξi (Bj ),

where the last two inequalities use the cross-monotonicity of ξ . This contradicts the
fact that i = el is part of the final set Bj of the Moulin run on Uj . ��

Notice that the cost share ξi (A) of a player i ∈ A j\Bj is at most the valuation vi
of player i by the termination condition of the Moulin mechanism. For a set S j ⊆ Uj ,
define Π j (S j ) = C(S j ) + v(Uj\S j ). As Bj is an α j -approximate set of players, we
then have Π j (Bj ) ≤ α jΠ j (S j ) for any set S j ⊆ Uj .

Using (4), we can now upper bound Π(A) as follows:

Π(A) = C(A) + v(U\A) ≤
∑

i∈A

β ξi (A) +
∑

i∈U\A
vi

=
( ∑

i∈A1

β ξi (A) +
∑

i∈U1\A1

vi

)
+

( ∑

i∈A2

β ξi (A) +
∑

i∈U2\A2

vi

)
. (5)

We upper-bound the first of the two parentheses on the right-hand side of the above
inequality. An upper bound for the second parentheses is obtained analogously.

∑

i∈A1

β ξi (A) +
∑

i∈U1\A1

vi =
∑

i∈B1
β ξi (A) +

∑

i∈A1\B1
β ξi (A) +

∑

i∈U1\A1

vi (6)

≤
∑

i∈B1
β ξi (A) +

∑

i∈A1\B1
β vi +

∑

i∈U1\A1

vi (7)

≤
∑

i∈B1
β ξi (B1) +

∑

i∈U1\B1
β vi (8)

≤ β C(B1) +
∑

i∈U1\B1
β vi (9)

= β Π1(B1). (10)

Inequality (7) uses the fact that player i ∈ A1\B1 is part of the final set of players
returned by the Moulin mechanism when run on U1, and hence must have valuation
at least its cost share. We then use cross-monotonicity of ξ and the fact that β ≥ 1 to
get (8). Inequality (9) uses the competitiveness of ξ , and the final inequality follows
from the definition of Π1. Using the resulting inequality together with (5) yields

Π(A) ≤ β (Π1(B1) + Π2(B2)) ≤ β(α1Π1(S1) + α2Π2(S2)) (11)
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for any S1 ⊆ U1, S2 ⊆ U2, where we use the fact that the Moulin mechanism when
run on Uj is α j -approximate for j ∈ {1, 2}.

Finally, for any set S ⊆ U and for j ∈ {1, 2}, define S j = S∩Uj . Note that sinceC
is non-decreasing, Π j (S j ) = C(S j )+v(Uj\S j ) ≤ C(S)+v(U\S) = Π(S). Putting
these together with (11), we get that Π(A) ≤ (α1 + α2)βΠ(S) for any S ⊆ U , and
hence the Moulin mechanism is (α1 + α2)β-approximate. ��

3.2 Partitioning the players

Armed with the above lemma, let us consider the universe of playersU for an instance
of P and divide them into two parts as follows:

– The “high-valuation” set U1 are those players i ∈ U with valuation vi ≥ π(i).
– The “low-valuation” set U2 are the remaining players i ∈ U with vi < π(i).

We now show that ξ on the sub-universes U1 and U2 is 1-approximate and α-
approximate, respectively. This together with the Decomposition Lemma and the fact
that ξ is β-budget balanced proves that M(ξ) is (1 + α)β-approximate.

We first prove the following High-Valuation Lemma:

Lemma 2 (High-Valuation Lemma) The mechanism M(ξ) is 1-approximate when
restricted to the players in the high-valuation set U1.

Proof By Property 1 (Theorem 4), ξi (S) ≤ π(i) for every set S ⊆ U and every i ∈ S.
Since vi ≥ π(i) ≥ ξi (S) for any S ⊆ U1 and i ∈ S, the players in U1 will never
be rejected by the mechanism M(ξ) when run on U1. Moreover, the set achieving
the optimal social cost is also U1, and hence the Moulin mechanism gives the social
optimum on the high-valuation set. ��

Suppose we compare the two runs M(ξ) and M(ξ̄ ) of the Moulin mechanisms with
cost-sharing methods ξ and ξ̄ with the same set of low-valuation players S ⊆ U2. An
immediate consequence of Property 2 (Theorem 4) is that as long as some player is
eliminated in either of the runs of the Moulin mechanisms, there must be a player that
the mechanisms could eliminate in both the runs.

Lemma 3 Fix some S ⊆ U2. Suppose there is a player j ∈ S with ξ j (S) > v j or
ξ̄ j (S) > v j . Then there is a player i ∈ S such that ξi (S) > vi and ξ̄i (S) > vi .

Proof Let τ0 be the first point of time τ at which ξτ
i (S) = π(i) for some player

i ∈ S; τ0 = ∞ if no such time exists. The claim clearly holds if τ0 = ∞ as all cost
shares in M(ξ) and M(ξ̄ ) are the same. Otherwise, there exists some player i ∈ S
and some τ0 = τ such that ξτ

i (S) = π(i). Property 2 (Theorem 4) then implies that
ξτ
i (S) = ξ̄ τ

i (S) = π(i) > vi . ��
The next lemma essentially shows that the penalties π(i) play no role for the low-

valuation players U2.

Lemma 4 When starting with a set of low-valuation players U2, the final output
SM(ξ) ⊆ U2 of the Moulin mechanism M(ξ) is identical to the output SM(ξ̄ ) ⊆ U2 of
the Moulin mechanism M(ξ̄ ).
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Proof Lemma 3 states that we can always identify a player i ∈ S that we may evict
in both runs of M(ξ) and M(ξ̄ ) as long as some player is eliminated in either of the
runs of the Moulin mechanism. We can then eliminate player i in both the runs and
use induction to show that both runs end with the same players if we make the right
choices. However, Fact 2 implies that any choices would lead to the same outputs, as
we claim. ��

We can now prove the following Low-Valuation Lemma:

Lemma 5 (Low-Valuation Lemma) Restricting our attention to the low-valuation set
U2, the mechanism M(ξ) is α-approximate if the mechanism M(ξ̄ ) is α-approximate.

Proof On the low-valuation players, the solution with the optimal social cost forM(ξ)

would never service a player i by paying her penalty π(i), since it would be better to
reject the player and pay vi < π(i). This implies that the optimal social cost Π∗ for
P and the optimal social cost Π̄∗ for P̄ are the same on U2. Also note that for every
player set S the cost C(S) of an optimal solution for P is at most the cost C̄(S) of an
optimal solution for P̄ . Let Π and Π̄ denote the social cost with respect to P and P̄ ,
respectively. Given these facts together with the fact that M(ξ) and M(ξ̄ ) output the
same set SM on the low-valuation instances, we conclude that

Π(SM ) = v(U2\SM ) + C(SM ) ≤ v(U2\SM ) + C̄(SM )

= Π̄(SM ) ≤ α · Π̄∗ = α · Π∗.

Here the last inequality follows because M(ξ̄ ) is α-approximate. ��

4 Submodular cost sharing problems with penalties

As a first application, we consider the submodular cost-sharing problemwith penalties
(PSC). We are given a setU of players with penalties π : U → R

+ and a cost function
c : 2U → R which is submodular,1 i.e.,

∀S, T ⊆ U : c(S) + c(T ) ≥ c(S ∪ T ) + c(S ∩ T ). (12)

A feasible solution is a partition of the player set U into sets S and P = U\S. The
players in S incur a total cost of c(S) and each player i ∈ P incurs a cost equal to
the penalty π(i). The goal is to determine a partition (S, P) such that the total cost
c(S) + π(P) is minimized.

Submodular costs constitute an important class of cost functions. Several natural
cost-sharing problems exhibit a cost function that is submodular. For example, in the
fixed tree multicast problem we are given a tree T = (V, E) with root node r and
edge costs c : E → R

+. Each player i ∈ U is uniquely associated with a node ui
in V . The cost c(S) to serve a subset S ⊆ V is defined as the cost

∑
e∈T ′ c(e) of the

1 An equivalent definition of submodularity is that c has non-increasing marginal costs, i.e., for every
player i ∈ U and every set S ⊆ T ⊆ U\{i}, c(S ∪ {i}) − c(S) ≥ c(T ∪ {i}) − c(T ).

123



160 A. Gupta et al.

smallest subtree T ′ of T that contains all of nodes in S. It is not hard to verify that c
is submodular.

Dutta and Ray [12] and Jain and Vazirani [23] gave a cross-monotonic and budget
balanced cost-sharingmethod ξSC for the submodular cost-sharing problem. The cost-
sharing method in [23] is derived via a primal-dual algorithm which also constitutes
the basis of our approach here. It is shown implicitly by Bleischwitz et al. [9] that the
resulting Moulin mechanism M(ξSC) is 2Hk-approximate.2

Here we adapt the cross-monotonic cost-sharing method ξSC of Jain and Vazirani
[23] and obtain a cross-monotonic and budget balanced cost-sharing method ξPSC

for the submodular cost-sharing problem with penalties. With the help of our Lifting
Theorem we will then be able to show that the resulting Moulin mechanism M(ξPSC)

is (2Hk + 1)-approximate. In summary, the result proven in this section is as follows.

Theorem 5 There is a Moulin mechanism for the submodular cost-sharing problem
with penalties that is budget balanced and (2Hk + 1)-approximate.

This result is almost best possible: Roughgarden and Sundararajan [35] showed that
every budget balanced Moulin mechanism for the submodular cost-sharing problem
is no better than Hk-approximate.

4.1 LP formulation

The following is a natural integer linear programming formulation of the submodular
cost-sharing problem with penalties:

min
∑

S⊆U

c(S)xS +
∑

i∈U
π(i)zi (ILP)

s.t.
∑

S⊆U :i∈S
xS + zi ≥ 1 ∀i ∈ U (13)

xS, zi ∈ {0, 1} ∀S ⊆ U, ∀i ∈ U. (14)

Here xS and zi are decision variables: xS is equal to 1 if and only if the set of served
players is S ⊆ U and zi is set to 1 for a player i ∈ U if and only if i ∈ P . Note that
because c is submodular the sets (S, P) induced by an optimal solution constitute a
partition of the player set U .

By relaxing the integrality constraint (14) and dualizing the resulting linear pro-
gram, we obtain the following linear program:

max
∑

i∈U
ξi (D)

s.t.
∑

i∈S
ξi ≤ c(S) ∀S ⊆ U (15)

2 This follows fromTheorem4 in [9] and the observation that for submodular cost functions their egalitarian
mechanism coincides with the Moulin mechanism M(ξSC).
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ξi ≤ π(i) ∀i ∈ U (16)

ξi ≥ 0 ∀i ∈ U. (17)

The dual value ξi of player i ∈ U can be interpreted as the cost share of i . Constraint
(15) bounds the total cost share of all players in a set S ⊆ U to be at most the cost c(S)

of that set. We say that a set S ⊆ U is tight if and only if
∑

i∈S ξi = c(S). Constraint
(16) restricts player i’s cost share to not exceed his penalty π(i).

4.2 Cost share definition and construction of solution

We first derive some properties of feasible solutions to the dual linear program (D)
which we will then use to define our cost-sharing method. Most of the proofs below
follow along similar lines as the corresponding ones in [23].

Lemma 6 [23] Let ξ be a feasible solution to (D). If two sets S1, S2 ⊆ U are tight,
then so is S1 ∪ S2.

Proof By submodularity of c, we have

c(S1 ∪ S2) ≤ c(S1) + c(S2) − c(S1 ∩ S2)

≤
∑

i∈S1
ξi +

∑

i∈S2
ξi −

∑

i∈S1∩S2

ξi =
∑

i∈S1∪S2

ξi .

The second inequality follows because S1 and S2 are tight, and because ξ is feasible
and thus

∑
i∈S1∩S2 ξi ≤ c(S1 ∩ S2). We conclude that S1 ∪ S2 is tight. ��

Corollary 1 [23] Let ξ be a feasible solution to (D). Then there is a unique maximal
tight set, which is simply the union of all tight sets.

We next define our cost-sharing method ξPSC. Our algorithm is a natural adaptation
of the cost-sharing method ξSC given by Jain and Vazirani [23]. Basically, we extend
their cost-sharing method simply by ensuring that the dual constraint (16) is satisfied
additionally. Both algorithms coincide if πi = ∞ for every i ∈ U .

Our algorithm can be seen as a process over time. Let ξτ
i be the cost share of player

i at time τ . We will make sure that ξτ = (ξ τ
i )i∈U is dual feasible throughout the

execution of the algorithm. Initially, the algorithm starts with all cost shares equal to
0, i.e., ξ0i = 0 for every i ∈ U . Let Sτ be the unique maximal tight set at time τ .
Note that Sτ exists by Corollary 1. We call a player i ∈ U active at time τ if i is not
contained in any tight set and has not reached his penalty, i.e., i /∈ Sτ and ξτ

i < π(i);
otherwise, we say that i is inactive. As time progresses, the algorithm raises the cost
shares of all active players at the same rate until either a new set becomes tight or
some player i reaches his penalty π(i). In the former event, all players in the new
maximal tight set Sτ become inactive (some might have been inactive before). In the
latter event, player i becomes inactive. The algorithm continues in this manner until
eventually all players are inactive.
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Let ξPSC = (ξPSCi )i∈U refer to the final cost shares. Let S be the unique maximal
tight set Sτ at termination of the algorithm and let P = U\S be the set of the remaining
players. Our algorithm returns (S, P) as the final solution.

Remark 2 The algorithm can be implemented to run in polynomial time. The only
non-trivial part is to determine the unique maximal tight set Sτ . This can be achieved
by using a polynomial time algorithm for the minimization of a submodular function
[21,37]. The idea is similar to the one described in [23]: It is not hard to verify that
the function c′(S) = c(S)−∑

i∈S fi is submodular, where fi is fixed for every player
i ∈ S. We set fi = ξτ

i if i ∈ S is inactive at time τ and fi = τ otherwise. By doing a
binary search on τ , we can then find the smallest time τ at which there is a set S ⊆ U
such that c′(S) is a small negative number. Then S is the set that will become tight
next.

4.3 Cross-monotonicity and budget balance

The next lemma shows that the cost shares correspond to a feasible dual solution at
all times.

Lemma 7 At any point of time τ , the cost shares ξτ = (ξ τ
i ) constitute a feasible

solution to (D).

Proof Note that if a set S becomes tight at time τ then all players in S become inactive
and remain inactive at all times τ ′ > τ . Also once a player i ∈ U reaches his penalty
π(i) at time τ , i remains inactive at all times τ ′ > τ . Constraints (15) and (16) of the
dual linear program (D) are therefore satisfied. ��

The proof that ξPSC is cross-monotonic is similar to the one in [23].

Lemma 8 The cost-sharing method ξPSC is cross-monotonic.

Proof Let U1 ⊂ U2 and consider the two runs of the algorithm on player sets U1 and
U2, respectively. Let I τ

1 and I τ
2 be the set of players that are inactive at time τ in the

runs onU1 andU2, respectively. A crucial property of our algorithm is that all players
that are active at time τ have the same cost share τ . As a consequence, in order to
show that ξPSC is cross-monotonic it suffices to show that I τ

1 ⊆ I τ
2 at all times τ .

Let Sτ
1 and Sτ

2 be the maximal tight sets at time τ in the runs on U1 and U2,
respectively. First note that every player i ∈ I τ

1 \Sτ
1 is inactive at time τ in the U1-run

because he reached his penalty, i.e., τ ≥ π(i). But then i cannot be active at time τ in
the U2-run and thus i ∈ I τ

2 .
The claim now follows if we can show that Sτ

1 ⊆ Sτ
2 . For notational convenience,

let S1 = Sτ
1 and S2 = Sτ

2 . Also let ξ1 and ξ2 be the cost shares at time τ in the runs
on U1 and U2, respectively. We have

c(S1 ∪ S2) ≤ c(S1) + c(S2) − c(S1 ∩ S2) (18)

≤
∑

i∈S1
ξ1i +

∑

i∈S2
ξ2i −

∑

i∈S1∩S2

ξ1i (19)
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=
∑

i∈S1\S2
ξ1i +

∑

i∈S2
ξ2i (20)

≤
∑

i∈S1∪S2

ξ2i . (21)

Here inequality (18) follows from the submodularity of c. Inequality (19) holds because
S1 and S2 are tight with respect to ξ1 and ξ2, respectively, and ξ1 is dual feasible.
Inequality (21) follows from the fact that for every i ∈ S1\S2 we have ξ1i ≤ ξ2i . To see
this, we distinguish two cases: (i) i is active at time τ in theU2-run. Then ξ2i = τ ≥ ξ1i .
(ii) i is inactive at time τ in the U2-run. Since i /∈ S2, i must be inactive because he
reached his penalty, i.e., ξ2i = π(i). But then ξ2i = π(i) ≥ ξ1i .

The above inequality implies that S1 ∪ S2 is tight with respect to ξ2. Since S2 is
the maximal tight set in the U2-run, we have S1 ∪ S2 ⊆ S2 and thus S1 ⊆ S2 which
concludes the proof. ��

We finally show that ξPSC is budget balanced.

Lemma 9 The cost-sharing method ξPSC is budget balanced.

Proof Let (S∗, P∗) be an optimal solution for the given instance of the submodu-
lar cost-sharing problem with penalties. Recall that by Lemma 7, ξPSC is a feasible
solution to (D). By weak duality, we obtain

∑

i∈U
ξPSCi ≤ c(S∗) + π(P∗).

Let (S, P) be the partition output by the algorithm.When the algorithm terminates,
the set S is tight and thus

∑
i∈S ξPSCi = c(S). Moreover, for every player i ∈ P we

have ξPSCi = π(i). Thus

∑

i∈U
ξPSCi = c(S) + π(P).

The cost shares ξPSC are thus budget balanced. ��

4.4 Social cost approximation

Recall that the cost-sharing method ξSC for the submodular cost-sharing problem
without penalties is known to be 2Hk-approximate [9]. It is not hard to verify that ξSC

and ξPSC satisfy the two properties of our Lifting Theorem (Theorem 4). This together
with the fact that ξPSC is budget balanced proves the following lemma.

Corollary 2 The Moulin mechanism M(ξPSC) is (2Hk + 1)-approximate.
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5 Metric facility location problem with penalties

In the metric facility location problem with penalties (PFL) we are given a universe
of players U with non-negative penalties π : U → R

+, a set of facilities F with a
non-negative opening costs f : F → R

+, and a metric c on F ∪ U . The goal is to
open a subset O ⊆ F of facilities and for each player i ∈ U either connect i to the
nearest open facility or pay his penalty π(i). Let Q ⊆ U be the subset of players for
which we pay their penalties. The objective is to find a feasible solution (O, Q) that
minimizes

∑

p∈O
f (p) +

∑

i /∈Q
min
p∈O c(i, p) +

∑

i∈Q
π(i).

Pál and Tardos [32] gave a cross-monotonic and 3-budget balanced cost-sharing
method ξFL for the metric facility location problem (without penalties). Their cost-
sharingmethod is based on a primal-dual interpretation of the approximation algorithm
by Mettu and Plaxton [28]. Roughgarden and Sundararajan [35] later showed that the
Moulin mechanism M(ξFL) is (Hk + 3)-approximate, where k refers to the number
of players.

We show below that the algorithm of Pál and Tardos can naturally be adapted
to give a cross-monotonic and 3-budget balanced cost-sharing method ξPFL for the
metric facility location problem with penalties. Using our lifting technique introduced
in Sect. 3,wewill show that the resultingMoulinmechanism is 3(Hk+4)-approximate.
We summarize our result in the following theorem.

Theorem 6 There is a Moulin mechanism for the metric facility location problem
with penalties that is 3-budget balanced and 3(Hk + 4)-approximate.

Note that the above budget balance and social cost approximation guarantees are
essentially best possible: Immorlica et al. [20] showed that there is no cross-monotonic
cost-sharing scheme for themetric facility location problemwith budget balance factor
less than 3.Moreover,Roughgarden andSundararajan [35] showed that everyβ-budget
balanced Moulin mechanism for the metric facility location problem cannot be better
than Hk/β-approximate.

5.1 LP formulation

The following is a natural integer linear programming formulation for the metric
facility location problem with penalties.

min
∑

p∈F
f (p)yp +

∑

i∈U
c(i, p)xip +

∑

i∈U
π(i)zi (ILP)

s.t.
∑

p∈F
xip + zi ≥ 1 ∀i ∈ U (22)

xip ≤ yp ∀p ∈ F, ∀i ∈ U (23)

yp, xip, zi ∈ {0, 1} ∀p ∈ F, ∀i ∈ U. (24)
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The interpretation of the indicator variables is as follows. Variable yp is set to 1 if and
only if facility p ∈ F is open. The indicator variable xip equals 1 if and only if player
i ∈ U is assigned to facility p ∈ F . Further, zi is 1 if player i ∈ Q and 0 otherwise.
Constraint (22) ensures that every player i ∈ U is either assigned to some facility or
part of Q. Constraint (23) enforces that a player i is assigned to a facility p only if p
is open.

By relaxing the integrality constraints (24) and dualizing the resulting linear pro-
gram we obtain:

max
∑

i∈U
ξi (D)

s.t.
∑

i∈U
κi p ≤ f (p) ∀p ∈ F (25)

ξi − κi p ≤ c(i, p) ∀p ∈ F, ∀i ∈ U (26)

ξi ≤ π(i) ∀i ∈ U (27)

ξi , κi p ≥ 0 ∀p ∈ F, ∀i ∈ U. (28)

We can think of ξi as being the cost share of player i ∈ U and κi p as the contribution
of player i towards facility p ∈ F . Constraint (25) imposes that the total contribution
of all players towards a facility p does not exceed its opening cost f (p). Constraint
(26) enforces that for every facility p ∈ F the cost share ξi of player i is at most the
connection cost c(i, p) plus the contribution κi p towards p. Constraint (27) requires
that the cost share ξi of each player i is at most the penalty π(i).

5.2 Cost share definition and construction of solution

We obtain a cross-monotonic cost-sharing method ξPFL based on the dual linear pro-
gram (D). Our cost-sharing method is similar to the cost-sharing method ξFL of Pál
and Tardos [32] for the metric facility location problem. In fact, for the special case
that all penalties are set to ∞ our algorithm described below coincides with the one
of Pál and Tardos.

We consider the algorithm as a process over time. For each player i ∈ U we grow
a ghost ball uniformly and at unit rate around i . While in [32] these ghosts are grown
to infinity, we cannot do this here because of the penalties of the players. Instead, we
will only be able to grow the ghost of i in the time interval [0, π(i)]. That is, the ghost
of i at time τ is a ball centered at i with radius min(τ, π(i)).

The ghost of i touches a facility p ∈ F at time τ if c(i, p) ≤ min(τ, π(i)). The
ghosts that touch a facility p contribute towards filling p. The contribution of ghost i
towards facility p at time τ is

κτ
i p = max(0,min(τ, π(i)) − c(i, p)).

A facility p ∈ F is said to be full at time τ if
∑

i∈U κτ
i p ≥ f (p). Let τ(p) be the

first point of time when p becomes full; τ(p) = ∞ if no such time exists. Further,
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let Sp ⊆ U be the set of players that contributed towards filling p at time τ(p); more
formally,

Sp =
{
i ∈ U : κ

τ(p)
i p > 0

}
.

The cost shares are defined as follows. The cost share ξPFLi of player i is grown
at unit rate until some facility it touches becomes full or i’s ghost touches some full
facility or i’s cost share equals π(i). More formally,

ξPFLi = min
(

min
p:i∈Sp

τ(p), min
p:i /∈Sp

c(i, p), π(i)
)
. (29)

We use the following simple rule of Mettu and Plaxton [28] to determine which
facilities are opened: Whenever a facility p ∈ F becomes full at time τ(p), we open
p if and only if there is no other facility q ∈ F within distance c(p, q) ≤ 2τ(p) that
is already open. Let O be the set of facilities that are opened this way. Let Q be the set
of players whose cost share equals their penalties, i.e., Q = {i ∈ U : ξPFLi = π(i)}.
We assign each remaining player i /∈ Q to his closest open facility in O .

5.3 Cross-monotonicity

As in [32], the proof of ξPFL being cross-monotonic follows straightforwardly from
the following observation: By adding more players, each facility can only become full
earlier and thus each individual cost share can only decrease.

Lemma 10 The cost shares ξPFL are cross-monotonic.

5.4 Budget balance

We show that the cost-sharing method ξPFL as defined above is 3-budget balanced.
The following lemma establishes competitiveness of ξPFL.

Lemma 11 Let (O∗, Q∗) be an optimal solution to an instance of the metric facility
location problem with penalties. The cost shares ξPFL satisfy

∑

i∈U
ξPFLi ≤

∑

p∈O∗
f (p) +

∑

i /∈Q∗
min
p∈O∗ c(i, p) +

∑

i∈Q∗
π(i).

Proof Observe that the final cost shares ξPFLi together with their contributions κi p
constitute a feasible dual solution to (D). The lemma simply follows by weak duality.

��
The following lemma shows that for any two different open facilities p and q the

corresponding contributor sets Sp and Sq are disjoint (see also [32]).
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Lemma 12 If facilities p and q, p 
= q, are both open, then their contributor sets Sp
and Sq are disjoint.

Proof Let τ(p) ≥ τ(q). For contradiction, assume that there is some player i ∈
Sp ∩ Sq . Then c(i, p) ≤ min(τ (p), π(i)) and c(i, q) ≤ min(τ (q), π(i)). Exploiting
the triangle inequality we obtain

c(p, q) ≤ c(i, p) + c(i, q) ≤ τ(p) + τ(q) ≤ 2τ(p),

which is a contradiction to p being open. ��
Consider an open facility p ∈ O . We first bound the opening cost of p plus the total

cost of connecting all players in Sp to p. Throughout the analysis we overestimate
the connection cost of all players i ∈ Sp\Q by assuming that they are assigned to p
(instead of their closest open facility). At time τ(p) when p is opened, we have

f (p) =
∑

i∈Sp
κ

τ(p)
i p =

∑

i∈Sp
min(τ (p), π(i)) − c(i, p)

≤
∑

i∈Sp∩Q

ξPFLi +
∑

i∈Sp\Q
min(τ (p), π(i)) −

∑

i∈Sp
c(i, p), (30)

where the inequality follows because ξPFLi = π(i) for every i ∈ Q.

Lemma 13 Let p be an open facility and let i ∈ Sp\Q. Then ξPFLi ≥ 1
3 min

(τ (p), π(i)).

Proof For the sake of a contradiction assume that ξPFLi < 1
3 min(τ (p), π(i)). Let q

be the first full facility that i touches, i.e., ξPFLi ≥ c(i, q) and ξPFLi ≥ τ(q). Note that
q must exist because i /∈ Q. Recall that c(i, p) ≤ min(τ (p), π(i)) because i ∈ Sp.
Exploiting the triangle inequality, we obtain

c(p, q) ≤ c(i, p) + c(i, q) ≤ min(τ (p), π(i)) + ξPFLi < 2min(τ (p), π(i)) ≤ 2τ(p)

and thus q cannot be open. But then there must exist a facility q ′ that prevented q
from being opened at time τ(q), i.e., c(q, q ′) ≤ 2t (q) ≤ 2ξPFLi . Observe that q ′ 
= p
because τ(q ′) ≤ τ(q) ≤ ξPFLi < τ(p). We obtain

c(p, q ′) ≤ c(i, p) + c(i, q) + c(q, q ′) ≤ min(τ (p), π(i)) + 3ξPFLi

< 2min(τ (p), π(i)) ≤ 2τ(p),

which is a contradiction to p being open. ��
Exploiting inequality (30) and Lemma 13, we obtain for every open facility p ∈ O

f (p) +
∑

i∈Sp
c(i, p) ≤

∑

i∈Sp∩Q

ξPFLi + 3
∑

i∈Sp\Q
ξPFLi . (31)
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We also need to bound the connection costs of all players i /∈ Q that do not belong
to any contributor set of an open facility. Define R = ∪p∈O Sp.

Lemma 14 Consider a player i /∈ Q ∪ R. Then ξPFLi ≥ 1
3 minp∈O c(i, p).

Proof Letq be the first full facility that i touches, i.e., ξPFLi ≥ c(i, q) and ξPFLi ≥ τ(q).
Note that q must exist because i /∈ Q. If q is open, then the claim follows because
ξPFLi ≥ c(i, q). If q is not open then there must exist a facility q ′ that prevented q
from being opened and thus c(q, q ′) ≤ 2τ(q). We obtain

c(i, q ′) ≤ c(i, q) + c(q, q ′) ≤ ξPFLi + 2τ(q) ≤ 3ξPFLi ,

which concludes the proof. ��

Lemma 15 Let (O, Q) be the solution computed by the above algorithm. The cost
shares ξPFL satisfy

∑

i∈U
ξPFLi ≥ 1

3

( ∑

p∈O
f (p) +

∑

i /∈Q
min
p∈O c(i, p) +

∑

i∈Q
π(i)

)
.

Proof By exploiting inequality (31), we obtain

∑

p∈O

(
f (p) +

∑

i∈Sp
c(i, p)

)
≤

∑

p∈O

( ∑

i∈Sp∩Q

ξPFLi + 3
∑

i∈Sp\Q
ξPFLi

)
(32)

Since ξPFLi = π(i) for every i ∈ Q, we have

∑

i∈Q
π(i) =

∑

i∈Q
ξPFLi . (33)

By Lemma 14, we can bound the connection costs of all players in U\(Q ∪ R) by

∑

i /∈Q∪R

min
p∈O c(i, p) ≤ 3

∑

i /∈Q∪R

ξPFLi . (34)

Combining (32), (33) and (34) we obtain that the total cost of the solution (O, Q) is
at most

2
∑

i∈Q
ξPFLi + 3

∑

i /∈Q
ξPFLi ≤ 3

∑

i∈U
ξPFLi ,

which concludes the proof. ��
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5.5 Social cost approximation

It is easy to verify that our cost-sharingmethod ξPFL extending the cost-sharingmethod
ξFL of Pál and Tardos [32] satisfies Properties 1 and 2 of the Lifting Theorem (The-
orem 4). Roughgarden and Sundararajan [35] showed that the Moulin mechanism
M(ξFL) is (Hk + 3)-approximate, where k refers to the number of players. By our
LiftingTheoremand the fact that ξPFL is 3-budget balanced,we conclude thatM(ξPFL)

is 3(Hk + 4)-approximate.

Corollary 3 The Moulin mechanism M(ξPFL) is 3(Hk + 4)-approximate.

6 Prize-collecting Steiner forest problem

In the prize-collecting Steiner forest problem (PCSF)we are given an undirected graph
G = (V, E) with edge costs c : E → R

+, a set of k terminal pairs R = {(si , ti )}i∈[k],
and penalties π : R → R

+. A feasible solution (F, Q) consists of a forest F and a
subset Q of terminal pairs such that for all (si , ti ) ∈ R either si and ti are connected by
F or (si , ti ) ∈ Q. The objective is to compute a feasible solution (F, Q) of minimum
cost c(F) + π(Q). Subsequently, we identify the set U of players with the terminal
pairs in R.

Könemann et al. [26] gave a cross-monotonic and 2-budget balanced cost-sharing
method ξSF for the Steiner forest problem (without penalties). Their algorithm is based
on the primal-dual Steiner forest algorithm of Agrawal et al. [1], but requires some
non-trivial adaptations to ensure cross-monotonicity. In particular, the dual solution
constructed by the algorithm is in general not feasible. Chawla et al. [11] showed that
the cost-sharing method ξSF is also O(log2 k)-approximate. A simple proof that they
are O(log3 k)-approximate is given in Sect. 7.

Here we extend the algorithm of Könemann et al. [26] and derive a cross-monotonic
and 3-budget balanced cost-sharingmethod ξPSF for the prize-collecting Steiner forest
problem. Applying the Lifting Theorem, we will be able to show that the resulting
Moulin mechanism is O(log2 k)-approximate.

Theorem 7 There is a Moulin mechanism M(ξPSF) for the prize-collecting Steiner
forest problem that is 3-budget balanced and O(log2 k)-approximate.

Note that these bounds are almost best possible: Könemann et al. [26] showed that
there is no cross-monotonic cost-sharing method that achieves a budget balance factor
better than 2 for the Steiner tree problem. Moreover, Roughgarden and Sundararajan
[35] showed that every constant budget balanced Moulin mechanism for the Steiner
tree problem cannot be better than �(log2 k)-approximate.

Hajiaghayi and Jain [19] gave a combinatorial 3-approximation algorithm for prize-
collecting Steiner forest problem. Our algorithm is also combinatorial and achieves
the same approximation guarantee. The following corollary might therefore be of
independent interest.

Corollary 4 There is a combinatorial 3-approximation algorithm for the prize-
collecting Steiner forest problem.
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6.1 LP formulation

We assume that every node u ∈ V belongs to at most one terminal pair in R. Note that
this is without loss of generality because we can simply replace each node u ∈ V that
is contained in l ≥ 2 terminal pairs by l copies, one for each terminal pair, which are
all connected by zero cost edges. We use V (R) to denote the set of terminal nodes in
R. For a terminal u ∈ V (R), let ū be the mate of u, i.e., (u, ū) ∈ R.

Consider a cut S ⊆ V . We say S separates a terminal pair (u, ū) ∈ R if and only
if |{u, ū} ∩ S| = 1. We also write (u, ū) � S if and only if (u, ū) is separated by S.
A cut S that separates at least one terminal pair is called a Steiner cut. Let S denote
the set of all Steiner cuts. For a cut S ⊆ V , we use δ(S) to refer to the set of edges
(u, v) ∈ E that cross S, i.e., δ(S) = {(u, v) ∈ E : |{u, v} ∩ S| = 1}.

A natural integer programming formulation for the prize-collecting Steiner forest
problem is as follows:

min
∑

e∈E
c(e) · xe +

∑

(u,ū)∈R

π(u, ū) · zuū (ILP)

s.t.
∑

e∈δ(S)

xe + zuū ≥ 1 ∀S ∈ S, ∀(u, ū) � S (35)

xe, zuū ∈ {0, 1} ∀e ∈ E, ∀(u, ū) ∈ R.

We have a decision variable xe for every edge e ∈ E and a decision variable zuū for
every terminal pair (u, ū) ∈ R: xe = 1 if and only if e ∈ F and zuū = 1 if and only if
(u, ū) ∈ Q. Constraint (35) ensures that each Steiner cut S ∈ S is either crossed by
an edge of F , or all separated terminal pairs (u, ū) � S are part of Q.

In the dual of the linear programming relaxation (LP) of (ILP) we have a non-
negative dual variable ξS,uū for every Steiner cut S ∈ S and every pair (u, ū) ∈ R
with (u, ū) � S:

max
∑

S∈S

∑

(u,ū)�S

ξS,uū (D)

s.t.
∑

S∈S:e∈δ(S)

∑

(u,ū)�S

ξS,uū ≤ c(e) ∀e ∈ E (36)

∑

S∈S:S�(u,ū)

ξS,uū ≤ π(u, ū) ∀(u, ū) ∈ R (37)

ξS,uū ≥ 0 ∀S ∈ S, (u, ū) � S.

It is convenient to associate a dual solution (ξS,uū)S∈S,(u,ū)�S of (D) with dual
values (yS)S∈S for all Steiner cuts S ∈ S. To this aim, we define the dual yS of a
Steiner cut S ∈ S simply as the total cost share of all its separated terminal pairs:

yS =
∑

(u,ū)�S

ξS,uū .
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We can think of ξS,uū , (u, ū) � S, as the cost share that terminal pair (u, ū) receives
from dual yS of S. Define the total cost share of (u, ū) as

ξuū =
∑

S∈S:S�(u,ū)

ξS,uū .

Constraint (36) of the linear program (D) then requires that for every edge e ∈ E the
total dual of all Steiner cuts S ∈ S that cross e is at most the cost c(e) of this edge.
We call an edge e ∈ E tight if (36) holds with equality. Constraint (37) states that the
total cost share ξuū of terminal pair (u, ū) is at most its penalty π(u, ū).

6.2 Cost share definition and construction of solution

We obtain a cross-monotonic cost sharing method ξPSF based on the dual linear pro-
gram (D). Our cost-sharingmethod generalizes the cost-sharingmethod byKönemann
et al. [26] for the Steiner forest problem. Both algorithms coincide if the penalties are
set to ∞.

The algorithm grows dual values of certain cuts and distributes this growth among
the terminal pairs. A subtle point of our algorithm is that the dual solution generated by
the algorithm may be infeasible for (D). As a consequence, proving that the resulting
cost-sharing method ξPSF satisfies competitiveness is more involved (see Lemma 17
below) because it does not simply follow from weak duality.

There are two reasons that cause the infeasibility of the dual solution:

1. We also raise dual values yS of cuts S ⊆ V that do not correspond to Steiner cuts.
A terminal pair (u, ū) may therefore receive cost share ξS,uū from a non-Steiner
cut S ⊆ V .

2. A terminal pair (u, ū) may also receive cost share ξS,uū from a cut S that does not
separate (u, ū).

However, our algorithm maintains the invariant that a terminal pair (u, ū) only
receives cost share ξS,uū from a cut S ⊆ V that either separates or entirely contains
(u, ū), i.e., (u, ū) � S or {u, ū} ⊆ S.

Our algorithm PSF can be described as a process over time. At time τ = 0, xτ
e = 0

for every edge e ∈ E , zτuū = 0 for every terminal pair (u, ū) ∈ R and yτ
S = 0 for

every S ⊆ V .3 We use ξτ
uū to refer to the cost share of terminal pair (u, ū) at time τ .

Let Fτ be the forest at time τ that corresponds to (xτ
e )e∈E , i.e.,

Fτ = {e ∈ E : xτ
e = 1}.

Similarly, let Qτ be the set of all terminal pairs (u, ū) ∈ R such that zτuū = 1.

3 The latter initialization is only done implicitly. The algorithm will ensure that the cuts with positive dual
value form a laminar family.
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We define F̄τ as the set of all edges that are tight at time τ , i.e.,

F̄τ =
{
e ∈ E :

∑

S⊆V

yτ
S = c(e)

}
.

It is important to realize the difference between Fτ and F̄τ : Fτ represents the partial
solution at time τ and will constitute a forest at all times. F̄τ will be used to guide the
growth of dual values. PSF maintains the invariant that only tight edges are part of
the current forest at all times, i.e., Fτ ⊆ F̄τ for every τ ≥ 0.

We use the term moat to refer to a (maximal) connected component Mτ in F̄τ .
Every moat Mτ induces a cut which is defined by the set of nodes V (Mτ ) spanned by
Mτ . Let Mτ (u) denote the moat in F̄τ that contains terminal u ∈ V (R) at time τ .

Crucial toPSF is the notion of activity of terminal pairs: For a terminal pair (u, ū) ∈
R, define the death time of (u, ū) as d(u, ū) = 1

2dG(u, ū), where dG(u, ū) is the cost
of a shortest u, ū-path with respect to c in G. We call a terminal pair (u, ū) ∈ R active
at time τ if

ξτ
uū < π(u, ū) and τ < d(u, ū); (38)

otherwise, (u, ū) is inactive at time τ . As time progresses, PSF increases (but never
decreases) the cost shares of terminal pairs. Thus once a terminal pair becomes inactive
it remains inactive. Define τuū as the point of time at which terminal pair (u, ū) ∈ R
becomes inactive.

We say that a terminal u ∈ V (R) is active at time τ if its pair (u, ū) is active
at this time. Let Aτ be the set of all terminals that are active at time τ . Finally, we
call a moat Mτ of F̄τ active at time τ if it contains at least one active terminal, i.e.,
V (Mτ ) ∩ Aτ 
= ∅.

At time τ our algorithm PSF increases the dual values of all cuts defined by moats
Mτ in F̄τ which are active at time τ . These duals are increased simultaneously and
by the same amount. Subsequently, we also say that we grow all active moats in F̄τ

at time τ . Moreover, it is convenient to regard the growing of moats as being identical
to increasing the respective duals.

The growth of an active moat Mτ is shared evenly among all active terminals in
Mτ . More formally, we define the cost share ξτ ′

u of a terminal u ∈ V (R) at time τ ′ as
follows:

ξτ ′
u =

τ ′∫

0

1

|V (Mτ (u)) ∩ Aτ |dτ ∀τ ′ ∈ [0, τuū] (39)

and ξτ ′
u = ξ

τuū
u for all τ ′ > τuū . Moreover, we define ξτ

uū = ξτ
u +ξτ

ū for every terminal
pair (u, ū) ∈ R. Observe that the total contribution to the cost share of a terminal pair
(u, ū) within ε time units is at most 2ε. Also, note that (u, ū) may receive cost share
from a moat Mτ that contains u and ū.

We say that two active moats Mτ
1 and Mτ

2 collide at time τ if their nodes are
contained in the same connected component of F̄τ ′

if and only if τ ′ ≥ τ . In this case,
PSF adds a cheapest collection of edges to Fτ such that the active nodes of Mτ

1 and
Mτ

2 are in the same connected component of Fτ ′
for all τ ′ ≥ τ . Note that this way of
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extending the current forest Fτ ensures that only non-redundant edges are added to
Fτ and thus Fτ remains a forest.4

Suppose a terminal pair (u, ū) ∈ R becomes inactive at time τ = τuū because it
reaches its penalty, i.e., ξτ

uū = π(u, ū). The algorithm then adds (u, ū) to Qτ . Note
that it might happen that (u, ū) is added to Qτ even though u and ū are connected by
Fτ .

PSF terminates at time τ ∗ when the last terminal pair becomes inactive. Let (F, Q)

be the final solution computed by PSF. Subsequently, we use PSF to refer to the
algorithm and denote the final cost shares by ξPSF = (ξ τ∗

uū )(u,ū)∈R .
The following view of the moat-growing process will be helpful to prove some

lemmas below: Consider an active moat Mτ that is grown by PSF at time τ . Then
an increase by ε > 0 of the dual value yS of the induced cut S = V (Mτ ) can be
interpreted as Mτ loading all edges in δ(S) that cross the cut S by an amount of ε.
Note that the algorithm ensures that the total load that an edge e ∈ E receives from
different moats does not exceed its cost c(e). This way the cost c(e) of an edge e ∈ E
is partitioned among the moats loading e and possibly some leftover piece of slack.

6.3 Some properties of PSF

The following fact follows immediately from definitions (38) and (39).

Fact 8 For every terminal pair (u, ū) ∈ R, ξPSFuū ≤ min{π(u, ū), 2d(u, ū)}.
Because at any point of time the growth of all active moats is shared among active

terminals, the following holds true.

Fact 9 For every time τ ≥ 0,

∑

S⊆V

yτ
S =

∑

(u,ū)∈R

ξτ
uū .

Note that a terminal pair is added to Qτ if and only if ξτ
uū = π(u, ū). Thus the

following fact is immediate.

Fact 10 Let Q be the final set of terminal pairs computed by PSF. Then

∑

(u,ū)∈Q
π(u, ū) =

∑

(u,ū)∈Q
ξPSFuū

Suppose a terminal pair (u, ū) becomes inactive at timed(u, ū). The next fact shows
that (u, ū) must then be connected in F .

Fact 11 Let terminal pair (u, ū) become inactive at time d(u, ū). Then u and ū are
connected in F.

4 Note that in PSF the decision of which edges are added to Fτ are delayed until these edges are non-
redundant. This is different from other primal-dual approaches for network design problems (see, e.g., [16])
where this is ensured by a final reverse-delete step.
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Proof Let Puū be a shortest u, ū-path in G. Note that terminals u and ū are both active
until time d(u, ū). Thus all edges of Puū must be tight at some time τ ≤ d(u, ū), i.e.,
Puū ⊆ F̄τ . Then either u and ū are already connected in Fτ or Puū is added to Fτ .

��
Observe that the last fact also establishes correctness of PSF: The final solution

(F, Q) computed by PSF is a feasible solution for the given prize-collecting Steiner
forest instance.

6.4 Cross-monotonicity

In order to show cross-monotonicity of ξPSF we compare the execution of PSF on
terminal set R with the one on terminal set R−st = R\{(s, t)} for any (s, t) ∈ R.
We use G−st (where G is a place holder for PSF, F , F̄ , M , etc.) to refer to G in the
run of PSF on R−st . For notational convenience, throughout this section we denote
by ξ−st (u, ū) the cost share of (u, ū) in the run of PSF on R−st and by ξ(u, ū) the
respective cost share in PSF on R.

Our activity notion of terminal pairs defined in (38) turns out to be crucial to prove
cross-monotonicity. As we will show below, it guarantees that if a terminal u is active
at time τ in the run of PSF−st on R−st then it will also be active at time τ in the run of
PSF on R. As a consequence, if the moat Mτ−st (u) of u is active at time τ in PSF−st

(because u is active) then also the corresponding moat Mτ (u) is active at time τ in
PSF and Mτ−st (u) ⊆ Mτ (u). Therefore, the set of edges F̄τ−st that are tight at time τ in
PSF−st is a refinement of F̄τ . Further, this implies that the share that u receives from
the growth of Mτ−st (u) at time τ in PSF−st is at least as large as the one it receives
from the growth of Mτ (u) in PSF.

We formalize the above observations in the following lemma.

Lemma 16 Consider the execution ofPSF on R and R−st , respectively. The following
holds for every time τ ≥ 0:

1. F̄τ−st is a refinement of F̄
τ , i.e., F̄τ−st ⊆ F̄τ .

2. For all (u, ū) ∈ R−st , ξτ−st (u, ū) ≥ ξτ (u, ū).

Proof We prove the lemma by induction over time τ . Clearly, the lemma holds at time
τ = 0. Suppose the lemma holds at time τ .

The only moats that may potentially violate the claim F̄τ+ε−st ⊆ F̄τ+ε at time τ + ε

for some small ε > 0, are those that are active at time τ in PSF−st . Let M−st be a
moat of F̄τ−st that is active at time τ . By the induction hypothesis, there exists a moat
M in F̄τ such that M−st ⊆ M . We argue that M must be active at time τ in PSF.

Since M−st is active at time τ , there exists a terminal u ∈ V (M−st ) such that
π(u, ū) − ξτ−st (u, ū) > 0 and τ < d(u, ū). By our induction hypothesis,

π(u, ū) − ξτ (u, ū) ≥ π(u, ū) − ξτ−st (u, ū) > 0.

Therefore, M must be active at time τ too.
As a consequence, every edge e ∈ δ(S) crossing the cut S = V (M) induced by M

is loaded at least as fast in PSF as in PSF−st . Thus, if an edge e ∈ δ(S) gets tight at
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time τ ′ ∈ (τ, τ + ε] in PSF−st then it also gets tight at time τ ′ in PSF. Therefore, the
refinement property is preserved, which proves the first part of the lemma.

It remains to be shown that ξτ+ε−st (u, ū) ≥ ξτ+ε(u, ū) for all (u, ū) ∈ R−st . Fix an
arbitrary terminal pair (u, ū) ∈ R−st . We consider two cases:

(i) Assume (u, ū) is inactive at time τ in PSF−st . If (u, ū) is also inactive at time
τ in PSF the claim holds. Otherwise, (u, ū) is active at time τ in PSF. But then
τ < d(u, ū) and thus ξτ−st (u, ū) = π(u, ū) ≥ ξτ (u, ū). The claim holds.

(ii) Suppose (u, ū) is active at time τ in PSF−st . Let Mτ−st (u) be the moat of u at
time τ . By our induction hypothesis, Mτ−st (u) is contained in the moat Mτ (u) of
F̄τ in PSF. Moreover, from the discussion above we know that every terminal
pair (v, v̄) ∈ R−st that is active at time τ in PSF−st must be active at time τ in
PSF, i.e., Aτ−st ⊆ Aτ . Therefore, |V (Mτ−st (u)) ∩ Aτ−st | ≤ |V (Mτ (u)) ∩ Aτ |.
Thus, the additional cost share that (u, ū) receives in the time interval (τ, τ + ε]
in PSF−st [see (39)] is at least as large as the one it receives in PSF. ��

6.5 Competitiveness

We next show that ξPSF satisfies competitiveness. Note that this is non-trivial here
because the dual solution generated by PSF may be infeasible for (D). The proof of
the following lemma is similar to the one presented in [26].

Lemma 17 Let (F∗, Q∗) be an optimal solution to an instance of the prize-collecting
Steiner forest problem with terminal pair set R. Then ξPSF satisfies competitiveness,
i.e.,

∑

(u,ū)∈R

ξPSFuū ≤ c(F∗) + π(Q∗).

Proof Consider a separated terminal pair (u, ū) ∈ Q∗. By Fact 8, we have

∑

(u,ū)∈Q∗
ξPSFuū ≤ π(Q∗).

It remains to be shown that the total cost share of all terminal pairs (u, ū) ∈ R\Q∗ is
bounded by c(F∗).

Consider a tree T of F∗ and let R(T ) be the set of terminal pairs that are connected
by T . We prove that ∑

(u,ū)∈R(T )

ξPSFuū ≤ c(T ). (40)

The lemma follows by summing over all trees T in F∗.
We defineMτ (T ) as the set of moats in F̄τ at time τ that contain at least one active

terminal of V (R(T )), i.e.,

Mτ (T ) = {Mτ (u) : u ∈ V (R(T )) ∩ Aτ }.
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Among all terminal pairs in R(T ), let (w, w̄) be a pair that is active longest. By our
definition of activity in (38), all terminal pairs in R(T ) are inactive after time d(w, w̄).
We show that the total growth of Mτ (T ) for all τ ∈ [0,d(w, w̄)] is at most c(T ).
This implies (40).

At any time τ , the moats inMτ (T ) are disjoint. Moreover, T connects all terminals
in V (R(T )). Thus, if there exists a moat Mτ ∈ Mτ (T ) that intersects an edge of T ,
i.e., there is some e ∈ T such that e ∈ δ(V (Mτ )), then each moat in Mτ (T ) must
intersect an edge of T ; we say that the moats inMτ (T ) load T . Moreover, each such
moat Mτ loads a different part of T . Thus, the total growth of moats in Mτ (T ) for
all τ at which Mτ (T ) loads T is at most c(T ).

Let τ0 ≤ d(w, w̄) be the first point of time at which Mτ0(T ) does not load T .
If Mτ0(T ) = ∅, we are done. Otherwise, we must have that Mτ0(T ) = {Mτ0} and
T ⊆ Mτ0 . The additional growth of Mτ for all times τ ∈ [τ0,d(w, w̄)] is at most
d(w, w̄) − τ0. Let Pww̄ be the unique w, w̄-path in T . The additional growth of Mτ

for all times τ ∈ [τ0,d(w, w̄)] is at most d(w, w̄) − τ0 ≤ c(Pww̄)/2 ≤ c(T )/2.
Combining this with the bound above gives an upper bound of 3

2c(T ) on the total cost
shares of pairs in R(T ).

We next refine the above argument to prove (40). DefineMτ−ww̄ ⊆ Mτ (T ) as the
set of active moats different from Mτ (w) and Mτ (w̄) that load Pww̄ at time τ < τ0,
i.e.,

Mτ−ww̄ = {Mτ ∈ Mτ (T )\{Mτ (w), Mτ (w̄)} : δ(V (Mτ )) ∩ Pww̄ 
= ∅}.

The crucial insight is that each moat Mτ ∈ Mτ−ww̄ loads at least two edges of Pww̄

at all times τ ∈ [0, τ0). The basic idea is to use one part of this load on Pww̄ to
compensate for the additional growth during the time interval [τ0,d(w, w̄)]. We make
this idea more precise.

Define the degree deg(Mτ ) of a moat Mτ ∈ Mτ−ww̄ as

deg(Mτ ) = |δ(V (Mτ )) ∩ Pww̄|.

Proposition 1 Consider a time τ < τ0 and a moat Mτ ∈ Mτ−ww̄. Then deg(Mτ )

≥ 2.

Proof BothMτ (w) andMτ (w̄) are active at time τ < τ0 and thus {Mτ (w), Mτ (w̄)} ⊆
Mτ (T ) (possibly Mτ (w) = Mτ (w̄)). By definition of Mτ−ww̄, M

τ ∈ Mτ (T ) and
Mτ /∈ {Mτ (w), Mτ (w̄)}. Furthermore, Mτ is disjoint from all other moats inMτ (T ).
Suppose |Mτ ∩ Pww̄| = 1. But then, moat Mτ must contain w or w̄. This contradicts
the disjointness of Mτ and {Mτ (w), Mτ (w̄)}. ��

By our choice of (w, w̄) ∈ R(T ) as the terminal pair with largest activity time
and by our assumption that Mτ0(T ) 
= ∅ it follows that both, Mτ (w) and Mτ (w̄)

are active for all 0 ≤ τ ≤ τ0. We define lww̄ as the total dual growth of the moats
containing w and w̄ up to time τ0. Formally, let

δτ
ww̄ =

{
2 if Mτ (w) 
= Mτ (w̄)

1 otherwise
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and

lww̄ =
τ0∫

0

δτ
ww̄dτ.

It follows that the cost c(Pww̄) of path Pww̄ is at least

lww̄ +
τ0∫

0

∑

Mτ ∈Mτ−ww̄

deg(Mτ )dτ.

We let slackww̄ be the difference between c(Pww̄) and the above term and obtain

c(Pww̄) = lww̄ + slackww̄ +
τ0∫

0

∑

Mτ ∈Mτ−ww̄

deg(Mτ )dτ. (41)

We define the total growth yτ0(T ) produced by terminal pairs in R(T ) until time
τ0 as follows:

yτ0(T ) =
τ0∫

0

|Mτ (T )|dτ.

At all times τ ≤ τ0, each moat in Mτ (T ) loads at least one distinct edge of T ; those
inMτ−ww̄ load at least two edges of T . Thus, we have

c(T ) ≥ yτ0(T ) + slackww̄ +
τ0∫

0

∑

Mτ ∈Mτ−ww̄

(deg(Mτ ) − 1)dτ. (42)

The additional growth between time τ0 and d(w, w̄) is at most d(w, w̄)−τ0. Using
that d(w, w̄) ≤ c(Pww̄)/2 and (41), we obtain

d(w, w̄) − τ0 ≤ lww̄

2
− τ0 + slackww̄

2
+

τ0∫

0

∑

Mτ ∈Mτ−ww̄

deg(Mτ )

2
dτ

≤ slackww̄

2
+

τ0∫

0

∑

Mτ ∈Mτ−ww̄

(deg(Mτ ) − 1)dτ, (43)

where we exploit that deg(Mτ ) ≥ 2 for all Mτ ∈ Mτ−ww̄ and the fact that lww̄ ≤ 2τ0.
Combining (42) and (43) proves that the total growth yτ0(T ) + d(w, w̄) − τ0 is at
most c(T ), which concludes the proof. ��
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6.6 Cost recovery

Consider a tree T which is part of the forest Fτ . Let R(T ) be the set of terminal pairs
that are spanned by T . We call T active at time τ if it contains a terminal that is active
at this time, i.e., V (R(T )) ∩ Aτ 
= ∅; otherwise, T is said to be inactive. Define the
age of T as the last point of time τ0 ∈ [0, τ ] when T was still active; more formally,

ageτ (T ) = max{τ0 ∈ [0, τ ] : V (R(T )) ∩ Aτ0 
= ∅}.

Note that ageτ (T ) = τ if T is active at time τ .
The proof of the following lemma borrows ideas from the proof of Lemma 5.3

in [1].

Lemma 18 For every time τ ≥ 0 and every tree T of Fτ we have

c(T ) ≤ 2
∑

u∈V (R(T ))

ξ τ
u − 2 · ageτ (T ). (44)

Proof The proof is by induction over time τ . Clearly, the claim holds at time τ = 0.
Suppose it holds at time τ . We show that the claim remains true at time τ ′ = τ + ε

for some ε > 0.
It is not hard to verify that the claim holds at all times τ ′ > τ for which Fτ ′ = Fτ :

Consider a tree T of Fτ . Then the left-hand side of (44) remains the same. If T is
inactive at time τ then the right-hand side of (44) also remains unchanged. Otherwise,
T is active at time τ . But then there is a moat Mτ in F̄τ that contains T and whose
growth is shared among all active terminals in V (R(T )). Also, the age of T increases
by the same amount. We conclude that

c(T ) ≤ 2
∑

u∈V (R(T ))

ξ τ
u − 2 · ageτ (T ) = 2

∑

u∈V (R(T ))

ξ τ ′
u − 2 · ageτ ′

(T ).

Next consider the first point of time τ ′ > τ for which Fτ ′ ⊃ Fτ . Because edges
are only added to the current forest, there is a tree T ′ that becomes part of Fτ ′

because
two active moats, say Mτ ′

1 and Mτ ′
2 , collide at time τ ′. Then T ′ is the union of the

edges in D = Fτ ′ \Fτ and r inactive trees T1, . . . , Tr of Fτ (possibly r = 0). Thus,

c(T ′) = c(D) +
r∑

i=1

c(Ti )

≤ c(D) +
r∑

i=1

(
2

∑

u∈V (R(Ti ))

ξ τ
u − 2 · ageτ (Ti )

)

= c(D) +
r∑

i=1

(
2

∑

u∈V (R(Ti ))

ξ τ ′
u − 2 · ageτ ′

(Ti )

)
, (45)
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where thefirst inequality holds because of the induction hypothesis and the last equality
follows from the discussion above. It is not hard to see that the total cost of adding
the edges in D to connect the active terminals in Mτ ′

1 and Mτ ′
2 through T1, . . . , Tr is

at most

2τ ′ + 2
r∑

i=1

ageτ ′
(Ti ). (46)

Combining (45) and (46), we obtain

c(T ′) ≤ 2τ ′ + 2
r∑

i=1

∑

u∈V (R(Ti ))

ξ τ ′
u . (47)

Finally, observe that the sum of the cost shares of all terminals in Mτ ′
1 and Mτ ′

2 is at
least 2τ ′. Thus, twice the cost shares of all these terminals accounts for 4τ ′. Further,
note that ageτ ′

(T ′) = τ ′. Combining these observations with (47), we conclude

c(T ′) ≤ 2
∑

u∈V (R(T ′))
ξ τ ′
u − 2τ ′ = 2

∑

u∈V (R(T ′))
ξ τ ′
u − 2 · ageτ ′

(T ′),

which proves the claim. ��
Lemma 19 Let (F, Q) be the solution computed by PSF on terminal pair set R. Then

c(F) + π(Q) ≤ 3
∑

(u,ū)∈R

ξPSFuū .

Proof By Fact 10 we have

π(Q) =
∑

(u,ū)∈Q
ξPSFuū .

Moreover, by Lemma 18 the cost of the final forest satisfies

c(F) ≤ 2
∑

(u,ū)∈R

ξPSFuū .

Combining these bounds proves the claim. ��

6.7 Social cost approximation

Let ξSF be the cost-sharing method by Könemann et al. [26] for the Steiner forest
problem. The only difference between our algorithm PSF and the algorithm SF in
[26] is the definition of the activity notion: In [26] a terminal pair (u, ū) is active at
time τ if and only if τ < d(u, ū). This definition coincides with the one in (38) if
π(u, ū) = ∞ for every (u, ū) ∈ R.
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We argue that ξSF and ξPSF satisfy the two properties of our Lifting Theorem
(Theorem 4). Property 1 is satisfied by Fact 8. The following lemma shows that Prop-
erty 2 is fulfilled as well.

Lemma 20 Define τ0 as the first point of time τ at which ξ
τ,PSF
vv̄ = π(v, v̄) for some

terminal pair (v, v̄) ∈ R; let τ0 = ∞ if no such time exists. Then for every terminal
pair (u, ū) ∈ R and all τ ∈ [0, τ0), ξτ,PSF

uū = ξ
τ,SF
uū .

Proof It is sufficient to show that for all τ ∈ [0, τ0) and every terminal pair (u, ū) ∈ R
it holds that (u, ū) is active at time τ in PSF if and only if (u, ū) is active at time τ in
SF.

A necessary condition for (u, ū) being active at time τ in PSF is that τ < d(u, ū).
Thus, (u, ū) is active at time τ in SF if (u, ū) is active at this time in PSF. Next,
suppose (u, ū) is active at time τ in SF and thus τ < d(u, ū). Since τ < τ0, we have
ξ

τ,PSF
ww̄ < π(w, w̄) for all (w, w̄) ∈ R; in particular this also holds for (u, ū). Thus,

(u, ū) is active at time τ in PSF. ��
Recall that the Moulin mechanism M(ξSF) is O(log2 k)-approximate [11]. By our

LiftingTheoremand the fact that ξPSF is 3-budget balanced,we conclude thatM(ξPSF)

is O(log2 k)-approximate.

Corollary 5 The Moulin mechanism M(ξPSF) is O(log2 k)-approximate.

7 Summability of Steiner forest cost sharing method

In this section, we show that the cost-sharing method ξSF of Könemann et al. [26] for
the Steiner forest problem is O(log3 k)-summable.

Theorem 12 The cost sharing method ξSF is O(log3 k)-summable.

This result is inferior to the bound of O(log2 k) obtained by Chawla et al. [11].
However, the proof presented in this section is simpler than the one in [11] and adds
a novel methodological contribution by showing that such a result can also be proved
by embedding the graph distances into random hierarchically separated trees (HST)
[5,13].

As mentioned earlier, the algorithm SF that computes ξSF works exactly the same
way as our algorithm PSF described in the previous section if we set all penalties to
∞. We drop the superscript SF in the discussion below.

Suppose we are given an arbitrary subset S ⊆ U and an ordering σ . We order the
terminal pairs in S according to σ and without loss of generality assume that they are
labeled such that

S = {(s1, t1), . . . , (sl , tl)}, where l = |S|.

Let Si ⊆ S be the set of the first i terminal pairs of S. We use ξi (Si ) to refer to the
cost share of terminal pair (si , ti ), i ∈ [l], computed by SF when run on terminal pair
set Si . We need to prove that
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l∑

i=1

ξi (Si ) = O(log3 k) · C(S), (48)

where C(S) is the cost of an optimal Steiner forest cost for terminal set S.
We assume that the distance between every two nodes in G is at least 1, i.e.,

dG(u, v) ≥ 1 for all u, v ∈ U . This assumption is without loss of generality as we
may scale the edge costs appropriately.

Recall that in SF each terminal pair (si , ti ) ∈ U has a death time d(si , ti ) which
is defined as half the distance between si and ti in G. We partition terminal pairs in
S into classes, depending on their death times: A terminal pair (si , ti ) ∈ S is of class
r ≥ 0 if d(si , ti ) ∈ (2r−1, 2r ]. Let r(i) be the class to which terminal pair (si , ti )
belongs. We use Sr to refer to the (ordered) set of terminal pairs in S that belong to
class r . Moreover, we define Sri ⊆ Si to be the set of class r terminal pairs in Si , i.e.,
Sri = Si ∩ Sr for every i ∈ [l]. Let ΔS be the maximum death time among all terminal
pairs in S. Clearly, there are at most log(ΔS) + 1 classes.

Since ξ is cross-monotonic, we have for every (si , ti ), i ∈ [l], ξi (Si ) ≤ ξi (S
r(i)
i ).

Thus,
l∑

i=1

ξi (Si ) ≤
l∑

i=1

ξi (S
r(i)
i ) =

log(ΔS)+1∑

r=0

∑

(si ,ti )∈Sr
ξi (S

r
i ). (49)

We first consider all terminal pairs of classes 0, 1, . . . , log(ΔS/k) + 1. Note that
every such terminal pair has death time at most 2ΔS/k. The cost share of a terminal
pair is at most twice its death time and thus

log(ΔS/k)+1∑

r=0

∑

(si ,ti )∈Sr
ξi (S

r
i ) ≤ k · 4ΔS

k
≤ 4ΔS ≤ 2C(S). (50)

That is, all terminal pairs of class at most log(ΔS/k) + 1 contribute at most 2C(S) to
the left-hand side of (48). We can therefore concentrate on terminal pairs in classes
log(ΔS/k) + 2, . . . , log(ΔS) + 1. Note that these are at most log k different classes.
For each class r > log(ΔS/k) + 1, we prove

∑

(si ,ti )∈Sr
ξi (S

r
i ) = O(log2(|Sr |) · C(S)) = O(log2 k) · C(S).

This together with (49) and (50) proves (48). The next lemma states that for each class,
we can assume that all death times are rounded up to the nearest power of 2.

Lemma 21 (Rounding Lemma) Fix some r and suppose we set all death times of
terminal pairs in Sr to 2r . Let ξ̃ be the cost shares computed by SFwith these modified
death times. Then

∑

(si ,ti )∈Sr
ξi (S

r
i ) ≤ 3

∑

(si ,ti )∈Sr
ξ̃i (S

r
i )

The proof of Lemma 21 is deferred to the end of this section.
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7.1 Summability of SF with identical death times

We next show that the cost shares of SF are O(log2 k)-summable if all death times
are equal. Eventually, we apply the result presented in this section together with the
Rounding Lemma to each class r > log(ΔS/k) + 1 separately. For notational conve-
nience, we use S instead of Sr here.

Suppose that the death time of all terminal pairs in S is ν, i.e., d(si , ti ) = ν for all
i ∈ [l]; as before, we define l = |S|. Let F∗ be a minimum cost Steiner forest for
terminal pair set S. For a tree T ∈ F∗, let S(T ) be the set of terminal pairs in S that
are spanned by T . Consider a terminal pair (si , ti ), 1 ≤ i ≤ l, of S and let T ∈ F∗
be the tree that contains si , ti , i.e., (si , ti ) ∈ S(T ). Define Si (T ) as the set of terminal
pairs in S that precede (si , ti ) (with respect to σ ) and are also part of T ; more precisely
Si (T ) = Si ∩ S(T ). Run SF on Si (T ) and let ξi (Si (T )) be the respective cost share
of (si , ti ). As Si (T ) ⊆ Si and the cost shares computed by SF are cross-monotonic,
we have

ξi (Si (T )) ≥ ξi (Si ). (51)

We prove that for each tree T ∈ F∗, we have
∑

(si ,ti )∈S(T )

ξi (Si (T )) = O(log2(|S(T )|) · c(T )). (52)

Summing over all trees T ∈ F∗ together with (51) then shows that

l∑

i=1

ξi (Si ) = O(log2 k) · C(S).

Given tree T , we construct a rooted tree T ′ = (V ′, E ′), also called Shapley tree in
the following, and a non-negative length function � : E ′ → R

+ on the edges of T ′.
We use T ′(e) to refer to the subtree of T ′ below edge e ∈ E ′. Moreover, for a node
u ∈ V ′ let Pur be the unique u, r -path from u to the root r of T ′. We construct T ′ such
that the following four Shapley tree properties hold:

(ST1) The leaves of T ′ are the terminals in S(T ).
(ST2) For every two terminals that are contained in the subtree T ′(e) for some e ∈ E ′,

their distance in G is at most �(e), i.e., dG(u, v) ≤ �(e) for all u, v ∈ S(T ) ∩
T ′(e).

(ST3) For every path Pur = (e1, . . . , em) from terminal u ∈ S(T ) to the root r of T ′,
we have
1. �(e1) = 1,
2. �(e j ) = 2�(e j−1) for all 1 < j ≤ m, and
3. �(em) ≥ ν.

(ST4) The total length of T ′ is at most O(log |S(T )|) times the total cost of T , i.e.,
�(T ′) = O(log(|S(T )|) · c(T )).

We use tree T ′ to define Shapley cost shares for all terminals in S(T ): Let T ′[Si (T )]
be the induced subtree of T ′ on terminals pair set Si (T ). For a terminal pair (si , ti ) ∈
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S(T ), we define ξ ′
i (Si (T )) to be the sum of the respective Shapley cost shares of

terminals si and ti in T ′[Si (T )].
Lemma 22 Let T ′ be the Shapley tree of T and let ξ ′ be the respective Shapley cost
shares. Then

∑

(si ,ti )∈S(T )

ξ ′
i (Si (T )) ≤ H|S(T )| · �(T ′).

Proof As T ′[S1(T )] ⊆ T ′[S2(T )] ⊆ · · · ⊆ T ′[Sl(T )], the cost share contribution of
an edge e ∈ E ′ to the left-hand side of the inequality is at most H|S(T )| ·�(e). Summing
over all edges e ∈ E ′ of tree T ′ proves the lemma. ��

We next show that the cost share ξi (Si (T )) of terminal pair (si , ti ) is upper bounded
by its corresponding Shapley cost share ξ ′

i (Si (T )) in T ′[Si (T )]. This together with
Lemma 22 and Property (ST4) establishes (52).

Lemma 23 The cost share ξi (Si (T )) of terminal pair (si , ti ) ∈ S(T ) is at most its
Shapley cost share ξ ′

i (Si (T )).

Proof All terminals in S(T ) are active until time ν. The cost share ξu(Si (T )) of a
terminal u ∈ {si , ti } in SF is then defined as

ξu(Si (T )) =
ν∫

τ=0

dτ

aτ
i (u)

where aτ
i (u) is the number of active terminals in u’s moat at time τ in the run of

SF(Si (T )). We bound the cost share that u = si receives in SF(Si (T )) by its Shapley
cost share. An analogous argument holds for u = ti .

Consider the induced subtree T ′
i = T ′[Si (T )] on Si (T ). Let Pur = (e1, . . . , em)

be the unique u, r -path in T ′
i . Consider an edge e j , 1 < j ≤ m and let T ′

i (e j ) be
the subtree of T ′

i below edge e j . We use zi (e j ) to refer to the number of terminals
in T ′

i (e j ); define zi (e1) = 1. The Shapley cost share that u received for edge e j is
�(e j )/zi (e j ). Thus,

ξ ′
u(Si (T )) =

m∑

j=1

�(e j )

zi (e j )
.

Let x be any terminal in T ′
i (e j ). By Property (ST2) dG(u, x) ≤ �(e j ). Since both x and

u are active until time ν, their respective moats in SF(Si (T )) must have met by time
at most dG(u, x)/2 ≤ �(e j )/2 = �(e j−1). Thus, aτ

i (u) ≥ zi (e j ) for all τ ≥ �(e j−1)

for all 1 < j ≤ m.
Note that the cost share that u receives up to time 1 is at most 1. As �(e1) = 1 and

�(em) ≥ ν, we can write
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ξu(Si (T )) =
ν∫

τ=0

dτ

aτ
i (u)

≤ 1 +
m∑

j=2

�(e j )∫

τ=�(e j−1)

dτ

aτ
i (u)

≤ 1 +
m∑

j=2

�(e j )∫

τ=�(e j−1)

dτ

zi (e j )
= 1 +

m∑

j=2

�(e j−1)

zi (e j )
≤ ξ ′

u(Si (T )).

��

7.2 Tree construction

There are several ways to obtain a tree T ′ that satisfies Properties (ST1)–(ST4). For
example, the HSTs construction given by Fakcharoenphol et al. [13] satisfies all Prop-
erties (ST1)–(ST3) and Property (ST4) on expectation.

Alternatively, using ideas similar to the one presented in [36], we may insert ter-
minals one-by-one and obtain a tree T ′ whose nodes are terminals in S(T ) and that
satisfies Properties (ST2), (ST3(b)), (ST3(c)) and (ST4). In order to achieve Property
(ST1) and (ST3(a)), we simply replace each non-leaf terminal u with parent edge
e in T ′ by a path (e1, . . . , em) with �(em) = �(e)/2 and �(e1) = 1. Clearly, this
construction will add an additional cost of at most �(T ′).

7.3 Rounding lemma

Consider the set S = Sr of class r terminals and let l = |S|. As before we assume that
S is ordered according to σ and Si refers to the set of the first i terminal pairs of S.
For a terminal u ∈ {si , ti }, we also use Su to refer to the corresponding set of terminal
pairs Si . Define μ = 2r−1, i.e., d(si , ti ) ∈ (μ, 2μ] for all 1 ≤ i ≤ l.

Recall that in SF a terminal u ∈ {si , ti } is called active at time τ if τ ≤ d(si , ti );
it is said to be inactive otherwise. A terminal receives cost share only if it is active.
For a terminal u that is active at time τ in SF(S), define aτ

u (S) as the number of active
terminals in u’s moat. The cost share that an active terminal u receives at time τ is
defined as ξτ

u (S) = 1/aτ
u (S). The cost share ξτ

si ti (S) of terminal pair (si , ti ) at time τ

is defined as ξτ
si (S) + ξτ

ti (S).
Fix a point of time τ ∈ (μ, 2μ]. Without loss of generality, let ξτ

si (Si ) ≥ ξτ
ti (Si ) for

every terminal pair (si , ti ), 1 ≤ i ≤ l. We say si is the dominating terminal of (si , ti ).
Note that ξτ

si ti (Si ) ≤ 2ξτ
si (Si ). Let D

τ be the set of all dominating terminals that are
active at time τ . The following technical lemma is the key to proving Lemma 21. It
shows that for every terminal si ∈ Dτ the cost share ξτ

si (Si ) that si receives at time
τ can be charged to the cost share that some terminal f τ (si ) in Si received at time
τ − μ. Moreover, the mapping f τ is injective. This will enable us to charge the total
cost share collected by terminals in Dτ at time τ in SF(Si ) to the total cost share of
terminals in Si at time τ − μ.

Lemma 24 Let Dτ be the set of all dominating terminals that are active at time τ ∈
(μ, 2μ]. There exists amapping f τ : Dτ → S such that the following conditions hold:
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1. For each si ∈ Dτ we have ξτ
si (Si ) ≤ ξ

τ−μ

f τ (si )
(S f τ (si )).

2. For all si , s j ∈ Dτ , i 
= j , we have f τ (si ) 
= f τ (s j ).

Proof We use Mτ
u (S) to refer to the moat of u at time τ in the run of SF on terminal

set S ⊆ R. Subsequently, we exploit the following two properties of SF which can
easily be proven given the results in Sect. 6.

Fact 13 Let S ⊆ R and consider a terminal u ∈ S. For every τ ′ ≤ τ we have
Mτ ′

u (S) ⊆ Mτ
u (S).

Fact 14 Let S′ ⊆ S ⊆ R and consider a terminal u ∈ S′. For every τ we have
Mτ

u (S′) ⊆ Mτ
u (S).

We assume that the set of dominating terminals Dτ is ordered according to σ . We
define f τ inductively. Suppose f τ satisfies Conditions 1 and 2 of the lemma for the
first n − 1 terminals in Dτ . (Let f τ be the empty mapping for n = 0). We define
f τ (si ) of the nth terminal si of Dτ while maintaining Conditions 1 and 2.
Assume ξτ

si (Si ) = 1/x . Let Csi = Mτ
si (Si ) be the set of all terminals that are

contained in si ’s moat at time τ . Note that |Csi | ≥ x . Order the set Csi according to σ

and delete all terminals except the first x ones. We call the resulting terminal set Csi
the candidate set of si . Note that Csi ⊆ Mτ

si (Si ). We will eventually define f (si ) = û
for some û ∈ Csi .

Consider themth terminal u ofCsi , 1 ≤ m ≤ x . Note that all terminals inMτ−μ
u (Su)

are active at time τ −μ because all terminal death times are larger thanμ. By Facts 13
and 14 we have Mτ−μ

u (Su) ⊆ Mτ
u (Su) ⊆ Mτ

u (Si ) = Mτ
si (Si ). Therefore, the moat

Mτ−μ
u (Su) contains at most m terminals. Since m ≤ x , we have ξ

τ−μ
u (Su) ≥ 1/x for

all u ∈ Csi .
Next we show that there always exists a choice of a terminal û ∈ Csi such that

f τ (s j ) 
= û for all s j ∈ Dτ , j < i . The proof is by contradiction. Suppose that for
each terminal u ∈ Csi there exists a terminal s j ∈ Dτ , j < i , with f τ (s j ) = u. Note
that by our induction hypothesis, f τ (s j ) 
= f τ (sk) for all j 
= k and j, k < i . Consider
some u ∈ Csi and let s j ∈ Dτ , j < i , with f τ (s j ) = u. By our construction of the
candidate set, we have u = f τ (s j ) ∈ Cs j ⊆ Mτ

s j (S j ). Moreover, Mτ
s j (S j ) ⊆ Mτ

s j (Si )
by Fact 14. This implies that bothMτ

s j (Si ) andM
τ
si (Si ) contain u and thereforemust be

identical. As a consequence, s j is an active terminal of Mτ
si (Si ) (recall that s j is active

because s j ∈ Dτ ). Because this holds for every u ∈ Csi , this leads to a contradiction to
the assumption that ξτ

si (Si ) = 1/x since we have identified |Csi | ≥ x active terminals
in Mτ

si (Si ) that are different from si . ��
We can then proof Lemma 21:

Proof (Lemma 21) First observe that the executions of SF with and without rounded
death times are identical until time μ. Thus

l∑

i=1

μ∫

τ=0

ξτ
si ti (Si )dτ =

l∑

i=1

μ∫

τ=0

ξ̃ τ
si ti (Si )dτ ≤

l∑

i=1

ξ̃si ti (Si ). (53)
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For time τ ∈ (μ, 2μ] let f τ be a mapping as constructed in Lemma 24. Since si is the
dominating terminal of (si , ti ), we have

l∑

i=1

ξτ
si ti (Si )dτ ≤ 2

l∑

i=1

ξτ
si (Si )dτ ≤ 2

l∑

i=1

ξ
τ−μ

f τ (si )
(S f τ (si ))dτ

≤ 2
l∑

i=1

ξ
τ−μ
si ti (Si )dτ,

where we used Condition 1 and 2 of Lemma 24 for the second and last inequality,
respectively. Integrating over all time instants in (μ, 2μ], we obtain

l∑

i=1

2μ∫

τ=μ

ξτ
si ti (Si )dτ ≤ 2

l∑

i=1

μ∫

τ=0

ξτ
si ti (Si )dτ

(53)≤ 2
l∑

i=1

ξ̃si ti (Si ).

��

8 Conclusions

In this paper we presented a general lifting technique to establish social cost approxi-
mation guarantees for prize-collecting problems. We applied our technique to derive
Moulin mechanisms for three optimization problems. Our mechanisms are basically
best possible both with respect to the budget balance and social cost approximation
guarantee. It would be interesting to see further examples where our technique can be
used to derive optimal mechanisms for prize-collecting problems. Moreover, it would
be interesting to see whether our lifting technique can be applied to cost-sharing meth-
ods which are not defined through primal-dual algorithms.
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