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The capacitated vehicle routing problem (CVRP) involves distributing identical items from a depot to a set of demand locations
using a single capacitated vehicle. We introduce the heterogeneous capacitated vehicle routing problem, a generalization
of CVRP to the setting of multiple vehicles having nonuniform speeds, and present for it a constant-factor approximation
algorithm.

Our main contribution is an approximation algorithm for the heterogeneous traveling salesman problem, which is the
special case of heterogeneous CVRP with uncapacitated vehicles. Given a metric denoting distances between vertices, a depot
r containing k vehicles having respective speeds 8�i9

k
i=1, the objective in heterogeneous TSP is to find a tour for each vehicle

(starting and ending at r) so that every vertex is covered in some tour and the maximum completion time is minimized; the
completion time of a vehicle is the distance traveled divided by its speed.

Our algorithm relies on a new approximate minimum spanning tree construction called Level-Prim, which is related to but
different from Light Approximate Shortest-path Trees. We also extend the widely used tour-splitting technique to nonuniform
speeds, using ideas from the 2-approximation algorithm for scheduling in unrelated machines.

Keywords : vehicle routing; traveling salesman problem; approximation algorithms
MSC2000 subject classification : Primary: 90B06; secondary: 68W25
OR/MS subject classification : Primary: vehicle routing; secondary: approximation algorithm
History : Received November 3, 2012; revised February 25, 2014. Published online in Articles in Advance January 8, 2016.

1. Introduction. The capacitated vehicle routing problem (CVRP) is an extensively studied combinatorial
optimization problem (see, e.g., the book by Toth and Vigo [21] and references therein). CVRP is defined on a
metric space 4V 1d5, where V is a finite set of locations/vertices and d2 V ×V →�+ a distance function. There
is a depot vertex r ∈ V that contains an infinite supply of an item, and each vertex u ∈ V demands some units
qu of this item. A single vehicle of capacity Q ≥ 0 is used to distribute the items. The objective is to find a
minimum length tour of the vehicle that satisfies all demands, subject to the constraint that the vehicle carries
at most Q units at any time.

CVRP is closely related to the Traveling Salesman Problem (TSP). It is clear that CVRP reduces to TSP in
the absence of the capacity constraint. More interestingly, a reverse relation is also known—essentially the best
known approximation algorithm for CVRP (Haimovich and Kan [16]) achieves a guarantee of �+ 1, where �
is the best approximation ratio for TSP.

In practice, it is natural to have a fleet of multiple vehicles that can run in parallel. The objective can then
be either to minimize the sum of completion times of all the vehicles or to minimize the maximum completion
time over all vehicles (also called the makespan). Furthermore, the vehicles can all be identical (same speed)
or heterogeneous (have different speeds). It can easily be seen that the total completion time objective always
reduces to the usual CVRP on a single vehicle (having maximum speed), and constant-factor approximation
algorithms readily follow.

The Heterogeneous Capacitated Vehicle Routing Problem (HetCVRP) addresses the makespan objective. Here,
a fleet of k vehicles with nonuniform speeds and uniform capacity Q is initially located at the depot vertex r .
A valid routing consists of a tour for each vehicle subject to the capacity constraint such that all demands are
satisfied. The objective in HetCVRP is to minimize the makespan, i.e., the maximum completion time of the
routing; the completion time of a vehicle equals the distance traveled divided by its speed. Our main result is a
constant-factor approximation algorithm for HetCVRP.

Our contributions are twofold:
• We extend the tour-splitting technique to the setting of nonuniform speed vehicles. The tour-splitting

approach has been very useful in obtaining approximation algorithms for a number of vehicle routing problems
with uniform speeds (see a more detailed discussion below).
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• We introduce a new approximate Minimum Spanning Tree called Level Prim that is used in the “tour
splitting” step and that might be of some independent interest.

Most of our algorithmic ideas, in fact, lie in solving the special case of HetCVRP when there is no capacity
constraint. This problem, which we call Heterogeneous Traveling Salesman Problem (HetTSP), is a general-
ization of the Traveling Salesman Problem in the presence of multiple nonuniform speed vehicles. The formal
definitions appear next.

1.1. Problem definition. The input to the HetTSP consists of a metric 4V 1d5 denoting distances between
vertices, a depot r ∈ V , and k vehicles with speeds 8�i9

k
i=1. The distance function d2 V ×V →�+ is symmetric

and satisfies triangle inequality. We assume (without loss of generality) by scaling that all speeds are greater
than or equal to one. The objective is to find tours 8�i9

k
i=1 (starting and ending at r) for each vehicle so that

every vertex is covered in some tour and we minimize the makespan:

k
max
i=1

d4�i5

�i

0

For each i ∈ 811 : : : 1 k9, d4�i5 denotes the length of tour �i, so the time taken by vehicle i is d4�i5/�i.
The HetCVRP has the same input as above, and in addition there is a capacity Q and demands 8qv ∈�+2 v ∈ V 9

of an identical item. There is an infinite supply of this item located at the depot. A solution to HetCVRP consists
of tours 8�i9

k
i=1 (starting and ending at r) for each vehicle so that each vertex v receives qv units of the item, and

each vehicle carries at most Q items at any point in time. Each tour might visit the depot multiple times to refill
items. The objective is again to minimize the maximum completion time, maxk

i=1 d4�i5/�i.
We study the unsplit-delivery version of HetCVRP (Altinkemer and Gavish [1]), where the entire demand at

a vertex must be served in a single visit; thus we assume that maxv∈V qv ≤Q. It is clear that the optimal value
under unsplit-deliveries is at least the optimal value under the less restrictive split-delivery model (Altinkemer
and Gavish [2]), where the demand at a vertex may be served by multiple visits. We give an algorithm for
unsplit-delivery HetCVRP that has the stronger guarantee of achieving a constant factor approximation relative
to the optimal split-delivery routing.

1.2. Previous techniques. Here we discuss some relevant previously used techniques.
Tour-splitting solutions: A popular heuristic approach for vehicle routing problems is to obtain a solution by

partitioning a traveling salesman tour or a minimum spanning tree. To illustrate this, we first outline a constant-
factor approximation algorithm for HetTSP with uniform speeds. By scaling, we may assume that all speeds
are one. Let OPT denote the optimal value (i.e., makespan) of the given uniform HetTSP instance. Notice that
the union of the k tours in any solution connects all vertices, and hence the minimum spanning tree (MST)
has length at most k ·OPT . Now consider an MST, and take an Euler tour C by doubling edges; clearly, the
length d4C5 ≤ 2k ·OPT . Next, partition the vertices on C into k connected segments, each of length at most
d4C5/k ≤ 2 ·OPT . Finally, the solution tour for the ith vehicle is obtained by connecting both endpoints of the
ith segment of C to the depot. Observe that twice the distance from the depot to any vertex is a lower bound
on OPT , so the length of each tour is at most 3 ·OPT ; hence, this solution is a 3-approximation. We remark
that this can be extended to obtain an O415-approximation algorithm for HetCVRP with uniform speeds (e.g.,
using Theorem 4 in §3).

At a high level, this strategy has two main components: (1) Partitioning an MST into manageably sized con-
nected parts and (2) assigning these parts to vehicles. This idea—which was already present in the 1970s—is the
central piece of many heuristics and approximation algorithms for vehicle routing problems; e.g., Frederickson
et al. [14], Haimovich and Kan [16], Altinkemer and Gavish [1, 2], Even et al. [13], Arkin et al. [3], Gupta
et al. [15]. However, it is not clear how to directly employ this technique in the presence of nonuniform speeds.
This is because the two main components now need some correlation: the part of the MST that is assigned to a
slow vehicle must also be relatively close to the depot in order to be reachable by this vehicle.

Set-cover based solutions: A different approach is to use a set-covering formulation of the vehicle routing
problem. We illustrate this on the general HetTSP (with nonuniform speeds), where it leads to a logarithmic
approximation ratio. Suppose that the algorithm knows a value B such that B/2 ≤ OPT ≤ B (we will run the
algorithm over all choices for B and output the best solution found). If each vehicle of speed s is given a length
budget of s · B ≥ s · OPT , then the vehicles can collectively cover all vertices. Using an O415-approximation
algorithm for the orienteering problem (Blum et al. [6], Chekuri et al. [9]), one can obtain for each vehicle i,
a tour of length at most �i ·B containing (approximately) the maximum number of vertices. This can be used
within a maximum-coverage framework (see, e.g., Chekuri and Kumar [8]), to obtain one tour for each vehicle
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so that a constant fraction of all vertices are covered, and the tour of the ith vehicle has length at most �i ·B. To
cover all vertices, this “maximum coverage” step is repeated O4logn5 times, resulting in a solution to HetTSP
of makespan O4logn5 ·OPT .

The intrinsic problem of this approach is that it is too general—in fact, the above algorithm also yields a
logarithmic approximation ratio in the setting where the travel-time metric faced by each vehicle is arbitrary
(instead of being scaled by its speed), and this generalization of HetTSP can be shown to be ì4logn5 hard to
approximate, by a reduction from set-cover. It is therefore unclear whether the performance of this set-covering
based approach can be improved for HetTSP.

1.3. Results, techniques and outline. We extend the tour-splitting approach to nonuniform speeds and
obtain the following result.

Theorem 1. There are constant-factor approximation algorithms for HetTSP and HetCVRP.

To apply the tour-splitting strategy with nonuniform speed vehicles, we modify the requirements of the two
components: (1) partitioning the MST and (2) assigning vehicles.

First, we specify conditions that guarantee that a collection of connected parts is “assignable”; that is, each
vehicle can visit the vertices of the parts assigned to it within time O4OPT 5. These conditions (formalized
in Definition 1) are based on the 2-approximation algorithm for scheduling in unrelated machines by Lenstra
et al. [18]. It turns out to be important in this definition that each connected part be “r-rooted,” i.e., contains the
root r . Lemma 2 shows that any assignable collection of r-rooted subtours can be used to obtain a constant-factor
approximate solution to HetTSP. These details appear in §2.2.

Secondly, instead of partitioning an MST as in usual applications of tour-splitting, we use more structured
spanning trees that we call Level-Prim trees (to obtain an assignable r-rooted collection). Consider partitioning
the vertices into levels according to their distance from r , where the ith level includes all vertices at distance
between 2i−1 and 2i. The Level-Prim tree is simply the tree resulting from running Prim’s MST algorithm with
the restriction that all vertices in a level are spanned before including vertices from the next level. We show in
§2.3 that the Level-Prim tree has two important properties; informally, these are (i) the vertices along every root-
leaf path are monotonically nondecreasing in level and (ii) for every suffix 8j1 j+11 : : : 9 of levels, the subgraph
induced on those vertices costs at most O415 times their induced MST. The first condition is the departing point
from MSTs. The second property is related to the assignability conditions in Definition 1 and guarantees that we
can decompose a Level-Prim tree into an assignable collection. These properties are formalized in Theorem 2.

The Level-Prim construction combines aspects of both MST and shortest-path distances from a root, so it
is not surprising that this structure is related to Light Approximate Shortest-Path Trees (LAST) introduced by
Khuller et al. [17]. Indeed, we use the existence of a suitably defined LAST in proving Theorem 2. We remark,
however, that the properties guaranteed by LASTs are not sufficient for our purposes (see §2.3).

The third main component of our algorithm for HetTSP is decomposing Level-Prim into an assignable collec-
tion of r-rooted subtours. Roughly speaking, we partition the edges of Level-Prim into subtrees while ensuring
that each subtree consisting of level-i vertices also has length ä42i5. This partition, which relies on the two
properties of Level-Prim, yields a collection of unrooted subtours that is “assignable.” Moreover, each level-i
subtour can be connected to the root r using an extra edge of length at most 2i that can be charged to the
Level-Prim subtree itself since it has length ì42i5. Altogether, we obtain an assignable collection of r-rooted
subtours as required by Definition 1. This step appears in §2.4.

Finally, to obtain an approximation algorithm for HetCVRP, we reduce this problem to approximating HetTSP
in a suitably modified metric space. The new distance function encodes any additional trips to and from the root
that a vehicle has to make when it runs out of capacity. The exact transformation is presented in §3.

1.4. Related work. For the CVRP, the best known approximation ratio (Haimovich and Kan [16]) is essen-
tially �+ 1 where � is the best guarantee for TSP. The current best values for � are �= 3

2 for general metrics
(Christofides [10]) and �= 1+� (for any constant � > 0) for constant dimensional Euclidean metrics (Arora [4],
Mitchell [19]). This has been improved slightly to 1+� ·41−1/Q5−41/35Q3 when Q ≥ 3 (Bompadre et al. [7]).
Recently, Das and Mathieu [12] gave a quasi-polynomial time approximation scheme for CVRP on the Euclidean
plane.

Several variants of TSP have been studied, most of which have a min-sum objective. One related problem
with min-max objective is nurse station location (Even et al. [13]), where the goal is to obtain a collection
of trees (each rooted at a distinct depot) such that all vertices are covered and the maximum tree length is
minimized. Even et al. [13] gave a 4-approximation algorithm for this problem. This is based on partitioning the
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MST and assigning to trees along the lines of §1.2; their second step, however, involves a nontrivial bipartite
matching subproblem.

In proving the properties of Level-Prim, we use Light Approximate Shortest-Path Trees introduced by Khuller
et al. [17], building on the work on shallow-light trees of Awerbuch et al. [5]. An 4�1�5-LAST is a rooted
tree that has (a) length at most � times the MST and (b) the distance from any vertex to the root (along the
tree) is at most � times the distance in the original metric. Khuller et al. [17] showed that every metric has an
4�11 + 2/4�− 155-LAST (for any �> 1) and this is best possible.

The first phase of our algorithm uses some ideas from scheduling on unrelated machines (Lenstra et al. [18]),
which also has a min-max objective. In this problem, there is a set of jobs and machines, where each job j
has processing time pij on machine i; the goal is to assign jobs to machines while minimizing the maximum
completion time. Lenstra et al. [18] gave an LP-based 2-approximation algorithm for this problem.

Notation. We let G = 4V 1E5 be the complete graph on vertices V with edge weights corresponding to the
distance function d. For any set F⊆E of edges, we set d4F 5=

∑

e∈F de. Whenever we consider a subgraph H
of G, the edges of H inherit the weight that they have in G (i.e., the weight of edge 4u1 v5 is d4u1 v5). We use
dH4u1 v5 to denote the shortest-path distance in H between u and v.

Given any (multi)graph H and a subset U of its vertices, H6U7 denotes the subgraph induced on U and H/U
denotes the graph obtained by contracting vertices U to a single vertex (we retain parallel edges).

For any s ≥ 0, we let å4s5=
∑

j∈6k72 �j≥s �j denote the sum of those speeds that are at least s.

2. Algorithm for HetTSP. Our algorithm involves the following components. First, we partition the vertices
into levels according to geometrically increasing distances from the depot. Second, we compute an approximate
minimum spanning tree (the Level-Prim) based on this partition. Third, we decompose the Level-Prim tree into
a suitable collection of subtours. Finally, we show that these subtours can be assigned to the vehicles to obtain a
solution of near-optimal makespan. The algorithm is outlined below for future reference; we describe the precise
details in the following subsections.

Algorithm 1 (Algorithm outline for HetTSP)

1: Initialize M ← maxv4d4r1 v5/maxi �i5. // Initial 4low5 estimate of OPT.
2: loop
3: Using the current value of M , classify vertices into levels V01 V11 : : : (§2.1).
4: Using these levels, obtain the approximate spanning tree H← Level-Prim4G5 (§2.3).
5: if inequality (1) is satisfied by H, then
6: // Estimate M is not too low.
7: Decompose H into an assignable collection 8Ti9i of subtours (§2.4).
8: Using 8Ti9i, obtain a feasible solution to HetTSP with makespan O4M5 (§2.2).
9: Exit the procedure. // Approximate solution found.

10: else
11: M ← 41 + �5M . // Increase estimate of OPT, �> 0 is a small constant.

The variable M can be thought of as a “guess” of OPT that starts at a low value and is increased in every
iteration of the main loop; the if condition in the main loop “verifies” this guess. Therefore, it is instructive to
view M as a good approximation to the optimal makespan.

In the description of the algorithm, for concreteness we compute various constant factors: this leads to a final
approximation ratio of 90 for HetTSP. However, we have not tried to optimize these constant factors since that
is not the focus of this paper.

2.1. Classifying into levels. We now describe the classification of vertices used in step 3 of the algorithm.
Given M and � ≥ 1 (the precise value to be fixed later), partition the vertices V according to their distance to r :

V0 = 8u ∈ V 2 d4r1 u5≤M91 and

Vi = 8u ∈ V 2 41 + �5i−1M <d4r1u5≤ 41 + �5iM91 for all i ≥ 10

The vertices in Vi are referred to as level i vertices. For any i ≥ 0, we use V≤i as a shorthand for
⋃i

j=0 Vj and
similarly V<i =

⋃i−1
j=0 Vj = V≤i−1. For notational convenience, we set V<0 = 8r9.

We also define the level of an edge 4u1 v5 ∈E as the larger of the levels of u and v. For each i ≥ 0, Ei denotes
the edges in E of level i. We use the notation E≤i =

⋃i
j=0 Ej and E≥i =

⋃

j≥i Ej .
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2.2. Assignable subtours. Here we characterize some properties that imply good near-optimal solutions to
HetTSP. We start with a lower bound on the optimal value of any HetTSP instance.

Lemma 1 (Lower Bound). Assume that M ≥OPT . Then for each level l ≥ 0,

MST 4G/V<l5≤M ·å441 + �5l−151

where MST 4G/V<l5 is the length of the minimum spanning tree in the graph obtained by contracting ver-
tices V<l and å441 + �5l−15 is the total of speeds that exceed 41 + �5l−1.

Proof. Consider an optimal solution for HetTSP and let E∗ be the set of edges traversed by vehicles in this
solution; label each edge in E∗ by the vehicle that traversed it. Clearly E∗ connects all vertices to the root r .

Observe that in an optimal solution, only vehicles having speed at least 41 + �5l−1 can even reach any vertex
in V≥l. This is because vertices in V≥l are located at distance at least 41 + �5l−1M from the depot, and a vehicle
of speed s travels distance at most s · OPT ≤ s · M . Thus every edge in E∗ ∩ E≥l must be labeled by some
vehicle of speed at least 41 + �5l−1. Now, since OPT denotes the optimal makespan, the total distance covered
by vehicles having speed at least 41 + �5l−1 is upper bounded by OPT ·å441 + �5l−15≤M ·å441 + �5l−15. This
implies that d4E∗ ∩E≥l5≤M ·å441 + �5l−15.

On the other hand, since E∗ connects all vertices, E∗ ∩E≥l contains a spanning tree of G/V<l. Thus we have
MST 4G/V<l5≤ d4E∗ ∩E≥l5≤M ·å441 + �5l−15. �

Along lines of the tour-splitting approach, our algorithm first obtains a collection of subtours that cover all
vertices and then assigns these subtours to vehicles. Motivated by the lower bound in Lemma 1, we define
properties (on the subtours) that correspond to near-optimal solutions to HetTSP. We want to guarantee that the
subtours can be assigned to vehicles so that each vehicle completes its subtours in time O4M5. Each subtour is
a cycle that contains the depot r (also called r-cycle).

Definition 1 (Assignable Subtours). For each i ∈ �≥0 let Ti be a collection of r-cycles. Then 8Ti9i≥0

is called 4�1�5-assignable if it covers all vertices V and has the following properties.
1. For each i ≥ 0 and every T ∈Ti2 d4T 5≤ �41 + �5iM .
2. For each i ≥ 02

∑

j≥i d4Tj5≤ �M ·å441 + �5i−15.
Above, for any collection Tj of r-cycles, d4Tj5=

∑

T∈Tj
d4T 5 denotes its total length.

In the intended HetTSP solution, subtours in Ti will only be handled by vehicles of speed at least 41 + �5i−1.
We view each vehicle of speed s as having a “length capacity” of s ·M , which corresponds to a bound on the
total length of subtours assigned to it. The first condition implies that each subtour in Ti can be assigned to
a vehicle of speed 41 + �5i so as to be completed in time �M . The second condition guarantees that the total
length of subtours 8Tj9j≥i (that are targeted by vehicles of speed at least 41 + �5i−1) is at most � times the total
“length capacity” of those vehicles. These minimal conditions are enough to eventually assign all subtours to
vehicles while guaranteeing small makespan. The following lemma describes step 8 of Algorithm 1.

Lemma 2. Given an 4�1�5-assignable collection 8Ti9i≥0 of r-cycles, we can obtain in polynomial time a
solution for HetTSP with makespan at most 441 + �5�+�5M .

Proof. To prove this lemma, we show that the second condition in Definition 1 (by Hall’s theorem) guaran-
tees the existence of a fractional assignment of subtours to vehicles, where each vehicle incurs load at most �M .
Then using the first condition and a result on scheduling on unrelated machines (Lenstra et al. [18]), we round
this fractional assignment into an integral one while increasing the load on each vehicle by at most 41 + �5�M .

Consider the bipartite graph H whose left side contains one node for each subtour in 8Ti9i≥0 and whose right
side contains one node for each vehicle. (We identify the nodes with their respective subtours/vehicles.) The
edge set E4H5 contains an edge between subtour T ∈Ti and a vehicle of speed s if and only if s ≥ 41 + �5i−1.

Fractional assignment. Consider the following b-matching problem (Schrijver [20]) on the graph H . For
each subtour T ∈Ti, we set b4T 5 2= d4T 5. For each vehicle u of speed s, we set b4u5 2= �s ·M . A left-saturating
b-matching is an assignment x2 E4H5→�+ such that

∑

u2vehicle1 4T 1u5∈E4H5

xT 1u = b4T 51 for every subtour T

∑

T 2 subtour1 4T 1u5∈E4H5

xT 1u ≤ b4u51 for every vehicle u
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Notice that this gives a fractional assignment of subtours to vehicles. We claim that there is indeed such a
b-matching in H . Using a standard generalization of Hall’s Theorem (e.g., see page 54 of Cook et al. [11]),
H has a feasible b-matching if and only if for every subset U of subtours,

∑

T∈U b4T 5≤
∑

w∈N4U5 b4w5, where
N4U5 = 8w2 ∃T ∈ U1 4T 1w5 ∈ E4H59 is the neighborhood of U . However, by the structure of H , it suffices
to verify this condition for sets U that are equal to

⋃

j≥iTj for some i. To see that all other inequalities are
dominated by those coming from such sets, first notice that if U contains a subtour in Ti, then N4U5 already
contains all vehicles of speed at least 41 + �5i−1. Adding to U all the subtours in

⋃

j≥iTj does not change its
neighborhood and thus leads to a dominating inequality. Using this revised condition, H has a b-matching if
and only if

∑

j≥i

d4Tj5≤
∑

w∈N4
⋃

j≥i Tj 5

b4w5= �M ·å441 + �5i−151 ∀ i ≥ 00

Since this is exactly the second condition in Definition 1, it follows that H indeed has a b-matching x; this can
also be obtained in polynomial time using any maximum flow algorithm (Cook et al. [11]).

Scheduling unrelated machines. We now round the fractional assignment x to an integral assignment
where each subtour is assigned to exactly one vehicle. Consider an instance of scheduling on unrelated
machines (Lenstra et al. [18]) with each subtour as a “job” and each vehicle as a “machine.” Define the pro-
cessing time of subtour T on vehicle u (of speed s) as pT 1u 2= d4T 5/s if 4T 1u5 ∈ E4H5. The goal is to assign
jobs to machines so that the maximum machine load is minimized; the load on a machine is the total processing
time of jobs that are assigned to it.

Let yT 1u 2= xT 1u/d4T 5 denote the fraction of subtour T assigned to vehicle u in the b-matching x. For any
vehicle u having speed s, we have

∑

T

yT 1u ·pT 1u =
∑

4T 1u5∈E4H5

yT 1u ·
d4T 5

s
=

∑

4T 1u5∈E4H5

xT 1u
s

≤
b4u5

s
= �M0

Consider any edge 4T 1u5 ∈E4H5 with T ∈Ti and u having speed s. Using the first property in Definition 1, we
have d4T 5≤ �41 + �5iM . By construction of the edges of H , since T ∈Ti, vehicle u has speed s ≥ 41 + �5i−1.
Thus pT 1u = d4T 5/s ≤ 41 + �5�M , for all 4T 1u5 ∈E4H5.

Thus y is a feasible solution to the natural LP relaxation for the unrelated machine scheduling instance, with
makespan �M and maximum processing time 41 + �5�M . Theorem 1 of Lenstra et al. [18] then asserts that y
can be rounded into an integral assignment of subtours to vehicles such that the load on any vehicle is at most
441 + �5�+�5M . �

2.3. Level-Prim. To obtain an assignable collection of subtours, we start with a specific approximate min-
imum spanning tree of G, the Level-Prim tree (which is used in step 4 of Algorithm 1). A Level-Prim tree is
formally defined as one that can be obtained as the output of the following procedure.

Algorithm 2 (Level-Prim(G, M , �))

1: Partition vertices into levels V01 V11 : : : using the values of M and � (§2.1).
2: For each i ≥ 0, let Hi be edge-set of a minimum spanning tree for G6V≤i7/V<i.
3: return H=

⋃

i≥0 Hi.

Note that Level-Prim trees can alternatively be defined by modifying Prim’s minimum spanning tree algorithm
such that vertices in level i are only considered to be added to the tree after all vertices in levels below i have
already been added.

Theorem 2. For � ≥ 1, a Level-Prim 4G1M1�5 tree H=
⋃

i≥0 Hi satisfies the following:
• The vertex levels along every root-leaf path are nondecreasing.
• For each i ≥ 0,

∑

j≥i d4Hj5≤ 46 + 6/�5 ·MST 4G/V<i5.

Note that the second property in Theorem 2 mirrors the second property in Definition 1. Lemma 1 gives
a formal connection between these, assuming that M is a good estimate for OPT. We then get the following
corollary of Theorem 2.

Corollary 1. A Level-Prim 4G1M1�5 tree H=
⋃

i≥0 Hi satisfies the following:
1. The vertex levels along every root-leaf path are nondecreasing.
2. If M ≥OPT

∑

j≥i

d4Hj5≤

(

6 +
6
�

)

·M ·å441 + �5i−15 for all i ≥ 00 (1)
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(a) MST on G (b) A(1,2)-LAST T on G

Figure 1. Instance with depot (square node), n gray nodes, and n black nodes. The distance between the depot and each gray node, and
the distance between pairs of gray nodes, is M . The distance between a gray node and a black node is also M , and the distance between
any pair of black nodes is M/n. With � = 1, we have V0 consisting of the depot and gray nodes, and V1 containing all black nodes. Notice
that d4T ∩E15= n ·M , whereas MST 4G/V05 < 2M .

In the rest of this section, we prove Theorem 2. It is easy to see that for every l ≥ 0,
⋃l

j=0 Hj spans G6V≤l7;
hence the procedure produces a spanning tree for G. Moreover, by construction we obtain that every root-leaf
path in H traverses the levels in nondecreasing order as desired. Thus, we focus on proving the second property
in the theorem.

We compare the length of H to that of a specific LAST (light approximate shortest path tree) instead of
directly comparing it to an MST . The following LAST is implicit in the construction given in Khuller et al. [17];
for completeness, we outline a proof in Appendix A. Recall that a spider is a tree with at most one vertex (the
center) having degree greater than two.

Theorem 3 (Khuller et al. [17]). Given any metric space 4V 1d5 with root r and � > 0, there exists a
spanning spider L with center r (seen as a subgraph of the complete graph of the metric space) such that

• For each u ∈ V , the shortest-path distance dL4r1 u5 from r to u in L is at most 41 + �5 ·d4r1u5.
• The length of L is d4L5≤ 241 + 1/�5 ·MST .

We remark that we cannot use a LAST directly instead of Level-Prim since the former does not need to have
the properties asserted by Theorem 2; it is easy to find a LAST that does not satisfy the first property, whereas
Figure 1 also shows that the second can also be violated by an arbitrary amount.

Proof of Theorem 2. We prove the second condition for any i ≥ 0. Let G′ =G/V<i denote the graph obtained
by contracting vertices V<i to a new depot r ′. We let d′ denote the resulting shortest path metric on G′. For each
l ≥ 0 and v ∈ Vi+l, we have

d′4r ′1 v5≤ d4r1 v5≤ 41 + �5i+lM (2)

d′4r ′1 v5≥ d4r1 v5− 41 + �5i−1M > 41 + �5i−1M · 441 + �5l − 15 (3)

Inequality (2) follows immediately from the definition of d′ and Vi+l. To see inequality (3), note that d′4r ′1 v5=

min8d4u1 v52 u ∈ V<i9= d4w1v5 for some w ∈ V<i; by triangle inequality, we have d4w1v5≥ d4r1 v5−d4r1w5,
which is at least d4r1 v5− 41 + �5i−1M by definition of V<i.

Notice that levels Vjs are defined relative to the original metric; however, (2) and (3) show that even under
the new distances d′, vertices in a level are at roughly the same distance from the new depot r ′.

Let L be a spider LAST obtained by applying Theorem 3 on metric d′ with root r ′. Let P denote the set of
all root-leaf paths in L, and note that P is an edge-disjoint collection. Also set M ′ 2= 41 + �5i−1M and � 2= 3.
The next claim shows that each root-leaf path in P crosses levels almost in increasing order.

Claim 1. Consider any root-leaf path P = 4r ′ = u1 → u2 → ·· · → uk5 in P. For every pair of nodes
ua1 ub ∈ P with a< b, if ua ∈ Vi+l+� for some l ≥ 0, then we have ub ∈ V>i+l.

Proof. Suppose (for a contradiction) that there is some value l ≥ 0 and a pair of nodes ua1 ub ∈ P with
a< b, ua ∈ Vi+l+� and ub ∈ V≤i+l. Then

d′

L4r
′1 ub5 > d′

L4r
′1 ua5≥ d′4r ′1 ua5≥M ′

· 441 + �5l+�
− 15≥M ′41 + �5l+21

where the third inequality is because of (3) since ua ∈ Vi+l+�, and the last inequality uses

41 + �5l+�
− 1 = �441 + �5l+�−1

+ 41 + �5l+�−2
· · · + 15 > 41 + �5l+2

for � ≥ 1 and � = 3. On the other hand, d′4r ′1 ub5 ≤ 41 + �5l+1M ′ by (2) since ub ∈ V≤i+l, so we obtain
d′
L4r

′1 ub5 > 41 + �5 ·d′4r ′1 ub5, which contradicts the definition of L (see Theorem 3). �
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r

r

Vi–1

Vi–1

Vi+1 Vi+2Vi

r ′

r ′

···

···

···

···

Figure 2. Spiders L (top) and L′ (bottom). Each root-leaf path in L corresponds to three monotone root-leaf paths in L′ depicted by
solid, dotted, and dashed paths.

Now we transform L into another spider L′ that traverses levels in nondecreasing order as follows (see also
Figure 2). For each root-leaf path P = 4r = u1 → u2 → ·· · → uk5, perform the following modification. For
each q ∈ 80111 : : : 1 � − 19, let Pq denote the path obtained from P by shortcutting over all vertices not in
levels indexed q modulo �; more precisely, if ua1

1 ua2
1 : : : 1 uak′

are the nodes in P at levels q modulo � (with
a1 < a2 < · · ·< ak′ ), we set Pq = 4ua1

→ ua2
→ ·· · → uak′

5. Notice that Pq crosses levels monotonically: if not,
there must be some a < b in P with ua ∈ V≥i+l+� and ub ∈ V≤i+l, contrary to Claim 1. Also, by employing the
triangle inequality, we have that d′4Pq5≤ d′4P5 for all q. Finally define the spider L′ as the union of the paths
8P01 P11 : : : 1 P�−19 over all root-leaf paths P ∈P.

By construction, the vertex levels along each root-leaf path of L′ are nondecreasing. Additionally d′4L′5 ≤

� ·
∑

P∈P d′4P5= � ·d′4L5≤ �42 + 2/�5 ·MST 4G/V<i5 by Theorem 3.
Now partition the edges of L′ as

ãl =

{

L′6V≤i7 if l = 01

L′6V≤i+l7\L
′6V<i+l7 if l ≥ 10

By the monotone property of paths in L′, it follows that L′6V≤i+l7 is connected for every l ≥ 0; recall that
L′6V≤i+l7 is a subgraph of G′ =G/V<i. Thus ãl corresponds to a spanning tree in the graph G6V≤i+l7/V<i+l. Since
Hi+l in the Level-Prim construction is chosen to be an MST in G6V≤i+l7/V<i+l, we obtain d4Hi+l5 ≤ d′4ãl5.

1

Thus,
∑

j≥i

d4Hj5≤
∑

l≥0

d′4ãl5= d′4L′5≤ 6
(

1 +
1
�

)

·MST 4G/V<i50

This concludes the proof of Theorem 2. Theorem 3 is proved in the appendix.

2.4. Decomposition procedure. In this section we decompose a Level-Prim tree H into an assignable
collection 8Ti9i≥0 of r-cycles (step 7 of Algorithm 1). Motivated by Corollary 1, the idea is to essentially
partition each subgraph Hi into many pieces and connect them to r .

To get an idea of the decomposition algorithm, suppose that each connected component in Hi is large enough,
i.e., has length at least 41 + �5iM . Then we can proceed as follows. For each i ≥ 0, take a Euler tour of each
connected component of Hi and partition them into paths of length approximately 41 + �5iM each; finally, add
edges from r to the ends of each path to obtain collection Ti of r-cycles. The main observation is that each edge
added to connect a path to the root has approximately the same length as the path itself. Then by construction
of the paths, we get that 8Ti9i≥0 satisfies the first property of an assignable collection; further, using (1), we get
that the second property is satisfied as well.

Notice that it was crucial to partition Hi into parts of length ì415 · 41 + �5iM . But this is problematic when
Hi has a small connected component. To deal with this, we show that every small component in Hi is attached

1 Note that each edge in ãl is present in G6V≤i+l7/V<i+l, and the shortest-path distance between its end points may only have reduced in
comparison to G′ =G/V<i.
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V0

V1

V2

(a) A Level-Prim tree �, with
edges H2 in bold

(b) Partition of H2 into four sub-trees,
each with its head-edge high-lighted

Figure 3. Illustration for step 1 of the decomposition procedure.

to (“dangling” from) a large enough component in Hi−1; then we simply treat the small Hi component as an
integral part of the latter.

Now we formally describe the proposed decomposition procedure.
Step 1 (create subtrees). Let S0 = 8H09. For each level i ≥ 1, partition the edges of Hi into a collection Si

of (unrooted) subtrees such that each subtree contains exactly one edge from V<i to Vi. For any � ∈Si call the
unique edge from V<i to Vi its head-edge h4�5. Note that such a partition is indeed possible since Hi/V<i is
connected. See Figure 3.

Any subtree in Si (for i ≥ 0) is referred to as a level i subtree. Note that head-edges are defined only for
subtrees in level 1 and above.

Step 2 (mark subtrees). Define � 2= �/442 + �541 + �55. For each level i ≥ 0, mark those � ∈ Si that have
d4�5 ≥ � · 41 + �5iM . In addition, mark the tree H0 in S0. Let Sm

i and Su
i denote the marked and unmarked

subtrees in Si.
Step 3 (assign unmarked subtrees). For each level i ≥ 1 and unmarked � ∈ Su

i , define its “parent” �4�5 as
the subtree in

⋃

j<iSj containing the other end point of h4�5.

Claim 2. For i ≥ 1 and unmarked � ∈Su
i , �4�5 ∈Si−1. Moreover, �4�5 is marked.

Proof. Since � is unmarked in level i ≥ 1, we have d4h4�55 ≤ d4�5 < � · 41 + �5iM . Let h4�5 = 4v1w5
where v ∈�4�5 and w ∈ Vi. By definition v ∈ V<i, but in fact we have v ∈ Vi−1: otherwise, d4h4�55= d4v1w5≥

d4r1w5 − d4r1 v5 > 41 + �5i−1M − 41 + �5i−2M > � · 41 + �5iM , meaning that � is marked, contrary to the
assumption. Thus �4�5 ∈Si−1.

For the second part of the claim, notice that if i = 1, then �4�5=H0, which is always marked. Suppose i ≥ 2.
From the above, �4�5 is in level i − 1 ≥ 1 and hence contains a head-edge. This implies that �4�5 contains
some vertex u ∈ V<i−1, namely an end point of h4�4�55. Employing triangle inequality twice, we have

d4u1 v5+d4v1w5≥ d4u1w5≥ d4r1w5−d4r1u50

Since w ∈ Vi and u ∈ V≤i−2, we have d4r1w5− d4r1u5 > 41 + �5i−1M − 41 + �5i−2M = �41 + �5i−2M . That is,
d4u1 v5+d4v1w5 > �41 + �5i−2M . Since � is unmarked, d4v1w5 < �41 + �5iM . Hence,

d4�4�55≥ d4u1 v5 > �41 + �5i−2M −
�

2 + �
41 + �5i−1M = � · 41 + �5i−1M0

This implies that subtree �4�5 is marked (in level i− 1). �

Step 4 (partition marked subtrees). For each level i ≥ 0 and marked � ∈ Sm
i , define Dangle4�5 = �−14�5 as

the set of all unmarked � ∈Su
i+1 having �4�5= � ; see also Figure 4. We will partition the tree � ∪ Dangle4�5

into subtours. Take a Euler tour of � ∪ Dangle4�5 by “doubling” its edges and split the resulting tour into
maximal paths of length at most 241 + �5i+1M each; let P11 : : : 1 Pq denote the resulting paths. Finally, add edges
from r to the end points of each of these paths to obtain a collection Ti4�5 of r-cycles.

Claim 3. For any T ∈Ti4�5, we have d4T 5≤ 44 + 4�5 · 41 + �5iM .

Proof. Notice that every T ∈ Ti4�5 consists of a path Pj (for some 1 ≤ j ≤ q) and edges from r to both
end points of Pj . By construction, d4Pj5≤ 241 + �5i+1M . Moreover, since Pj only contains vertices from V≤i+1,
the two additional edges increase the length by at most 241 + �5i+1M . �
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T1

T2

T3

T4

T5

T6

T7

T8

T9

Vi+1Vi

The head-edges of all subtrees are highlighted

Dangle(T1) = {T3,T4} and Dangle(T2) = {T5,T6,T7}

Dashed lines denote marked subtrees �i+1 = {T8,T9}

Solid lines denote marked subtrees �i   = {T1,T2}

subtrees �i+1 = {T3,T4,T5,T6,T7}u

Dotted lines denote unmarked

m

m

Figure 4. Marked and unmarked subtrees, and dangles.

Claim 4.
∑

T∈Ti4�5
d4T 5≤ max84 + 4/�169 · 6d4�5+d4Dangle4�557.

Proof. We break the analysis into two cases depending on q. Suppose first that q = 1; namely, Ti4�5
consists of a single subtour T . If i = 0, then � contains r and d4T 5 ≤ 2 · d4�5 + 2 · d4Dangle4�55. Assume
i > 1, in which case � has a vertex u ∈ V<i, namely, an end point of h4�5. By adding edges from r to this
vertex u, we can ensure d4T 5≤ 241 + �5i−1M +2 ·d4�5+2 ·d4Dangle4�55. Also, because � is marked, we have
d4�5≥ � · 41 + �5iM implying that 41 + �5i−1M ≤ 442 + �5/�5 ·d4�5. Thus d4T 5≤ 44 +4/�5 ·d4� ∪Dangle4�55.

Now suppose q ≥ 2. This means d4� ∪ Dangle4�55 > 4q − 1541 + �5i+1M . Recall that each edge added from
the root has length at most 41 + �5i+1M since � ∪ Dangle4�5 lies in V≤i+1. Therefore,

∑

T∈Ti4�5

d4T 5≤ 2q · 41 + �5i+1M + 2 ·d4� ∪ Dangle4�55≤

(

2q
q − 1

+ 2
)

·d4� ∪ Dangle4�55

Since q ≥ 2, the last term is at most 6 ·d4� ∪ Dangle4�55. �
For each level i ≥ 0, define collection Ti =

⋃

�∈Sm
i
Ti4�5 of r-cycles. The following lemma summarizes the

key property of our decomposition procedure.

Lemma 3. Suppose that inequality (1) holds; then the collection 8Ti9i≥0 obtained from the above procedure
is 4�1�5-assignable, with �= 4 + 4� and �= 46 + 6/�5 · max8614 + 4/�9.

Proof. We will show that the collection 8Ti9i≥0 satisfies the two properties in Definition 1. By Claim 3,
each subtour in Ti has length at most � · 41 + �5iM , proving the first property in Definition 1.

To see the second property in Definition 1, fix any i ≥ 0. Due to the assumption that (1) holds, it suffices to
prove that

∑

j≥i d4Tj5≤ max8614 + 4/�9 ·
∑

j≥i d4Hj5. Using Claim 4 we obtain that

d4Tj5=
∑

�∈Sm
j

d4Ti4�55≤ �′
·
∑

�∈Sm
j

6d4�5+d4Dangle4�557= �′
· 4d4Sm

j 5+d4Su
j+1551

where �′ = max8614 + 4/�9. The last equality above uses the fact that 8Dangle4�52 � ∈ Sm
j 9 is a partition

of Su
j+1. The desired inequality follows by observing that

∑

j≥i

d4Sm
j 5+

∑

j≥i

d4Su
j+15≤

∑

j≥i

d4Sj5=
∑

j≥i

d4Hj50

This concludes the proof of Lemma 3. �

2.5. Final analysis of algorithm. First, notice that every step of Algorithm 1 can indeed be implemented in
polynomial time. By Corollary 1 we are guaranteed that the if condition (1) holds whenever M ≥OPT . By the
update rule for M , it follows that the step 7 is executed with M ≤ 41 + �5OPT . In this case, Lemma 3 implies
(with � = 2) that we obtain a 4121545-assignable collection 8Ti9i≥0. Given this, Lemma 2 guarantees that step 8
finds a solution to HetTSP with makespan at most 90 ·M ≤ 9041 + �5 ·OPT .

Finally, we bound the number of iterations. As noted above, the algorithm halts before M becomes larger than
41+�5OPT , which is at most 44

∑

v d4r1 v5/maxi �i5≤ 4�V �maxv4d4r1 v5/maxi �i5 (attained by the solution that
uses the fastest vehicle to visits all the vertices). Since M is initialized at maxv4d4r1 v5/maxi �i5 and increased
by a 1 +� factor in every iteration, it follows that the loop is executed at most O41/� log �V �5 times. Therefore,
the entire algorithm runs in polynomial time. This proves the first part of Theorem 1.
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3. Algorithm for HetCVRP. Recall the Heterogeneous CVRP (HetCVRP) consisting of a metric 4V 1d5
denoting distances between vertices, depot r ∈ V (containing an infinite supply of items), demands 8qv9v∈V , and
k vehicles with speeds 8�i9

k
i=1, each having capacity Q. A solution to HetCVRP consists of tours 8�i9

k
i=1 (each

starting and ending at r) for the k vehicles so that all demands are satisfied and each vehicle carries at most Q
items at any point in time. The objective is to minimize the maximum completion time, maxk

i=14d4�i5/�i5.
We study the unsplit-delivery version of HetCVRP here, where the entire demand at a vertex must be served

in a single visit to it, so the demands satisfy maxv∈V qv ≤ Q. In the alternative (less restrictive) split-delivery
HetCVRP, the demand at a vertex may be served by multiple visits to it. It is clear that for any instance of
HetCVRP, the optimal value under split-deliveries is at most that under unsplit-deliveries. We give an algorithm
for unsplit-delivery HetCVRP that achieves a constant factor approximation relative to the optimal split-delivery
routing.

Before proceeding to the HetCVRP algorithm, we recall some known lower bounds for (single vehicle) CVRP.
Consider an instance of CVRP with depot r , vehicle capacity Q, and demands 8qv9v∈V . Let S = 8v ∈ V 2 qv > 09
be the set of vertices with strictly positive demands. Then the optimal split-delivery CVRP value is at least

max
{

2
Q

∑

v∈S

qv ·d4r1 v51 TSP48r9∪ S5

}

0 (4)

Above, TSP48r9 ∪ S5 denotes the minimum length of a traveling salesman tour on vertices 8r9 ∪ S. On the
other hand, given any TSP tour � on 8r9∪ S, it is known (Altinkemer and Gavish [1]) that one can obtain in
polynomial time an unsplit-delivery CVRP solution of length at most

d4�5+
4
Q

∑

v∈S

qv ·d4r1 v50 (5)

The main idea in the following algorithm is to reduce each HetCVRP instance to a suitable instance of
HetTSP. This involves modifying the input metric based on the above lower-bounds for (single vehicle) CVRP.
To avoid ambiguity, we use OPT s

vrp to denote the optimum for split-delivery HetCVRP and OPTtsp to denote
the optimum for HetTSP .

Theorem 4. Given any instance I of HetCVRP, there is a polynomial-time constructible instance J of
HetTSP such that

• OPTtsp4J5≤ 5 ·OPT s
vrp4I5.

• Any solution to J of makespan M can be converted (in polynomial time) to an unsplit-delivery solution
to I having makespan M .

Proof. Let I be an instance of HetCVRP on metric 4V 1d5, depot r , vehicle speeds 8�i9
k
i=1, capacity Q,

and demands 8qv9v∈V . We construct a HetTSP instance J on the same vertex set V , with root r and k vehicles
of speeds 8�i9

k
i=1. The metric 4V 1 l5 in J is defined as follows. Set ãv = 2qv ·d4r1 v5/Q for each v ∈ V . The

distances l are
l4u1 v5 2= d4u1 v5+ãu +ãv1 ∀u1 v ∈ V 0

Notice that 4V 1 l5 is indeed a metric. We now prove the two claimed properties.
Below, we use the notation 6k7 2= 81121 : : : 1 k9.
Split-delivery HetCVRP to HetTSP. Consider any split-delivery solution 8�i9

k
i=1 to I. For each i ∈ 6k7 and

v ∈ V , let ci4v5 ∈ 601 qv7 denote the amount of vertex v’s demand that is served by vehicle i. (Note that we can
have 0 < ci4v5 < qv since multiple vehicles may serve the demand at vertex v.) Let Si = 8v ∈ V 2 ci4v5 > 09 for
each i ∈ 6k7. Using the lower bound (4) we have

d4�i5≥ max
{

2
Q

∑

v∈Si

ci4v5 ·d4r1 v51 TSP d48r9∪ Si5

}

1 ∀ i ∈ 6k70 (6)

The subscript d in TSP d4 · 5 denotes that it is the minimum length TSP tour in metric 4V 1d5.
We will construct a solution 8�i9

k
i=1 to J such that l4�i5 ≤ 5 · d4�i5 for each i ∈ 6k7. This would prove the

first property. To obtain 8�i9
k
i=1, we consider the following instance of scheduling on unrelated machines. The k

vehicles are “machines,” and each vertex v ∈ V is a “job.” The processing times are

pi1 v 2=

{

2 ·ãv if v ∈ Si1

� otherwise1
∀ i ∈ 6k71 v ∈ V 0
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Consider the fractional assignment xi1 v 2= ci4v5/qv for i ∈ 6k7, v ∈ V . Note that for each v ∈ V ,
∑k

i=1 xi1 v = 1.
Since xi1 v = 0 for v 6∈ Si, assignment x induces a load on machine i ∈ 6k7 of

2
∑

v∈Si

xi1 v ·ãv =
4
Q

∑

v∈Si

ci4v5 ·d4r1 v5≤ 2 ·d4�i51

where the inequality uses (6). Furthermore, for any i ∈ 6k7 and v ∈ V with xi1 v > 0, we have

pi1 v = 2ãv = 4d4r1 v5 ·
qv
Q

≤ 4 ·d4r1 v5≤ 2 · TSP d48r9∪ Si5≤ 2 ·d4�i5

The first inequality uses qv ≤ Q, the second uses v ∈ Si, and the last is by (6). Thus the rounding algorithm
from Lenstra et al. [18] implies an integral assignment �2 V → 6k7 such that for each i ∈ 6k7,

∑

v∈�−14i5

pi1 v ≤
∑

v

pi1 v · xi1 v + max8pi1 v2 xi1 v > 09≤ 2 ·d4�i5+ 2 ·d4�i5= 4 ·d4�i50

In particular,

�−14i5⊆Si and 2
∑

v∈�−14i5

ãv ≤ 4 ·d4�i51 ∀ i ∈ 6k70

We now define for each i ∈ 6k7, tour �i in metric l to be the optimal TSP tour on r ∪�−14i5. Thus,

l4�i5= TSP l4r ∪�−14i55= TSP d4r ∪�−14i55+
∑

v∈�−14i5

2 ·ãv ≤ 5 ·d4�i51 ∀ i ∈ 6k70

The second equality uses the property of metric l that for any S⊆V , we have TSP l4S5= TSP d4S5+
∑

v∈S 2 ·ãv.
The inequality uses the above properties of �−14i5 and that TSP d48r9∪ Si5≤ d4�i5 by (6).

HetTSP to unsplit-delivery HetCVRP. Consider any solution 8� ′
i 9

k
i=1 to J. We will construct in polynomial

time an unsplit-delivery solution 8� ′
i 9

k
i=1 to I such that d4� ′

i 5 ≤ l4� ′
i 5. This would prove the second property.

Fix any i ∈ 6k7. Let Vi⊆V denote the vertices visited in � ′
i . By definition of the metric l, we have l4� ′

i 5 =

d4� ′
i 5 +

∑

v∈Vi
2 · ãv = d4� ′

i 5 + 44/Q5
∑

v∈Vi
qv · d4r1 v5. Using the Algorithm (Altinkemer and Gavish [1]) for

unsplit-delivery CVRP (single vehicle) on metric 4V 1d5 with depot r , demands 8qv2 v ∈ Vi9, and the given TSP
tour � ′

i , we obtain a solution � ′
i . By (5),

d4� ′

i 5≤ d4� ′

i 5+
4
Q

∑

v∈Vi

qv ·d4r1 v5= l4� ′

i 50

This completes the proof. �

Combined with the constant factor approximation algorithm for HetTSP (previous section), this implies the
second part of Theorem 1. Moreover, our performance guarantee for HetCVRP is relative to the less restrictive
split-delivery version.

4. Concluding remarks. In this paper we gave constant-factor approximation algorithms for the TSP and
CVRP problems in the presence of multiple nonuniform speed vehicles. An interesting open question regards
the approximability of HetTSP and HetCVRP when vehicles originate at multiple different depots across the
space. The current definition of an assignable collection and the definition of Level-Prim crucially depend on the
presence of a unique depot; hence, an extension to the multidepot case is likely to require new ideas. Another
interesting question is HetCVRP with nonuniform capacities, where the ideas presented in §3 do not seem to
generalize directly.

Acknowledgments. Supported in part by The Danish Council for Independent Research—Natural Sciences grant DFF–
1323-00178. Supported in part by NSF grant CCF-1218382.

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
8.

23
7.

14
7.

19
1]

 o
n 

23
 M

ay
 2

01
6,

 a
t 0

9:
26

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Gørtz et al.: Capacitated Vehicle Routing with Nonuniform Speeds
330 Mathematics of Operations Research 41(1), pp. 318–331, © 2016 INFORMS

Appendix A. Proof of Theorem 3. Given metric 4V 1d5 with root r and any � > 0, we will show that the following
algorithm produces an 4�1�5-spider, where � 2= 1+ � and � 2= 2 +2/�. In particular, we will show that the solution S∗ is a
spider where (a) its length d4S∗5≤ � ·MST and (b) the distance in S∗ from any vertex v to the root r is at most � ·d4r1 v5.

Algorithm 3 (4�1�5-Spider)

1: Consider an MST for G and traverse it along a Euler tour to obtain path S0 = S = 4r = u1 → u2 → ·· · → un5
such that d4S05≤ 2 ·MST .

2: for i from 1 to n do
3: if dS4u11 ui5 > �d4u11 ui5, then
4: add 4u11 ui5 to S and mark ui.
5: for each marked node ui, remove 4ui−11 ui5 from S.
6: return S∗ = S.

Lemma 4. The graph S∗ returned by the algorithm is a spider.

Proof. The initial graph S0 is a path, and steps 2–4 add some edges. It is clear that after these additions (just before
step 5) only the root u1 and marked nodes have degree larger than two. Moreover, each marked node has degree exactly
three. Thus, after step 5, only the root has degree larger than two in S∗, and the lemma follows. �

Lemma 5. Spider S∗ is an 4�1�5-LAST.

Proof. Define �405= 1 and let �415 < �425 < · · ·<�4k5 denote the indices of the marked nodes in the algorithm. We
will also call the root u1 a marked node.

First we prove that the distance in S∗ from root u1 to ui is dS∗4u11 ui5 ≤ �d4u11 ui5, for all i ∈ 811 : : : 1 n9. This is
immediate for all marked nodes since S∗ contains the edges 84u11 u�4j559

k
j=0. To see this for any unmarked node ui, consider

graph S in the ith iteration of the for-loop (steps 2–4). If l denotes the highest index of a marked node at this point, then the
shortest path in S from u1 to ui is Pi = 4u1 → ul → ul+1 → ·· ·ui5. Since ui was not marked, d4Pi5≤ � · d4u11 ui5. Finally,
observe that path Pi is also the u1–ui path in the final solution S∗, which proves dS∗4u11 ui5≤ �d4u11 ui5.

Now we prove that the length of S∗ is d4S∗5≤ � ·MST ; recall �= 2 + 2/�. It is clear that

d4S∗5≤ d4S05+

k
∑

j=1

d4u11 u�4j55≤ 2 ·MST +

k
∑

j=1

d4u11 u�4j550

It now suffices to upper bound the last summation by 42/�5 ·MST .
Consider any marked node u�4j5, and the iteration �4j5 where it is marked. Notice that graph S at this point contains the

path 4u1 → u�4j−15 → u�4j−15+1 → ·· ·u�4j55 and so

dS4u11 u�4j55≤ d4u11 u�4j−155+dS4u�4j−151 u�4j55≤ d4u11 u�4j−155+dS04u�4j−151 u�4j550

The last inequality is because S0 is a subgraph of S. However, since u�4j5 was marked, we have dS4u11 u�4j55 > � ·d4u11 u�4j55,
and so

� ·d4u11 u�4j55 < d4u11 u�4j−155+dS04u�4j−151 u�4j550

Adding the previous inequality over all j’s we get

�
k
∑

j=1

d4u11 u�4j55 <
k
∑

j=1

d4u11 u�4j−155+

k
∑

j=1

dS04u�4j−151 u�4j550

Reorganizing this inequality, we have

4�− 15
k
∑

j=1

d4u11 u�4j55≤

k
∑

j=1

dS04u�4j−151 u�4j55≤ d4S050

The last inequality follows from the fact that the marked nodes u�4151 u�4251 : : : 1 u�4k5 appear in that order on path S0. Since
�= 1 + �, this implies

∑k
j=1 d4u11 u�4j55≤ 42/�5 ·MST , as desired. �
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