
Digital Object Identifier (DOI) 10.1007/s10107-005-0673-5

Math. Program., Ser. A 108, 97–114 (2006)

R. Ravi · Amitabh Sinha

Hedging Uncertainty: Approximation Algorithms
for Stochastic Optimization Problems

Received: August 28, 2003 / Accepted: September 24, 2005
Published online: December 30, 2005 – © Springer-Verlag 2005

Abstract. We study two-stage, finite-scenario stochastic versions of several combinatorial optimization prob-
lems, and provide nearly tight approximation algorithms for them. Our problems range from the graph-theoretic
(shortest path, vertex cover, facility location) to set-theoretic (set cover, bin packing), and contain representa-
tives with different approximation ratios.

The approximation ratio of the stochastic variant of a typical problem is found to be of the same order
of magnitude as its deterministic counterpart. Furthermore, we show that common techniques for designing
approximation algorithms such as LP rounding, the primal-dual method, and the greedy algorithm, can be
adapted to obtain these results.

1. Introduction

With the increasing success of optimization algorithms in process optimization, these
methods are making inroads into earlier planning stages of large scale projects. The inher-
ent difference between optimization at the planning stage and post-facto optimization
is that in the former, data is not fully available. Yet costly decisions with wide-ranging
implications need to be taken in the face of incomplete data. Nevertheless, quite often
forecasts of future uncertainty are available that can be used in the planning model.
Forecasts, by nature, are imprecise and provide at best a range of possible futures. The
field of stochastic optimization is an attempt to model such situations. For a detailed
introduction, please consult one of the recent texts on the topic [4, 25, 18].

In a parallel development, the field of approximation algorithms evolved to counter
the prohibitive resource requirements for the exact solution of NP-hard combinatorial
optimization problems. Informally, these algorithms run in polynomial time and deliver
a performance ratio on the worst-case quality of the output solution over all instances.
As the size of the models being solved increases in scale, this solution approach gains in
importance. For a detailed exposition of this topic, the reader is referred to Vazirani [44]
and Ausiello et al. [2].

However, as approximation algorithms become more sophisticated in scope and tech-
nique, the refrain from real-world practitioners who have the need for such algorithms

R. Ravi: Tepper School of Business, Carnegie Mellon University, Pittsburgh PA 15213, USA.
e-mail: ravi@cmu.edu

A. Sinha: Ross School of Business, University of Michigan, Ann Arbor MI 48109, USA.
e-mail: amitabh@umich.edu

Mathematics Subject Classification (1991): 20E28, 20G40, 20C20

Used Distiller 5.0.x Job Options
This report was created automatically with help of the Adobe Acrobat Distiller addition "Distiller Secrets v1.0.5" from IMPRESSED GmbH.You can download this startup file for Distiller versions 4.0.5 and 5.0.x for free from http://www.impressed.de.GENERAL --File Options: Compatibility: PDF 1.2 Optimize For Fast Web View: Yes Embed Thumbnails: Yes Auto-Rotate Pages: No Distill From Page: 1 Distill To Page: All Pages Binding: Left Resolution: [600 600] dpi Paper Size: [595 842] PointCOMPRESSION --Color Images: Downsampling: Yes Downsample Type: Bicubic Downsampling Downsample Resolution: 150 dpi Downsampling For Images Above: 225 dpi Compression: Yes Automatic Selection of Compression Type: Yes JPEG Quality: Medium Bits Per Pixel: As Original BitGrayscale Images: Downsampling: Yes Downsample Type: Bicubic Downsampling Downsample Resolution: 150 dpi Downsampling For Images Above: 225 dpi Compression: Yes Automatic Selection of Compression Type: Yes JPEG Quality: Medium Bits Per Pixel: As Original BitMonochrome Images: Downsampling: Yes Downsample Type: Bicubic Downsampling Downsample Resolution: 600 dpi Downsampling For Images Above: 900 dpi Compression: Yes Compression Type: CCITT CCITT Group: 4 Anti-Alias To Gray: No Compress Text and Line Art: YesFONTS -- Embed All Fonts: Yes Subset Embedded Fonts: No When Embedding Fails: Warn and ContinueEmbedding: Always Embed: [] Never Embed: []COLOR --Color Management Policies: Color Conversion Strategy: Convert All Colors to sRGB Intent: DefaultWorking Spaces: Grayscale ICC Profile: RGB ICC Profile: sRGB IEC61966-2.1 CMYK ICC Profile: U.S. Web Coated (SWOP) v2Device-Dependent Data: Preserve Overprint Settings: Yes Preserve Under Color Removal and Black Generation: Yes Transfer Functions: Apply Preserve Halftone Information: YesADVANCED --Options: Use Prologue.ps and Epilogue.ps: No Allow PostScript File To Override Job Options: Yes Preserve Level 2 copypage Semantics: Yes Save Portable Job Ticket Inside PDF File: No Illustrator Overprint Mode: Yes Convert Gradients To Smooth Shades: No ASCII Format: NoDocument Structuring Conventions (DSC): Process DSC Comments: NoOTHERS -- Distiller Core Version: 5000 Use ZIP Compression: Yes Deactivate Optimization: No Image Memory: 524288 Byte Anti-Alias Color Images: No Anti-Alias Grayscale Images: No Convert Images (< 257 Colors) To Indexed Color Space: Yes sRGB ICC Profile: sRGB IEC61966-2.1END OF REPORT --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Job Option File
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments false /DoThumbnails true /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize true /ParseDSCCommentsForDocInfo false /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue false /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.2 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends false /GrayImageDownsampleType /Bicubic /PreserveEPSInfo false /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /sRGB /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 150 /EndPage -1 /AutoPositionEPSFiles false /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 600 /AutoFilterGrayImages true /AlwaysEmbed [] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 150 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [576.0 792.0] /HWResolution [600 600]>> setpagedevice

98 R. Ravi, A. Sinha

is that the input data is seldom well-defined, thus diminishing the value of the solu-
tions and guarantees provided by the algorithm. Conversely, while the field of stochastic
optimization models the uncertainty in data fairly well, the running times of the exact
algorithms developed in the stochastic optimization community often prove prohibitive.
This paper combines the best of both worlds, by providing approximation algorithms
for a stochastic version of several classical optimization problems.

2. Background

2.1. Two-stage model

Among the most popular models in stochastic optimization is the two-stage model with
recourse.At the outset, some data may be known deterministically, whereas the uncertain
future is characterized only by a probability distribution. The decisions made at this point
are referred to as the first-stage decisions. Subsequently, the actual future is realized, and
then there may be the opportunity to augment the first-stage solution in order to optimize
for the realized scenario. This second stage of decision making is called the recourse
stage. The goal is to optimize the first-stage decision variables so as to minimize the
expected cost over both stages, where the expectation is over the probability distribution
defining the second stage.

2.2. Mathematical formulation

Formally, a two-stage stochastic optimization problem with recourse is defined as fol-
lows. Vector x0 is the set of decision variables which have to be fixed in the first stage,
when only partial information is available. Later, full information is made available
and we choose some second-stage (or recourse) variables x1 to augment the first-stage
solution x0. Let ξ represent the random vector which defines the constraint matrix T ,
cost vector q and requirement vector h when the full information is made available, and
let A, c, and b define the same for the first stage. Given a vector (or matrix) a, let a′
denote the transpose of a. Let P denote additional constraints such as non-negativity or
integrality which the components of x0 and x1 need to satisfy. The stochastic program
can be written as:

min c′x0 + EξQ(x0, ξ) (IPS1)

s.t. Ax0 = b

x0 ∈ P

where Q(x0, ξ) = min q ′x1

s.t. T (x0, x1) = h

x1 ∈ P

Here Q(x0, ξ) represents the optimal cost of the second stage, conditioned on scenario
ξ = (q, T , h) having been realized and a first-stage setting of the variables x0. The
expectation is taken with respect to ξ .

Approximation Algorithms for Stochastic Optimization Problems 99

2.3. Stochastic optimization with finite scenarios

A popular restriction of the two-stage model is where the second stage is character-
ized by a finite set of m scenarios. In scenario k, the constraint matrix, cost vector and
requirement vector take on values T k , qk and hk respectively, and scenario k occurs with
probability pk . In this case, we can write IPS1 in extensive form as follows, where xk

represents our choice for the variable x1 if scenario k materializes:

min c′x0 +
m∑

k=1

pk(q
k)′xk (IPS2)

s.t. Ax0 = b

T k(x0, xk) = hk k = 1, 2, . . . , m

(x0, xk) ∈ P k = 1, 2, . . . , m

The interested reader may refer to any of the texts cited above for a more complete
description of models of stochastic optimization and their uses. Schultz, Stougie and Van
der Vlerk [38] provide an excellent survey of two-stage stochastic integer programming,
while Kong and Schaefer [28] recently provided approximation algorithms for a class
of such problems. The relevance of the finite scenario model becomes more pronounced
in light of the recent work on scenario reduction by Heitsch and Römisch [21].

2.4. Approximation algorithms

The field of approximation algorithms provides one means of tackling the “curse of
dimensionality” that afflicts several integer programming and combinatorial optimiza-
tion problems, due to their NP-completeness. Since exact algorithms that run in time
polynomial in the size of the input are not known (and unlikely to exist) for NP-complete
problems, approximation algorithms trade-off the precision of the solution with speed,
by guaranteeing to run in polynomial time. At the same time, they provide guarantees in
the form of approximation ratios. If C is the set of all possible inputs of a certain min-
imization problem and OPT (I) and A(I) respectively denote the value of an optimal
solution and the solution output by algorithm A for that problem, then the approximation
ratio ρ(A) of algorithm A is defined as follows:

ρ(A) = max
I∈C

A(I)

OPT (I)

The interested reader is referred to two recent books [44, 2] for further pointers on
approximation algorithms.

2.5. Literature review

While both the areas of approximation algorithms and stochastic optimization have been
extremely active areas of optimization in the past decade (and longer), relatively little
work exists on approximation algorithms for stochastic optimization. Among the earli-
est papers which provided an approximation algorithm for stochastic optimization was

100 R. Ravi, A. Sinha

the work on service provisioning for a telecommunication network by Dye, Stougie
and Tomasgard [9]. By its very nature, scheduling algorithms often have to account for
uncertainty in the sizes and arrival times of future jobs; some approximation algorithms
which account for such uncertainty in various models of scheduling include the works
of Möhring, Schulz and Uetz [33], Kleinberg, Tardos and Rabani [27], and Skutella and
Uetz [43].

Karger and Minkoff [26] considered a Steiner tree problem with uncertainty in the
terminal set, which falls under a slightly different model of stochastic optimization. Kong
and Schaefer [28] provided approximation algorithms for a class of matching problems
in a stochastic setting, and their work provided some of the initial framework on which
our work was built. Immorlica, et al. [22] also studied two-stage stochastic versions of
some combinatorial optimization problems. Their model and results are distinct from
ours, and they obtained their results independently of ours.

Subsequent to the first appearance of this work, other papers have provided further
approximation algorithms for stochastic versions of combinatorial optimization prob-
lems. Gupta, Ravi and Sinha [16] considered the two-stage finite-scenario version of the
rooted Steiner tree problem, and provided a constant factor approximation.

Shmoys and Swamy [39, 40] provide a sampling-based approach which uses interior
point linear programming algorithms to provide approximation algorithms for two-stage
as well as multi-stage stochastic versions of a certain class of combinatorial optimization
problems. Gupta, et al. [14, 15] also provide sampling-based approximation algorithms
for two-stage and multi-stage stochastic problems, using cost-sharing functions to bound
the cost of the solution. Both of these streams of work allow for exponentially many sce-
narios and have running times independent of the number of scenarios, which constitutes
an improvement over our work.

Other recent work providing approximation algorithms for stochastic versions of
combinatorial optimization problems include that of Hayrapetyan, Swamy and Tar-
dos [20] (information networks), Gupta and Pál [13] (Steiner trees), and Dhamdhere,
Ravi and Singh [7] (minimum spanning trees).

2.6. Our results

In this paper, we provide polynomial-time approximation algorithms for several classi-
cal combinatorial optimization problems, in a two-stage stochastic optimization setting
with finitely many scenarios. Our results are summarized in Figure 1. The current best
known deterministic approximations are listed, with a “1” meaning that the problem can
be solved optimally in polynomial time. All of the stochastic approximation ratios are
derived in this paper. Some of the hardness results are carried over from the underlying
deterministic problems; these are mentioned with citations. The remaining are proved
in this paper.

In the table in Figure 1, we use m to refer to the number of scenarios and n to refer
to the number of combinatorial elements (the number of vertices in the shortest paths
problems and the number of elements in the set cover problem). An APTAS (asymp-
totic polynomial time approximation scheme) is an algorithm whose performance ratio
approaches 1 as the number of objects increases [2].

Approximation Algorithms for Stochastic Optimization Problems 101

Problem Det. Stochastic Stochastic Hardness
approx. elements approximation

Shortest 1[8] Sink O(1) NP-hard
paths

Sink and metric O(log2 n log m) �(log2 n)

Bin packing APTAS[24] Object sizes APTAS NP-complete[24]

Facility 1.52[32] Client demands, 8 1.46[11]
location facility costs

Vertex cover 2[34] Vertex weights, 2 1.16[19]
Incidence

Set cover O(log n)[23] Set weights, O(log nm) �(log n)[1],
Set inclusions �(log m)

Fig. 1. Summary of results

In the sequel, we consider the five problems in the order listed in Figure 1. Approx-
imation algorithms and hardness results for the underlying deterministic versions of
each of these problems are surveyed, and the algorithms for the stochastic versions are
presented.

3. Shortest paths

Motivation Consider a supplier who wishes to ship a single unit of a good to a single
destination t from a single source s, in a graph where the shipping cost is just the cost
of the edge. The solution to this problem is to compute a shortest path from s to t , and
this can be easily done in polynomial time, for example by using the algorithm due to
Dijkstra [8].

Now consider the following stochastic extension. The supplier does not know in
advance what the destination is going to be. In particular, any of m scenarios could
materialize, with the destination being tk in scenario k. The supplier could enter into
contracts in stage 1 to ship the good along edge e at cost ce, but this might be disadvanta-
geous if the destination turns out to be in the opposite direction. However, if the supplier
decides to wait for the scenarios to materialize, then the cost of edge e in scenario k

changes to fkce, which could be disadvantageous if fk is large. Hence the supplier might
wish to reserve some edges now at cost ce, and augment the network in scenario k if
necessary.

Problem definition We are given a graph G = (V , E), with edge costs ce and a
single source s ∈ V . Without loss of generality, we assume that the edge costs ce sat-
isfy the triangle inequality (form a metric), since any edge which violates the triangle
inequality can be replaced by an edge with length equal to the shortest path between
its end points. We also have a set of m scenarios, with scenario k specified by a desti-
nation vertex tk ∈ V , a cost scale factor fk , and a probability pk . A feasible solution
is specified by a set of edges E′ ⊂ E. The first-stage cost of this solution is

∑
e∈E′ ce,

and in scenario k, a second stage solution is a path Pk from s to tk; for the second stage
costs, we assume the edges in Pk bought in the first stage, namely in E′, have cost zero,

102 R. Ravi, A. Sinha

while the remaining edges are increased in cost by factor fk , giving second-stage cost
fk

∑
e∈Pk\E′ ce. The objective is to compute E′ which minimizes the sum of first stage

edge costs and expected second stage edge costs. We abbreviate this problem as SSP
(stochastic shortest paths).

While it is not obvious that E′ even induces a connected component, the following
lemma proves that E′ is indeed connected; in fact, it is a tree.

Lemma 1. There exists an optimal solution to SSP where the set of edges E′ bought in
the first stage induces a tree containing the source s.

Proof. Suppose for a contradiction there is another connected component C �� s. Let
K ′ be the set of scenarios for which the optimal solution uses at least one edge in C,
and let Es be the connected component of first-stage edges which include the source s.
For optimality, it must be the case that for every edge e ∈ C, we have

∑
Pk�e pkfk ≥ 1,

implying that
∑

k∈K ′ fk ≥ 1.
Now consider the paths used in the scenarios in K ′. Let k0 be the scenario in which

the second-stage cost of the segment to C from the source is the cheapest. If we re-route
the paths of all scenarios in K ′ to using the path of k0 from the source until the point the
other scenario paths intersect C, then since

∑
k∈K ′ fk ≥ 1, the total cost cannot increase.

Therefore, we can purchase these edges (which we used for re-routing), and this does
not increase the cost.

Proceeding this way for other components, we infer that E∗ induces a connected
graph containing s, which need be no more than a tree since the second stage solutions
only look for a single path from s.

Interpretation as a network design problem Armed with the above lemma, SSP can
be interpreted as the tree-star network design problem, defined as follows. In tree-star
network design, demand nodes have a demand for dj units of goods to be shipped from
a source. A feasible solution is specified by a tree, with the cost of the solution being
M times the cost of the tree (for pre-specified M) plus the length of the shortest path to
each demand node from the tree, weighted by the demand at the node. A constant-factor
approximation algorithm for this problem was first provided by Ravi and Salman [35],
and it has also been studied subsequently as the connected facility location problem [26,
29], and the asymmetric VPN design problem [12].

Theorem 1. There is a polynomial-time constant-factor approximation algorithm for
SSP.

Proof. SSP is equivalent to the tree-star network design problem, via the following trans-
formation. The fixed cost multiplier of the tree M is set to 1. The demand of each node tk
is set to fkpk . Now, purchasing a tree T in stage 1 for SSP is equivalent to building T in
the tree-star problem. The expected second stage cost is exactly

∑m
k=1 pkfkdist(tk, T),

which is the same as incurred in the tree-star problem when the demand at node tk is
pkfk . Here dist (tk, T) is the distance from tk to the nearest point in T using the original
metric c.

While there may exist multiple optimal solutions to SSP, some of which need not
induce a first-stage tree, our algorithm finds an optimal solution where the first stage is a

Approximation Algorithms for Stochastic Optimization Problems 103

tree. Since there always exists an optimal solution to SSP whose first-stage component
is a tree (Lemma 1), the equivalence of SSP and tree-star network design as described
above remains valid. The equivalence of SSP and tree-star network design also implies
the NP-hardness of SSP. Note that SSP is different from the maybecast problem studied
by Karger and Minkoff [26], because in their model, each node is a terminal indepen-
dently with a certain probability, edge costs do not change across scenarios, and the
solution is required to be a single tree spanning all potential terminals.

3.1. Stochastic metric

The problem becomes even more interesting (and harder) when the metric itself is
allowed to change arbitrarily across scenarios. This might happen, for example, be-
cause shipping by sea becomes much cheaper than air transport in one scenario, and
vice-versa in another. The problem is defined exactly as in Section 3, except that the cost
of edge e in the first stage is c0

e and in scenario k is ck
e . We call this the stochastic metric

shortest paths (SMSP) problem.
In general, the first-stage component of an optimal solution for SMSP need not

be a tree. Consider the following example, where there is only one second-stage sce-
nario. The graph is a path with five vertices s = v0, . . . , v4 = t , where s and t are the
source and the sink respectively. Let M be a large constant. The costs of the four edges
(v0, v1), . . . , (v3, v4) in the first stage are respectively 1, M, 1, M , and in the second
stage are M, 1, M, 1. The optimal solution is clearly to purchase edges (v0, v1) and
(v2, v3) in the first stage, and the others in the second stage; this solution has cost 4. Any
solution which requires the first stage to be a tree has cost at least M .

Nevertheless, in certain situations it is natural to expect or require that the first-stage
component be a tree. Most extant literature dealing with stochastic versions of network
design problems either explicitly require the first-stage component to be a tree, or end
up with such solutions nevertheless [14, 16, 20, 22, 26]. For the rest of this section,
we consider the stochastic metric shortest paths problem with the explicit additional
requirement that the first-stage component of any solution must be a tree. We label this
problem Tree-SMSP.

Hardness The Tree-SMSP problem is as hard as the group Steiner tree problem (GST),
defined as follows. G = (V , E) is an undirected graph with edge weights ce, and there
are m vertex subsets (called groups) Sk . The objective is to compute a minimum cost tree
which includes at least one vertex from every group. This problem was studied by Garg,
Konjevod and Ravi [10] who also gave an approximation algorithm with performance
ratio roughly O(log2 n log m), and recently Halperin and Krauthgamer [17] showed an
inapproximability threshold of �(log2 n) even when G is a tree. An �(log2 n) hardness
for Tree-SMSP follows from the reduction of GST to Tree-SMSP, shown below.

Theorem 2. An instance of GST can be modeled as a special case of Tree-SMSP.

Proof. Suppose we are given an instance of group Steiner tree, specified by G = (V , E),
metric edge costs c, and groups S1, S2, . . . , Sm. We create an instance of Tree-SMSP
with one scenario for every group. The graph remains the same, and the first stage edge
costs c0 are the same as c, the edge costs in the GST instance. In scenario k, the metric is

104 R. Ravi, A. Sinha

as follows. The distance between any two vertices in Sk is zero, and all other distances are
infinity. Any vertex in Sk is defined to be the destination tk for scenario k. All scenarios
are equally likely.

An optimal solution to this instance of Tree-SMSP must select a first stage tree which
includes at least one vertex from each Sk , to avoid infinite cost. If the tree includes any
vertex in Sk , it can be augmented at cost zero to a tree which includes tk if scenario k

materializes.

Approximation algorithm Our approximation algorithm relies on the following IP
formulation of Tree-SMSP. Variable rk

uv is 1 if edge (u, v) (in the direction u → v) is
part of the path traversed to tk from s and edge (u, v) is chosen in the recourse solution.
Variable f k

uv is 1 if edge (u, v) is chosen in the path to tk from s and edge (u, v) is part
of the first-stage solution. Variable xuv is 1 if edge (u, v) is chosen in the first-stage tree.

min
∑

e

cexe +
m∑

k=1

pk

∑

e

rk
e ck

e (IPSMSP)

s.t.
∑

v

(rk
v,tk

+ f k
v,tk

) ≥ 1 ∀k

∑

v

(rk
uv + f k

uv) =
∑

v

(rk
vu + f k

vu) ∀u ∈ V \ {tk, s}, ∀k

∑

v

rk
uv ≥

∑

v

rk
vu ∀u ∈ V \ {tk}, ∀k

f k
e ≤ xe ∀e ∈ E, ∀k

f, r, x non-negative integers

The third set of inequalities are strengthenings valid only for the tree version of SMSP,
insisting that flows along recourse arcs to tk from s via any node are non-decreasing;
they are also crucial for obtaining the result below. IPSMSP is polynomial in size, so
its linear relaxation LPSMSP can be solved optimally in polynomial time. Let (f, r, x)

denote an optimal solution to the linear program LPSMSP , and OPTT ree−SMSP be its
value. The following theorem describes our rounding algorithm.

Theorem 3. The fractional solution (f, r, x) can be rounded in polynomial time to an
integer solution (f̂ , r̂, x̂) of cost O(log2 n log m)OPTT ree−SMSP .

Proof. For each destination tk , let r∗(k) = ∑
e rk

e ck
e be the cost incurred by the recourse

component of the fractional path for tk . Let Sk be the set of all nodes within distance
2r∗(k) of tk in the metric ck . The idea is that we can incur a factor of 2 and pay for a
path to tk from any node in Sk by charging it to r∗(k), and hence we need a first stage
tree which reaches at least one node in Sk . We construct sets Sk for every scenario k,
and create an instance of the group Steiner tree problem using the metric c.

Using Markov’s inequality1, it can be shown that if s /∈ Sk , then we have∑
e=(u,v):u/∈Sk,v∈Sk

xe ≥ 1
2 . Hence 2x is a fractional solution to the linear relaxation

1 Markov’s inequality is used in the following form here: If the recourse components of the paths from s

to tk are considered, and αi and βi denote the path lengths and flow amounts on path i respectively, then we
have r∗(k) = ∑

i αiβi . Since in any optimal solution we must have
∑

i βi = 1, and βi ≥ 0 for all i, we can
view βi as probabilities; specifically, we define a random variable r and let βi be the probability that r = αi .
We then have E[r] = r∗(k), and Markov’s inequality indicates that Pr(r ≥ 2r∗(k)) ≤ 1/2.

Approximation Algorithms for Stochastic Optimization Problems 105

of the following IP formulation of the group Steiner tree problem: min
∑

e cexe such
that

∑
e=(u,v):u/∈S,v∈S xe ≥ 1 ∀S ∃k : Sk ⊆ S. Using the result of Garg, Konjevod

and Ravi [10], we can construct an integer solution x̂ at a cost which is no more than
O(log2 n log m ·OPTSMSP) which is a tree and includes at least one vertex of every Sk .
Since for every scenario k we can augment this tree to include tk at cost no more than
2r∗(k), our approximation ratio follows.

4. Bin packing

Problem definition and algorithm Stochastic bin packing is motivated by applica-
tions where storage capacity has to be reserved in advance of the arrival of the objects,
and if the reserved capacity is insufficient, we have to purchase additional capacity at
possibly higher costs. Formally, we are given a bin capacity B, known in advance. There
is a set of m possible scenarios, with scenario k specified by a probability pk of occur-
rence, a set Sk of objects (each with size sk

i ≤ B), and a bin cost fk . A feasible solution
is specified by a integral number x of bins purchased in stage 1, at unit cost per bin.
If scenario k materializes, the objects in Sk need to be packed into bins of capacity B,
which may necessitate the purchase of an additional integral number of bins at cost fk

per bin. The objective is to compute x so as to minimize the expected total cost. For
any y, let y� denote the smallest integer no smaller than y, and [y] denote the integer
nearest to y.

For the deterministic bin-packing problem, an APTAS was given by Fernandez de
la Vega and Lueker [6], which uses at most (1 + ε)OPT + 1 bins, for any ε > 0
(although the running time depends on ε). In general, suppose we have an algorithm
for the deterministic version of bin-packing which always uses at most ρ.OPT + β

bins, for fixed ρ and β. Asymptotically (as OPT → ∞), such an algorithm becomes a
ρ-approximation. Any locally optimal algorithm (first-fit, for example) achieves ρ = 2
with β = 0. The following theorem shows how to extend any deterministic bin-packing
algorithm to handle our version of stochastic bin-packing.

Theorem 4. Order the scenarios so that we have
∑

i s1
i ≥ ∑

i s2
i ≥ · · · ≥ ∑

i sm
i . Let k∗

be the largest integer such that
∑k∗

k=1 fkpk ≥ 1. Then purchasing x = ρ ∑
i sk∗

i �+β+2
bins in the first stage yields a solution of cost no more than ρ.OPT + β + 2, where
OPT is the expected cost of the optimal solution to the stochastic bin-packing problem.

Proof. Consider the fractional relaxation of the problem, when we can pack items frac-
tionally into bins. In that case, x∗ = [

∑
i sk∗

i] is the optimal solution, because it is the
point where the expected marginal cost of buying an additional bin in recourse goes below
1. The expected total cost if we purchase x∗ bins is x∗ + ∑

k>k∗ pkfk(
∑

i sk
i � − x∗),

which is a lower bound on the value of an optimal solution of stochastic bin packing.
Since ρ ∑

i sk
i �+β +2 bins are sufficient to pack the objects in Sk , we will need to

purchase at most ρ ∑
i sk

i �−ρx∗�−1 additional bins if scenario k > k∗ materializes.
If scenario k ≤ k∗ is realized, then ρx∗� + β + 2 bins are sufficient and no additional
bins are needed. Hence the expected cost of our solution is bounded from above by
ρx∗� + ∑

k>k∗ pkfk(ρ
∑

i sk
i � − ρx∗� − 1) + β + 2, which is no more than ρ times

our lower bound plus an additional β + 2 bins.

106 R. Ravi, A. Sinha

Since the algorithm by Fernandez de la Vega and Lueker [6] achieves ρ = 1 + ε and
β = 1, we can obtain an APTAS for our stochastic version of bin-packing which uses
no more than (1 + ε)OPT + 3 bins for any ε > 0 (and running time dependent on ε).

5. Facility location

5.1. Definition

As in the classical uncapacitated facility location problem, we are given a set of facilities
F and a set of clients D, with a metric cij specifying the distances between every client
and every facility. However, the demand of each client is not known at the first stage. In
scenario k, client j has demand dk

j , which may be zero. Facility i has a first-stage opening

cost of f 0
i , and recourse costs of f k

i in scenario k. These may be infinity, reflecting the
unavailability of the facilities in various scenarios. We abbreviate this problem as SFL.

min
∑

i∈F

fiy
0
i +

m∑

k=1

pk

(∑

i∈F

f k
i yk

i +
∑

i∈F,j∈D

dk
j cij x

k
ij

)
(IPSFL)

s.t.
∑

i∈F

xk
ij ≥ dk

j ∀j ∈ D, ∀k

xk
ij ≤ y0

i + yk
i ∀i ∈ F, ∀j ∈ D, ∀k

x, y non-negative integers

The problem is best explained by the integer program formulation IPSFL above.
While our algorithms extend to arbitrary demands at every client, for simplicity we only
study the case when all dk

j ’s are either 0 or 1. Variable xk
ij is 1 if and only if client j is

served by facility i in scenario k. If xk
ij = 1, then facility i must either be opened at the

first stage (y0
i = 1) or in recourse in scenario k (yk

i = 1) (or both).

5.2. History and non-triviality of the problem

The classical (deterministic) uncapacitated facility location problem has a rich history
(see Cornuéjols, Nemhauser and Wolsey [5] for a survey). Balinski [3] introduced an
integer programming formulation for this problem which has led to several approxi-
mation algorithms. The first constant factor approximation (which uses this formula-
tion) is due to Shmoys, Tardos and Aardal [42], and the current best algorithm, due
to Mahdian, Ye and Zhang [32] uses a formulation which differs only slightly. Indeed,
our formulation (IPSFL) extends Balinski’s formulation to the stochastic setting. In the
stochastic optimization community, Louveaux and Peeters [31] considered a slightly
different version of stochastic facility location, and provided a dual-ascent based exact
(non-polynomial-time) algorithm for it.

There are several preliminary insights which one can obtain by examining our formu-
lation of stochastic facility location closely. First notice that if the second stage facility
costs were identical to those in the first stage for all scenarios, then we can “de-couple”

Approximation Algorithms for Stochastic Optimization Problems 107

the stochastic components of the problem and solve for each scenario independently. On
the other hand, if there was no second stage and all facilities had to be opened in the first
stage, then SFL reduces to an instance of the usual UFL, where the probability multipli-
ers in the expected service costs can be incorporated into the demand terms (thinking of
the demands as being scaled based on the probability of occurrence). This also extends
to allowing arbitrary demand distributions at the vertices, if they are independent. In
this case, existing approximations for UFL apply directly. The added difficulty, and
indeed the interesting aspect of the model, arises from varying (and typically increased)
second-stage facility costs under different scenarios.

In the other direction, SFL can be viewed as a special case of the multicommodity
facility location problem [37, 41], where we treat each scenario as a distinct commodity
and the cost of a facility depends on the commodities it serves. However, the best-known
approximation ratio for such a version of the multicommodity facility location problem
is O(log m) due to Ravi and Sinha [37], (where m is the number of scenarios), so we
need different techniques for better approximations of SFL.

The main difficulty stems from the fact that we cannot treat each scenario by itself,
since the different scenarios interact in utilizing first-stage facilities. A simple heuris-
tic is to compare the solution obtained if all the demand is satisfied in the first stage
with the solution when no first stage facilities are opened. While this heuristic works
well in certain instances (particularly, maximization problems such as maximum weight
matchings, as in [28]), it can easily be shown to perform badly in our case, due to the
interaction across scenarios.

5.3. Algorithm

Our approximation algorithm proceeds along the lines of the LP-rounding algorithm
due to Shmoys, Tardos and Aardal [42], with some crucial differences. We begin by
solving the linear relaxation of IPSFL. Let (x, y) denote an optimal LP solution. The
first step in rounding this fractional solution is using the filtering technique of Lin and
Vitter [30]. We fix a constant 0 < α < 1. For every client-scenario pair (j, k), we define
its optimal fractional service cost to be c∗

jk = ∑
i cij x

k
ij . Order the facilities which serve

the pair (j, k) according to non-decreasing distance from j . The α point gj,k(α) for the
client-scenario pair (j, k) is the smallest distance cα

jk such that
∑

i:cij ≤cα
jk

xk
ij ≥ α.

Theorem 5. Given a feasible fractional solution (x, y), we can find a fractional solution
(x, y) which is feasible for the LP relaxation of IPSFL in polynomial time such that (i)
cα
jk ≤ 1

1−α
c∗
jk; (ii) xk

ij > 0 ⇒ cij ≤ cα
jk for all i ∈ F, j ∈ D, k = 1, 2, . . . , m;

(iii) yk
i ≤ min{1,

yk
i

α
} for all i ∈ F, k = 0, 1, . . . , m.

Proof. First, if cα
jk > 1

1−α
c∗
jk , then we get the following contradiction (as an application

of Markov’s inequality, using the same logic as in Footnote 1): c∗
jk ≥ α.0+(1−α)cα

jk >

c∗
jk , proving (i).

Next, define x as follows, which satisfies (ii) by definition:

xk
ij =

{
min{1, xk

ij /α} if cij ≤ cα
jk

0 otherwise

108 R. Ravi, A. Sinha

Furthermore, define yk
i = maxj∈D xk

ij , for all i and k. Using (i) and the definition of

x, it follows that yk
i ≤ min{1,

yk
i

α
} for all i ∈ F , satisfying (iii).

The definitions also ensure that (x, y) is a feasible solution to the LP relaxation of
IPSFL.

The algorithm in [42] proceeds to iteratively round xk
ij variables for which cα

jk is
smallest. However, this does not work in our case, because the rounding algorithm might
close facilities which are needed for other scenarios k′ �= k. Hence we need a rounding
algorithm which carefully treats the distinction between stage 1 facility variables y0,
and recourse facility variables yk .

We proceed as in earlier algorithms by obtaining an optimal LP solution. In the next
step, we progressively choose clients across all scenarios with minimum fractional ser-
vice cost, and neglect to serve other clients conflicting (overlapping in facility utilization)
with it by assigning them to be served by this client’s serving facility. However, this will
not work if the serving facility is not open in this neglected client’s scenario. Hence,
the main difference is that if a stage 1 facility is opened to serve a client, all clients
that conflict with it can be served, while if a stage 2 facility variable is rounded up to
serve this client, only those clients in the same scenario that conflict with this client are
neglected and assigned to this client. This strategy suffices to pay for all opened facilities
by the “disjointness” of the different scenarios’ contributions in the objective function,
while the rule of considering clients in increasing order of fractional service cost allows
us to bound the service cost. Our rounding algorithm is described in detail below. Let
0 < β < 1 be another fixed constant.

1. Initialize F̂ k = ∅ to be the set of facilities opened in scenario k for k = 0, 1, . . . , m.
Mark all client-scenario pairs as “unserved”.

2. Let (j, k) be an unserved client-scenario pair with smallest cα
jk . Consider the fol-

lowing cases, in each case marking (j, k) as “served” and proceeding to the next
client-scenario pair. Let S0 be the set of facilities i such that xk

ij > 0 ∧ y0
i > 0, and

Sk be the set of facilities i such that xk
ij > 0 ∧ yk

i > 0.

(a) If
∑

i∈S0 y0
i ≥ β, let i be the facility such that f 0

i is smallest among all facili-

ties in S0. Move facility i to the set F̂ 0, and set ŷ0
i = 1. For all other facilities

i′ ∈ S0 ∪ Sk , set ŷ0
i′ = ŷk

i′ = 0. For client-scenario pairs (j ′, k′) such that there

exists a facility i′ ∈ S0 ∪ Sk with ci′j ′ ≤ cα
j ′k′ , set x̂k′

ij ′ = 1 and mark them as
“served”.

(b) If
∑

i:i∈S0 y0
i < β, then we must have

∑
i:cij ≤cα

jk
yk

i ≥ 1−β. In this case, let i be

the facility in Sk with smallest f k
i . Move facility i to the set F̂ k and set ŷk

i = 1.
For all other facilities i′ ∈ Sk , set ŷk

i′ = 0. For clients j ′ such that there exists a
facility i′ ∈ Sk with ci′j ′ ≤ cα

j ′k , set x̂k
ij ′ = 1 and mark them as “served”.

3. Facilities in F̂ 0 are the facilities to be opened in stage 1, and facilities in F̂ k are
the facilities to be opened in recourse if scenario k materializes. Clients are served
according to the zero-one variables x̂k

ij .

The algorithm is similar in spirit to that of Shmoys, Tardos and Aardal [42]. Notice
that feasibility of the fractional solution is maintained throughout the above rounding

Approximation Algorithms for Stochastic Optimization Problems 109

process. In each step, we fully open (round to 1) one facility and assign several clients
to this facility, while closing (rounding to 0) some others. The cost of the open facility is
bounded by a constant times the costs of the facilities that are closed, as will be proved
in Lemma 2 below. Each time a facility is closed, all clients dependent on it for ser-
vice are assigned to the facility that was just opened in order to close the facility under
consideration.

Lemma 2. The rounding algorithm above produces an integer solution (x̂, ŷ) which is
feasible for IPSFL such that

(i) For every client-scenario pair (j, k), we have x̂k
ij = 1 ⇒ cij ≤ 3cα

jk .

(ii)
∑

i∈F f 0
i ŷ0

i ≤ 1
β

∑
i∈F f 0

i y0
i .

(iii)
∑

i∈F f k
i ŷk

i ≤ 1
1−β

∑
i∈F f k

i yk
i for all k = 1, 2, . . . , m.

Proof. When a client is assigned to a facility (ie, x̂k
ij is set to 1), we either assign it to a

facility within distance cα
jk , or it is assigned when some other client j ′ with cα

j ′k ≤ cα
jk

was being considered. In either case, a simple application of triangle inequality yields
cij ≤ 3cα

jk .

When a facility i is chosen for opening in the first stage (ie, ŷ0
i is set to 1), case 2(a)

must have occurred. In that case, we have a sufficiently large fraction (β) of facilities
which have y0

i > 0 which we are shutting, and we can charge the cost of opening i to
the fractional solution. A similar argument holds for the case when a facility is opened
in recourse in scenario k.

The solution produced is also feasible, because we start with a feasible solution
(x, y), and in each step, we maintain feasibility by ensuring that a client-scenario pair
is marked “served” only when its xk

ij variable is set to 1 (ie, it is assigned to a facility)
for some facility i.

Theorem 6. There is a polynomial-time approximation algorithm with performance
ratio 8 for SFL.

Proof. Setting α = 1
4 and β = 1

2 , along with Theorem 5 and Lemma 2, yields the
performance guarantee. The running time of the algorithm is polynomial in |D|, |F |, m.

Extensions The algorithm easily extends to allowing demands at client-scenario pairs
which are non-negative real numbers instead of just 0 or 1. We may also allow the costs
to transport one unit of demand per unit length in different scenarios to be different,
motivated by, e.g., different scenarios having different prices of gas. In other words,
each scenario has a multiplier γk such that the distance between i and j in scenario k is
γkcij . Essentially, this can be incorporated into the demand variables dk

j , and the rest of
the algorithm proceeds as before to give identical results.

Subsequent to the first appearance of this paper, improved approximation ratios have
been obtained [39, 14] for stochastic versions of the facility location problem, including
versions which generalize the version considered by us.

110 R. Ravi, A. Sinha

6. Vertex cover

Problem definition We are given a first-stage (undirected) graph G = (V , E0). As
usual, there are m possible scenarios, each consisting of a probability of occurrence pk

and a set of edges Ek , which may or may not be subsets of the first-stage edge set E0.
The first-stage cost of vertex v is c0

v , and its cost in scenario k is ck
v . The objective is

to identify a set of vertices to be selected in the first stage, so that the expected cost of
extending this set to a vertex cover of the edges of the realized second-stage scenario is
minimized.

In the problem as defined above, edges in Ek \ E0 must be covered in the second
stage, while edges in Ek ∩ E0 may be covered in either stage. This is a generalization
of the case when first-stage vertices cover all second-stage edges incident to them. We
provide a 2-approximation for this generalized stochastic vertex cover problem.

The best known approximation algorithm for the deterministic version of vertex cover
has performance ratio 2 − log log |V |

2 log |V | , due to Monien and Speckenmeyer [34]. A lower
bound of 1.16 on the hardness of approximating the problem was shown by Håstad [19].
Our approximation ratio of 2 for the generalized stochastic version of vertex cover
asymptotically matches the best known approximation for the deterministic version.

Integer program formulation Our algorithm is a primal-dual algorithm which rounds
the natural IP formulation of stochastic vertex cover. Variable xk

v indicates whether or
not vertex v is purchased in scenario k (where k = 0 as usual denotes the first stage).
Recall that edges in Ek ∩ E0 may be covered in either the first or second stage, while
edges in Ek \ E0 must be covered in the second stage.

min
∑

v

c0
vx

0
v +

m∑

k=1

∑

v

pkc
k
vx

k
v (IPSV C)

s.t. x0
u + x0

v + xk
u + xk

v ≥ 1 ∀uv ∈ Ek ∩ E0, ∀k

xk
u + xk

v ≥ 1 ∀uv ∈ Ek \ E0, ∀k

x non-negative integers

Dual program The dual of the linear relaxation of IPSV C is shown below. Variable
yk
e packs edge e in Ek if e ∈ Ek , and it packs e ∈ E0 if e ∈ Ek ∩ E0.

max
m∑

k=1

∑

e∈E0∪Ek

yk
e (DPSV C)

s.t.
∑

e∈Ek :v∈e

yk
e ≤ pkc

k
v ∀v, ∀k

m∑

k=1

∑

e∈E0∩Ek :v∈e

yk
e ≤ c0

v ∀v

y ≥ 0

Algorithm The algorithm is a greedy dual-ascent type of primal-dual algorithm, with
two phases. In Phase I, we raise the dual variables yk

e uniformly for all edges in Ek \E0,

Approximation Algorithms for Stochastic Optimization Problems 111

separately for each k. All vertices which become tight (have the first dual constraint
packed to pkc

k
v) have xk

v set to 1, and deleted along with adjacent edges. We proceed
this way until all edges in Ek \ E0 are covered and deleted.

In Phase II, we do a greedy dual-ascent on all uncovered edges of Ek . These edges
are contained in Ek ∩E0. This time around, we use a slightly different rule for purchasing
vertices. If a vertex is tight for x0

v (i.e., second dual constraint packed to c0
v), then we

select it in the stage 1 solution by setting x0
v = 1, and if it is not tight for x0 but is tight

for xk (packed in the first dual constraint), then we select it in the recourse solution and
set xk

v = 1.

Theorem 7. The integer program IPSV C can be rounded by the primal-dual algorithm
described above within a factor of 2 in polynomial time.

Proof. We analyze the performance of the algorithm described above. Consider an edge
e = uv in scenario k. By definition of the algorithm, we must have selected one of its
two end-points in either Phase I or Phase II (or both), so that the algorithm yields a
feasible solution. We use linear programming duality to bound the cost of the solution
by showing that the cost of our solution is no more than 2

∑
k

∑
u,v∈V yk

uv , where y is
the dual solution constructed by our algorithm.

We show the performance ratio of our algorithm as follows. Each time we set an xk
v

variable to 1, we assign some dual variables to it such that (i) the sum of dual variables
assigned to each such xk

v variable equals pkc
k (where p0 = 1), and (ii) each dual variable

is assigned at most twice.
Consider a vertex v which was selected (ie, xk

v was set to 1) in scenario k in either
Phase I or Phase II. We assign all dual variables yk

e such that v is an end point of e to
this vertex, and since v is selected only when the constraint

∑
e∈Ek :v∈e yk

e ≤ pkc
k
v goes

tight, we maintain (i). An edge e in Ek \ E0 is assigned to a vertex v only if xk
v is set to

1 for k �= 0, and since an edge has at most 2 end-points, we ensure (ii) for edges in Ek .
Next consider a vertex v for which we set x0

v to 1. For this to happen, the constraint∑
k

∑
e∈E0∩Ek :v∈e yk

e ≤ c0
v must have gone tight, and all edges in the sum are assigned

to the variable x0
v . This assignment once again ensures (i). This assignment only includes

edges in E0 ∩ Ek , and these edges are not assigned to any variable xk
v for k �= 0, thus

also ensuring (ii) for all edges in E0 ∩ Ek .
These two cases cover all the possibilities, thus proving the theorem.

7. Set cover

Problem definition The input in our version of the stochastic set cover problem con-
sists of a universe U of |U | = n elements, and a collection S of subsets of U . Each
set S ∈ S has a stage 1 cost c0

S and a cost of ck
S in scenario k, some of which might be

infinity reflecting the unavailability of the set in certain scenarios. Each element u ∈ U

has a demand vector du with the kth component dk
u being 1 if it is required to cover u in

scenario k, and 0 otherwise. A feasible solution is specified by a collection S ′ ⊆ S, with
stage 1 cost

∑
S∈S ′ c0

S . If scenario k is realized, then S ′ must be extended by purchasing
some more sets Sk to cover all elements with dk

u = 1. The cost of this recourse solution

112 R. Ravi, A. Sinha

is
∑

S∈Sk ck
S , and we incur this with probability pk . The objective is a solution which

minimizes the sum of first stage and expected second stage costs.

Reduction to classical set cover
The deterministic version of set cover was among the earliest NP-hard problems to be

approximated, with a O(log n) approximation was first provided by Johnson [23]. The
problem was also shown to be NP-hard to approximate better than a factor of �(log n)

by Arora and Sudan [1].
Given an instance of deterministic set cover, we can define an instance of stochastic

set cover by creating a distinct scenario for each element, and setting all second-stage set
costs to infinity. This implies an inapproximability threshold of �(log m) for stochastic
set cover too.

We show below that any instance of stochastic set cover with n elements can be
transformed to an instance of deterministic set cover with n(m + 1) elements. This
means that there exists an O(log nm) = O(log n + log m) approximation for stochastic
set cover by using this transformation and then applying any approximation algorithm
for deterministic set cover. The approximation ratio therefore matches the inapproxima-
bility ratio upto constants. The reduction in Theorem 8 allows us to extend the model
to the following generalization, for which the same approximation guarantee holds: In
scenario k, each set Sk covers only a subset of the elements that the first-stage set S

covers.

Theorem 8. Any stochastic set cover problem is equivalent to a classical set cover
problem with mn elements and |S|(m + 1) sets.

Proof. Associate an element uk for every element-scenario pair (u, k) such that dk
u = 1.

Create m + 1 copies of every set S ∈ S. Set S0 contains all elements uk for all k =
1, 2, . . . , m such that u ∈ S, while set Sk only contains uk for all u ∈ S. Finally, the
cost of S0 is c0

S and that of Sk is pkc
k
S .

By construction, any solution to the stochastic set cover instance yields a solution to
the transformed deterministic instance, and vice-versa. This proves the equivalence.

8. Conclusion

We have provided approximation algorithms for two-stage finite-scenario stochastic
versions of several combinatorial optimization problems. As noted in Section 2.5, sev-
eral recent papers have made substantial further progress in this area, by considering,
for example, multi-stage models, models with exponentially many scenarios, the use
of sampling, cost-sharing functions, etc. Given the richness of the fields of stochastic
optimization as well as approximation algorithms, we believe that there is substantial
potential for further work in approximation algorithms for stochastic optimization prob-
lems.

Acknowledgements. A preliminary version of this paper [36] appeared in the proceedings of the 10th Inte-
ger Programming and Combinatorial Optimization Conference; we thank the participants thereof for some
enlightening suggestions.

Approximation Algorithms for Stochastic Optimization Problems 113

We gratefully thank Andrew Schaefer and Nan Kong of the University of Pittsburgh for introducing us to
the topic of this research via [28]. We also thank two anonymous referees for their valuable comments which
greatly improved this paper.

This work was done while the second author (Amitabh Sinha) was a graduate student at the Tepper School
of Business at Carnegie Mellon University. Both authors were supported in part by NSF grant CCR-0105548
and ITR grant CCR-0122581 (the ALADDIN project).

References

1. Arora, S., Sudan, M.: Improved low degree testing and applications. Combinatorica 23 (3), 365–426
(2003)

2. Ausiello, G., Crescenzi, P., Gambosi, G., KannV., Marchetti-Spaccamela,A., Protasi, M.: Complexity and
Approximation: Combinatorial Optimization Problems and their Approximability Properties. Springer-
Verlag, Berlin, 1999

3. Balinski, M.L.: On finding integer solutions to linear programs. In: Proceedings of the IBM Scientific
Computing Symposium on Combinatorial Problems, 1966, pp. 225–248

4. Birge, J., Louveaux, F.: Introduction to Stochastic Programming. Springer-Verlag, Berlin, 1997
5. Cornuéjols, G., Nemhauser, G., Wolsey, L.: The uncapacitated facility location problem. In:

P. Mirchandani, R. Francis (eds.), Discrete Location Theory, Wiley, 1990, pp. 119–171
6. Fernandez de la Vega, W., Lueker, G.S.: Bin packing can be solved within 1 + ε in linear time. Combi-

natorica 1, 349–355 (1981)
7. Dhamdhere, K., Ravi, R., Singh, M.: On two-stage Stochastic Minimum Spanning Trees. In: Proceedings

of the 11th Integer Programming and Combinatorial Optimization Conference, 2005, pp. 321–334
8. Dijkstra, E.: A note on two problems in connexion with graphs. Numerischke Mathematik 1, 269–271

(1959)
9. Dye, S., Stougie, L., Tomasgard, A.: Approximation algorithms and relaxations for a service provision

problem on a telecommunication network. Discrete Applied Mathematics 129 (1), 63–81 (2003)
10. Garg, N., Konjevod, G., Ravi, R.: A polylogarithmic approximation algorithm for the group Steiner

treeproblem. J. Algorithms 37 (1), 66–84 (2000)
11. Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms. J. Algorithms 31 (1),

228–248 (1999)
12. Gupta, A., Kleinberg, J., Kumar, A., Rastogi, R., Yener, B.: Provisioning a virtual private network: A

network design problem for multicommodity flow. In: Proceedings of the 33rd Annual ACM Symposium
on Theory of Computing, 389–398 (2001)

13. Gupta, A., Pál, M.: Stochastic Steiner trees without a root. In: Proceedings of the 32nd International
Colloquium on Automata Languages and Programming, 2005, pp. 1051–1063

14. Gupta, A., Pál, M., Ravi, R., Sinha, A.: Boosted Sampling: Approximation algorithms for stochastic
optimization problems. In: Proceedings of the 36th Annual ACM Symposium on Theory of Computing,
2004, pp. 417–426

15. Gupta, A., Pál, M., Ravi, R., Sinha, A.: What about Wednesday? Approximation algorithms for multistag-
estochastic optimization. In: Proceedings of the 8th International Workshop onApproximationAlgorithms
for Combinatorial Optimization, 2005, pp. 86–98

16. Gupta, A., Ravi, R., Sinha, A.: An Edge in Time Saves Nine: LP Rounding Approximation Algorithms
for Stochastic Network Design. In: Proceedings of the 45th Symposium on Foundations of Computer
Science, 2004, pp. 218–227

17. Halperin, E., Krauthgamer, R. Polylogarithmic inapproximability. In: Proceedings of the 35th Annual
ACM Symposium on Theory of Computing 2003, pp. 585–594

18. Klein Haneveld, W.K., van der Vlerk, M.H.: Stochastic Programming. Dept. of Econometrics and OR
University of Groningen Netherlands, 2003

19. Håstad, J.: Some optimal inapproximability results. J. ACM 48 (4), 798–859 (2001)
20. Hayrapetyan, A., Swamy, C., Tardos, E.: Network Design for Information Networks. In: Proceedings of

the 16th ACM-SIAM Symposium on Discrete Algorithms, 2005, pp. 933–942
21. Heitsch, H., Römisch, W. Scenario reduction algorithms in stochastic programming. Computational Opti-

mization and Applications 24, 187–206 (2003)
22. Immorlica, N., Karger, D., Minkoff, M. Mirrokni,V.: On the Costs and Benefits of Procrastination:Approx-

imation algorithms for stochastic combinatorial optimization problems. In: Proceedings of the 15thACM-
SIAM Symposium on Discrete Algorithms, 2004, pp. 684–693

23. Johnson, D., Approximation algorithms for combinatorial problems. J. Comput. Syst. Sci. 9, 256–278
(1974)

114 R. Ravi, Amitabh Sinha: Approximation Algorithms for Stochastic Optimization Problems

24. Coffman Jr, E., Garey, M., Johnson, D.: Approximation algorithms for bin-packing: a survey. In: D.S.
Hochbaum (ed.), Approximation Algorithms for NP-hard Problems, 1997, PWS

25. Kall, P., Wallace, S.: Stochastic Programming. Wiley, 1994
26. Karger, D., Minkoff, M.: Building Steiner trees with incomplete global knowledge. In: Proceedings of

the 41st Annual IEEE Symposium on Foundations of Computer Science, 2000, pp. 613–623
27. Kleinberg, J., Rabani, Y., Tardos, E.: Allocating bandwidth for bursty connections. SIAM J Comput.

30 (1), 191–217 (2000)
28. Kong, N., Schaefer,A.:A factor 1/2 approximation algorithm for two-stage stochastic matching problems.

Eur. J. Oper. Res. to appear, 2004
29. Kumar, A., Swamy, C.: Primal-dual algorithms for connected facility location problems. Algorithmica

40 (4), 245–269 (2004)
30. Lin, J.-H., Vitter, J.: ε-approximations with minimum packing constraint violation. In: Proceedings of the

24th Annual ACM Symposium on Theory of Computing, 1992, pp. 771–782
31. Louveaux, F., Peeters, D.: A dual-based procedure for stochastic facility location. Oper. Res. 40, 564–573

(1992)
32. Mahdian, M., Ye, Y., Zhang, J.: Improved approximation algorithms for metric facility location prob-

lems In: Proceedings of the 5th International Workshop on Approximation Algorithms for Combinatorial
Optimization, 2002, pp. 229–242

33. Möhring, R., Schulz, A., Uetz, M.: Approximation in stochastic scheduling: The power of LP-based
priority policies. J. ACM 46 (6), 924–942 (1999)

34. Monien, B., Speckenmeyer, E.: Ramsey numbers and an approximation algorithm for the vertex cover-
problem. Acta Informatica 22, 115–123 (1985)

35. Ravi, R., Salman, F.S.: Approximation algorithms for the traveling purchaser problem and its variants in
network design. In: Proceedings of the European Symposium on Algorithms, 1999, pp. 29–40

36. Ravi, R., Sinha,A.: Hedging uncertainty:Approximation algorithms for stochastic optimization problems.
In: Proceedings of the 10th Integer Programming and Combinatorial Optimization Conference, 2004, pp.
101–115

37. Ravi, R., Sinha, A.: Multicommodity facility location. In: Proceedings of the 15th Annual ACM-SIAM
Symposium on Discrete Algorithms, 2004, pp. 342–349

38. Schultz, R., Stougie, L., van der Vlerk, M.H.: Two-stage stochastic integer programming: a survey. Stat-
istica Neerlandica 50 (3), 404–416 (1996)

39. Shmoys, D., Swamy, C.: Stochastic Optimization is (almost) as Easy as Deterministic Optimization.
In: Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science, 2004, pp.
228–237

40. Shmoys, D., Swamy, C.: Sampling-based approximation algorithms for multi-stage stochastic optimiza-
tion. In: Proceedings of the 46th Annual IEEE Symposium on Foundations of Computer Science, 2005,
pp. 357–366

41. Shmoys, D., Swamy, C., Levi, R.: Facility location with service installation costs. In: Proceedings of the
15th Annual ACM-SIAM Symposium on Discrete Algorithms, 2004, pp. 1088–1097

42. Shmoys, D., Tardos, E., Aardal, K.: Approximation algorithms for facility location problems.In: Proceed-
ings of the 29th Annual ACM Symposium on Theory of Computing, 1997, pp. 265–274

43. Skutella, M., Uetz, M.: Stochastic machine scheduling with precedence constraints. SIAM J. Comput.
34 (4), 788–802 (2005)

44. Vazirani, V.: Approximation Algorithms. Springer-Verlag, Berlin, 2001

