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We consider packing linear programs with m rows where all constraint coefficients are normalized to be in the unit interval.
The n columns arrive in random order and the goal is to set the corresponding decision variables irrevocably when they arrive
to obtain a feasible solution maximizing the expected reward. Previous 41 − �5-competitive algorithms require the right-hand
side of the linear program to be ì44m/�25 log4n/�55, a bound that worsens with the number of columns and rows. However,
the dependence on the number of columns is not required in the single-row case, and known lower bounds for the general
case are also independent of n.

Our goal is to understand whether the dependence on n is required in the multirow case, making it fundamentally harder
than the single-row version. We refute this by exhibiting an algorithm that is 41 − �5-competitive as long as the right-hand
sides are ì44m2/�25 log4m/�55. Our techniques refine previous probably approximately correct learning based approaches
that interpret the online decisions as linear classifications of the columns based on sampled dual prices. The key ingredient
of our improvement comes from a nonstandard covering argument together with the realization that only when the columns
of the linear program belong to few one-dimensional subspaces we can obtain such small covers; bounding the size of the
cover constructed also relies on the geometry of linear classifiers. General packing linear programs are handled by perturbing
the input columns, which can be seen as making the learning problem more robust.
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1. Introduction. Traditional optimization models usually assume that the input is known a priori. How-
ever, in most applications, the data is either revealed over time or only coarse information about the input is
known, often modeled in terms of a probability distribution. Consequently, much effort has been directed toward
understanding the quality of solutions that can be obtained without full knowledge of the input, which led to
the development of online and stochastic optimization (Birge and Louveaux [6], Borodin and El-Yaniv [7]).
Emerging problems such as allocating advertisement slots to advertisers and yield management on the Internet
are of inherent online nature and have further accelerated this development (Agrawal et al. [1]).

Linear programming is arguably the most important and thus well-studied optimization problem. Therefore,
understanding the limitations of solving linear programs when complete data is not available is a fundamental
theoretical problem with a slew of applications, including the ad allocation and yield management problems
above. Indeed, a simple linear program with one uniform knapsack, the secretary problem, was one of the first
online problems to be considered and an optimal solution was already obtained by the early 1960s (Dynkin [13],
Gilbert and Mosteller [16]). Although the single knapsack case is currently well understood under different
models of how information is revealed (Babaioff et al. [3]), much less is known about problems with multiple
knapsacks. Only recently, algorithms with guaranteed solution quality have been developed for these more
general packing problems (Agrawal et al. [1], Devanur et al. [11], Feldman et al. [15]).

1.1. The model. We consider the following online packing linear programing problem. Consider a fixed but
unknown linear program (LP) with n columns at ∈ 60117m (whose associated variables are constrained to be in
[011]) and m packing constraints:

OPT = max
n
∑

t=1

�txt

n
∑

t=1

atxt ≤ B (LP)

xt ∈ 601170

Columns are presented in a random (uniform) order, and whenever a column is presented we are required
to irrevocably choose the value of its corresponding variable. We assume that the number of columns n is
known. (Actually knowing n up to 1 ± � factor is enough. This assumption is required to allow algorithms with
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nontrivial competitive ratios (Devenur and Hayes [10]).) The goal is to obtain a feasible solution to the LP while
maximizing its value. Note that we use OPT to denote the optimum value of the (offline) LP.

By scaling down rows as necessary, we assume without loss of generality that all entries of B are the same,
which we also denote with some overload of notation by B. Because of the packing nature of the problem, we
also assume without loss of generality that all the �t’s are positive and all the at’s are nonzero: we can simply
ignore columns that do not satisfy the first property and always set to 1 the variables associated to the remaining
columns that do not satisfy the second property.

The random permutation model, where the input is presented in a random order, has grown in popular-
ity (Babaioff et al. [3], Devenur and Hayes [10], Goel and Mehta [17]), since it avoids strong lower bounds
of the pessimistic adversarial-order model (Buchbinder and Naor [8]), while still capturing the lack of total
information a priori. Moreover, the random permutation model is weaker than the independent and identically
distributed (i.i.d.) model that assumes that the parts constituting the input are sampled independently from a
fixed distribution, which is either known or unknown.
1.2. Related work. Many different types of online problems have already been studied in the random permu-

tation model. These include bin packing (Kenyon [20]), matchings (Goel and Mehta [17], Karp et al. [19]), the
AdWords problem (Devenur and Hayes [10]), and different generalizations of the secretary problem (Babaioff
et al. [3, 4], Bateni et al. [5], Im and Wang [18], Soto [25]). Closest to our work are packing problems with a
single knapsack constraint. In Kleinberg [21], Kleinberg considered the B-choice secretary problem, where the
goal is to select at most B items coming online in random order to maximize profit. The author presented an
algorithm with competitive ratio 1−O41/

√
B5 and showed that 1−ì41/

√
B5 is the best possible. Generalizing

the B-choice secretary problem, Babaioff et al. [2] considered the online knapsack problem and presented a
41/10e5-competitive algorithm. Notice that in both cases the competitive ratio does not depend on n.

Despite all these works, results for the more general online packing LPs considered here were only recently
obtained by Feldman et al. [15] and Agrawal et al. [1]. The first paper presents an algorithm that obtains
with high probability a solution of value at least 41 − �5OPT whenever B ≥ ì44m logn5/�35 and OPT ≥

ì44�maxm logn5/�5, where �max is the largest profit. In the second paper, the authors present an algorithm
dubbed DPA (dynamic pricing algorithm), which obtains a solution of expected value at least 41 − �5OPT
under the weaker assumptions B ≥ ì44m/�25 log4n/�55 or OPT ≥ ì444�maxm

25/�25 log4n/�55. One other way
of stating this result is that the algorithm has competitive ratio 1 −O4

√

m log4n5 logB/
√
B5; this guarantee

degrades as n increases. The current lower bound on B to allow 41− �5-competitive algorithms is B ≥ logm/�2,
also presented in Agrawal et al. [1]. We remark that these algorithms actually work for more general allocation
problems, where a set of columns representing various options arrive at each step and the solution may choose
at most one of the options.

Both of the above algorithms use a connection between solving the online LP and probably approximately
correct (PAC) learning (Cucker and Zhou [9]) a linear classification of its columns, which was initiated by
Devanur and Hayes [10] in the context of the AdWords problem. Here we further explore this connection, and
our improved bounds can be seen as a consequence of making the learning algorithm more robust by suitably
changing the input LP. Robustness is a topic well studied in learning theory (Devroye and Wagner [12], Kutin
and Niyogi [22]), although existing results do not seem to apply directly to our problem. We remark that a
component of robustness more closely related to the standard PAC-learning literature was also used by Devanur
and Hayes [10].

In recent work, Devanur et al. [11] consider the weaker i.i.d. model for the general allocation problem.
Whereas in the random permutation model one assumes that columns are sampled without replacement, in the
i.i.d. model they are sampled with replacement. Making use of the independence between samples, Devanur et al.
substantially improve requirements on B to ì4log4m/�5/�25 while showing that the lower bound ì4logm/�25
still holds in this model. We remark, however, that these models can present very different behaviors: as a simple
example, consider an LP with n columns, m= 1 constraints and budget B = 1, where only one of the columns
has �1 = a1 = 1 and all others have �t = at = 0; in the random permutation model the expected value of the
optimal solution is 1, and in the i.i.d. model this value is 1 − 41 − 1/n5n → 1 − 1/e. The competitiveness of the
algorithm of Devanur et al. [11] under the random permutation model is still unknown and was left as an open
problem by the authors.
1.3. Our results. Our focus is to understand how large B is required to be in order to allow 41−�5-competitive

algorithms. In particular, the best known bounds for B mentioned above degrade as the number of columns in
the LP increases, whereas the minimum requirement on its magnitude does not. With the trend of handling LPs
with larger number of columns (e.g., these columns correspond to the key words in the ad allocation problem,
which in turn correspond to visits of a search engine’s Web page), this gap is very unsatisfactory from a practical
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point of view. Furthermore, given that guarantees for the single knapsack case do not depend on the number of
columns, it is important to understand if the multiknapsack case is fundamentally more difficult. In this work,
we give a precise indication of why the latter problem was resistant to arguments used in the single knapsack
case, and overcome this difficulty to exhibit an algorithm with dimension-independent guarantee.

We show that a modification of DPA (Agrawal et al. [1]) that we call Robust DPA obtains a 41 − �5-
competitive solution for online packing LPs with m constraints in the random permutation model whenever
B ≥ ì44m2/�25 log4m/�55. Another way of stating this result is that the algorithm has competitive ratio 1 −

O4m
√

logB/
√
B5. Contrasting to previous results, our guarantee does not depend on n and in the case m = 1

matches the bounds for the B-choice secretary problem up to lower order terms. We finally remark that we can
replace the requirement B ≥ ì44m2/�25 log4m/�55 by OPT ≥ ì444�maxm

35/�25 log4m/�55 exactly as done in
Section 5.1 of Agrawal et al. [1].
1.4. High-level outline. As mentioned before, we use the connection between solving an online LP and PAC

learning a good linear classification of its columns; to obtain the improved guarantee, we focus on tightening
the bounds for the generalization error of the learning problem. More precisely, solving the LP can be seen as
classifying the columns into 0/1, which corresponds to setting their associated variable to 0/1. Consider a family
X ⊆ 80119n of linear classifications of the columns. Our algorithms essentially sample a set S of columns and
learn a classification xS ∈X that is “good” for the columns S (i.e., obtains large proportional revenue while not
filling up the proportionally scaled budget too much). The goal is to upper bound the probability that xS is not
good for the whole LP. This is typically done by union bounding over the classifications in X (Devenur and
Hayes [10], Agrawal et al. [1]).

To obtain improved guarantees, we refine this bound using an argument akin to covering: we consider wit-
nesses (§2.3), which are representatives of groups of “similar” bad classifications that can be used to bound the
probability that any classification in the group is learned; for that we need to use a nonstandard measure of
similarity between classifications that is based on the budget of the LP. The problem is that, when the columns
4�t1 a

t5’s do not lie in a two-dimensional subspace of �m, the set X may contain a large number of mutually
dissimilar bad classifications; this is a roadblock for obtaining a small set of witnesses. In stark contrast, when
these columns do lie in a two-dimensional subspace (e.g., m= 1), these classifications have a much nicer struc-
ture that admits a small set of witnesses. This indicates that the latter learning problem is intrinsically more
robust than the former, which seems to precisely capture the increased difficulty in obtained good bounds for
the multiknapsack case.

Motivated by this discussion, we first consider LPs whose columns at’s lie in few one-dimensional sub-
spaces (§2). For each of these subspaces, we are able to approximate the classifications induced in the columns
lying in the subspace by considering a small subset of the induced classifications; patching together these partial
classifications gives us a witness set for X. However, this strategy as stated does not make use of the fact that
the subspaces are embedded in an m-dimensional space, and hence leads to large witness sets. By establishing a
connection between the “useful” patching possibilities with faces of a hyperplane arrangement in �m (Lemma 8),
we are able to make use of the dimension of the host space and exhibit witness sets of much smaller sizes,
which leads to improved bounds.

For the general problem, the idea is to perturb the columns at’s to make them lie in few one-dimensional
subspaces, while not altering the feasibility and optimality of the LP by more than a 1 ± � factor (§3). Finally,
we tighten the bound by using the idea of recomputing the classification as the number of columns doubles,
following (Agrawal et al. [1]) (§5).

2. OTP for almost one-dimensional columns. In this section we describe and analyze the behavior of the
algorithm OLA (one-time learning algorithm) for LPs whose columns are contained in few one-dimensional
subspaces of �m. The main idea behind the algorithm is to find an appropriate dual (perhaps infeasible) solution p
for (LP) and use it to classify the columns of the LP. More precisely, given p ∈ �m, we define x4p5t = 1
if �t > pat and x4p5t = 0 otherwise. Thus, x4p5 is the result of classifying the columns 4�t1 a

t5’s with the
homogeneous hyperplane in �m+1 with normal (−11 p). The motivation behind this classification is that it selects
the columns that have positive reduced cost with respect to the dual solution p, or alternatively, it solves to
optimality the Lagrangian relaxation using p as multipliers.

In this section, it will be important to have the additional assumption that the columns are in some sort of
general position. (Given a positive integer k, we use [k] as a shorthand for the set 81121 : : : 1 k9.)

Assumption 1. For all p ∈�m
+

with p 6= 0, there are at most m different t ∈ 6n7 such that �t = pat .

Typically this assumption is harmless: perturbing the input randomly by a tiny amount achieves this with
probability one, and the effect of the perturbation is absorbed in the approximation guarantees (Agrawal et al. [1],
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Devenur and Hayes [10]). But in order to ensure the correctness of our arguments, we keep this assumption
explicitly.

2.1. Sampling LP’s. To obtain a good dual solution p, we use the (random) LP consisting on the first s
columns of (LP) with appropriately scaled right-hand side:

max
s
∑

t=1

��4t5x�4t5 4s1 �5-LP

s
∑

t=1

a�4t5x�4t5 ≤
s

n
�B

x�4t5 ∈ 60117 t = 11 : : : 1 s0

min
{ s

n
�B

m
∑

i=1

pi +

s
∑

t=1

��4t5

}

4s1 �5-Dual

pa�4t5 +��4t5 ≥��4t5 t = 11 : : : 1 s

p ≥ 0

�≥ 00

Here � denotes the random permutation of the columns of the LP. We use OPT4s1 �5 to denote the optimal
value of 4s1 �5-LP, and OPT4s5 to denote the optimal value of 4s115-LP.

The static pricing algorithm OLA of Agrawal et al. [1] can then be described succinctly as follows. (To sim-
plify the exposition, we assume that �n is an integer.)

1. Wait for the first �n columns of the LP (indexed by �4151�4251 : : : 1�4�n5) and solve 4�n11 − �5-dual.
Let 4p1�5 be the obtained dual optimal solution.

2. Use the classification given by p as above by setting x�4t5 = x4p5�4t5 for t = �n+11 �n+21 : : : for as long
as the solution obtained remains valid. From this point on set all further variables to zero.

Note that by definition this algorithm outputs a feasible solution with probability one. Our goal is then to
analyze the quality of the solution produced, ultimately leading to the following theorem.

Theorem 1. Fix � ∈ 40117. Consider an instance of (LP) such that (i) Assumption 1 holds; (ii) there are
K ≥ m one-dimensional subspaces of �m containing the columns at’s; (iii) B ≥ ì44m/�35 log4K/�55. Then
algorithm OLA returns a feasible solution with expected value at least 41 − 5�5OPT .

Let S = 8�4151 : : : 1�4�n59 be the (random) index set of the columns sampled by OLA. We use pS to denote
the optimal dual solution obtained by OLA; notice that pS is completely determined by S. To simplify the
notation, we also use xS to denote x4pS5.

Notice that, for all the scenarios where xS is feasible, the solution returned by OLA is identical to xS with its
components xS

�4151 : : : 1 x
S
�4�n5 set to zero. Given this observation, we can actually focus on proving that xS is a

good solution.

Lemma 1. Fix � ∈ 40117. Suppose that (i) Assumption 1 holds; (ii) there are K ≥ m one-dimensional sub-
spaces of �m containing the columns at’s; (iii) B ≥ì44m/�35 log4K/�55. Then with probability at least 1 − �,
xS is a feasible solution for (LP) with value at least 41 − 3�5OPT .

To see how Theorem 1 follows from this, let E denote the event that xS is feasible for (LP) with value
at least 41 − 3�5OPT , which occurs with probability at least 41 − �5. Notice that in any scenario in E we have
x�4t5 = xS

�4t5 for all t > �n. By the nonnegativity of the profits, we obtain

Ɛ

[ n
∑

t=1

��4t5x�4t5

]

≥ Ɛ

[ n
∑

t=1

��4t5x�4t5

∣

∣

∣

∣

E

]

Pr4E5= Ɛ

[

∑

t>�n

��4t5x
S
�4t5

∣

∣

∣

∣

E

]

Pr4E50 (1)

Again using the definition of E, we have Ɛ6
∑n

t=1 ��4t5x
S
�4t5 � E7Pr4E5 ≥ 41 − 4�5OPT . Moreover, we have the

inequality

Ɛ

[

∑

t≤�n

��4t5x
S
�4t5

∣

∣

∣

∣

E

]

Pr4E5≤ Ɛ

[

∑

t≤�n

��4t5x
S
�4t5

]

≤ �OPT

(see, e.g., Lemma 2.4 of Agrawal et al. [1]). Using linearity of expectation and combining the two previous
bounds, we get

Ɛ

[

∑

t>�n

��4t5x
S
�4t5

∣

∣

∣

∣

E

]

≥ 41 − 5�5OPT 1

and the result follows from (1).
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2.2. Connection to PAC learning. We assume from now on that B ≥ ì44m/�35 log4K/�55. Let X =

8x4p52 p ∈�m
+
9⊆ 80119n denote the set of all possible linear classifications of the LP columns that can be gener-

ated by OLA. With slight overload in the notation, we identify a vector x ∈ 80119n with the set 8t ∈ 6n72 xt = 19
indicated by it. The following definition is motivated by Lemma 1.

Definition 1 (Bad Solution). Given a scenario, we say that xS is bad if it is either an infeasible solution
for (LP) or has value less than 41 − 3�5OPT . We say that xS is good otherwise.

As noted in previous work, since our decisions are made based on reduced costs it suffices to analyze the
budget occupation (or complementary slackness) of the solution in order to understand its value. To make this
precise, given x ∈ 80119n let ai4x5=

∑

t∈x a
t
i be its occupation of the ith budget and let aS

i 4x5= 41/�5
∑

t∈x∩S a
t
i

be its appropriately scaled occupation of ith budget in the sampled LP (recall �S� = �n). For completeness, we
present the proof of the following lemma in Appendix B, which can be seen as an approximate version of an
observation on Lagrangian relaxation made by Everett in the early 1960s (Everett [14]) and is also related to
the approximate complementary slackness conditions in Vazirani [27].

Lemma 2. Consider a scenario where xS satisfies (i) for all i ∈ 6m7, ai4x
S5≤ B and (ii) for all i ∈ 6m7 with

pS
i > 0, ai4x

S5≥ 41 − 3�5B. Then xS is good.

Recall that the solution xS is obtained by selecting the columns with positive reduced cost with respect to the
optimal dual solution pS . Therefore, it is intuitively clear that xS resembles an optimal solution for (�n11 − �)-
LP and thus should (approximately) be feasible and satisfy complementary slackness conditions. Using the
assumption that the input is in general position, this is made formal in the following lemma, whose proof is also
deferred to Appendix B.

Lemma 3. Suppose that Assumption 1 holds. Then in every scenario, xS satisfies the following: (i) for all
i ∈ 6m7, aS

i 4x
S5≤ 41 − �5B and (ii) for every i ∈ 6m7 with pS

i > 0, aS
i 4x

S5≥ 41 − 2�5B.

Given the properties of xS guaranteed by Lemma 3, together with the observation that ai4x5 = Ɛ6aS
i 4x57 for

all x, the idea is to use concentration inequalities to argue that the conditions in Lemma 2 hold with good
probability. Although concentration of aS

i 4x5 for fixed x can be achieved via Chernoff-type bounds, the quantity
aS
i 4x

S5 has undesired correlations; obtaining an effective bound is the main technical contribution of this paper.

Definition 2 (Badly Learned). For a given scenario, we say that x ∈X can be badly learned for budget i
if either (i) aS

i 4x5≤ 41 − �5B and ai4x5 > B or (ii) aS
i 4x5≥ 41 − 2�5B and ai4x5 < 41 − 3�5B.

Essentially these are the classifications that look good for the sampled 4�n11 − �5-LP but are actually bad
for (LP). More precisely, Lemmas 2 and 3 give the following.

Observation 2. Consider a scenario for which xS is bad. Then xS = x for some x that can be badly learned
in this scenario for some budget i ∈ 6m7.

This observation directly implies that

Pr4xS is bad5≤ Pr
(

∨

i∈6m71 x∈X

x can be badly learned for budget i
)

0 (2)

Notice that indeed the right-hand side of this inequality does not depend on xS , it is only a function of how
skewed aS

i 4x5 is as compared to its expectation ai4x5 (over all x ∈X).
From this point on, usually the right-hand side in the previous equation is upper bounded by taking a union

bound over all its terms (Agrawal et al. [1]). However, this strategy can be too wasteful, because if x and x′

are “similar” there is a large overlap between the scenarios where aS
i 4x5 is skewed and those where aS

i 4x
′5 is

skewed. To obtain improved guarantees, we introduce in the next section a new way of bounding the right-hand
side of the above expression; we use something akin to a covering argument, although we need to use a suitable
(and nonstandard) measure to capture the similarity between classifications.

2.3. Similarity via witnesses. First, we partition the classifications that can be badly learned for budget i
(for some scenario) into two sets, depending on why they are bad: for i ∈ 6m7, let X+

i = 8x ∈ X2 ai4x5 > B9
and X−

i = 8x ∈X2 ai4x5 < 41 − 3�5B9. To simplify the notation, given a set x we define skewmi4�1 x5 to be the
event that aS

i 4x5≤ 41−�5B and skewpi4�1 x5 to be the event that aS
i 4x5≥ 41−2�5B. Notice that if x ∈X+

i , then
skewmi4�1 x5 is the event that aS

i 4x5 is significantly smaller than its expectation (skewed in the minus direction),
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whereas for x ∈ X−
i skewpi4�1 x5 is the event that aS

i 4x5 is significantly larger than its expectation (skewed in
the plus direction). These definitions directly give the equivalence

Pr
(

∨

i1 x∈X

x can be badly learned for budget i
)

= Pr
(

∨

i1 x∈X+
i

skewmi4�1 x5∨
∨

i1 x∈X−
i

skewpi4�1 x5

)

0 (3)

To introduce the concept of witnesses, consider two sets x1x′, say, in X+

i . Take a subset w ⊆ x ∩ x′; the
main observation is that, since at ≥ 0 for all t, for all scenarios we have aS

i 4w5 ≤ aS
i 4x5 and aS

i 4w5 ≤ aS
i 4x

′5.
In particular, the event skewmi4�1 x5∨ skewmi4�1 x

′5 is contained in skewm4�1w5. The set w serves as a witness
for scenarios that are skewed for either x or x′; if additionally ai4w5 are reasonably larger than 41 − �5B,
we can then use concentration inequalities over skewmi4�1w5 in order to bound probability of skewm4�1 x5∨

skewm4�1 x′5. This ability of bounding multiple terms of the right-hand side of (3) simultaneously is what gives
an improvement over the naive union bound.

Definition 3 (Witness). We say that W+

i is a witness set for X+

i if (i) for all w ∈W+

i , ai4w5≥ 41−�/25B
and (ii) for all x ∈ X+

i there is w ∈ W+

i contained in x. Similarly, we say that W−
i is a witness set for X−

i if
(i) for all w ∈W−

i , ai4w5≤ 41 − 3�/25B and (ii) for all x ∈X−
i there is w ∈W−

i containing x.

As indicated by the previous discussion, given witness sets W+

i and W−
i for X+

i and X−
i , we directly get the

bound

Pr
(

∨

i1 x∈X+
i

skewmi4�1 x5∨
∨

i1 x∈X−
i

skewpi4�1 x5

)

≤ Pr
(

∨

i1w∈W+
i

skewmi4�1w5∨
∨

i1w∈W−
i

skewpi4�1w5

)

0 (4)

Using concentration inequalities, we can now bound the probability that xS is bad in terms of the size of
witnesses sets.

Lemma 4. Suppose that, for all i ∈ 6m7, there are witness sets for X+

i and X−
i of size at most M . Then

Pr4xS is bad5≤ 8mM exp4−�3B/335.

Proof. Combining Equations (2), (3), and (4) and union bounding over all terms in the disjunction, we have
that

Pr4xS is bad5≤
∑

i1w∈W+
i

Pr4skewmi4�1 w55+
∑

i1w∈W−
i

Pr4skewpi4�1w550

Thus, it suffices to show that for all w ∈ W+

i (respectively, w ∈ W−
i ), the event skewmi4�1w5 (respectively,

skewpi4�1w5) occurs with probability at most 2 exp4−�3B/335. The following simple inequalities will be helpful:

For �1�1�≥ 01
1 −��

1 +��
≥ 1 − 4�+�5� and

1 −��

1 −��
≤ 1 − 4�−�5�0 (5)

Take w ∈ W+

i . By definition of this set, ai4w5 ≥ 41 − �/25B, so the event skewm4�1w5 is contained in the
event that aS

i 4w5 ≤ 41 − �5ai4w5/41 − �/25, which is contained in the event aS
i 4w5 ≤ 41 − �/25ai4w5. Using

a Chernoff-type bound (more explicitly, Corollary 1 with � = �2ai4w5/2), we obtain that Pr4skewm4�1w55 ≤

2 exp4−�3B/335.
Similarly, take w ∈ W−

i , such that ai4w5 ≤ 41 − 3�/25B. It is easy to check that the event skewp4�1w5 is
contained in aS

i 4w5 ≥ 41 + �/25ai4w5, so using Corollary 1 with � = �2B/2 we get that Pr4skewm4�1w55 ≤

2 exp4−�3B/335. This concludes the proof of the lemma.

The usefulness of defining witnesses as such is of course contingent upon the ability of finding witness sets
that are much smaller than X+

i and X−
i . One reasonable choice of a witness set for, say, X+

i is the collection
of all of its minimal sets; unfortunately, this may not give a witness set of small enough size. However, notice
that a witness set need not be a subset of X+

i (or even X). Allowing elements outside X+

i gives the flexibility
of obtaining witnesses that are associated to multiple “similar” minimal elements of X+

i , which is effective in
reducing the size of witness sets.

2.4. Good witnesses for almost one-dimensional columns. Given the previous lemma, our task is to find
small witness sets. Unfortunately, when the 4�t1 a

t5’s lie in a space of dimension at least 3, X+

i and X−
i may

contain many (dependent on n) disjoint sets (see Figure 1), which shows that in general we cannot find small
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a1 a1 a1

a2 a2 a2

Figure 1. Example of LP with m= 2 constraints whose witness sets depend on the number of columns. Given a fixed B and �, consider
the LP where all the �t’s equal 1, and the columns at’s are depicted in the first figure: the circle represents a cluster of columns arbitrarily
close to each other and that has total occupation 41 − �5B of both budgets 1 and 2; each square represents a cluster of columns arbitrarily
close to each other that has total occupation at least 2�B for some budget. The second and the third picture show two linear classifications
which are bad (they belong to X+

2 for some 2), and whose intersection is the circle-cluster. Notice that there is no witness for both of these
classifications simultaneously. Generalizing this LP by considering M clusters evenly spaced in the dashed semicircle of the first picture,
we get that any witness set for X+

i has ì4M5 elements, which can be made arbitrarily large.

witness sets directly. This sharply contrasts with the case where the 4�t1 a
t5’s lie in a two-dimensional subspace

of �m+1. In this case, it is not difficult to show that X is a union of two chains with respect to inclusion. In the
special case where the at’s lie in a one-dimensional subspace of �m, we show that X is actually a single chain
(Lemma 6), and therefore we can take W+

i as the minimal set of X+

i and W−
i as the maximal set of X−

i .
Because of the above observations, we focus on LPs whose at’s lie in few one-dimensional subspaces. In this

case, X+

i and X−
i are sufficiently well behaved so that we can find small (independent of n) witness sets.

Lemma 5. Suppose that there are K ≥m one-dimensional subspaces of �m that contain the at’s. Then there
are witness sets for X+

i and X−
i of size at most 4O44K/�5 log4K/�555m.

We use the rest of the section to prove this lemma. So assume its hypothesis and partition the index set
6n7 into C11C21 : : : 1CK such that for all j ∈ 6K7 the columns 8at9t∈Cj

belong to the same one-dimensional
subspace. Equivalently, for each j ∈ 6K7 there is a vector cj of l�-norm 1 such that for all t ∈ Cj we have
at = �at��c

j . An important observation is that now we can order the columns (locally) by the ratio of profit
over budget occupation: without loss of generality assume that for all j ∈ 6K7 and t1 t′ ∈Cj with t < t′, we have
�t/�a

t�� ≥�t′/�a
t′�

�
(notice that this ratio is well defined since by assumption at 6= 0 for all t ∈ 6n7).

Given a classification x, we use x�Cj
to denote its projection onto the coordinates in Cj ; so x�Cj

is the
induced classification on columns with indices in Cj . Similarly, we define X�Cj

= 8x�Cj
2 x ∈X9 as the set of all

classifications induced by X in the columns in Cj .
Strengthening a previous observation, the main property that we get from working with one-dimensional

subspaces is the following.

Lemma 6. For each j ∈ 6K7, the sets in X�Cj
are prefixes of Cj .

Proof. Fix j ∈ 6K7. Consider a set x ∈ X and let p be a dual vector such that x4p5 = x. Let t′ be the last
index of Cj that belongs to x�Cj

; this implies that �t′ > pat′ = pcj�at′��, or alternatively �t′/�a
t′�� > pcj .

By the ordering of the columns, for all t ∈ Cj smaller than t′ we have �t/�a
t�� ≥�t′/�a

t′�� > pcj and hence
t ∈ x�Cj

. By definition of t′ it follows that x�Cj
= 8t ∈Cj 2 t ≤ t′9, a prefix of Cj ; this concludes the proof.

To simplify the notation fix i ∈ 6m7 for the rest of this section, so we aim at providing witness sets for
X+

i and X−
i . The idea is to group the classifications according to their budget occupation caused by the

different column classes Cj ’s. To make this formal, start by covering the interval 601B + m7 with intervals
8Il9l∈L, where I0 = 601 �B/44K55 and Il = 64�B/44K5541 + �/45l−11 4�B/44K5541 + �/45l5 for l > 0 and L =

801 : : : 1 �log1+�/448K/�5�9 (note that since B ≥ m, we have B + m ≤ 2B). Define Bl
i1 j as the set of partial

classifications y ∈ X�Cj
whose budget occupation ai4y5 lies in the interval Il. For v ∈ LK define the family of

classifications Bv
i = 84y11 y21 : : : 1 yK52 yj ∈B

vj
i1 j9. The Bv

i ’s then provide the desired grouping of the classifica-
tions. Note that the Bv

i ’s may include classifications not in X and may not include classifications in X that have
occupation ai4 · 5 greater than B+m.

Now consider a nonempty Bv
i . Let wv

i be the inclusion-wise smallest element in Bv
i . Notice that such unique

smallest element exists: since X�Cj
is a chain, so is B

vj
i1 j , and hence wv

i is union (over j) of the smallest elements
in the sets 8B

vj
i1 j9j . Similarly, let w̄v

i denote the largest element in Bv
i . Intuitively, wv

i and w̄v
i will serve as

witnesses for all the sets in Bv
i .
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Finally, define the witness sets by adding the wv
i and w̄v

i ’s of appropriate size corresponding to meaningful
Bv

i ’s: set W+

i = 8wv
i 2 B

v
i ∩X 6= �1 ai4w

v
i 5≥ 41 − �/25B9 and W−

i = 8w̄v
i 2 B

v
i ∩X 6= �1 ai4w̄

v
i 5≤ 41 − 3�/25B9.

It is not too difficult to see that indeed, say, W+

i is a witness set for X+

i : If x ∈X+

i belongs to some Bv
i , then

wv
i belongs to W+

i and is easily shown to be a witness for x. However, if x does not belong to any Bv
i , by having

too large ai4x5, the idea is to find a smaller set x′ ⊆ x that belongs to some Bv
i and to X, and then use wv

i as a
witness for x. We note that ignoring induced classifications with occupation larger than B+m and ignoring Bv

i ’s
that do not intersect X is very important for guaranteeing that W+

i and W−
i are small. The following lemma is

proved formally in Appendix C.

Lemma 7. The sets W+

i and W−
i are witness sets for X+

i and X−
i .

2.5. Bounding the size of witness sets. Clearly these witness sets W+

i and W−
i have size at most �L�K .

Although this size is independent of n, it is still unnecessarily large since it only uses locally (for each Cj )
the fact that X consists of linear classifications; in particular, it does not use the dimension of the ambient
space �m. Suppose that J ⊆K, of cardinality m, is such that the directions 8cj9j∈J form a basis of �m. Knowing
the partial classification x4p5�Cj

, or more precisely the value of pcj , for all j ∈ J completely determines the
whole classification x4p5. Similarly, knowing that x4p5�Cj

∈ B
vj
i for all j ∈ J should give some information

about which B
vj
i ’s x4p5�Cj

can belong to for j y J ; this indicates that there are not enough degrees of freedom
to allow a linear classification in Bv

i for each v ∈ LK . The difficulty in making this argument formal is that the
latter information does not completely determine which Bv

i the classification x4p5 belongs to. The idea is not
to use a fixed set J of indices, but look at the whole K simultaneously.

Lemma 8. At most 4O44K/�5 log4K/�555m of the Bv
i ’s contain an element from X.

Proof. To capture the fact that our classification is obtained via dual vectors in �m, we move from analyzing
classifications to analyzing dual vectors. For v ∈ LK define P v as the set of nonnegative dual vectors p such that
x4p5 belongs to Bv

i . It suffices to prove that at most 4O44K/�5 log4K/�555m of the families P v’s are nonempty.
The main idea is to use that fact that the P v’s come from a hyperplane arrangement (Matoušek [23]) in �m.

To start, for j ∈ 6K7 and l ∈ L define P l
j = 8p ∈ �m

+
2 x4p5�Cj

∈ Bl
i1 j9. Since x4p5 ∈ Bv

i if and only if for all
j ∈ 6K7 we have x4p5�Cj

∈ B
vj
i1 j , it follows that P v =

⋂

j P
vj
j . Let � l

j denote the first index in Cj such that the
prefix 8t ∈ Cj 2 t ≤ � l

j9 occupies the budget i to an extent in Il. Using Lemma 6 and the fact that the at’s are
nonnegative, we get that Bl

i1 j is the set of all prefixes of Cj that contain � l
j but do not contain � l+1

j . Moreover,
notice that the set x4p5�Cj

contains � l
j if and only if �� lj

>pa� lj . It then follows from these observations we can

express the set P l
j using linear inequalities P l

j = 8p ∈�m
+
2 �� lj

>pa� lj 1�� l+1
j

≤ pa� l+1
j 9. Since P v =

⋂

j P
vj
j , we have

that P v is given by the intersection of half-spaces defined by hyperplanes of the form �� lj
= pa� lj and pi = 0.

So consider the arrangement given by all hyperplanes 8�� lj
= pa� lj 9j∈6K71 l∈L and 8pi = 09mi=1. Given a face

F in this arrangement and a set P v, either F is contained in P v or these sets are disjoint. Since the faces of the
arrangement cover �m, it follows that each nonempty P v contains at least one these faces.

Notice that the arrangement is defined by �K��L�Km ≤ O44Km/�5 log4K/�55 hyperplanes, where the last
inequality uses the fact that log41 + �/45 ≥ � log41 + 1/45 holds (by concavity) for � ∈ 60117. It is known that
an arrangement with h≥m hyperplanes in �m has at most 44eh5/m5m faces (see section 6.1 of Matoušek [23]
and p. 82 of Matoušek and Nešetřil [24]). Using the conclusion of the previous paragraph, we get that there are
at most 4O44K/�5 log4K/�555m nonempty P v’s and the result follows.

This lemma implies that W+

i and W−
i each has size at most 4O44K/�5 log4K/�555m, which then proves

Lemma 5. Finally, applying Lemma 4 we conclude the proof of Lemma 1.

3. Robust OLA. In this section we consider (LP) with columns that may not belong to few one-dimensional
subspaces. Given the results of the previous section, the idea is clear: we would like to perturb the columns
of this LP so that it belongs to few one-dimensional subspaces and such that an approximate solution for this
perturbed LP is also an approximate solution for the original one. More precisely, we will obtain a set of vectors
Q ⊆ �m and transform the vector at into ãt , which is a scaling of a vector in Q, and we let the rewards �t

remain unchanged.
A basic but crucial observation is that solutions to an LP are robust to slight changes in the constraint matrix.

The following lemma makes this precise and will guide us to obtaining the desired set Q.

Lemma 9. Consider real numbers �11 : : : 1�n and vectors a11 : : : 1 an and ã11 : : : 1 ãn in �m
+

such that
�ãt −at�� ≤ 4�/4m+ 155�at��. If x is an �-approximate solution for (LP) with columns 4�t1 ã

t5 and right-hand
side 41 − �5B, then x is a 2�-approximate solution for the LP (LP).
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Proof. Let LP1 denote the LP with columns 4�t1 ã
t5 and right-hand side 41 − �5B and LP2 denote the LP

with columns 4�t1 a
t5 and right-hand side B. Let x be an �-approximate solution for LP1. Notice that we can

upper bound �at − ãt�� as a function of �ãt��:

�ãt
�� ≥ �at

�� − �at
− ãt

�� ≥
m

�
�at

− ãt
��1

where the first inequality follows from triangle inequality. That is, we have �at − ãt�� ≤ 4�/m5�ãt��.
Given this bound, it is easy to see that x is feasible for LP2:

∑

t

at
ixt ≤

∑

t

4ãt
i + �at

i − ãt
i�5xt ≤ 41 − �5B+

∑

t

�at
− ãt

��xt ≤ 41 − �5B+
�

m

∑

t

�ãt
��xt ≤ B1

where the last inequality uses the fact that
∑

t �ã
t��xt ≤ �ãt�1xt ≤ mB, since x is a feasible solution and the

ãt’s are nonnegative.
To show that x is a 2�-approximate solution for LP2, it suffices to show that the optimum of LP1 is at least

1/41 + �5 times the optimum of the LP2, since then x will be within a factor of 41 − �5/41 + �5≥ 41 − 2�5 the
optimum of LP2. So let x∗ be an optimal solution for LP2. Using the same argument as before, it is easy to see
that x∗/41 + �5 is feasible for LP1; this concludes the proof of the lemma.

3.1. Perturbing the columns. To simplify the notation, set �= �/4m+ 15; also, for simplicity of exposition
we assume that 1/� is integral.

When constructing Q, we want the rays spanned by each of its vectors to be “uniform” over �m
+

. Naturally,
we focus on the intersection of these rays and the unit l� sphere: we set Q to be a �-net of the latter. More
explicitly, we take Q to be the vectors in 8�/21 �13�/21 : : : 119m that have l� norm 1. Note that all vectors in Q
have all components strictly positive; also note that �Q� = 4O4m/�55m.

Given a vector at , we would like to set the transformed vector to be qt�at��, where qt is the vector in Q
closest to at/�at��. However, the vectors obtained would not satisfy Assumption 1. Therefore, we actually set
the transformed vector to be ãt = qt4�at�� +�t5, where �t is any continuous random variable with sufficiently
small range (in particular, it is smaller than ��at��/2); also, we require these random variables to be mutually
independent across all t’s. Using the fact that pqt > 0 for all p ∈�m

+
different from 0, it follows from standard

arguments that with probability 1 these transformed vectors satisfy Assumption 1 (Agrawal et al. [1], Devenur
and Hayes [10]).

In addition, by definition of Q, for every vector v ∈ �m of unit l�-norm, there is a vector q ∈ Q with
�v− q�� ≤ �/2. Using this observation, it follows that the vectors ãt satisfy the property required in Lemma 9:

�at
− ãt

�� ≤ �4at
− qt

�at
��5�� + ��t��q

t
�� = �at

��

∥

∥

∥

∥

at

�at��

− qt

∥

∥

∥

∥

�

+ ��t��q
t
�� ≤ ��at

��0

3.2. Algorithm robust OLA. One way to think of the algorithm robust OLA is that it works in two phases.
First, it transforms the vectors at into ãt as described above. Then it returns the solution obtained by running
the algorithm OLA over the LP with columns 4�t1 ã

t5 and right-hand side 41 − �5B. Notice that this algorithm
can indeed be implemented to run in an online fashion.

Putting together the discussion in the previous paragraphs and the guarantee of OLA for almost one-
dimensional columns given by Theorem 1 with K = �Q� = 4O4m/�55m, we obtain the following theorem.

Theorem 3. Fix � ∈ 40117 and suppose that B ≥ ì44m2/�35 log4m/�55. Then the algorithm robust
OLA returns a solution to the online (LP) with expected value at least 41 − 10�5OPT .

4. Algorithm 4s1 �5-OLA. Our final algorithm robust DPA (as the algorithm DPA) can be seen as a com-
bination of solutions to multiple sampled LPs, obtained via a modification of OLA denoted by (s1 �)-OLA. In
this section we describe and analyze the algorithm (s1 �)-OLA.

This algorithm aims at solving the program (2s11)-LP and can be described as follows: it finds an optimal
dual solution (p1�) for (s1 41 − �5)-LP and sets x�4t5 = x4p5�4t5 for t = s + 11 s + 21 : : : 1 t′ ≤ 2s such that t′ is
the maximum one guaranteeing

∑2s
t=s+1 a

�4t5x�4t5 ≤ 4s/n5B (for all other t’s it sets x�4t5 = 0).
The analysis of 4s1 �5-OLA is similar to the one employed for OLA. The main difference is that this algorithm

tries to approximate the value of the random LP (2s11)-LP. This requires a partition of the bad classifications,
which is more refined than simply splitting into X+

i and X−
i , and witness sets need to be redefined appropriately.

Again let S = 8�4151�4251 : : : 1�4s59 be the random index set of the first s columns of the LP, let T =

8�4s + 151�4s + 251 : : : 1�42s59 and U = S ∪ T . We use �U to denote the vector 4�t5t∈U .
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Lemma 10. Fix an integer s and a real number � ∈ 4011/105. Suppose that (i) Assumption 1 holds; (ii) there
are K ≥m one-dimensional subspaces of �m containing the columns at’s; (iii) �2sB/n≥ì4m ln4K/�55. Then
algorithm 4s1 �5-OLA returns a solution x satisfying aT

i 4x5 ≤ B for all i ∈ 6m7 with probability 1 and with
expected value Ɛ6�Ux7≥ 41 − 3�5Ɛ6OPT42s57− Ɛ6OPT4s57− �2OPT .

In the remaining part of the section we prove Lemma 10. Again we use pS to denote the dual vector used
by (s1 �)-OLA for its classification, and set xS = x4pS5. With slight abuse in the notation, we often see xS

as a (possibly infeasible) solution for (2s11)-LP, which means that we truncate the vector xS to the first 2s
coordinates xS

�4151 : : : 1 x
S
�42s5.

As before, we focus on proving the following lemma; the proof that this lemma implies Lemma 10 is presented
at the end of this section.

Lemma 11. Fix an integer s and a real number � ∈ 4011/105. Suppose that (i) Assumption 1 holds; (ii) there
are K ≥m one-dimensional subspaces of �m containing the columns at’s; (iii) �2sB/n≥ì4m ln4K/�55. Then
with probability at least 41−�25, xS satisfies aT

i 4x
S5≤ B for all i ∈ 6m7 and has value �Ux

S ≥ 41−3�5OPT42s5.

In a given scenario, we now say that xS is bad if aT
i 4s

S5 > B for some i ∈ 6m7 or if �Ux
S41 − 3�5OPT42s5.

In this scenario, now a classification x ∈ X can be badly learned for budget i due to infeasibility if aS
i 4x5 ≤

41 − �5B and aT
i 4x5 > B; x can be badly learned for budget i due to value if aS

i 4x5 ≥ 41 − 2�5B and aU
i 4x5 <

41 − 3�5B. Then x can be badly learned for budget i if it falls into any of the above cases. The following is the
appropriate modification of Lemma 2 for our current setting, and can be proved exactly in the same way.

Lemma 12. Consider a scenario where xS satisfies the following: (i) for all i ∈ 6m7, aT
i 4x

S5≤ B and (ii) for
all i ∈ 6m7 with pS

i > 0, aU
i 4x

S5≥ 41 − 3�5B. Then xS is good.

Because of our definitions, this lemma implies that inequality (2) still hold.
4.1. Witness sets. In the analysis of OLA, each x ∈ X could be badly learned for budget i due to either

infeasibility or (exclusively) due to value, which motivated the definitions of X+

i and X−
i . Now the same x

can be badly learned for budget i due to both conditions. Therefore, we introduce two different partitions
of X, which tells why a classification is unlikely to be badly learned because of the appropriate condition.
That is, we define X+

i = 8x ∈ X2 ai4x5 > 41 − �5B + �B/29 and Y+

i = 8x ∈ X2 ai4x5 ≤ 41 − �5B + �B/29
as the partition associated to the infeasibility condition and X−

i = 8x ∈ X2 ai4x5 < 41 − 2�5B − �B/29 and
Y−

i = 8x ∈X2 ai4x5≥ 41 − 2�5B−�B/29 as the partition associated to the value condition. For example, X−
i is

the set of classifications that are unlikely to be infeasible because of a small ai4 · 5 value. Also, note that these
classifications are all based on the total budget occupation rather than on the budget occupation in the first 2s
columns only.

Given this more refined tagging of elements in X, we also need to redefine witness sets. We say that
4W+

i 1W
−
i 1Z

+

i 1Z
−
i 5 are witness sets for 4X+

i 1X
−
i 1Y

−
i 1Y

+

i 5, respectively, if they satisfy the following:

w ∈W+

i ⇒ ai4w5≥ 41 − �5B+
�B

4
1 x ∈X+

i ⇒ ∃w ∈W+

i 2 w ⊆ x

w ∈Z+

i ⇒ ai4w5≥ 41 − 2�5B−
3�B

4
1 x ∈Y−

i ⇒ ∃w ∈Z+

i 2 w ⊆ x

w ∈W−

i ⇒ ai4w5≤ 41 − 2�5B−
�B

4
1 x ∈X−

i ⇒ ∃w ∈W+

i 2 x ⊆w

w ∈Z−

i ⇒ ai4w5≤ 41 − �5B+
3�B

4
1 x ∈Y+

i ⇒ ∃w ∈W+

i 2 x ⊆w0

Again to simplify the notation, given a set x we define skewmS
i 4�1 x5 to be the event that aS

i 4x5≤ 41 − �5B,
skewpS

i 4�1 x5 to be the event that aS
i 4x5≥ 41 − �5B, and similarly replacing the set S by the sets T and U . The

following expression, which is the analogous to (3)–(4), establishes the connection between the events where
classifications can be badly learned and witness sets:

∨

x∈X

8x can be badly learned for budget i9 ⊆

(

∨

w∈W+
i

skewmS
i 4�1w5

)

∨

(

∨

w∈Z+
i

skewmU
i 43�1w5

)

∨

(

∨

w∈W−
i

skewpS
i 42�1w5

)

∨

(

∨

w∈Z−
i

skewpT
i 401w5

)

0 (6)
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To see that this expression holds, take x ∈ X. Suppose that x ∈ X+

i and let w ∈ W+

i be contained in x. Then
the event {x can be badly learned for budget i due to infeasibility} is contained in skewmS

i 4�1w5. Similarly,
if x ∈ Y+

i let w ∈ Z−
i contain x; then the event {x can be badly learned for budget i due to infeasibility} is

contained in skewmT
i 401w5. The reasoning for the event {x can be badly learned for budget i due to value} is

similar.
The following is analogous to Lemma 4 and is proved in the Appendix D.

Lemma 13. Suppose that, for all i ∈ 6m7, there are witness sets for 4X+

i 1X
−
i 1Y

+

i 1Y
−
i 5 of size at most M .

Then Pr4xS is bad 5≤ 8mM exp4−�2sB/4136n55.

4.2. Good witness sets. We now construct witness sets of size at most 4O44K/�5 log4K/�555m, so Lemma 11
will follow directly from Lemma 13. The development mirrors that of §2.4. Let C11C21 : : : 1CK be a partition
of the index set 6n7 such that for all j , the columns 8at9t∈Cj

belong to the same one-dimensional subspace.
Cover the interval [01B + m] with intervals 8Il9l∈L, where I0 = 601 �B/48K55 and Il = 64�B/48K5541 +

�/85l−11 4�B/48K5541 + �/85l5 for l > 0 and L = 801 : : : 1 �log1+�/8416K5/�� + 19. Define Bl
i1 j as the set of

classifications x ∈ X�Cj
whose occupation ai4x5 lies in the interval Il. Finally, for v ∈ LK , define the family of

classifications Bv
i = 84y11 y21 : : : 1 yK52 yj ∈B

vj
i1 j9. Given v ∈ L, let wv

i be the inclusion-wise smallest element in
Bv

i and let w̄v
i be the inclusion-wise largest element in Bv

i .
Now we construct the witness sets as before. Set W+

i = 8wv
i 2 ai4w

v
i 5 ≥ 41 − �5B + �B/41Bv

i ∩ X 6= �9,
set Z+

i = 8wv
i 2 ai4w

v
i 5 ≥ 41 − 2�5B − 3�B/41Bv

i ∩ X 6= �9, set W−
i = 8w̄v

i 2 ai4w̄
v
i 5 ≤ 41 − 2�5B − �B/41

Bv
i ∩X 6= �9, and finally set Z−

i = 8w̄v
i 2 ai4w̄

v
i 5≤ 41 − �5B+ 43�B5/41Bv

i ∩X 6= �9.
Following the same steps as in the proof of Lemma 7, one can check that 4W+

i 1W
−
i 1Z

+

i 1Z
−
i 5 are witness

sets for 4X+

i 1X
−
i 1Y

+

i 1Y
−
i 5. Moreover, the proof of Lemma 8 can be used to show that, for a fixed i ∈ 6m7,

at most 4e4K/�5 log4K/�55m of the Bv
i ’s contain an element of X, which then imposes the same upper bound

on the size of the witness sets. This concludes the proof of Lemma 11.

Proof of Lemma 10. Let x be the solution returned by 4s1 �5-OLA and let E denote the event that xS is
good. For any scenario in E, we have x�4t5 = xS

�4t5 for all t = s + 11 s + 21 : : : 12s. Therefore, we get that

Ɛ

[ 2s
∑

t=1

��4t5x�4t5

]

≥ Ɛ

[ 2s
∑

t=1

��4t5x�4t5

∣

∣

∣

∣

E

]

Pr4E5 ≥ Ɛ

[ 2s
∑

t=1

��4t5x
S
�4t5

∣

∣

∣

∣

E

]

Pr4E5− Ɛ6OPT4s5 �E7Pr4E5

≥ Ɛ

[ 2s
∑

t=1

��4t5x
S
�4t5

∣

∣

∣

∣

E

]

Pr4E5− Ɛ6OPT4s570 (7)

To lower bound the first term in the right-hand side we again use the definition of E:

Ɛ

[ 2s
∑

t=1

��4t5x
S
�4t5

∣

∣

∣

∣

E

]

Pr4E5≥ 41 − 3�5Ɛ6OPT42s5 �E7Pr4E5

and

Ɛ6OPT42s57= Ɛ6OPT42s5 �E7Pr4E5+ Ɛ6OPT42s5 � Ē7Pr4Ē5≤ Ɛ6OPT42s5 �E7Pr4E5+ �2OPT 1

where the last inequality uses Lemma 11. Combining the previous two inequalities give that Ɛ6
∑2s

t=1 ��4t5x
S
�4t5 �E7

Pr4E5≥ 41 − 3�5Ɛ6OPT42s57− �2OPT , and the result follows from Equation (7).

5. Robust DPA. In this section we describe our final algorithm, which has an improved dependence on 1/�.
Following Agrawal et al. [1], the idea is to update the dual vector used in the classification as new columns
arrive. More precisely, we use the first 2i�n columns to classify columns 2i�n+ 11 : : : 12i+1�n. This leads to
improved generalization bounds, which in turn give the reduced dependence on 1/�.

5.1. Algorithm robust DPA. To simplify the description of the algorithm, we assume in this section that
log41/�5 is an integer.

As in the algorithm robust OLA, robust DPA may be thought of in two phases. In the first phase it converts
the vectors at into ãt , just as in the first phase of robust OLA. In the second phase, for i = 01 : : : 1 log41/�5− 1,
it runs 4�2in1

√

�/2i5-OLA over (LP) with columns 4�t1 ã
t5 and right-hand side 41 − �5B to obtain the solution

xi. The algorithm finally returns the solution x consisting of the “union” of xi’s: x =
∑

i x
i.

Note that the second phase corresponds exactly to using the first �2in columns to classify the columns
�2in+ 11 : : : 1 �2i+1n. This relative increase in the size of the training data for each learning problem allows us
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to reduce the dependence of B on � in each of the iterations, whereas the error from all the iterations telescope
and are still bounded as before. Furthermore, notice that robust DPA can be implemented to run online.

The analysis of robust DPA reduces to that of (s1 �)-OLA. That is, using the definition of the parameters of
(s1 �)-OLA used in robust DPA and Lemma 10, it is routine to check that the algorithm produces a feasible
solution that has expected value 41 − �5OPT . The next theorem formally states the guarantees of our final
algorithm DPA (a complete proof is presented in Appendix E).

Theorem 4. Fix � ∈ 4011/1005 and suppose that B ≥ ì44m2/�25 ln4m/�55. Then the algorithm robust
DPA returns a solution to the online LP (LP) with expected value at least 41 − 50�5OPT .

6. Open problems. A very interesting open question is whether the techniques introduced in this work can
be used to obtain improved algorithms for generalized allocation problems (Feldman et al. [15]). The difficulty
in this problem is that the classifications of the columns are not linear anymore; they essentially come from
a conjunction of linear classifiers. Given this additional flexibility, having the columns in few one-dimensional
subspaces does not seem to impose strong enough properties in the classifications. It would be interesting to
find the appropriate geometric structure of the columns in this case.

Of course a direct open question is to improve the lower or upper bound on the dependence on the right-hand
side B to obtain (1 − �)-competitive algorithms.

Appendix A. Bernstein inequality for sampling without replacement.

Lemma 14 (Theorem 2.14.19 in van der Vaart and Wellner [26]). Let Y = 8Y11 : : : 1 Yn9 be a set of real numbers
in the interval 60117 and let 0 < � < 1. Let S be a random subset of Y of size s and let YS =

∑

i∈S Yi. Setting �= 41/n5
∑

i Yi
and �2 = 41/n5

∑

i4Yi −�52, we have that for every � > 0

Pr4�YS − s�� ≥ �5≤ 2 exp
(

−
�2

2s�2 + �

)

0

Notice that, since the Yi’s belong to the interval 60117, we can upper bound the variance by the mean as follows:

�2
≤

1
n

∑

i

�Yi −�� ≤
1
n

(

∑

i

�Yi� +
∑

i

���

)

= 2�0

This gives the following corollary.

Corollary 1. Consider the conditions of the previous lemma. Then for all � > 0

Pr4�YS − s�� ≥ �5≤ 2 exp
(

−
�2

4s�+ �

)

Appendix B. Proof of Lemmas 2 and 3.

Proof of Lemma 2. Fix a scenario � for the duration of the proof. By assumption xS is feasible for (LP), so it suffices
to show that it attains a value of at least 41 − 3�5OPT . For that, consider (LP) with a modified right-hand side:

max
n
∑

t=1

�txt

n
∑

t=1

at
ixt ≤ ai4x

S5 ∀ i ∈ 6m7 (modLP)

x ∈ 60117n0

Consider the Lagrangian relaxation L4p1x5 =
∑�n

t=1 �txt −
∑m

i=1 pi4
∑�n

t=1 a
t
ixt − ai4x

S55 and recall that
infp∈�m maxx∈60117n L4p1x5 equals OPT(modLP), the optimum value of the LP (modLP). Notice that xS is an optimal
solution for maxx∈60117n L4p

S1 x5, which is then at least OPT(modLP). Since xS is clearly feasible for (modLP), it follows
that xS is an optimal solution for the latter.

Now let x∗ be an optimal solution for (LP). Since ai4x
S5≥ 41 − 3�5B for all i, and since at ≥ 0 for all t, it follows that

41 − 3�5x∗ is feasible for (modLP). By linearity of the objective function we get that OPT(modLP) ≥ 41 − 3�5
∑n

t=1 �tx
∗
t =

41 − 3�5OPT and the result follows.
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Proof of Lemma 3. Fix a scenario � for the duration of the proof. Let x∗ be an optimal solution for 4�n1 41 − �55-LP
in complementary slackness with pS . If pSat >�t , the corresponding constraint in the dual is loose and by complementary
slackness we get x∗

t = 0. If pSat < �t , then for dual feasibility we have �∗
t > 0 and by complementary slackness we have

x∗
t = 1. Since we assumed the �t’s strictly positive, notice that pS = 0 implies x∗

t = 1 for all t.
From the definition of xS we get that xS ≤ x∗ and, since the at’s are nonnegative, the feasibility of x∗ implies that

aS
i 4x

S5≤ 41− �5B for all i ∈ 6m7, which gives the first part of the lemma. To prove the second part, we claim that xS and x∗

differ in at most m positions: if pS = 0 we get that 1 = xSt = x∗
t for all t; if pS 6= 0, then Assumption 1 implies that there are at

most m values of t such that pSat =�t , and the previous paragraph gives the claim. Therefore, from primal complementary
slackness of the pair 4x∗1 pS5, we get that whenever pS > 0, aS

i 4x
S5 ≥ aS

i 4x
∗5−m = 41 − �5B −m ≥ 41 − 2�5B, where the

last inequality follows from the fact that B ≥ 1/�. This concludes the proof of the lemma.

Appendix C. Proof of Lemma 7. We prove that W+

i is a witness set for X+

i ; the proof that W−
i is a witness set for

X−
i is analogous.
First, we claim that for all x ∈ X+

i , there is x′ ∈ X such that x′ ⊆ x and ai4x
′5 ∈ 6B1B +m7. To see this, let p be such

that x = x4p5. For �≥ 0, define p� = p+�ei, where ei denotes the ith canonical vector. We have that ai4x4p
055 > B (since

x4p5 ∈ X+

i ) and ai4x4p
�55 = 0 (since columns with at

i > 0 will have at some point p�at ≥ �t). Because of the assumption
that the input is in general position, whenever ai4x4p

�55 is discontinuous (as a function of �≥ 0) the right and the left limits
differ by at most m. It then follows that there is �≥ 0 such that ai4x4p

�55 ∈ 6B1B +m7, and since x4p�5⊆ x for all �≥ 0
the claim follows.

So take a classification x ∈ X+

i and let x′ be as above. The fact that ai4x
′5 ≤ B + m and the nonnegativity of the at’s

implies that there is a l ∈ LK such that x′ ∈ Bl
i . Since wl is the unique smallest set in Bl

i , clearly x′ ⊆wl. To show that
wl ∈W+

i , it suffices to argue that ai4w
l5≥ 41 − �/25B.

Since wl1 x′ ∈ Bl
i , for all j such that lj > 0 we have ai4w

l�Cj
5 ≥ ai4x

′�Cj
5/41 + �/45. Moreover, for j such that l = 0 we

have ai4x4p5�Cj
5 < �B/44K5. Adding over all j ∈ 6K7 gives

ai4w
l5≥

1
1 + �/4

[

ai4x4p55−
∑

j2 lj=0

ai4x4p5�Cj
5

]

≥
B

1 + �/4
−

�B

4
≥

(

1 −
�

2

)

B1

where the third inequality follows Equation (5). Thus, wl ∈W+

i .
Since this property holds for all x ∈X+

i , we conclude that W+

i is a witness set for X+

i .

Appendix D. Proof of Lemma 13. For w ∈ W+

i , we can use Corollary 1 with � = �sai4w5/44n5 to show
that Pr4skewmS4�1w55 ≤ 2 exp4−�2sB/4136n55. For w ∈ Z+

i , using this corollary with � = �sai4w5/42n5 gives that
Pr4skewmU 43�1w55 ≤ 2 exp4−�2sB/468n55. For w ∈ W−

i , we can use this corollary with � = �sB/44n5 to show that
Pr4skewpS42�1w55 ≤ 2 exp4−�2sB/468n55. Finally, for w ∈ Z−

i , using this corollary with � = �sB/44n5 gives that
Pr4skewpT 401w55≤ 2 exp4−�2sB/468n55.

Employing these bounds and union bounding over all terms in inequality (6) concludes the proof of the lemma.

Appendix E. Proof of Theorem 4. Let LP1 denote the LP with columns 4�t1 ã
t5 and right-hand side B̃ = 41 − �5B

and LP2 denote the LP with columns 4�t1 a
t5 and right-hand side B. We show that robust DPA returns a 41 − 2105�5-

approximation for LP1, and the theorem will follow from Lemma 9.
First we show that the returned solution x is feasible for LP1. By definition of the algorithm, aj4x

i5 ≤ �2iB̃ for all i1 j .
By linearity, aj4x5=

∑

i aj4x
i5≤ �B̃

∑log41/�5−1
i=0 2i ≤ B̃.

To verify the value of the returned solution, we first show that �2sB/n ≥ ì4m ln4K/�55 in every call to 4s1 �5-
OLA made by robust DPA. As in §3, the columns ãt’s belong to at most K = O4m/�5m 1-dimensional subspaces. Since
B ≥ì44m2/�25 ln4m/�55, we have that for each i = 01 : : : 1 log41/�5−1 setting s = �2in and �=

√

�/2i satisfies the expres-
sion �2sB/n≥ì4m ln4K/�55.

Then applying Lemma 10 we get that for all i = 01 : : : 1 log41/�5 − 1, Ɛ6�xi7 ≥ 41 − 3
√

�/2i5Ɛ6OPT4�2i+1n57 −

Ɛ6OPT4�2in57− 4�OPT5/2i. By linearity of the objective value and of expectations

Ɛ6�x7=
∑

i

Ɛ6�xi7≥ −Ɛ6OPT4�n57−
log41/�5−2
∑

i=0

(

3

√

�

2i

)

Ɛ6OPT4�n2i+157+ 41 − 3
√

2�− �5OPT 0

Lemma 2.4 of Agrawal et al. [1] states that Ɛ6OPT4s57≤ 4s/n5OPT for all s ≥ 0. Employing this observation, we get

Ɛ6�x7≥ OPT − �OPT

[

3
√

2 + 2 + 3
√
�

log41/�5−2
∑

i=0

2i/2+1

]

0

Since the summation in the expression can be upper bounded by 442
√

2
log41/�5

5/4
√

2 − 155 ≤ 5/
√
�, we get that Ɛ6�̃x7 ≥

41 − 2105�5OPT . This concludes the proof of the theorem.

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
8.

2.
92

.1
9]

 o
n 

15
 A

ug
us

t 2
01

4,
 a

t 0
8:

21
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Molinaro and Ravi: The Geometry of Online Packing Linear Programs
Mathematics of Operations Research 39(1), pp. 46–59, © 2014 INFORMS 59

References

[1] Agrawal S, Wang Z, Ye Y (2013) A dynamic near-optimal algorithm for online linear programming. http://arxiv.org/abs/0911.2974.
[2] Babaioff M, Immorlica N, Kempe D, Kleinberg R (2007) A knapsack secretary problem with applications. Approximation, Ran-

domization, and Combinatorial Optimization, Lecture Notes in Computer Science, Vol. 4627 (Springer-Verlag, Berlin, Heidelberg),
16–28.

[3] Babaioff M, Immorlica N, Kempe D, Kleinberg R (2008) Online auctions and generalized secretary problems. SIGecom Exchanges
7(2):1–11.

[4] Babaioff M, Dinitz M, Gupta A, Immorlica N, Talwar K (2009) Secretary problems: Weights and discounts. Proc. 20th SODA (SIAM,
Philadelphia), 1245–1254.

[5] Bateni M, Hajiaghayi M, Zadimoghaddam M (2010) Submodular secretary problem and extensions. Approximation, Randomization,
and Combinatorial Optimization, Lecture Notes in Computer Science, Vol. 6302 (Springer-Verlag, Berlin, Heidelberg), 39–52.

[6] Birge J, Louveaux F (1997) Introduction to Stochastic Programming (Springer, New York).
[7] Borodin A, El-Yaniv R (1998) Online Computation and Competitive Analysis (Cambridge University Press, Cambridge, UK).
[8] Buchbinder N, Naor J (2009) Online primal-dual algorithms for covering and packing. Math. Oper. Res. 34(2):270–286.
[9] Cucker F, Zhou D (2007) Learning Theory: An Approximation Theory Viewpoint (Cambridge University Press, Cambridge, UK).

[10] Devenur NR, Hayes TP (2009) The AdWords problem: Online keyword matching with budgeted bidders under random permutations.
Fortnow L, Pu P, eds. Proc. ACM Conf. Electronic Commerce (ACM, New York), 71–78.

[11] Devanur NR, Jain K, Sivan B, Wilkens CA (2011) Near optimal online algorithms and fast approximation algorithms for resource
allocation problems. Chen Y, Roughgarden T, eds. Proc. ACM Conf. Electronic Commerce (ACM, New York), 29–38.

[12] Devroye L, Wagner T (1979) Distribution-free performance bounds for potential function rules. IEEE Trans. Inform. Theory
25:601–604.

[13] Dynkin EB (1963) The optimum choice of the instant for stopping a Markov process. Soviet Math. Dokl 150(4):238–240.
[14] Everett H (1963) Generalized Lagrange multiplier method for solving problems of optimum allocation of resources. Oper. Res.

11(3):399–417.
[15] Feldman J, Henzinger M, Korula N, Mirrokni VS, Stein C (2010) Online stochastic packing applied to display ad allocation.

Algorithms–ESA, Lecture Notes in Computer Science, Vol. 6346 (Springer-Verlag, Berlin, Heidelberg), 182–194.
[16] Gilbert JP, Mosteller F (1966) Recognizing the maximum of a sequence. J. Amer. Statist. Assoc. 61(313):35–73.
[17] Goel G, Mehta A (2008) Online budgeted matching in random input models with applications to adwords. Proc. 19th SODA (SIAM,

Philadelphia), 982–991.
[18] Im S, Wang Y (2011) Secretary problems: Laminar matroid and interval scheduling. Proc. 22nd SODA (SIAM, Philadelphia),

1265–1274.
[19] Karp RM, Vazirani UV, Vazirani VV (1990) An optimal algorithm for on-line bipartite matching. Proc. 22nd STOC (ACM, New York),

352–358.
[20] Kenyon C (1996) Best-fit bin-packing with random order. Proc. 7th SODA (SIAM, Philadelphia), 359–364.
[21] Kleinberg R (2005) A multiple-choice secretary algorithm with applications to online auctions. Proc. 16th SODA (SIAM, Philadelphia),

630–631.
[22] Kutin S, Niyogi P (2002) Almost-everywhere algorithmic stability and generalization error. Proc. 18th Conf. Uncertainty in Artificial

Intelligence (Morgan Kaufmann, San Francisco), 275–282.
[23] Matoušek J (2002) Lectures on Discrete Geometry (Springer-Verlag, New York).
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