
Randomized Contractions for Multiobjective
Minimum Cuts

Hassene Aissi1, Ali Ridha Mahjoub2, and R. Ravi∗3

1 Univ. Paris-Dauphine, PSL Research University, CNRS, UMR 7243,
LAMSADE, Paris, France
aissi@lamsade.dauphine.fr

2 Univ. Paris-Dauphine, PSL Research University, CNRS, UMR 7243,
LAMSADE, Paris, France
mahjoub@lamsade.dauphine.fr

3 Carnegie Mellon University, Pittsburgh, USA
ravi@andrew.cmu.edu

Abstract
We show that Karger’s randomized contraction method [7] can be adapted to multiobjective
global minimum cut problems with a constant number of edge or node budget constraints to give
efficient algorithms.

For global minimum cuts with a single edge-budget constraint, our extension of the ran-
domized contraction method has running time Õ(n3) in an n-node graph improving upon the
best-known randomized algorithm with running time Õ(n4) due to Armon and Zwick [1]. Our
analysis also gives a new upper bound of O(n3) for the number of optimal solutions for a single
edge-budget min cut problem. For the case of (k − 1) edge-budget constraints, the extension
of our algorithm saves a logarithmic factor from the best-known randomized running time of
O(n2k log3 n). A main feature of our algorithms is to adaptively choose, at each step, the appro-
priate cost function used in the random selection of edges to be contracted.

For the global min cut problem with a constant number of node budgets, we give a randomized
algorithm with running time Õ(n2), improving the current best determinisitic running time of
O(n3) due to Goemans and Soto [5]. Our method also shows that the total number of distinct
optimal solutions is bounded by

(
n
2
)
as in the case of global min-cuts. Our algorithm extends

to the node-budget constrained global min cut problem excluding a given sink with the same
running time and bound on number of optimal solutions, again improving upon the best-known
running time by a factor of O(n). For node-budget constrained problems, our improvements arise
from incorporating the idea of merging any infeasible super-nodes that arise during the random
contraction process.

In contrast to cuts excluding a sink, we note that the node-cardinality constrained min-cut
problem containing a given source is strongly NP-hard using a reduction from graph bisection.

1998 ACM Subject Classification G.2.2 Graph Theory

Keywords and phrases minimum cut, multiobjective optimization, budget constraints, graph
algorithms, randomized algorithms

Digital Object Identifier 10.4230/LIPIcs.ESA.2017.6

∗ This material is based upon research supported in part by the U.S. Office of Naval Research under award
number N00014-12-1-1001, the U.S. National Science Foundation under award number CCF-1527032,
and a visiting professorship at LAMSADE, Paris Dauphine University.

© Hassene Aissi, Ali Ridha Mahjoub, and R. Ravi;
licensed under Creative Commons License CC-BY

25th Annual European Symposium on Algorithms (ESA 2017).
Editors: Kirk Pruhs and Christian Sohler; Article No. 6; pp. 6:1–6:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ESA.2017.6
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

6:2 Randomized Contractions for Multiobjective Minimum Cuts

1 Introduction

Cut problems play a central role in combinatorial optimization and arise routinely in many
practical areas such as telecommunications, project networks and databases [7] as well as
the bottleneck computation in the separation routine for important network optimization
problems such as the TSP [12]. Let G = (V,E) be an undirected simple graph with n nodes
and m edges, and c1, . . . , ck : E → Z+ (w1, . . . , wk−1 : V → Z+) be k (k − 1) non-negative
cost functions defined on the set of edges (nodes), where k is a constant. A cut X in G is
a subset of nodes X ⊆ V such that ∅ 6= X 6= V , and it determines the set δ(X) of edges
with exactly one end in X. The cost of cut X in criterion j is cj(δ(X)) :=

∑
e∈δ(X) c

j(e)
(wj(X) :=

∑
v∈X w

j(v)). Given k − 1 cost bounds b1, . . . , bk−1, we study the following
multiobjective versions of the minimum cut problem.

Edge-budget constraints: find a cut C∗ minimizing edges cost ck subject to the constraints
ci(δ(C∗)) ≤ bi for i = 1, . . . , k − 1.
Node-budget constraints: find a cut C∗ minimizing edges cost ck subject to the constraints
wi(C∗) ≤ bi for i = 1, . . . , k − 1.
Node-budget constraints including a source s (excluding a sink t): given a specific node
s ∈ V (t ∈ V), find a cut C∗ minimizing edges cost ck such that wi(C∗) ≤ bi for
i = 1, . . . , k − 1, and s ∈ C∗ (t 6∈ C∗).

1.1 Previous Work

Randomized contraction: Karger [7] gave an elegant randomized contraction algorithm
that finds a global minimum cut with high probability. A consequence of its probabilistic
analysis is a strongly polynomial bound on the number of (near-) optimal global minimum
cuts. Karger and Stein [8] improve its running time using a recursive construction that
carefully traded off the probability of success with the size of the recursive subproblems. Our
work builds on these methods and extends them to budgeted versions of the global minimum
cut problem.

Edge-budget constraints: While most budgeted versions of standard combinatorial optim-
ization problems are NP-hard [4], Armon and Zwick [1] give an efficient strongly polynomial
time algorithm for solving the minimum cut problem with a constant number k of edge-budget
constraints. Their algorithm guesses the optimal value by performing a binary search using
O(logn) calls to a subproblem called the min-max cut problem. Here, the goal is to find a cut
C̄ for which maxi=1,...,k c

i(C̄) is minimized, i.e., a cut C̄ whose largest cost is the smallest
possible. This problem is in turn reduced to enumerating all cuts that are at most at factor
of k larger than the global minimum cut for a single cost function. Karger and Stein [8] show
that every graph contains at most O(n2k) such cuts. In order to enumerate them, Armon
and Zwick use either the O(mn2k) deterministic algorithm of Nagamochi et al. [11] or the
O(n2k log2 n) randomized algorithm of Karger and Stein [8]. Thus, their approach leads
to an O(mn2k logn) time deterministic algorithm and an O(n2k log3 n) time randomized
one. The minimum cut problem with edge-budget constraints may be of interest in itself
but also arises as a subproblem in other fields, e.g., interdiction problems. Zenklusen [16]
shows the link between the problem of maximally decreasing the optimal value of the global
minimum cut by removing a limited set of edges and the minimum cut problem with a single
edge-budget constraint.

H. Aissi, A. R. Mahjoub, and R. Ravi 6:3

Node-Budget Constraints: Armon and Zwick [1] consider the problem of finding a cut of
minimum cost with at most b vertices on its smaller side. This problem corresponds to a
special case of the single node-budget constraint (k = 2) with w(v) = 1 for all node v ∈ V .
The authors reduce this problem to the problem of minimum cut with a single edge-budget
constraint and give deterministic and randomized algorithms running in O(mn4 logn) and
O(n4 log3 n) times respectively. Goemans and Soto [5] consider the more general problem of
minimizing a symmetric submodular functions (SSF) f over a family of sets I that are closed
under inclusion. Note that the cut function over the node set of a graph G = (V,E) is a SSF.
Moreover, the family of all subset of nodes X ⊆ V satisfying the node-budget constraints is a
typical example of sets closed under inclusion. Goemans and Soto [5] extended Queyranne’s
algorithm [13] (which in turn is based on the work of Nagamochi and Ibaraki [10]) in order
to enumerate all the O(n) minimal minimizers using O(n3) oracle calls to function f and I.
In the particular case of graphs, their result implies that the minimum cut problem with
node-budget constraints can be solved in O(n3) running time. Interestingly, Goemans and
Soto’s algorithm does not introduce any slowdown with respect to the running time of solving
the global minimum cut problem.

Cardinality Constraints: Bruglieri et al. [2] study the version of minimum cut problem
where the cardinality of the edge cut must be exactly the given bound k, or at least the
given bound k, and show NP-hardness via reduction from MAX-CUT. The node-cardinality
constrained version on the side containing a given source has been studied by Hayrapetyan et
al. [6] under the name MINSBCC (Minimum-size bounded-capacity cut): their version bounds
the cost of the cut and minimizes the node cardinality of the cut. They show NP-hardness
of the problem on general graphs with uniform node weights and on trees (with non-uniform
node weights), and provide bicriteria approximation algorithms with ratio (1

λ ,
1

1−λ) for any
0 < λ < 1. The s− t separating version of this unbalanced cut problem was studied by Li
and Zhang [9], and by Zhang [17]. The node-cardinality constrained version of this problem
generalizes the famous graph bisection problem. For the exact version of the problem where
the side containing s must have exactly k nodes, an O(logn)-approximation was given by
Räcke [14].

1.2 Our contributions

The main contribution of our paper is to extend the Karger’s randomized contraction
algorithm [7] to handle node or edge budget constraints.

Edge-budget Constraints. The original randomized contraction algorithm for a single edge
cost solves the global minimum cut problem by repeatedly picking a random edge with
probability proportional to its cost and contracting it, until only two vertices remain. Karger
shows that with high probability the cut formed by the edges joining these (super-)nodes
is a minimum cut. The key ingredient in the proof of the success probability of Karger’s
algorithm is that the optimal value of the minimum cut problem is at most the cost of any
cut formed by a singleton node. However, if budget constraints are added to the original
problem, some of these singleton cuts may be infeasible (for the budget constraint) and hence
may have a cost smaller than the optimal value of the budgeted problem. On the other hand,
the cost of a feasible cut formed by a singleton node is larger than the optimal value but the
current graph may contain few such nodes. Our main result uses new ideas to overcome this
difficulty.

ESA 2017

6:4 Randomized Contractions for Multiobjective Minimum Cuts

I Theorem 1. For the global minimum cut problem with a single edge-budget constraint
in a graph on n nodes, a randomized contraction algorithm returns any particular optimal
solution in O(n3 log4 n log logn) time with probability 1− 1

Ω(n) .

For the case of a single edge-budget constraint, our randomized contraction algorithm
decides to contract, at each step, edges based on either the budget-cost function c1 or the
objective-cost function c2, depending on whether the number of feasible cuts (obeying the
budget) formed by the current singletons is sufficiently “large” or not. This modification is
crucial to ensure the high success probability of returning at the end an optimal cut, and
represents our main technical contribution.

Our final algorithm for this problem is presented in Section 2 and runs with high
probability in Õ(n3) time. This result improves upon the current best running time of Õ(n4)
given in [1]. As a byproduct of our analysis, we save a factor of O(n) from the best-known
upper bound on the number of optimal solutions of this problem given in [1].

In the general case, multiple edge-budget constraints make the problem harder because
the number of infeasible cuts formed by a singleton may increase. With more than two budget
constraints, a cut satisfying the ith budget constraint may violate the jth one. Therefore, even
though the number of cuts formed by a singleton node satisfying the ith budget constraint
may be large (the property we used with a single budget constraint), few of them may satisfy
all the budget constraints. Therefore, we need a different idea to tackle multiple budget
constraints. For this case, we extend Karger’s algorithm [7] differently by first sampling
the cost function that is then used to randomly choose an edge to be contracted. Our final
algorithm (Theorem 13) saves a logarithmic factor from the best-known running time of
O(n2k log3 n) given in [1].

Node-budget Constraints. We derive in Section 3 faster randomized algorithms for finding
global minimum cuts with a constant number of node budget constraints.

I Theorem 2. For the global minimum cut problem with a constant number of node-budget
constraint in a graph on n nodes, a randomized contraction algorithm returns any particular
optimal solution in O(n2 logn) time with probability Ω(1/ logn). Furthermore, all the optimal
solutions can be computed with high probability in O(n2 log3 n) time.

For this case, we use an observation similar to that of Goemans and Soto [5]: whenever
the contraction produces two (node-budget) infeasible super-nodes, we merge them into
one. Adding this idea to Karger’s random contraction gives an algorithm with a randomized
running time of Õ(n2) (Theorem 17). This considerably improves their current best running
time of O(n3) [5] even though their algorithm is deterministic. As a byproduct, we show that
the total number of distinct optimal global minimum cuts in the node-budget constrained
case is also bounded by

(
n
2
)
as in the non-budgeted case.

Our algorithm can be adapted to the node-budget constrained global min cut problem
excluding a given sink t ∈ V with the same running time and bound on number of optimal
solutions (Theorem 18). In this case, the running time of our algorithm improves upon the
previous deterministic running time of Goemans and Soto by a factor of O(n).

Our results indicate that for the global minimum cut problem, the node-budget constraints
are easier to handle than edge-budget ones, even though both are efficiently solvable. In
contrast to the above results, we note that even the node-cardinality constrained global
minimum cut problem containing a given source is strongly NP-hard using a reduction from
graph bisection (Theorem 19).

H. Aissi, A. R. Mahjoub, and R. Ravi 6:5

Algorithm 1 Random edge contraction for a single edge-budget constraint.
Input: a simple graph G = (V,E) with two nonnegative edge costs c1, c2, a bound b1, and

integer q ≥ 10
Output: a cut ∅ 6= C∗ ⊂ V minimizing cost c2 subject to edge-budget constraint c1(δ(C∗)) ≤

b1
1: let E0 ← E, V0 ← V , G0 ← G, r ← 0
2: while |Vr| > 4 do
3: let Êr ← ∅
4: if c1(Er) ≤ b1(|Vr|−1)

6 then
5: pick an edge e ∈ Er with probability p(e) = c2(e)

c2(Er) and add it to Êr
6: else
7: for i = 1 to q do
8: for each edge e ∈ Er \ Êr do
9: add e to Êr with probability p′(e) = 3c1(e)

b1(|Vr|−1)
10: end for
11: end for
12: end if
13: if Êr 6= ∅ then
14: contract all the edges in Êr by merging their endpoints
15: replace all resulting parallel edges e1, . . . , ep joining any pair of nodes u, v ∈ Vr by a

single edge e such that ch(e) =
∑p
i=1 c

h(ei), h = 1, 2, and remove self-loops
16: end if
17: r ← r + 1
18: let Gr = (Vr, Er) denote the resulting graph
19: end while
20: randomly partition the nodes in the final graph G′ and return the cut C∗ in G associated

with this partition

2 Edge-budget constrained Global Minimum cuts

We discuss in Sections 2.1 and 2.2 our randomized algorithms for the single budget constraint
and for multiple ones, respectively.

2.1 Single edge-budget constraint
The algorithm consists of two steps. The first reduces the graph by doing edge contractions

until a minor graph G′ with at most four nodes is obtained. In the second step, we randomly
pick a cut in the resulting four-node graph.

Starting from G0 = (V0, E0) = G = (V,E), the first step of each iteration r ≥ 1 consists of
a possible reduction of graph Gr = (Vr, Er) to a graph Gr+1 = (Vr+1, Er+1) by contracting
a sample edge set Êr ⊆ Er. The construction of Êr is performed as follows. First we set
Êr = ∅. Then two cases are considered: (i) If c1(Er) ≤ b1(|Vr|−1)

6 , then we randomly pick
an edge e ∈ Er with probability p(e) = c2(e)

c2(Er) , and add it to Êr. (ii) If this is not the
case, then we add each edge e ∈ Er to Êr with probability p′(e) = 3c1(e)

b1(|Vr|−1) . Note that the
resulting sample edge set Êr may be empty. In order to boost the probability that Êr is
non-empty, the process of random sampling is repeated q times, where q is a constant that
will be specified later. If Êr 6= ∅ at the end of the q trials, then we contract Êr and obtain a
smaller graph Gr+1 = (Vr+1, Er+1). Otherwise, we set Gr+1 = Gr.

ESA 2017

6:6 Randomized Contractions for Multiobjective Minimum Cuts

An iteration r of the algorithm where condition c1(Er) > b1(|Vr|−1)
6 holds and Êr = ∅

is called void. Note that at most |V | − 4 non void iterations are performed but the total
number of iterations may be large.

As a result of the edge contractions, parallel edges may join some pairs of vertices. Note
that parallel edges are in the same cuts. Therefore, they can be replaced by a single edge
with a cost equal to the sum of their costs. In contrast to Karger’s algorithm [7], we need to
consider only simple graphs at each step of Algorithm 1 in order to get the claimed running
time (Lemma 10). This step is not essential for the analysis of Algorithm 1 but since it will
be implemented recursively (Algorithm 2), |Er| must be bounded by O(|Vr|2) at each step r.
All these details are summarized in Algorithm 1.

The following result gives a lower bound on the success probability that a particular
optimal cut is returned by Algorithm 1.

I Proposition 3. Any fixed optimal cut C∗ is returned by Algorithm 1 with probability
Ω
(
n
− 3

1−exp(− q2)
)
.

Our strategy to prove Proposition 3 is to handle separately the two cases in each iteration
of the algorithm depending on whether c1(Er) ≤ b1(|Vr|−1)

6 or not. In the following two
lemmas, we prove that the success probability of not contracting an edge in the optimal cut
is at least 1− 3

(|Vr|−1)(1−exp(− q2)) in each of these cases respectively.
Any edge in the current graph Gr = (Vr, Er) represents one or more edges in the original

graph G. On the contrary, any edge in E is associated to at most one edge in Er. Let E−1
r

denote the set of all the edges in E that are associated to the edges in Er. For any set S of
edges in E, let Er(S) denote, if any, the set of edges in Er associated to the edges in S. An
edge e ∈ E has survived in graph Gr if e ∈ E−1

r .

I Lemma 4. Fix a particular optimal solution C∗ and suppose that all the edges in δ(C∗)
have survived in graph Gr(Vr, Er). If c1(Er) ≤ b1(|Vr|−1)

6 , then the success probability of
contracting an edge not in Er(δ(C∗)) is at least 1− 3

|Vr|−1 .

Proof. Let V ≤r ⊆ Vr denote the set of feasible nodes v ∈ Vr, i.e., c1(δ({v})) ≤ b1 for all
v ∈ V ≤r . Observe that after replacing any parallel edges by a single one, the cost of any cut in
the current graph Gr is the same as in the original graph G. Therefore, c2(δ(C∗)) ≤ c2(δ({v}))
for all node v ∈ V ≤r . Moreover, we have

∑
v∈Vr c

1(δ({v})) = 2c1(Er) ≤ b1(|Vr|−1)
3 , and∑

v∈Vr c
1(δ({v})) ≥

∑
v∈Vr\V ≤r

c1(δ({v})) > b1|Vr \ V ≤r |. Thus, |Vr \ V ≤r | <
b1(|Vr|−1)

3b1
=

|Vr|−1
3 , and hence,

|V ≤r | ≥
2
3(|Vr| − 1). (1)

Since all the edges in δ(C∗) have survived in Gr, we have c2(Er(δ(C∗)) = c2(δ(C∗)).
Therefore, the error probability of randomly picking an edge e ∈ Er(δ(C∗)) is

Pr(e ∈ Er(δ(C∗))) = c2(Er(δ(C∗))
c2(Er)

= c2(δ(C∗))
c2(Er)

≤
∑
v∈V ≤r

c2(δ({v}))

|V ≤r |c2(Er)
≤
∑
v∈Vr c

2(δ({v}))
|V ≤r |c2(Er)

= 2
|V ≤r |

≤ 3
|Vr| − 1 (by (1)). J

I Lemma 5. Fix a particular optimal solution C∗ and suppose that all the edges in δ(C∗) have
survived in graph Gr(Vr, Er). If c1(Er) > b1(|Vr|−1)

6 , then Pr(Er(δ(C∗)) ∩ Êr 6= ∅) ≤ 3
|Vr|−1 .

H. Aissi, A. R. Mahjoub, and R. Ravi 6:7

Proof. Let Êir denote the set of edges in Er added to Êr in trial i = 1, . . . , q. Let µ denote
the expected cardinality of Er(δ(C∗)) ∩ Êr. We have

µ =
q∑
i=1

∑
e∈Er(δ(C∗))∩Êir

(1− p′(e))i−1p′(e) ≤
∑

e∈Er(δ(C∗))

p′(e)

=
∑

e∈δ(C∗)

3c1(e)
b1(|Vr| − 1) (all the edges in δ(C∗) have survived)

= 3c1(δ(C∗))
b1(|Vr| − 1) ≤

3
|Vr| − 1 .

The last inequality comes from that C∗ is a feasible cut, and thus c1(δ(C∗)) ≤ b1. Con-
sequently,

Pr
(
Er(δ(C∗))∩Êr 6= ∅

)
= Pr

(
|Er(δ(C∗))∩Êr| ≥ 1

)
≤ Pr

(
|Er(δ(C∗))∩Êr| ≥

|Vr| − 1
3 µ

)
.

By Markov’s inequality, Pr
(
|Er(δ(C∗)) ∩ Êr| ≥ |Vr|−1

3 µ
)
≤ 3
|Vr|−1 and thus

Pr(Er(δ(C∗)) ∩ Êr 6= ∅) ≤
3

|Vr| − 1 . (2)

J

I Lemma 6. In graph Gr = (Vr, Er), if c1(Er) > b1(|Vr|−1)
6 , then Pr(Êr 6= ∅) > 1−exp(− q2).

Proof. If c1(Er) > b1(|Vr|−1)
6 , then Algorithm 1 constructs Êr by randomly sampling all

edges. Let F ir denote the event that the sample set Êir obtained during trial i is non-empty
and F̄ ir be the complementary event, i = 1, . . . , q. We have

Pr(Êr 6= ∅) = Pr
(
∪qi=1 F

i
r

)
= 1− Pr

(
∩qi=1 F̄

i
r

)
= 1− Pr(F̄ qr | ∩

q−1
i=1 F̄

i
r)Pr(F̄ q−1

r | ∩q−2
i=1 F̄

i
r) · · ·Pr(F̄ 2

r |F̄ 1
r)Pr(F̄ 1

r)

= 1−
(
Πe∈Er

(
1− p′(e)

))q = 1−
(
Πe∈Er

(
1− 3c1(e)

b1(|Vr| − 1)
))q

> 1−
(
Πe∈Er exp

(
− 3c1(e)
b1(|Vr| − 1)

))q = 1−
(

exp
(
−
∑
e∈Er

3c1(e)
b1(|Vr| − 1)

))q
= 1− exp

(
− 3qc1(Er)
b1(|Vr| − 1)

)
> 1− exp

(
− q

2
)
.

The last inequality comes from the fact that c1(Er) > b1(|Vr|−1)
6 . J

Proof of Proposition 3: If the condition of Lemma 4 holds, then the success probability at
iteration r is Pr(Er(δ(C∗))∩ Êr = ∅) ≥ 1− 3

|Vr|−1 . Otherwise, we need to consider two cases
depending on whether iteration r is void or not. In the former case, the success probability
is Pr(Er(δ(C∗)) ∩ Êr = ∅|Êr = ∅) = 1. Now if iteration r is non void, then by Lemma 5 we
have Pr(Er(δ(C∗)) ∩ Êr 6= ∅) ≤ 3

|Vr|−1 . In this case, we have

Pr(Er(δ(C∗)) ∩ Êr 6= ∅|Êr 6= ∅) = Pr(Er(δ(C∗)) ∩ Êr 6= ∅)
Pr(Êr 6= ∅)

<
3

(|Vr| − 1)(1− exp(− q2)) ,

where the last equality follows from Lemma 6. Therefore, the success probability satisfies
Pr(Er(δ(C∗)) ∩ Êr = ∅|Êr 6= ∅) > 1− 3

(|Vr|−1)(1−exp(− q2)) .

ESA 2017

6:8 Randomized Contractions for Multiobjective Minimum Cuts

Algorithm 2 Recursive random edge contraction for a single edge-budget constraint.
Input: a graph G = (V,E) with two nonnegative edge costs c1, c2, a bound b1, and α =

3
1−exp(− q2) for q = Ω(log(log2 n)) (this implies α = O(1))

Output: a cut ∅ 6= C∗ ⊂ V minimizing cost c2 subject to edge-budget constraint c1(δ(C∗)) ≤
b1

1: if |V | ≤ 6 then
2: randomly partition the nodes in G and return the cut C∗ defined by this partition
3: else
4: t← d |V |α√2 + 1e
5: repeat twice
6: apply the while loop in Line 2 of Algorithm 1 and contract at each iteration r all

the edges in Êr until obtaining a graph G′ = (V ′, E′) with at most t nodes
7: recursively solve the problem on graph G′
8: return the best of the two cuts (obtained from the two different runs)
9: end if

By taking the product of all the success probabilities over all the iterations, the probability
that all the edges in δ(C∗) have survived in the final graph G′ is at least

(1−
3/(1− exp(− q2))
|V | − 1))(1−

3/(1− exp(− q2))
|V | − 2) · · · (1−

3/(1− exp(− q2))
4) = Ω(|V |

− 3
1−exp(− q2)).

The probability of picking uniformly a cut in the final graph, formed by at most four
nodes, is 2−4. Therefore, multiplying both probabilities gives the desired result.

Using the same probabilistic argument to bound the number of minimum cuts as in
Karger [7] and setting q = O(log(log2 n)) in Proposition 3, we get the following result.

I Corollary 7. The number of optimal solutions of the single edge-budget constrained global
minimum cut problem is bounded by O(n3).

The number of iterations required to have a nonempty sample set is a geometric random
variable, which by Lemma 6, has an expected value bounded by 1

1−exp(− q2) . Observe that the
O(m) = O(n2) running time of the random sampling is bottleneck in Algorithm 1. Therefore,
the expected running time of the algorithm is O(q · n3).

In order to amplify the success probability given by Proposition 3, one needs to perform
O(n

3
1−exp(− q2) logn) runs of Algorithm 1, which is excessive. Hence, we embed it in the

recursive framework of Karger and Stein’s [8] algorithm.
Our recursive algorithm can be represented using a binary tree where the root corresponds

to graph G. And for every node of the tree, associated with some graph H = (W,F), the
algorithm constructs two graphs H1 = (W1, F1) and H2 = (W2, F2) obtained by performing
two sequences of contractions as in Algorithm 1. However, in contrast to Algorithm 1, these
contractions are stopped when the number of nodes in W is reduced by a factor α

√
2, where

α = 3
1−exp(− q2) and q = Ω(log(log2 n)). It is known that the depth of such tree is bounded

by blog α√2 nc and the number of leaves is at most

O(2blog α√2 nc) ≤ O(2log α√2 n) = O(nlog α√2 2) = O(nα) = O(n
3

1−exp(− q2)) = O(n3).

See Cormen et al. [3] for more details. This procedure is summarized in Algorithm 2.
The following result (restatement of Theorem 1) gives bounds on the probability of success

and the running time of Algorithm 2.

H. Aissi, A. R. Mahjoub, and R. Ravi 6:9

I Theorem 8. Algorithm 2 returns any particular optimal solution in O(n3 log4 n log logn)
time with probability 1− 1

Ω(n) .

The proof of Theorem 8 will be a consequence of the following lemmas (the proofs are
omitted due to space limitations). The first one shows that Algorithm 2 has the same success
probability as the recursive algorithm of Karger and Stein [8].

I Lemma 9. A fixed optimal solution C∗ is returned by Algorithm 2 with probability Ω
(1

logn
)
.

I Lemma 10. For q = O(log(log2 n)), the expected running time is O(n3 logn log logn).

Using the observation that the running time of Algorithm 2 can be analyzed as a sum
of several sums of geometric random variables, we provide an upper bound that holds with
high probability.

I Lemma 11. The probability that the running time of Algorithm 2 exceeds O(n3 log2 n log logn)
is bounded by O(1/n).

By Lemmas 9 and 10, a particular optimal solution C∗ is returned with high probability
by performing O(log2 n) calls to Algorithm 2, with each call to this algorithm taking expected
O(n3 logn log logn) time. By using the same argument as in Lemma 11, the running times
of all these calls is O(n3 log4 n log logn) with high probability. This shows Theorem 8.

2.2 Multiple edge-budget constraints
We consider in this section the more general case where we have a constant number k of
edge-budget constraints. Note that if k is variable, the problem is strongly NP-hard [1].
In the case of a single edge-budget constraint, Lemmas 4 and 5 show that the edges of an
optimal cut form a small fraction of all the edges. Algorithm 1 exploits this crucial property
in order to return an optimal cut with high probability. If the condition of Lemma 4 holds,
then the number of feasible cuts formed by a singleton node is large. With more than
two budget constraints, a cut satisfying the ith budget constraint may violate the jth one.
Therefore, even though the number of cuts formed by a singleton node satisfying the ith
budget constraint may be large, few of them may satisfy all the budget constraints. Therefore,
we need a different idea to tackle the difficulties raised by multiple constraints.

The basic idea of the following algorithm is to repeat contracting randomly chosen edges
until obtaining a graph formed by 2k nodes. At this point, the algorithm returns a cut
uniformly chosen at random in this graph. The main difference with Algorithm 1 lies in the
way how the random selection is done.

In graph Gr = (Vr, Er) obtained at iteration r of the algorithm, a node v ∈ Vr is called
feasible if the cut δ({v}) satisfies all the edge-budget constraints. Otherwise, it is called
infeasible. Let V ir for i = 1, . . . , k − 1 denote a subset of infeasible nodes in Vr violating the
edge-budget constraint associated to cost ci and V kr denote the subset of feasible nodes in
Vr. We partition the nodes in Vr by assigning all the feasible nodes to V kr and assigning
arbitrary any infeasible node v to one of the subsets V ir such that ci(δ({v})) > bi. Let Eir
denote the subset of edges in Er incident to at least a node in V ir for i = 1 . . . , k. We choose
randomly a set V ir with probability pi = |V ir |

|Vr| and then pick an edge e ∈ Eir with probability
ci(e)
ci(Eir) and contract it. This procedure is summarized in Algorithm 3.

The following result gives a lower bound on the success probability of Algorithm 3
following arguments similar to Proposition 3 (the proof is omitted due to space limitation).

I Lemma 12. Algorithm 3 outputs any fixed optimal cut C∗ with probability Ω(n−2k).

ESA 2017

6:10 Randomized Contractions for Multiobjective Minimum Cuts

Algorithm 3 Random edge contraction for the edge-budget constrained minimum cut
problem.
Input: a graph G = (V,E) with k nonnegative edges cost c1, . . . , ck and k − 1 nonnegative

bounds b1, . . . , bk−1
Output: a cut ∅ 6= C∗ ⊂ V minimizing edges cost ck subject to the constraints ci(C∗) ≤ bi,

for i = 1, . . . , k − 1
1: let E1 ← E, V1 ← V , G1 ← G, r ← 1
2: while |Vr| > 2k do
3: flip a biased coin and choose set Eir with probability pi = |V ir |

|Vr|

4: pick randomly an edge e ∈ Eir with probability p(e) = ci(e)
ci(Eir)

5: contract e by merging its vertices and removing self-loops
6: r ← r + 1
7: let Gr = (Vr, Er) denote the resulting graph
8: end while
9: randomly partition the nodes in the final graph and return the cut C∗ in G associated

to this partition

Note that the lower bound given in Lemma 12 is the same as the one given in [8, Theorem
8.5] for the success probability of computing a specific k-approximate cut, i.e. a cut within
a multiplicative factor k of the minimum. Therefore, by embedding Algorithm 3 in the
recursive algorithm of Karger and Stein, one can show the following result.

I Theorem 13. Algorithm 3 returns all optimal solutions for the edge-budget constrained
min cut problem with k − 1 budgets in O(n2k log2 n) with high probability.

3 Node-Constrained Cut Problems

3.1 Node Budget-constrained Global Minimum Cut Problem

We discuss in this section a randomized algorithm for the minimum cut problem with node-
budget constraints based on an extension of Karger’s randomized contraction algorithm [7].
The algorithm exploits an observation given by Goemans and Soto [5] for solving the problem
of minimizing a SSF f over a family of sets I that are closed under inclusion over a ground
set V . A typical example of such a family is the knapsack family: Given a weight function
w : V → R+, consider the family I = {A ⊆ V :

∑
v∈A w(v) ≤ 1}. Let us first briefly review

Goemans and Soto’s algorithm which is based on an extension of Queyranne’s algorithm [13].
Queyranne gave a combinatorial algorithm for minimizing a SSF f by extending the

deterministic minimum cut algorithm of Nagamochi and Ibaraki [10]. The basic idea of
Queyranne’s algorithm is to construct an ordering (v1, . . . , vn) of the elements of the ground
set V such that f(vn) ≤ f(X) for all X ⊂ V that separates vn and vn−1. Note that the
element v1 may be chosen arbitrary in this algorithm. The ordered pair (vn−1, vn) is called a
pendant pair. The algorithm stores {vn} as a candidate solution and merges vn and vn−1.
The process continues until only two elements are left. The best among all the stored
candidates is an optimal solution.

In order to handle the knapsack constraint, Goemans and Soto [5] construct first a new
element v1 obtained by merging all the infeasible elements of V (not in I) and compute an
ordering (v1, . . . , vr). The authors observed that as in Queyranne’s algorithm [13], (vr−1, vr)

H. Aissi, A. R. Mahjoub, and R. Ravi 6:11

Algorithm 4 Random edge contraction for the node-budget constrained min cut problem.
Input: a graph G = (V,E) with nonnegative edges cost c, nonnegative node weights wi for

i = 1, . . . , k − 1, and node budgets bi for i = 1, . . . , k − 1
Output: a feasible cut ∅ 6= C∗ ⊂ V with minimum cost
1: let E1 ← E, V1 ← V , r ← 1, V > ← {v ∈ V |wi(v) > bi for some i ∈ {1, . . . , k − 1}},
G1 ← G� V >, i.e. G with all nodes of V > merged into a single infeasible supernode.

2: while |Vr| > 3 do
3: choose an arbitrary edge e ∈ Er with probability c(e)

c(Er)
4: contract e by merging its endpoints and removing self-loops
5: if there exists two supernodes v and v′ in Vr that are infeasible then
6: merge v and v′
7: end if
8: r ← r + 1
9: let Gr = (Vr, Er) denote the resulting graph
10: end while
11: return a feasible cut C∗ in the final graph G′ with minimum cost

is still a pendant pair. Our approach uses the same idea but our starting point is the random
contraction algorithm of Karger.

Denote a cut X or a supernode representing a cut infeasible if its shore exceeds any of the
node budget constraints, i.e. wi(X) > bi for some i ∈ {1, . . . , k − 1}. Algorithm 4 maintains
at most one infeasible supernode (denoting the contraction of many vertices) at any time
and repeatedly tries to contract a randomly chosen edge. After a random contraction if
a new infeasible supernode is formed, it is merged with the previously existing infeasible
supernode deterministically. This process continues until the final graph Gr formed by only
three supernodes. At this point, the algorithm selects a feasible cut C∗ in Gr with minimum
cost and outputs it as a candidate optimal solution. The full algorithm is described in
Algorithm 4.

If Vr contains at least two infeasible nodes then any feasible cut does not separate them.
In this case, these supernodes are merged safely in Step 6. Otherwise, Vr contains at most
one infeasible supernode and in this case, Algorithm 4 randomly contracts, in Step 4, an edge
in Er. The following results show that the algorithm always find a feasible cut in the final
graph G′ and returns any fixed optimal cut with high probability (the proofs are omitted
due to space limitation).

I Lemma 14. The final graph G′ always contain a feasible cut.

I Lemma 15. Algorithm 4 outputs any fixed optimal cut C∗ with probability Ω(n−2).

Using the same probabilistic argument to bound the number of minimum cuts as in
Karger [7], Lemma 15 implies the following result.

I Corollary 16. The number of optimal solutions of the node-budget constrained global
minimum cut problem is bounded by

(
n
2
)
.

Note that Algorithm 4 has the same error probability and running time as the original
contraction algorithm [8, Theorem 2.2]. Therefore, we can embed it in the sophisticated
recursive algorithm [8, Section 4] in order to produce an optimal cut with the same success
probability and the same running time as for the global minimum cut problem (without the
budget constraints). Furthermore, similarly to [8, Theorem 4.4], by executing the recursive

ESA 2017

6:12 Randomized Contractions for Multiobjective Minimum Cuts

algorithm O(log2 n) times, all the optimal solutions can be computed with high probability.
The following result (restatement of Theorem 2) summarizes the resulting running times.

I Theorem 17. An optimal cut of the node-budget constrained global minimum cut prob-
lem on an n-node graph can be computed in O(n2 logn) time with probability Ω(1/ logn).
Furthermore, all the optimal solutions can be computed with high probability in O(n2 log3 n)
time.

3.2 Node Budget-constrained sink-excluding Global Minimum Cut
Problem

It is not hard to adapt Algorithm 4 for the node-budget constrained global minimum cut
problem excluding a given sink t ∈ V , where we have a set of k − 1 node-weight budget
constraints on the shore of the cut excluding t. We obtain the following result (the full
algorithm description is given in the full paper).

I Theorem 18. An optimal cut of the node-budget constrained global minimum cut problem
excluding a given sink in an n-node graph can be computed in O(n2 logn) time with probability
Ω(1/ logn). Furthermore, all the optimal solutions can be computed with high probability in
O(n2 log3 n) time.

3.3 Node-cardinality constrained Source-including Min-cuts
In contrast to the sink-excluding case, we show that even the node-cardinality constrained
minimum cut problem containing a given source is strongly NP-hard using a reduction from
graph bisection. Note that Hayrapetyan et al. [6] study the version that bounds the edge
costs of the cut and minimizes the node-cardinality of the cut, and show NP-hardness of
that version via a reduction from max-clique. We provide a direct hardness proof for our
version (omitted due to space limitation) by reducing from graph bisection.

I Theorem 19. The node-cardinality constrained minimum cut containing a given source is
strongly NP-hard.

On the other hand, for the exact version of the problem where the side containing s must
have exactly k nodes, an O(logn)-approximation was given by Räcke [14] using his approach
for the graph bisection problem.

4 Conclusion

Our results show that beyond the running time improvement, Karger’s randomized contraction
algorithm is sufficiently flexible to tackle efficiently budget constraints. An important open
question is whether the exact algorithms of Nagamochi and Ibaraki [10] and Stoer and
Wagner [15] can be extended in order to handle these budget constraints, since they are based
on similar observations but have the potential to lead to better deterministic algorithms for
the problems we study.

References

1 Amitai Armon and Uri Zwick. Multicriteria global minimum cuts. Algorithmica, 46(1):15–
26, 2006.

H. Aissi, A. R. Mahjoub, and R. Ravi 6:13

2 Maurizio Bruglieri, Francesco Maffioli, and Matthias Ehrgott. Cardinality constrained min-
imum cut problems: complexity and algorithms. Discrete Applied Mathematics, 137(3):311–
341, 2004.

3 Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leiserson. Introduction
to Algorithms. McGraw-Hill Higher Education, 2nd edition, 2001.

4 Matthias Ehrgott. Multicriteria optimization. Springer Science & Business Media, 2006.
5 Michel X. Goemans and José A. Soto. Algorithms for symmetric submodular function

minimization under hereditary constraints and generalizations. SIAM Journal on Discrete
Mathematics, 27(2):1123–1145, 2013.

6 Ara Hayrapetyan, David Kempe, Martin Pál, and Zoya Svitkina. Unbalanced graph cuts.
In Algorithms – ESA 2005: 13th Annual European Symposium, Proceedings, pages 191–202,
2005.

7 D.R. Karger. Global min-cuts in RNC, and other ramifications of a simple min-cut al-
gorithm. In Proceedings of the Fourth Annual ACM-SIAM Symposium on Discrete Al-
gorithms, SODA’93, pages 21–30, 1993.

8 D.R. Karger and C. Stein. A new approach to the minimum cut problem. Journal of the
ACM, 43(4):601–640, 1996.

9 Angsheng Li and Peng Zhang. Unbalanced graph partitioning. In Algorithms and Com-
putation: 21st International Symposium, ISAAC 2010, Proceedings, Part I, pages 218–229,
2010.

10 Hiroshi Nagamochi and Toshihide Ibaraki. Computing edge-connectivity in multigraphs
and capacitated graphs. SIAM Journal on Discrete Mathematics, 5(1):54–66, 1992. doi:
10.1137/0405004.

11 Hiroshi Nagamochi, Kazuhiro Nishimura, and Toshihide Ibaraki. Computing all small cuts
in an undirected network. SIAM Journal on Discrete Mathematics, 10(3):469–481.

12 M. Padberg and G. Rinaldi. An efficient algorithm for the minimum capacity cut problem.
Mathematical Programming, 47(1):19–36, 1990.

13 Maurice Queyranne. Minimizing symmetric submodular functions. Mathematical Program-
ming, 82(1):3–12, 1998.

14 Harald Räcke. Optimal hierarchical decompositions for congestion minimization in net-
works. In Proceedings of the Fortieth Annual ACM Symposium on Theory of Computing,
STOC ’08, pages 255–264. ACM, 2008.

15 Mechthild Stoer and Frank Wagner. A simple min-cut algorithm. Journal of the ACM,
44(4):585–591, 1997.

16 Rico Zenklusen. Connectivity interdiction. Operations Research Letters, 42(6):450–454,
2014.

17 Peng Zhang. A new approximation algorithm for the unbalanced min s–t cut problem.
Theoretical Computer Science, 609:658–665, 2016.

ESA 2017

http://dx.doi.org/10.1137/0405004
http://dx.doi.org/10.1137/0405004

	Introduction
	Previous Work
	Our contributions

	Edge-budget constrained Global Minimum cuts
	Single edge-budget constraint
	Multiple edge-budget constraints

	Node-Constrained Cut Problems
	Node Budget-constrained Global Minimum Cut Problem
	Node Budget-constrained sink-excluding Global Minimum Cut Problem
	Node-cardinality constrained Source-including Min-cuts

	Conclusion

