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1. Introduction. Designing networks efficiently often involves facing an inherent dilemma: The actual usage
and demand patterns become known only after the network is in place, yet a low-cost network that satisfies
the usage requirements must be constructed before this information is known. Real-world instances of such
situations abound: Cable companies have to plan their network to serve future population and business needs, oil
companies have to build pipelines based on forecasts of supply and demand, local governments have to install
electrical and transportation infrastructure to lure industry, etc.
Given the importance of the problem of constructing low-cost networks with uncertain future demands, there

are surprisingly few approximation algorithms for network design that consider this problem: Most of the work
in the area deals with designing networks where the requirements and costs are completely known up-front.
In other words, this body of work maintains the optimistic view that the future will conform exactly to the
predictions. At the other extreme is the pessimistic view of online algorithms, where one constructs solutions
assuming that the future demands are given by an adversary: i.e., one attempts to minimize the cost in the worst
possible future scenario. The field of stochastic optimization, in contrast, adopts the (arguably more realistic)
view that partial, probabilistic information about the future is often available, and can be used wisely.
Stochastic optimization is a vast field, beginning with the works of Dantzig [5] and Beale [3] in the 1950s, and

seeing much activity to this day; the reader is referred to the following texts and articles (Birge and Louveaux [4],
Kall and Wallace [18], Klein Haneveld and van der Vlerk [21, 20]) that survey the current state of the field.
There are several models in which stochastic optimization problems can be cast, depending on the timeline of
events and availability of data. Among the more popular models is that of two-stage stochastic optimization with
recourse. Informally, in this model, only partial data is available in the first stage, while the complete data is
made available in the second stage; the user can make some decisions in the first stage to avoid potentially costly
second-stage decisions. In this work, we will work in the finite-scenario model: The data in the second-stage is
one of a finite set of distinct and specified scenarios. The goal in this model, as in most models of stochastic
optimization, is to minimize the expected cost of the solution, where the expectation is taken over the probability
distribution from which the second-stage scenario is drawn. Our model and problem will be specified in greater
detail in §2.
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We consider two specific network design problems, both on undirected edge-weighted graphs. Before we
define these stochastic problems, let us describe the deterministic (i.e., nonstochastic) versions of these problems.
The Steiner tree problem seeks to find a network spanning a given subset of the vertex set, the members of
which are called the terminals. The cost of a solution network is the sum of the edge weights in this network,
and the goal is to minimize this cost. The other problem is the single-cable single-sink network design problem
(which we refer to as the network design problem for the rest of this paper); it also involves a graph and a set
of terminals, but has an additional parameter called the routing-cost multiplier. The goal in this problem is to
define a path from each terminal to a specified root vertex; the cost of a solution is the sum of the weights of
edges lying in the union of these paths, plus an additional component that is the product of the routing-cost
multiplier and the sum (over paths) of the weights of edges lying in each of the paths. Clearly, this model
extends the Steiner tree problem; it also captures the economies of scale incurred in designing transshipment
networks, because each edge in the constructed network now has an associated fixed cost (its weight), and a
cost that depends on the number of paths using it.
The stochastic versions of these problems considered in this paper are those obtained by viewing these

deterministic problems in the context of two-stage stochastic optimization. In stochastic Steiner tree, the set of
terminals is now revealed only in the second stage (apart from one terminal, the root, which is known in the
first stage), while edges purchased in the second stage are costlier by an inflation factor. A scenario consists of
one possible realization of the second stage, and is specified by a set of terminals, the inflation factor, and the
probability of occurrence of this scenario. Recall that we consider the finite-scenario model, where the complete
specification of each scenario is known in the first stage. The stochastic network design problem is defined in a
similar vein: The second stage consists of a set of terminals, an inflation factor for the routing cost, an inflation
factor for the cost of purchasing edges, and the probability of occurrence. We reiterate that all edges have the
same two inflation factors in one scenario, but these factors can change across scenarios.

1.1. Approximation algorithms. We use the well-developed framework of approximation algorithms
(Vazirani [29] is an excellent recent text) to attack these problems in this paper. Formally, an approximation
algorithm runs in time polynomial in the size of the input and guarantees that on every input instance, the cost
of the solution computed by the algorithm is no worse than a prespecified factor times the cost of the optimum
solution. This is in contrast to the work in traditional stochastic optimization literature (as in Birge and Lou-
veaux [4], for example), where the focus is on obtaining exact solutions or close approximations without bounds
on the running time.
Both of our problems have been the subject of intense study in the approximation algorithms literature. While

it has been known for a while that the minimum spanning tree of the terminal set is a factor-2 approximation
for minimum Steiner trees, the current best approximation algorithm is a 1.55-approximation algorithm due to
Robins and Zelikovsky [25]. A primal-dual �2 − 2/k�-approximation algorithm (where k is the number of
terminals) was obtained by Agrawal et al. [1], and the algorithm was generalized to constrained forest problems
by Goemans and Williamson [8]. Our algorithm uses this primal-dual algorithm as a subroutine.
The network design problem has also received a lot of attention recently in the world of approximation

algorithms, with several variants and generalizations of the problem having been considered (Awerbuch and
Azar [2], Hassin et al. [15], Mansour and Peleg [22], Guha et al. [9], Gupta et al. [10]). A constant factor
approximation for the version we study was first given in Salman et al. [26], while a similar problem known
as the traveling purchaser problem (Ravi and Salman [23]) provides another algorithmic tool that we use in our
work. The network design problem simultaneously tries to achieve the objectives of a minimum-cost Steiner tree
and a shortest-path tree, and a precise characterization of such a trade-off was provided by Khuller et al. [19].
We use their Light Approximate Shortest-Path Tree construction in our algorithm for stochastic network design.

2. Overview.

2.1. Problem definitions. All the problems we consider are on undirected graphs G = �V �E�, which are
equipped with nonnegative costs (or weights) on edges c
 E →�+. The term c�e� refers to the cost of edge e,
while for a subgraph H , the term c�H� is defined as c�H�=∑

e∈H c�e�. There is a designated root vertex, which
is labeled r . Given a terminal set R ⊆ V such that r ∈ R, let span�R� denote the set of subgraphs of G that
span R.
In the stochastic Steiner tree problem, the terminal set R is specified only in the second stage. Moreover, the

cost of edges in the second stage is multiplied by a factor of �R. Hence, the stochastic Steiner tree problem is to
compute E0 to minimize:

c�E0�+E��Rc�E1�� such that E0 ∪E1 ∈ span�R�� (1)
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Recall that this paper deals with the finite-scenario model. That is, there is a set of m scenarios, with the kth
scenario specified by a terminal set Sk, a probability of occurrence pk ∈ �0� 1�, and an inflation factor �k > 0.
These scenarios and their probabilities are known in the first stage; the only uncertainty is the identity of which
scenario will materialize in the second stage. Because precisely one scenario materializes in the second stage,
we must have

∑m
k=1 pk = 1. In this model, the stochastic Steiner tree problem (1) may be rewritten as:

min c�E0�+
m∑

k=1
pk�kc�Ek� such that E0 ∪Ek ∈ span�Sk� ∀k = 1�2� � � � �m� (2)

We now define the stochastic network design problem. Along with G, r , and c, the first stage also includes a
building cost multiplier �0 and a routing cost multiplier �0. The kth scenario is specified by its set of terminals Sk,
probability of occurrence pk, building cost multiplier �k, and routing cost multiplier �k. The first-stage solution
is specified by an edge set E0, with the understanding that a cost of �0c�e� is incurred for each edge e ∈ E0,
which permits us to incur a cost of �0c�e� for each terminal using edge e in its path to the root. The second-stage
solution for scenario k consists of an edge set Ek such that E0 ∪Ek ∈ span�Sk�. For an edge e ∈ Ek, we incur
a cost of �kc�e� and pay an additional �kc�e� for each terminal that uses e in its path to the root. We model
this by assuming that each terminal ships one unit of flow to the root along a specified path, with f �e� used to
denote the flow on edge e. Then, the stochastic network design problem is:

min�0c�E0�+
m∑

k=1
pk

[
�kc�Ek�+

∑
e∈E0

�0f �e�c�e�+ ∑
e∈Ek

�kf �e�c�e�

]
s.t. E0 ∪Ek ∈ span�Sk� ∀k� (3)

In real-world applications, it is reasonable to assume that a network planner will neither be interested in a
first-stage network E0 that consists of scattered, disjoint fragments, nor in networks containing cycles. Therefore,
in our formulation of this problem, we will model that E0 is a single tree containing the root, via a flow-
monotonicity requirement.

2.2. Overview of results and algorithms. Our main results are constant-factor approximation algorithms
for stochastic Steiner tree and stochastic network design. Our algorithms rely on rounding linear programming
relaxations for the respective problems.
Section 3 is devoted to our algorithm for stochastic Steiner tree. While the first-stage component of an optimal

solution need not be a tree in general, we prove that there exists a near-optimal solution of the linear relaxation
of stochastic Steiner tree where the flow paths are monotone, as in a tree. We then formulate an integer program
(IP) for the problem where the first-stage solution is required to observe this flow monotonicity. We begin by
solving the linear relaxation of this IP, and using the fractional solution to set up and run primal-dual subroutines
similar to that in Agrawal et al. [1] and Goemans and Williamson [8]. For the first-stage tree, we select a set
of terminals that are sufficiently far apart (as in Ravi and Salman [23]), and use the primal-dual algorithm to
construct a Steiner tree. The primal-dual method is also used in the construction of the second-stage trees, but
with further modifications that are necessary to obtain our performance guarantee.
We study the stochastic network design problem in §4, with the additional requirement that the first-stage

solution is monotone. That is, the flow from each terminal to the root transitions at most once from second-stage
edges to first-stage edges. Without loss of generality, this ensures that the first-stage solution is in fact a tree.
Once again, we formulate an integer program for the problem, and begin by solving its linear relaxation. We
construct Steiner trees as in the algorithm for the stochastic Steiner tree, with one modification to handle a special
case. Our primary tool to accommodate the changed cost function is the Light Approximate Shortest-Path Tree
construction (Khuller et al. [19]). We crucially use this construction to obtain our constant-factor approximation
ratio for the routing costs.
An interesting feature of our algorithms is that all the bounds are local; that is, each component of the final

solution (first-stage building cost, second-stage building cost, routing cost) is bounded using the cost of the
corresponding component in the fractional solution of the linear program. This allows us to trade-off the costs of
the two stages: Given upper bounds on the costs allowed in various scenarios, we either compute solutions
close to the bounds or prove that the bounds make the problem infeasible. Thus, if a user is risk averse and is
unwilling to incur a large second-stage cost, they can specify budgets for the second stage and ask for a solution
that minimizes the overall expected cost subject to these budgets. Our results for these versions of stochastic
Steiner tree and stochastic network design are provided in §5.
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2.3. Related work. Approximation algorithms for stochastic optimization problems are a fairly new area of
research; let us list a few lines of research that relate in different ways to our paper. The first such work that
we are aware of is by Dye et al. [6], who provided an approximation algorithm for a problem where a service
provider wished to maximize profits, faced with stochastic demand for its services. Immorlica et al. [17] con-
sidered the stochastic Steiner tree problem in a slightly different model: The second stage is obtained by each
vertex v becoming a terminal with a prespecified probability pv independent of all other terminals, and the cost
inflation factor being constant in all scenarios (�k = � for all k). They provided a constant-factor approximation
when the graph is an ultrametric, and an O�log �V ��-approximation for general graphs.
An O�1�-approximation for stochastic Steiner tree in general metrics and arbitrary distributions that can be

sampled efficiently was given by Gupta et al. [12]; while they also required that the cost inflation factor is
constant across scenarios, their model and results can be extended to allow scenario-dependent values of the cost
inflation factor. Although our approximation ratio for stochastic Steiner tree is weaker than theirs, it forms the
basis of the algorithms for stochastic network design. Also, giving risk-bounded approximations currently does
not seem possible with the techniques of Gupta et al. [12]. On the other hand, the techniques of that paper can
be extended to give approximation algorithms for multistage stochastic optimization (as shown in Gupta et al.
[13]); it remains open how to extend the results of our work to multiple stages.
The finite-scenario model we consider was also considered by Ravi and Sinha [24] for the stochastic shortest-

path problem (which is a special case of the stochastic Steiner tree problem). They also considered a more general
model in which the metric changes arbitrarily in each scenario, and provided polylogarithmic approximations and
inapproximability results. Hayrapetyan et al. [16], in addition to other results, show how a multistage extension
of the stochastic Steiner tree problem with scenario-dependent inflation factors can be approximated within a
factor of the order of the number of stages; their algorithm also requires only samples from the second-stage
distribution, as in Gupta et al. [12].
Recently, Shmoys and Swamy [27] presented a powerful result enabling the use of sampling for stochastic

linear programs, thus providing approximation algorithms for such problems. In conjunction with rounding
schemes, they also provide approximation algorithms for a stochastic version of some combinatorial optimization
problems, including variants of the facility-location problem and multicommodity flow problems. It is worth
noting that their algorithm can be used to obtain a �1+ ��-factor approximation to the linear relaxation of a
natural cut-covering formulation of the stochastic Steiner tree problem, although it is an open question whether
the resultant fractional solution can be rounded to an integer solution with provable performance guarantees.

3. Stochastic Steiner tree. The main result of this section is a constant-factor approximation algorithm for
the stochastic Steiner tree problem in the finite-scenario model of two-stage stochastic optimization with recourse.
To this end, we first formulate the problem as an integer program, solve the linear programming relaxation, and
then round the solution; the rounding step uses a new variant of the primal-dual method in which the process is
guided by the solution to the linear programming relaxation.
Recall that the input is an undirected graph G = �V �E� with edge-weights c�e� and a distinguished root

vertex r . Because we are working in the finite-scenario model, a set of m scenarios �S1� � � � � Sm� is also
explicitly given. The kth scenario is a set of terminals Sk ⊆ V , along with an associated probability of occurrence
pk = p�Sk�. (Note that

∑
k pk = 1.) Furthermore, a scale or inflation factor �k is also given, where the cost of

buying the edge e in the recourse network costs �kc�e�. A feasible solution is specified by a set of edges E0

selected in the first stage, and for each scenario k a set of edges Ek to be selected in case scenario k materializes,
such that E0 ∪ Ek is a Steiner tree connecting Sk ∪ �r�. The objective is to minimize the expected cost of the
solution.
We can extend the well-known undirected cut formulation of the deterministic version of the Steiner tree prob-

lem studied in Agrawal et al. [1] and Goemans and Williamson [8] to formulate the stochastic Steiner tree prob-
lem as an integer linear program as in (4)–(7) below.

min
∑
e∈E

c�e�x0e +
m∑

k=1
pk�k

∑
e∈E

c�e�xk
e (4)

∑
e∈��S�

�x0e + xk
e �≥ 1 ∀S
 r � S� S ∩ Sk = �� ∀k (5)

xk
e ≥ 0 ∀k� e ∈E (6)

xk
e ∈� ∀k� e ∈E� (7)
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In the integer program above, the variables x0 and xk are indicator variables for the sets E0 and Ek, which in
turn can be defined as Ei = �e
 xi

e = 1�. The set ��S� denotes the cut formed by edges with exactly one endpoint
in the set S; that is, ��S�= �e ∈E
 �e∩S� = 1�. The edges purchased in the first stage incur a cost

∑
e∈E c�e�x0e ;

furthermore, scenario k occurs with probability pk, in which case we incur an additional cost of �k

∑
e∈E c�e�xk

e .
The objective is to minimize the expected total cost.
Note that the critical part for the algorithm is to compute E0, the edges to be bought in the first stage; given

E0, computing Ek is equivalent to contracting the edges in E0 and finding a minimum Steiner tree on Sk ∪ �r�,
which can be well approximated. Of course, our choice of E0 must allow us to prove a guarantee on the expected
cost of a good completion in each scenario.

3.1. Tree solutions. As a first step towards obtaining a useful LP relaxation for the problem, let us prove a
simple but key structural result. We show in Lemma 3.1 that there exists a near-optimal solution where the paths
from any terminal to the root are monotone; i.e., they consist of an initial portion of recourse edges, followed
by a final portion of first-stage edges. In other words, in this near-optimal solution, the first-stage solution must
be a (connected) tree containing the root r . Note that the optimal solution itself may not exhibit this property,
as we later show in Example 3.1.
The intuition behind the lemma is simply that if the expected cost (sum of probabilities times inflation factors)

of a network in the second stage is more than the first-stage cost, then it is better to purchase it in the first stage.
This key idea, while very simple, also forms the basis of the arguments in some of the previous work on
stochastic optimization (e.g., Immorlica et al. [17], Ravi and Sinha [24]).

Lemma 3.1. Let OPT be the cost of an optimal integer solution to (4)–(7), specified by x∗. Then there exists
a fractional solution y to the linear program (4)–(6) such that:

(i) The cost of y is no more than twice the cost of x:

∑
e∈E

c�e�y0e +
m∑

k=1
pk�k

∑
e∈E

c�e�yk
e ≤ 2

(∑
e∈E

c�e�x0∗e +
m∑

k=1
pk�k

∑
e∈E

c�e�xk∗
e

)
�

(ii) For every scenario k and every terminal t ∈ Sk, there exists a set of paths from t to r with total capacity at
least 1 (the capacity of an edge e being simply y0e + yk

e), such that each path consists of an initial second-stage
segment followed by a first-stage segment.

Proof. Consider the integer solution to (4)–(7) defined by y0e = x0∗e +∑m
k=1 pk�kx

k∗
e , and yk

e = xk∗
e . On any

given edge, the total cost of y is simply c�e�x0∗e + 2
∑m

k=1 pk�kc�e�xk∗
e . Summing over all edges proves (i).

Now consider a terminal t in some scenario k. In the solution given by x∗, there is a path from t to r consisting
of a sequence of edges, where in each edge either x0∗e = 1 or xk∗

e = 1. Let e′ be the first edge (if it exists) with
x0∗e = 1 in this sequence. If no such edge exists, then the path from t to r in x∗ consists of only second-stage
edges and also exists in y, so t satisfies (ii). Therefore, for the rest of this proof, assume that e′ exists.
By definition, e′ belongs to some connected component E ′ of E0∗. If r belongs to the same component E ′,

then the terminal t satisfies (ii), because the path from t to r consists solely of second-stage edges prior to e′,
and solely of first-stage edges after that. Therefore, for the rest of this proof, we assume that e′ belongs to a
component E ′ of E0∗, which does not contain r .
Consider some cut C such that r �C and E ′ ⊆C, and for which

∑
e∈��C� x0∗e = 0. Let Ke′ be the set of scenarios

that use edge e′ to connect the terminals in Sk to the root. Because E0∗ is an optimal solution, we must have∑
k∈Ke′ pk�k ≥ 1. Each scenario in Ke′ has a flow path that passes through edge e′ and terminates at r , and

each such flow path has at least one edge in ��C� where xk∗
e = 1 (because all edges in ��C� have x0∗e = 0).

Summing over the scenarios Ke′ and the edges in these paths, we have
∑

e∈��C�

∑
k pk�kx

k∗
e ≥ 1. Therefore, by

the definition of y we have that
∑

e∈��C� y0e ≥ 1. In other words, there is a set of paths of total capacity of at least
one consisting solely of first-stage edges from E ′ to r . Because all edges in E ′ have y0e = 1, we can extend these
paths through e′ back to t, and this collection of paths ensures that t satisfies (ii). �

While the above lemma shows the existence of a monotone near-optimal solution, the optimal solution itself
may not be monotone. That is, even though the optimal choice for E0 is always a forest and has no cycles, it
is not necessary that E0 be a single tree, nor that it be connected to the root r . Example 3.1 below shows an
instance where this is the case.
Example 3.1. Consider a “fan” graph with l > 1 paths �i, each with l edges and originating at the same

node v0; path �i is given by �v0� vi1� vi2� � � � � vil�. These paths are referred to as the “spokes” of the fan. Node
v0 is connected to the root r by a single edge. The other endpoints vil of all these spokes are also connected
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Figure 1. Graph for Example 3.1, with l = 4.

by a path �r = �v1l� v2l� � � � � vll� called the “rim” of the fan. All edges have unit cost. The stochastic Steiner
tree instance consists of l scenarios with pi = 1/l and �i = � ∈ �1� l� for all i; the required set Si for scenario i
consists of all the vertices on the spoke �i as well as those on the rim �r . An example with l = 4 is shown in
Figure 1.
Observe that pi� < 1, but

∑l
k=1 pi� = � > 1. Hence, the optimal solution is given by E∗

0 = ��r� v0�� �v1l� v2l��
�v2l� v3l�� � � � � �vl−1� l� vll�� and E∗

k = ��v0� vk1�� �vk1� vk2�� � � � � �vk� l−1� vkl��. That is, the first-stage component of
the optimal solution consists of the edge adjacent to the root and the rim, while the second-stage solution for
scenario k consists of the kth spoke. The cost of this solution is l�1+��. Observe that the first-stage solution
is a forest with two trees that are not connected to each other.
Now suppose we ask for an optimal solution where the first-stage component must be a tree. There are two

possible solutions, depending on the values of � and l. Either E∗
0 = ��r� v0��, leading to a net expected cost

of 1+��2l−1�, or alternatively, E∗
0 = ��r� v0�� �v0� v11�� �v11� v12�� � � � � �v1� l−1� v1l�� �v1l� v2l�� � � � � �vl−1� l� vll��,

with net expected cost 2l+�l− 1���l− 1�/l. As l →�, the costs of these two solutions can be approximated by
2�l and 2l+�l. At � = 2, these solutions cost 4l while the optimal unrestricted solution costs 3l, demonstrating
that demanding the first-stage solution to be a tree may cause the solution to be asymptotically a factor 4/3
worse than optimum.
In the above construction, if we were to consider the worst ratio for a tree solution in the first-stage that

includes all edges of the first-stage optimal solution, then the second solution would fit the bill. Its cost is 2l+�l
as compared to the optimal solution’s cost of l�1+��, so the ratio tends to 3/2 as � tends to 1.

3.2. LP rounding algorithm. In light of Lemma 3.1 and the ease of dealing with trees, we will henceforth
solve the problem where E0 is a tree, which we call T 0. In this case, the path from every terminal in scenario k
consists of a portion of only recourse edges, followed by a portion consisting of only first-stage edges, as in the
proof of Lemma 3.1. This enables us to write a stronger IP formulation for the problem, and we can then round
the linear relaxation of this IP formulation to within a constant factor.
First we note some simplifying assumptions. These assumptions apply throughout the paper, including §4

and 5.
• The edge costs c obey the triangle inequality. This is without loss of generality, because if there is a violation

of the triangle inequality in the input graph, we can replace an edge by the shortest path between its endpoints
and use the shortest path in our solution whenever the corresponding edge is indicated for use by the algorithm.
• Each terminal occurs in at most one scenario Sk. This is also without loss of generality: Because we are

considering finitely many scenarios and listing each scenario explicitly, we can just replicate vertices as required.
The revised IP is shown in (8)–(14). The x0 variables are indicators for the installation of edges in the first

stage, and x1� � � � � xk are the indicators for the recourse stage. For a terminal t in scenario k, the variable rk
e �t�

indicates whether edge e is used in the recourse portion of t’s path to the root, and r0e �t� indicates whether it is
used in the first-stage portion of the path. These flow variables are directed; that is, for e = �uv�, the variable
rk
uv�t� denotes the flow of commodity t along a recourse edge in the direction u to v. Given these directed flow
variables, the cut sets are defined as �+�S� = �e = �u� v�
 u ∈ S� v � S� and �−�S� = �+�V \S�. For a singleton
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vertex v, we abuse notation slightly to denote �+��v�� by �+�v�; �−�v� is defined similarly. Note, however, that
the edge installation variables xk

e refer to undirected edges, and the graph itself remains undirected.

min
∑
e∈E

c�e�x0e +
m∑

k=1
pk�k

∑
e∈E

c�e�xk
e (8)

∑
e∈�+�t�

�r0e �t�+ rk
e �t��≥ 1 ∀ t ∈ Sk� ∀k (9)

∑
e∈�+�v�

�r0e �t�+ rk
e �t��− ∑

e∈�−�v�

�r0e �t�+ rk
e �t��= 0 ∀v � �t� r�� ∀ t ∈ Sk� ∀k (10)

∑
e∈�−�v�

r0e �t�≤ ∑
e∈�+�v�

r0e �t� ∀v � �t� r�� ∀ t ∈ Sk� ∀k (11)

rk
e �t�≤ xk

e ∀ e� ∀ t ∈ Sk� ∀k (12)

rk
e �t�� xk

e ≥ 0 ∀ e� ∀ t ∈ Sk� ∀k (13)

rk
e �t�� xk

e ∈ �0�1� ∀ e� ∀ t ∈ Sk� ∀k� (14)

Constraint (9) ensures that there is one unit of flow leaving each terminal in each scenario. Constraint (10)
enforces flow conservation for intermediate nodes. Recall that the path from a terminal to the root consists of a
prefix comprising only recourse edges followed by a suffix of only first-stage edges; this means that at every
intermediate node, for every terminal, the net first-stage inflow must be bounded from above by the net first-
stage outflow; this is enforced by (11). In fact, this monotonicity constraint is slightly weaker than requiring the
first-stage solution to be a tree. However, any optimal solution to the integer program, without loss of generality,
results in a first-stage component that is a tree. Finally, constraint (12) ensures that edges with flow are bought
and paid for in the objective function.

Rounding overview. The linear relaxation of our formulation is given by (8)–(13), obtained by dropping the
integrality constraint (14). We begin by solving this linear relaxation; let �x� r� denote an optimal solution to
(8)–(13). The basic approach is that if we have a graph with a set of terminals and fractional edge variables x,
such that any cut separating some terminals from the root has x-value at least 1, we have a fractional Steiner
tree that we can round within a factor of two, using, say, Agrawal et al. [1]. Our aim, therefore, is to extract a
similar situation out of our fractional solution �x� r� where the cut values for the first-stage variables (x0) are
at least some constant, and round it to a first-stage Steiner tree. However, if the recourse costs dominate, we must
use the recourse LP support to guide our choice of recourse trees. Our new idea here is to use the primal-dual
algorithms for Steiner trees to grow such recourse trees, but to truncate this process when the growing moats
(cuts) obey the first condition of having a constant support value for the first-stage variables crossing them. To
implement this idea, we modify the graph a little in order to take care of various issues. The rounding algorithm
has several stages, which we describe in detail below.

3.2.1. Path decomposition. We begin by decomposing the LP solution into a set of flow paths. Consider any
terminal t in scenario k. Constraints (9)–(10) imply that the variables rk

e �t� and r0e �t� constitute a fractional flow
of one unit from t to r . Using the monotonicity constraint (11), we can decompose the fractional flow into a set
of flow paths as defined below. The proof of this simple proposition is omitted. Here, Pt consists of a set of flow
paths with total flow at least one unit; moreover, on each path p, the flow is monotone: using only recourse
edges until a transition point vp, and only first-stage edges from the transition point to the root. Any standard
flow decomposition procedure can be used to find such a decomposition from a given feasible LP solution.

Proposition 3.1. Every terminal t (in scenario k) has a set of flow paths Pt , and each path p ∈ Pt has a
flow value f �p� ∈ �0�1� and a unique transition point vp such that the following hold:

(i) �Pt� ≤ �E�;
(ii)

∑
p∈Pt

f �p�≥ 1;
(iii) if p�xy� denotes the segment of path p that originates at node x and terminates at node y, then for every

edge e ∈ p�tvp�, we have
∑

p∈Pt 
 e∈p f �p�= rk
e �t� and for every edge e ∈ p�vpr�, we have

∑
p∈Pt 
 e∈p f �p�= r0e �t�;

and
(iv) Pt , f and �vp
 p ∈ Pt� can be computed in polynomial time.

Figure 2 illustrates the path decomposition of the flow from every terminal to the root.
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Path p (contd.)

Path p

γ (t2)

γ (t3)

t2

t4

t1

t3

vp

r

Figure 2. Illustration of transition points and critical radii. From each terminal, there are several paths carrying flow to the root r , with
the segment of the path carrying recourse flow shown dotted and the segment carrying Stage 1 flow shown solid. For any path p, the
transition point vp is the point at which the flow switches from recourse to Stage 1 type; transition points are shown as dark grey nodes.
The balls B�t�+�t�� of radius equal to the critical radius for each terminal are shown as the light grey circles.

3.2.2. Balls and representatives. We now identify a distance for each terminal beyond which most of the
flow is on Stage 1 cables, and within which most of the flow is of recourse type. Formally, given a distance
+ ≥ 0, define the +-ball around t to be B�t� +�= �v
 c�t� v�≤ +�. (We can subdivide edges to consider interior
points of edges to be at the boundary as appropriate.) For a terminal t, define the critical radius +�t� ∈ � as
+�t� = min�+


∑
p
 vp∈B�t�+� f �p� ≥ 1/2�; i.e., it defines the least distance around t that contains the transition

points for at least half the flow. Because for every terminal t, every path p ∈ Pt contains a unique transition vertex
vp, +�t� exists for every terminal and can be found by a shortest-path computation. We also define +�r� = 0.
The critical radii +�t� and balls B�t� +�t�� are also illustrated in Figure 2.

Proposition 3.2. For every terminal t and every subset S ⊆ V \�r� such that B�t� +�t�� ⊆ S, we have∑
e∈��S� x0e ≥ 1/2.

Proof. Consider the set Pt of flow paths. Proposition 3.1 implies that there exists a subset of paths P ′
t ⊆ Pt

such that for every p ∈ P ′
t , we have vp ∈ S. Moreover, using the same proposition, we have

∑
p∈P ′

t
f �p�≥ 1/2.

Finally, Proposition 3.1 and Constraint (12) ensure that
∑

p∈P ′
t
f �p� ≤∑

e∈��S� r0e �t� ≤∑
e∈��S� x0e , and the propo-

sition follows. �

If we select a set of such balls that are disjoint, and contract them, then we can round the x0-values outside
these balls to an integer Steiner tree in the contracted graph at a cost that is at most twice that of the linear
relaxation. However, this does not give us Steiner trees in the original uncontracted graph because we need to
pay for edges from the boundaries of these balls to the terminals at their centers. To handle this difficulty, we
use an additional step introduced by Ravi and Salman in [23] and used subsequently in Garg et al. [7], Gupta
et al. [14], and Talwar [28].

Proposition 3.3. There exists a set of terminals R0 (called the the set of representative terminals) com-
putable in polynomial time such that:

(i) the root r lies in R0;
(ii) For every pair of distinct terminals t� t′ ∈R0, we have B�t�2+�t��∩B�t′�2+�t′��=�; and
(iii) for any scenario k and any v ∈ Sk\R0, we have a representative terminal rep�v� ∈ R0 such that

B�rep�v��2+�rep�v���∩B�v�2+�v�� = �; moreover, +�rep�v��≤ +�v�. Loosely, each terminal v is “close” to its
representative; i.e., at distance at most 4+�v� from rep�v�.

Proof. Begin by including r in R0, and proceed by examining all terminals in
⋃

k Sk in nondecreasing order
of their critical radii, breaking ties arbitrarily. If terminal v is being examined and is such that B�t�2+�t�� ∩
B�v�2+�v�� = � for all t ∈ R0, then include v in R0. If not, then there exists t ∈ R0 such that B�t�2+�t�� ∩
B�v�2+�v�� = �; define rep�v�= t (t is marked as the representative of v), and proceed to the next vertex. �
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r

v1

v3

v2

v4

q1
p(q1)

q2

p(q2)

E1
E2

Figure 3. Illustration of first-stage tree computation described in Lemma 3.2. The balls with solid lines denote B�t� +�t��, while the balls
with dotted lines denote B�t�2+�t��.

The set of representatives R0 is chosen as the set of terminals for the first-stage tree. The reason we construct
our set of representatives as in Proposition 3.3 is this: For each terminal that has to be connected in the second
stage, there is a first-stage terminal close by that it can try to connect to. We will now bound the cost of the
first-stage tree, and then proceed to describe the construction of the second-stage tree. At this point, recall that
the terminals of distinct scenarios are assumed to be disjoint.

3.2.3. The first-stage tree. Our first-stage tree is essentially a low-cost Steiner tree on the terminal set R0,
using the same distance function c on the original graph G. However, in order to obtain an upper bound on the
cost of the tree, we use a slightly modified procedure. For an illustration, refer to Figure 3.
We begin by contracting B�t� +�t�� into a single vertex for each t ∈R0. We then compute a Steiner tree E1 for

this contracted graph, using the primal-dual Steiner tree approximation algorithm (Agrawal et al. [1], Goemans
and Williamson [8]) with a performance ratio of two. In Figure 3, the edges in E1 are shown as solid lines. We
then connect each edge incident to B�t� +�t�� to the vertex t using a shortest path; these edges are shown by
dotted lines in Figure 3 and are denoted as E2. Our first-stage solution is the Steiner tree T 0 =E1 ∪E2.
The following lemma was first proved in a slightly different form in Ravi and Salman [23]; we provide a

proof here for completeness.

Lemma 3.2. The cost of T 0 is at most 8 ·∑e∈E c�e�x0e .

Proof. Let G′ denote the graph obtained when the balls B�t� +�t�� are contracted to singleton vertices.
Recall that the undirected cut IP formulation for a minimum-cost Steiner tree in G′ is given by (15)–(17) below,
where the set of terminals R refers to our representative set R0.

min
∑

e∈E�G′�
c�e�ye (15)

∑
e∈��C�

ye ≥ 1 ∀C
 r �C� C ∩R = � (16)

ye ∈ �0�1� ∀ e� (17)

Consider the fractional solution given by y = 2x0. Proposition 3.2 and the construction of R0 implies that y
is feasible for Constraints (16). Hence, y is a feasible fractional solution for the linear relaxation of (15)–(17).
The primal-dual algorithm for Steiner tree (Agrawal et al. [1], Goemans and Williamson [8]) implies that

∑
e∈E1

c�e�≤ 2
∑
e∈E

c�e�ye ≤ 4
∑
e∈E

c�e�x0e � (18)

We will now bound the total cost of edges in E2 by the cost of the edges in E1. Let ET 0 denote an Eulerian
tour constructed by a depth-first search traversal of T 0. Let p�t1� t2� denote the path in ET 0 between any two
consecutive nodes t1 and t2. Divide this path into three disjoint segments: the segment p�t1� t2�∩B�t1� +�t1��,
the segment p�t1� t2�∩ E1, and finally, the segment p�t1� t2�∩B�t2� +�t2��. Proposition 3.3(ii) implies that the
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cost of the middle segment
∑

e∈p�t1� t2�∩E1
c�e� ≥ +�t1� + +�t2�, while by construction we have the costs of

the other two segments is
∑

e∈p�t1� t2�∩B�t1� +�t1��∪p�t1� t2�∩B�t2� +�t2��
c�e� ≤ +�t1� + +�t2�. Hence,

∑
e∈p�t1� t2�∩E2

c�e� ≤∑
e∈p�t1� t2�∩E1

c�e�. Summing over all segments of ET 0, we obtain:

2
∑
e∈E2

c�e�≤ 2
∑
e∈E1

c�e�⇒ ∑
e∈E2

c�e�≤ ∑
e∈E1

c�e��

Combining this inequality with (18), we get that

∑
e∈T 0

c�e�= ∑
e∈E1

c�e�+ ∑
e∈E2

c�e�≤ 2
∑
e∈E1

c�e�≤ 8
∑
e∈E

x0ec�e�� �

This completes our first-stage solution. We now have to construct second-stage solutions for each scenario k
to connect the vertices in Sk\T 0 to the first-stage tree T 0, and bound their expected cost. While we do have a
fractional solution to work with, it is not amenable to rounding. Hence, we have to run a primal-dual subroutine
to construct the second-stage trees, but use the fractional solution to guide and “prematurely” halt the primal-dual
subroutine.

3.2.4. Component growth. We examine each second-stage scenario separately, and construct a complete
second-stage solution for scenario k using the corresponding second-stage fractional variables (xk

e � rk
e �t�) and the

first-stage solution. Our algorithm adds one additional step to the classic primal-dual algorithm for the undirected
Steiner tree problem described in Agrawal et al. [1] and Goemans and Williamson [8].
Fix a scenario k, and let Ŝk = Sk\R0 be the set of terminals in scenario k that still need to be connected in the

second-stage solution T k.
Definition 3.1. A valid moat collection � is a set of subsets of V (called moats) such that the following

holds for all moats M ∈�:
(i) the moats are disjoint; i.e., for any other moat M ′ ∈�, we have M ∩M ′ = �;
(ii) M ∩ Ŝk = �;
(iii) M ∩R0 =�; and
(iv) for some terminal t ∈ Sk ∩M , we have

∑
p∈Pt 
 p�tvp�∈M f �p�≤ 1/2.

Loosely, our goal will be to grow these moats as in the primal-dual algorithm, and build second-stage trees
inside these moats. It suffices if a second-stage tree connects to the first-stage tree (via a terminal in R0); hence,
when Condition (iii) becomes false, we can terminate the growth of such a moat. We also need to bound the cost
of the tree inside each moat using the fractional solution; this is done using Condition (iv) of Definition 3.1.
Conditions (i) and (ii) are basic requirements for the primal-dual algorithm for the undirected Steiner tree
problem. A more detailed description of our algorithm follows.
We initialize our moat collection � to be the singleton sets comprising terminals in Ŝk, that is, � = ��t�


t ∈ Ŝk�. (Note that this moat collection is valid, as in Definition 3.1.) We also maintain a set �k of capped moats,
initialized to be the empty set. Each moat has an associated dual value zM , initially zero. For the purposes of
exposition, let us assume that each edge is subdivided into infinitesimally small edges such that all edges in the
graph have length �, and every such path consists of an even number of �-length edges. Our algorithm is
explained in terms of this expository artifact; the reader is referred to Agrawal et al. [1] and Goemans and
Williamson [8] for details about a combinatorial, polynomial-time, artifact-free implementation of the algorithm.
We maintain a time counter . , which is incremented by � at each iteration. The iterations terminate when

the moat collection � becomes empty. At each iteration, we update each moat M ∈� by adding all vertices
within distance � from M . That is, M 
= M ∪ �v ∈ V 
 c�u� v� ≤ � for some u ∈ M�. We also increase the dual
value zM by � for each moat M ∈�. Before proceeding to the next iteration, we perform the following checks
to maintain the invariant that � remains a valid moat collection according to Definition 3.1:

(i) If there exist moats M�M ′ ∈� such that M ∩M ′ = �, then remove M and M ′ from � and add M ∪M ′

to �. Set its dual value zM∪M ′ = 0 at this point. Repeat this replacement one pair at a time until Property (i) of
Definition 3.1 holds.

(ii) If for some M we have M ∩R0 = �, remove M from � and add M to �k. Label M as “R-capped.”
(iii) If for some M , we have

∑
p∈Pt 
 p�tvp�∈M f �p� ≥ 1/2 for all t ∈ Ŝk ∩M , remove M from � and add it to

�k. Label M as “f -capped.”
(iv) If for some M ∈� and some M ′ ∈ �k we have M ∩ M ′ = �, remove M from �, and add M to �k.

Label M as “C-capped.”
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v3

t3t1 M1 M3

M2

t2

Rep(t2)

T 0

v1

t3′

Figure 4. Illustration of the algorithm for the second-stage solution for a fixed scenario. There are three moats in �k, with M1, M2,
and M3, being, respectively, R-capped, f -capped, and C-capped. The thick lines denote T 0, the thin lines denote the internal trees, and the
dotted lines denote the connecting paths.

Whenever a moat M gets added to �k, let .M = . denote the termination time of moat M . This procedure
terminates when � becomes empty, which must happen in a finite number of iterations since r ∈ R0. We now
proceed to the construction of the second-stage tree for scenario k. For a brief illustration of this procedure,
refer to Figure 4.
The following proposition is immediate based on the description of the algorithm, and is therefore stated

without proof. It will be useful in the construction of the second-stage tree.

Proposition 3.4. For any moat M ∈�∪�k and any vertex v ∈M , there exists a terminal t ∈ Ŝk ∩M such
that c�t� v�≤ .M .

3.2.5. Recourse Steiner trees for scenarios: Internal trees. Consider any capped moat M ∈�k, and con-
sider an instance of the undirected Steiner tree problem on G where the terminals are Ŝk ∩M . The primal-dual
algorithm of Agrawal et al. [1] grows moats in precisely the same way as we have described in our procedure.
However, it simultaneously constructs a Steiner tree connecting the terminals in Ŝk ∩ M . Let TM denote this
Steiner tree, and refer to it as the internal tree for moat M . The following lemma was proved in Agrawal
et al. [1] and Goemans and Williamson [8], and hence is stated here without proof.

Lemma 3.3. For any capped moat M ∈�k, we have 2.M +∑
e∈TM

c�e�≤ 2
∑

M ′⊆M zM .

Lemma 3.4. For any capped moat M ∈�k, we have
∑

M ′⊆M zM ≤ 2
∑

e∈M c�e�xk
e .

Proof. We will prove a stronger statement: For any moat that belonged to � at any point in the algorithm,
we have

∑
M ′⊆M zM ≤ 2

∑
e∈M c�e�xk

e . The proof is by induction on increments of the time counter . . Clearly the
claim holds at the beginning of the algorithm, since all moats consist of singleton vertices.
Consider an iteration and a moat M ∈�. The dual value zM increases by �. However, Condition (iv) guarantees

that there exists some terminal t ∈ Ŝk ∩M such that
∑

p∈Pt 
 p�tvp� f �p�≤ 1/2. This means that at least half a unit
of flow from terminal t is leaving moat M on recourse edges, that is,

∑
e∈��M� xk

e ≥ 1/2. Let dM denote the
edges that got included in M when it grew in the current iteration. These edges constitute disjoint fragments
of the flow paths in Pt of length at least � and with

∑
e∈dM xk

e ≥ 1/2. Hence, the total increase in the quantity∑
e∈M c�e�xk

e is at least �/2, thus completing the proof of the claim. �

3.2.6. Recourse Steiner trees for scenarios: Connecting paths. The internal trees are sufficient for con-
necting terminals within each moat in Ŝk ∩M . It still remains to connect these trees to the first-stage solution.
The edges we use for these connections are called connecting paths, denoted pM . We now describe the construc-
tion of these connecting paths and bound their cost. The connecting path of each moat is constructed separately,
depending on its capping condition. Let M ∈�k be a capped moat.
Case (i) M is R-capped: According to Proposition 3.4, there exist v ∈R0 and t ∈ Ŝk∩M such that c�t� v�≤ .M .

Let the connecting path pM for M be a shortest path between v and t. This is illustrated in Figure 4, with M ,
v, and t represented by M1, v1, and t1 respectively.
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Lemma 3.5.
∑

e∈TM∪pM
c�e�≤ 4

∑
e∈M c�e�xk

e .

Proof. Because the cost of the path pM is
∑

e∈pM
c�e� ≤ .M , the total cost is

∑
e∈TM∪pM

c�e� ≤ .M +∑
e∈TM

c�e�; now applying Lemmas 3.3 and 3.4 completes the proof. �

Case (ii) M is f -capped: In the iteration immediately preceding the iteration when M got capped, there must
have been at least one terminal t ∈ Ŝk ∩M such that

∑
p∈Pt 
 p�ttp�∈M f �p�≤ 1/2. Recall from Proposition 3.3 that

there exists a representative rep�t� ∈R0 for t; let the connecting path pM be a shortest path from t to rep�t�. In
Figure 4, this is illustrated using M2 and t2 to represent M and t, respectively.

Lemma 3.6.
∑

e∈TM∪pM
c�e�≤ 20

∑
e∈M c�e�xk

e .

Proof. Using Proposition 3.3, it follows that c�t� rep�t��≤ 2+�t�+2+�rep�t��≤ 4+�t�. Recall our definition
of the critical radius +�t�: It is the distance at which balls centered at t contain the critical points of paths with
at least one-half unit of recourse flow. However, the specification of f -capped moats (Condition (iv)) implies
that at time .M , for terminal t in the moat, paths p with one-half unit of recourse flow have their entire recourse
segments p�tvp� within the moat M . By definition of the critical radius +�t�, this means that

+�t�≤ max
vp
p�tvp�∈M

c�t� vp�≤ ∑
e∈TM

c�e�+ .M

The right-hand side in the above inequality is an upper bound on the maximum distance from any terminal t in
M to the boundary of M when it is f -capped, and thus an upper bound on the distance to the transition points
of any one of the trapped recourse segments from this terminal t. Because the connecting path pM has length
of at most 4× +�t�, we have

∑
e∈TM∪pM

c�e� ≤ 5
∑

e∈TM
c�e�+ 4.M < 20

∑
e∈M c�e�xk

e , where the last inequality
follows from Lemmas 3.3 and 3.4. �

Case (iii) M is C-capped: In this case, there must exist M ′ ∈ Ck such that v ∈ M ∩M ′. By Proposition 3.4,
there exists t ∈M such that c�t� v�≤ .M and t′ ∈M ′ such that c�t′� v�≤ .M ′ . Define the connecting path pM to
be the union of a shortest path from t to v and a shortest path from v to t′. In Figure 4, this is illustrated with
�M�M ′� t� t′� v� represented by �M3�M2� t3� t2� v3�.

Lemma 3.7.
∑

e∈TM∪pM
c�e�≤ 4

∑
e∈M c�e�xk

e .

Proof. By definition of the algorithm, it follows that .M ′ ≤ .M . Therefore,
∑

e∈pM
c�e�≤ c�t� v�+ c�t′� v�≤

.M + .M ′ ≤ 2.M . The lemma now follows from Lemmas 3.3 and 3.4. �

3.2.7. The final solution. Our complete second-stage solution for scenario k is given by

T k = ⋃
M∈�k

�TM ∪pM��

That is, the second-stage tree is the union of internal trees and connecting paths of the capped moats.

Theorem 3.1. The LP relaxation of (8)–(14) can be rounded within a factor of 20 in polynomial time.

Proof. First, we show that T 0 ∪ T k is a Steiner tree that spans all vertices in Sk. Every terminal in Ŝk ∩R0

belongs to precisely one moat in �k. If the moat was R-capped or f -capped, then the internal tree added to the
connecting path clearly connects all terminals in the moat to r . If the moat was C-capped, then the connection to
r follows because the terminals in the moat are connected to another moat that was either R-capped, or f -capped,
or C-capped with a termination time smaller than the current moat’s, allowing for a lexicographic ordering to
break ties.
Next, observe that the moats in �k are disjoint. Therefore, we can bound the cost of the second-stage trees

using Lemmas 3.5, 3.6, and 3.7 as follows:
∑

M∈�k

∑
e∈TM∪pM

c�e� ≤∑
M∈�k

20
∑

e∈M c�e�xk
e ≤ 20

∑
e∈E c�e�xk

e .
Finally, using Lemma 3.2 to bound the cost of T 0, we obtain the guarantee claimed in this theorem. �

Recall that the formulation given in (8)–(14) was for a monotone near-optimal solution; now using Lemma 3.1
to relate this to the cost of the true optimum, we have the following result for the stochastic Steiner tree problem.

Corollary 3.1. The stochastic Steiner tree problem can be approximated within a factor of 40 in polynomial
time.

4. Stochastic network design.

4.1. Problem definition. Recall the definition of the stochastic network design problem from §2: In this
problem, a scenario consists of a set of clients, each of whom want to ship one unit of flow to the root r ,
and the cost incurred by this flow is a concave function of the total flow on an edge. In particular, in the
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nonstochastic version of the problem, if the flow on the edge e is f �e�, then the cost incurred for that edge is
c�e���0 + �0f �e��, where �0 and �0 are parameters specified by the problem instance. This can be viewed as
modeling the situation when using the edge incurs a fixed or building cost of �0c�e�, and there is an incremental
or routing cost of �0c�e� incurred for each unit of flow sent over the edge. In the stochastic version, the first
stage behaves exactly the same, whereas in the second stage, the parameters �0 and �0 are replaced by �k and
�k in case scenario k materializes. Once again, the goal is to minimize the expected cost of the solution.
Before we describe our algorithm, let us mention a slightly different version of our problem. Because all the

routing takes place in the second stage, an alternative formulation of the problem might prescribe the per-unit
routing-cost in scenario k to be �kc�e�, regardless of whether the cable was installed in the first stage or the
second stage. (Note that if the cable is installed in the first stage in our formulation, the per-unit routing cost is
�0c�e�.) By scaling the demand at each terminal in scenario Sk to �0/�k, and redefining the second-stage routing-
cost multiplier to be �2k/�0, this version of the problem becomes equivalent to the problem we study, albeit with
nonunit demands at each node. While we can duplicate nodes to handle this problem, it would be interesting
to obtain a strongly polynomial approximation algorithm for stochastic network design when terminals want to
send arbitrary amounts of flow to the root.
In the deterministic approximation algorithms literature, an oft-used formulation of the single-cable single-sink

network design problem assumes that each cable has a fixed cost (�0c�e�) and a capacity (u0), such that only
integral quantities of the cable may be installed on any edge. This formulation has an optimal value within
a constant factor of the formulation we consider, and several papers have used this “equivalence” to develop
approximation algorithms for network design problems Garg et al. [7], Guha et al. [9], and Talwar [28]. However,
it is an open question whether this equivalence holds in our stochastic versions, and whether our results can be
used to obtain approximation algorithms for the alternate version.

4.2. Preliminaries. At the time of the writing of this paper, it is an open question whether there exists a
near-optimal solution for the stochastic network design problem where the first-stage solution is a tree. Note that
Lemma 3.1 does not hold because it does not account for the routing costs.
However, recall that our formulation for stochastic Steiner tree (8)–(14) contains a monotonicity constraint

on the flow from terminals to the root. Our formulation for stochastic network design (shown below) also has a
similar constraint. This constraint ensures that in an optimal solution, the first-stage component (without loss of
generality) is a tree.
Our algorithm for the network design problem proceeds along the lines of the stochastic Steiner tree algorithm.

We begin by solving the linear relaxation of an IP formulation of the problem, rounding it to trees as before,
and adding an additional step (described later) to account for the routing costs. The integer program formulation
we will use is shown below, where r0e �t� and rk

e �t� denote the flow along edge e of terminal t on first-stage and
recourse cables, respectively, with t ∈ Sk. As in §3.2 and the IP formulation (8)–(14) for the stochastic Steiner
tree, the flow variables rk

e �t� are directed, while the edge installation variables xk
e �v� are undirected.

min
∑
e∈E

c�e�

[
�0x

0
e +

m∑
k=1

pk

(
�kx

k
e +

∑
t∈Sk

��0r
0
e �t�+ �kr

k
e �t��

)]
(19)

∑
e∈�+�t�

�r0e �t�+ rk
e �t��≥ 1 ∀ t ∈ Sk� ∀k (20)

∑
e∈�−�v�

�r0e �t�+ rk
e �t��− ∑

e∈�+�v�

�r0e �t�+ rk
e �t��= 0 ∀v � �t� r�� ∀ t ∈ Sk� ∀k (21)

∑
e∈�−�v�

r0e �t�− ∑
e∈�+�v�

r0e �t�≤ 0 ∀v � �t� r�� ∀ t ∈ Sk� ∀k (22)

rk
e �t�≤ xk

e ∀ e� ∀ t ∈ Sk� ∀k (23)

rk
e �t�� xk

e ≥ 0 ∀ e� ∀ t ∈ Sk� ∀k (24)

rk
e �t�� xk

e ∈ �0�1� ∀ e� ∀ t ∈ Sk� ∀k� (25)

The constraints (20)–(25) are identical to constraints (9)–(14) of the Steiner tree IP formulation; they encode
the same basic idea of requiring a tree that supports a monotone flow path from each terminal to the root. The
main difference lies in the objective function: If the scenario k materializes, and fe units of flow are pushed
through edge e, then our net cost on account of this flow-edge pair is ��0c�e� + �0fec�e�� if the edge was
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purchased in the first stage, and ��kc�e�+�kfec�e�� if it was purchased in the second stage. That is, purchasing
an edge in the first stage guarantees the ability to use it with an incremental cost of �0c�e� per unit flow.
This problem is a strict generalization of stochastic Steiner tree, which can be obtained by setting �0 = �k = 0

for all k. In fact, we will often be using our algorithm for stochastic Steiner tree to obtain a partial solution for
which the � component of the cost can be easily accounted. By scaling the parameters suitably, we can assume
that �0 = 1.
Our main tool to account for the routing (or incremental flow) cost of the solution is a powerful theorem due

to Khuller et al. [19]. The theorem is stated below without proof, adapted to our context. For any two vertices
u, v and a subgraph H , let cH�u� v� denote the length of a shortest path between u and v using edges only in H .
As before, c�u� v� continues to denote cG�u� v�.

Theorem 4.1. There exist constants 0 > 1 and 1 > 1 such that given a graph G and a tree T rooted at r ,
there exists a tree L�T � computable in polynomial time such that:

(i) L�T � is also a tree spanning the vertices in T ;
(ii) the weight of L�T � is

∑
e∈L�T � c�e�≤ 0

∑
e∈T c�e�;

(iii) for every vertex t ∈ T , the distance from t to r in L�T � is cL�T ��r� t�≤ 1cG�r� t�; and
(iv) the parameter 0= 1+ 2/�1− 1�.

Loosely, the above theorem implies that the tree L�T � (which is known as a Light Approximate Shortest-Path
Tree, or LAST), has the remarkable property that it closely approximates both a minimum Steiner tree (on
R∪ �r�), as well as a shortest-path tree rooted at r . Because the two components of our cost function are (a) the
weight of the tree and (b) the sum of routing costs from the terminals to the root, it is no surprisse that LASTs
play a crucial role in our algorithms. Recall that our assumption that the graph is complete and all distances
satisfy the triangle inequality continues to hold for this section.

4.3. Special case: �k = 1 for all k. We first analyze a constant-factor approximation for the special case
when �k = 1 for all k. This yields the main ideas, which are developed further to provide an approximation
algorithm for the general case.

Algorithm. The algorithm is fairly straightforward: We begin by solving the linear relaxation (19)–(24) of
the formulation. As before, we let �x� r� denote the optimal solution to the linear relaxation, which we will use
as a lower bound for the cost of our solution.
We then ignore the routing-cost component, and use the Stochastic Steiner Tree algorithm of the previous

section to compute a first stage tree T0, and a forest T k for each scenario k, such that T 0 ∪ T k is a tree for the
scenario-k terminals Sk. While we will subsequently prove this formally, it should not be surprising that the �
(building) component of the cost function can be bounded using this strategy.
We continue by applying Theorem 4.1 to T 0 to get the corresponding LAST L�T 0�: The first-stage component

of our solution will be this LAST L�T 0�. We then consider each scenario separately. When considering the kth
scenario, we first contract L�T 0� into a singleton “root” vertex rk, updating the metric appropriately. In this
contracted graph, the forest T k appears as a Steiner tree rooted at rk, and spanning the vertices in Sk\L�T 0�. We
now apply Theorem 4.1 to this tree to obtain the corresponding LAST, which we call L�T k�. We then uncontract
the graph, which may cause the LAST L�T k� to again split into many trees: With a slight abuse of notation, we
use L�T k� to refer to the forest thus obtained. We output this forest L�T k� as the second-stage component of
our solution for scenario k. An illustration is shown in Figure 5, where the heavy lines denote the first stage,
and the lighter lines denote the second stage; the solid lines denote the original trees, and the dotted lines denote
the corresponding LASTs.

The analysis. We begin by computing a bound on the cost of the � component of our solution. The
proposition below follows immediately from Theorems 3.1 and 4.1.

Proposition 4.1. For k = 0�1� � � � �m, we have
∑

e∈L�T k� c�e�≤ 200
∑

e∈E c�e�xk
e .

We now proceed to bound the routing-cost component of the solution. Because we are considering the special
case of �k = 1= �0 for all k, we will not use the linear programming bound; however, it will be used when we
extend our algorithm to handle general �k in the next subsection.

Lemma 4.1. For any scenario k and any terminal v ∈ Sk, the distance cL�T 0�∪L�T k��v� r� from v to the root in
the tree L�T 0�∪L�T k� is at most 1�1+ 2�c�v� r�.
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L(T0)

L(Tk)

r

Trans(v)

Tk

v′

v

Trans(v′)

T 0

Figure 5. Illustration of the algorithm for stochastic network design.

Proof. Consider the path from v to r in L�T 0�∪L�T k�, and let trans�v� be the first vertex in L�T 0� in this
path. Clearly, cL�T 0�∪L�T k��v� r�= cL�T 0��trans�v�� r�+ cL�T k��v� trans�v��. (It may be useful to refer to Figure 5.)
Using the properties of the LAST from Theorem 4.1, and the triangle inequality, we can obtain the following

two bounds:
cL�T 0��trans�v�� r�≤ 1c�trans�v�� r�≤ 1�c�v� trans�v��+ c�v� r���

cL�T k��v� trans�v��= cL�T k��v� rk�≤ 1c�v� rk�≤ 1c�v� r��
(26)

Therefore, cL�T 0�∪L�T k��v� r� ≤ 1�c�v� trans�v�� + 2c�v� r��. However, because L�T k� was constructed with rk

representing a singleton vertex obtained from contracting L�T 0�, note that the distance of v in the LAST L�T k�
from rk (and hence from all vertices in L�T 0�) must be close to its shortest-path distance; i.e., we must have

c�v� trans�v��≤ cL�T k��v� trans�v��≤ 1c�v� r��

Putting these all together, we obtain that cL�T 0�∪L�T k��v� r�≤ 1�1+ 2�c�v� r�, as claimed. �

Theorem 4.2. The solution L�T 0��L�T 1�� � � � �L�T k� constitutes an 30.952-approximation for the stochastic
network design problem for the special case �k = 1 ∀k.

Proof. We set 0 = 1�5476, which results in 1 = 4�6523 using Theorem 4.1. Summing over all scenarios
in Proposition 4.1 and over all terminals in Lemma 4.1 with these values of 0 and 1 yields the claimed
approximation guarantee. �

4.4. General case. We now consider the case of general incremental costs, where each �k is different, some
greater than one, and some smaller. Surprisingly enough, the algorithm is identical to the special case of constant
incremental costs discussed above, barring one exception.

Algorithm description. As before, we begin by solving the LP formulation (19)–(24). Let I< = �k
 �k < 1�
be the set of scenarios where routing costs are cheaper in recourse. For scenarios k ∈ I<, let S ′

k = �v ∈ Sk
 r ∈
B�v�2+�v���. The exception is created by these terminals, and handled separately as follows. We construct
approximate minimum Steiner trees �T k using recourse edges for each S ′

k, as described in (3.2.4)–(3.2.6) in the
previous section, where we define R0 = �r�, +�r�= 0 and rep�v�= v for every v ∈ S ′

k. We then use Theorem 4.1
to compute L��T k� for each k ∈ I<, using possibly different settings of parameters 0′ and 1′. Note that unlike in
§4.3, when creating the LASTs, we do not contract T 0—in fact, we have not even computed T 0 yet. Instead,
L��T k� is computed by applying Theorem 4.1 directly on �T k, in the original graph G, with respect to the root r .
We will bound the cost of these trees L��T k� in Lemma 4.4.
Once this is done, we then proceed in much the same way as for the case �k = 1, except that when considering

scenario k, the set of terminals is now Sk if �k ≥ 1, and is Sk\S ′
k if �k < 1. In other words, we again build the

tree T 0, find the LAST L�T 0� and contract it, and build the LASTs L�T k� for k = 1�2� � � � �m as described in
§4.3. For the rest of the analysis, we will use R0 to denote the terminals contained in the tree T 0. Let us specify
the final solution: The first-stage solution we produce is L�T 0�. For scenarios with �k ≥ 1, our second-stage
solution is L�T k�, whereas for the scenarios with �k < 1, our second-stage solution is L�T k�∪L��T k�.
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Analysis of algorithm. Proposition 4.1 continues to hold and serves to bound the fixed-cost component of
our solution, except for the cost of the trees �T k, which we bound in Lemma 4.4. However, before we do that,
let us first bound the routing costs, which requires a new analysis that crucially uses the lower bounds given by
the linear program. For the next two lemmas (4.2 and 4.3), we will abuse notation slightly and use L�T k� to
refer to the union of L�T k� and L��T k� if L��T k� exists. This is simply for ease of notation, because we are only
bounding the routing cost of the second-stage terminals.
Let us fix a scenario k, and consider a terminal v ∈ Sk. Define the LP cost of terminal v thus:

c∗�v�
�=∑

e∈E

��0r
0
e �v�+ �kr

k
e �v��=∑

e∈E

�r0e �v�+ �kr
k
e �v���

As in Lemma 4.1, let trans�v� represent the first vertex in L�T 0� encountered on the path from v to r in the
solution L�T k�∪L�T 0�. Define the routing cost for the terminal v as:

c�v�
�= �kcL�T k��v� trans�v��+ cL�T 0��trans�v�� r��

We use c∗�v� to bound c�v�, using two distinct arguments depending on whether �k ≥ 1 or �k < 1. Note that
while the bounds proved below are described for terminals v � R0, they continue to hold for terminals v ∈ R0

by simply defining rep�v�= trans�v�= v for every v ∈R0.

Lemma 4.2. For a terminal v ∈ Sk such that �k ≥ 1, the routing cost for v is c�v�≤ �812+ 91�c∗�v�.

Proof. We use two different lower bounds for c∗�v� in this argument. Firstly, because �k ≥ 1, c∗�v� ≥
c�v� r� · �k ≥ c�v� r�. Secondly, because the critical radius +�v� is defined such that at least half a unit of flow
uses flow paths whose transition points are at distance at least +�v� from v, the LP cost of v is at least
c∗�v�≥ ��k/2�+�v�.
However, Proposition 3.3 guarantees that there must exist rep�v� ∈ R0 at a distance c�v� rep�v�� ≤ 4+�v�.

Using the guarantee from Theorem 4.1, we now have cL�T k��v� trans�v��≤ 1c�v� rep�v��≤ 41+�v�. Hence,

�kcL�T k��v� trans�v��≤ �k · 41+�v�≤ 81c∗�v�� (27)

It remains to bound the distance cL�T 0��trans�v�� r�. Using Theorem 4.1 and the triangle inequality (in a manner
identical to that used for (26)), we infer that cL�T 0��trans�v�� r� ≤ 1c�trans�v�� r� ≤ 1�c�v� trans�v��+ c�v� r��.
Now, because �k ≥ 1, we have c�v� trans�v�� ≤ �kcL�T k��v� trans�v��. Finally, using the lower bound c�v� r� ≤
c∗�v�, and putting all these inequalities together yields

cL�T 0��trans�v�� r�≤ 1�81+ 1�c∗�v�� (28)

Adding this bound to (27) yields the bound for c�v� claimed in the lemma. �

The following lemma now bounds the routing costs for all the terminals v ∈ Sk for which �k < 1, but where
the terminals were at distance at least 2+�v� from the root.

Lemma 4.3. For a terminal v ∈ Sk such that �k < 1 and r �B�v�2+�v��, we have c�v�≤ �812+ 121�c∗�v�.

Proof. Again, we need to prove lower bounds on the LP cost c∗�v�: Note that the bound c∗�v�≥ ��k/2�+�v�
continues to hold as in Lemma 4.2, and hence we still have �kcL�T k��v� trans�v�� ≤ 81c∗�v� given by (27).
However, because the argument used to bound cL�T 0��trans�v�� r� in (28) depended crucially on �k being at least
one, we need a new lower bound on c∗�v�. To this end, note that since

∑
p∈Pv
 vp∈B�v�+�v�� f �p�≥ 1/2, at least half

the flow must travel a distance of c�v� r�−+�v� while incurring the first-stage routing cost:

c∗�v�≥ �0 ·
1
2

�c�v� r�−+�v��= 1
2

�c�v� r�−+�v��� (29)

Now because r �B�v�2+�v�� is the same as saying c�v� r�≥ 2+�v�, the inequality (29) implies c∗�v�≥ +�v�/2.
Yet again, as in (26), we use that

cL�T 0��trans�v�� r�≤ 1c�trans�v�� r�≤ 1�c�trans�v�� v�+ c�v� r��� (30)

Furthermore, recall that each v ∈ Sk has a representative in R0 at a distance at most 4+�v� from it. Now the
distance c�trans�v�� v� is at most cL�T k��trans�v�� v�; because both trans�v� and rep�v� are contained in R0, and
L�T k� is a LAST when R0 is contracted to a single node, this implies that

c�trans�v�� v�≤ cL�T k��trans�v�� v�≤ 1× c�rep�v�� v�≤ 41+�v�� (31)
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Moreover, using +�v�≤ 2c∗�v� in (29) results in

c�v� r�≤ 4c∗�v�� (32)

Substituting these inequalities into (30) gives us that cL�T 0��trans�v�� r�≤ 1�4+81�c∗�v�, and adding this to the
bound of 81c∗�v� on �kcL�T k��v� trans�v�� completes the proof of the lemma. �

It remains to prove bounds on the cost of building the trees L��T k� for the sets S ′
k; remember, the set S ′

k was
defined when �k < 1, and consisted of all the terminals v ∈ Sk that were close to (i.e., at distance at most 2+�v�
from) the root r . Furthermore, for these terminals, we need to bound their routing cost, because Lemma 4.3
does not consider them.

Lemma 4.4. For scenarios k ∈ I<, we have
∑

e∈L��T k� c�e� ≤ 200′∑
e∈E c�e�xk

e . Furthermore, for terminals
v ∈ S ′

k, we have c�v�≤ 41′c∗�v�; here 0′ = 1+ 2/�1′ − 1�, as in Theorem 4.1.

Proof. To begin, let us note that defining R0 = �r� and +�r� = 0, and defining rep�v� = r for all v ∈ S ′
k

was a valid choice of the parameters when building the trees �T k, because indeed these parameters satisfy the
conditions of Proposition 3.3. Thus, the result in Theorem 3.1 holds, bounding the total cost of each tree in
��T k�k∈I<

by 20
∑

e∈E c�e�xk
e . Because one can make a LAST out of the tree by increasing the cost of the tree by

at most a factor of 0′, one gets the claimed bound of 200′∑
e∈E c�e�xk

e .
To analyze the routing cost, let us use the simplest lower bound on the LP cost c∗�v�; as in Lemmas 4.2

and 4.3, we infer that c∗�v�≥ ��k/2�+�v�. However, the routing cost of v is

c�v�= �kcL��T k��v� r�≤ �k1
′c�v� r�≤ �k1

′2+�v�≤ 41′c∗�v�� (33)

which completes the proof. �

Theorem 4.3. The solution �L�T k�
 0 ≤ k ≤ m� ∪ �L��T k�
 k ∈ I<� constitutes a 72.435-approximation for
the stochastic network design problem in which the first stage is required to be a tree.

Proof. The routing cost of all terminals v ∈ Sk\L�T 0� are bounded above by max�812+121�41′�c∗�v� for
all k using Lemmas 4.2, 4.3, and 4.4, and the quantities c∗�v� are disjoint terms in the solution to the linear
program (19)–(24). Proposition 4.1 continues to hold and bounds the building cost of the trees L�T k� by 200
times the cost in the linear programming solution, while the corresponding factor for the building cost of the
trees L��T k� is 200′. Hence, the total building cost of the tree in each scenario is bounded above by 20�0+0′�
times the corresponding cost in the linear programming solution.
We now apply Theorem 4.1 with 0 = 2�4802 and 0′ = 1�1169. This results in 1 = 2�3512 and 1′ = 18�109,

yielding an overall approximation ratio of max�20�0+0′��812+ 121�41′�= 72�435. �

5. Risk-bounded network design. While typical stochastic optimization algorithms minimize the overall
expected cost, a natural question to ask is that, given a particular scenario, how much is the algorithm requiring
us to pay? A reasonable solution might require that the cost incurred in the second stage is comparable to the
requirement of the second stage. A general way of modeling this is to assign budgets Bk for each scenario k,
saying, “If scenario k materializes, the solution must not cost more than Bk in the second stage.” Such a budget
is a means for guarding the downside risk: the worst cost that could be incurred in any scenario.
A similar budget could also be specified for the first stage, although of course that could lead to an infeasible

problem. (Even though portions of the routing cost are incurred using first-stage cables, we model this as wholly
being incurred in the second-stage, and take this into account only in the second-stage budgets.) A powerful
feature of the finite-scenario model and our solution technique is that this version of downside risk can be
explicitly modeled, and our algorithm provides a solution that guards against it.

5.1. Steiner tree. We first consider bounding the risk of the solution for the stochastic Steiner tree problem.
Formally, let �Bk
 k ∈ I� be a set of budgets, where I ⊆ �0�1� � � � �m� is an index set, such that the following is
also required (where �0 = 1): ∑

e∈E

�kc�e�xk
e ≤ Bk ∀k ∈ I � (34)

That is, the budgeted stochastic Steiner tree problem is defined by adding Constraint (34) to the IP formulation
(8)–(14). Notice that in the version of the budgeted Steiner tree problem, because we are using the IP formulation
(8)–(14) to model the Steiner tree problem, we are implicitly assuming that the first-stage solution is required to
be connected and contain the root. This is something we did not necessarily require of the Steiner tree problem,
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but ensured anyway with an overhead of a factor of two via Lemma 3.1. This is because the transformation in
Lemma 3.1 uses second-stage costs to bound the first-stage costs of the monotone fractional solution.
Our main result for this problem is stated below.

Theorem 5.1. There is a polynomial-time algorithm for the budgeted stochastic Steiner tree problem that
either proves that the problem instance is infeasible (some/all of the budgets are too low) or provides a solution
where each budget is violated by at most a factor of 20.

Proof. We begin by solving the linear relaxation of the problem, given by (8)–(13), (34). If this linear
program is found to be infeasible, then the problem can be declared to be infeasible because some budgets are
too low. Note that the problem can always be made feasible by making B0 appropriately high, for any values of
second-stage budgets.
If a feasible LP solution is found, we proceed by using exactly the same algorithm as for the stochastic

Steiner tree. The key observation is that the algorithm bounds the cost of each scenario locally, using only its
corresponding components of the LP solution: Theorem 3.1 bounds the cost of T 0 by 20

∑
e∈E c�e�x0e , the cost

of each component of T k by 20�k

∑
e∈E c�e�xk

e . �

5.2. Network design. Before we study risk-bounding for stochastic network design, we need to clarify an
accounting issue. Specifically, what costs are incurred at what points in time? Recall that the notion of buying
a first-stage cable on edge e in this problem corresponds to paying �0ce in the present to reserve the right to
transport goods at the rate of �0ce per unit flow in the future. That is, all routing costs are only incurred in the
second stage, after the demands have been realized. The building costs are accounted for as in the risk-bounded
study of the stochastic Steiner tree.
Formally, we have a first-stage budget defined as follows, where B0 may be set to � if a first-stage budget is

not required to be imposed. ∑
e∈E

�0c�e�x0e ≤ B0 (35)

Once again, we let I ⊆ �1�2� � � � �m� be an index set for second-stage budgets specified by �Bk
 k ∈ I�, with
the following constraint:

∑
e∈E

c�e�

(
�kx

k
e +

∑
t∈Sk

��0r
0
e �t�+ �kr

k
e �t��

)
≤ Bk ∀k ∈ I � (36)

The budgeted stochastic network design problem is obtained by adding Constraints (35)–(36) to the formula-
tion (19)–(25). As before, by using the monotone LP formulation, we insist that the first-stage solution must be
a connected graph containing the root node in this budgeted version. Our main result is the following theorem.

Theorem 5.2. There is a polynomial-time algorithm for the budgeted stochastic network design problem
that either proves that the problem instance is infeasible (some/all of the budgets are too low) or provides a
solution where each budget is violated by at most a factor of 72.435.

Proof. The proof closely follows that of Theorem 5.1. We solve the linear program given by (19)–(24),
(35)–(36), and report problem infeasibility if the linear program is found to be infeasible. Once again, the fact that
in Theorem 4.3 the bounds for the various components of the solution are obtained using their corresponding
linear programming solution components results in this theorem. �

In fact, we can prove a (perhaps) more useful corollary. Suppose the network designer is flush with funds
in the present, and is willing to tolerate excess first-stage expenditure. However, the second-stage risk must be
controlled, meaning that the factor by which the second-stage budgets are overshot must be minimized. Our
algorithmic techniques allow us to prove the following.

Corollary 5.1. Given a feasible instance of the budgeted stochastic network design problem, for any
4 > 40, we can find a solution L0�L1� � � � �Lm such that the following hold:

(i) Any constraint of the form (36) is violated at most by a factor of 4,
(ii) Constraint (35) (if specified) is violated at most by a factor of 20�

√
44+ 9− 2�/�

√
44+ 9− 10�.

(iii) The overall approximation factor of the solution is max�4�20��
√
44+ 9− 2�/�

√
44+ 9− 10�+ 2��.

Proof. Recall the proof of Theorem 4.3 where the bounds on the various components of the solution were
computed. The overall bound on the second-stage component is max�200′�812+121�41′�. For any 4 > 40, we
can compute 1 = �

√
44+ 9− 6�/4> 1 to satisfy 4 = 812 + 121. For such 1, several values of 0′ and 1′ exist

(in particular, 0′ = 2 and 1′ = 3 so that max�200′�812+ 121�41′�= 4, proving (i).
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Using Theorem 4.1 to compute 0 from the 1 computed above results in 0= �
√
44+ 9− 2�/�

√
44+ 9− 10�.

The first-stage budget is violated by a factor of at most 200, which proves (ii).
Finally, the overall approximation ratio is max�20�0 + 0′��812 + 121�41′�. Using the values of 0, 1, 0′,

and 1′ computed above completes the proof. �

We note that the bounds above (and indeed, in our other main results as well) can be improved further by
defining the critical radius more carefully. We chose not to do so for expositional clarity because the main goals
of this paper were to show that these problems are constant-factor approximable, and describe our rounding
procedure, which overlays a primal-dual subroutine on an optimal fractional solution.

6. Future work. We believe that our technique of solving the linear relaxation of an IP and using it to guide
a primal-dual subroutine has applicability to other problems; it would be interesting to see if this is true. There
are several issues considered in the stochastic programming community for which approximation algorithms are
nonexistent or sparse at this point: multistage stochastic optimization, chance-constrained models, and scenario
reduction and approximation are a few. Approximation algorithms are known for several complex versions of
network design in a deterministic framework; it would be interesting to see if the stochastic versions of such
problems can also be well approximated.
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