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Abstract. Multicommodity facility location refers to the extension of facility location to allow
for different clients’ demands for different goods from among a finite set of goods. This leads to several
optimization problems, depending on the cost of opening a facility (now a function of the commodities
it serves). In this paper, we introduce and provide approximation algorithms for two fairly general
versions of multicommodity facility location. We formulate integer programming models for these
problems, and use them to provide approximation algorithms for the problems that are close to the
inapproximability thresholds.
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1. Introduction. The location of facilities (manufacturing plants, warehouses,
distribution centers, collection centers) is an essential component of the design of
production and supply networks in the value chain. According to the 14th Annual
State of Logistics report [7], U.S. companies spent $910 billion (or 8.7% of the gross
domestic product) on business logistics in 2002. Therefore, the question of locating
facilities is of critical importance, and has spurred a long line of research. Much of
this work was extensively surveyed by Cornuéjols, Nemhauser, and Wolsey [5], and
more recently by Daskin, Snyder, and Berger [6].

The classic uncapacitated facility location (UFL) problem is the simplest model of
facility location. This problem is defined in a metric space, a subset of whose points
are clients and another subset consists of facilities. Each facility has an opening cost,
and the objective is to compute a solution that minimizes the total cost of open
facilities and the sum of the distances from each client to its nearest open facility.

In this paper, we study a natural extension of the facility location model where
there is a finite set of commodities, and each client demands a subset of those com-
modities. We call this multicommodity facility location (MCFL). Facility costs are
now a function of the location and the commodities served. This model has many
practical applications. For example, a consumer goods manufacturer who produces
five different goods might choose to locate three plants to manufacture them, to uti-
lize the economies of scale arising from having one plant producing two commodities
instead of a separate plant for each commodity.
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MULTICOMMODITY FACILITY LOCATION 539

To take one specific example, as of June 2005, Toyota Motor North America
[21] had five assembly plants (California, Texas, Indiana, Kentucky, and Ontario) in
North America, which produced nine different vehicles (Camry, Avalon, Camry Solara,
Corolla, Matrix, Sequoia, Sienna, Tacoma, and Tundra). Not all facilities produced all
vehicles: The Tundra was assembled both at Indiana and at Texas, while the Indiana
plant also assembled Sequoias and Siennas. The decisions about where each plant is
located and what vehicles are assembled there are critical to Toyota’s profitability,
and must take into account various considerations of demand, manufacturing cost,
etc. Our models aim to capture this kind of reality and provide solutions for such
problems.

Daskin, Snyder, and Berger [6] provide a comprehensive survey of the operations
research literature in facility location. However, surprisingly little exists on facility
location models with multiple commodities or items. Recently, Shi et al. [17] studied
a two-echelon location/routing model with multiple commodities. However, in their
model, the location of the plants and consumers is given, as is the commodities to be
manufactured at each plant. The only decisions are the locations of the warehouses,
whose costs are independent of the commodities served.

Our work falls within the framework of approximation algorithms; that is, heuris-
tics with guarantees on both solution quality and running time. The NP-completeness
of even the UFL problem means that the MCFL and all its variants are computation-
ally intractable, thus necessitating efficient approximation algorithms. Within the
approximation algorithms literature, the uncapacitated (single commodity) facility
location problem has received a lot of attention. The first constant factor approxima-
tion uses LP rounding and is due to Shmoys, Tardos, and Aardal [19]; our algorithm
builds on their results and those of Lin and Vitter [11]. Other work includes the cur-
rent best approximation ratio of 1.5 due to Byrka [4]. The work of Guha and Khuller
[8] combined with an observation by Sviridenko (personal communication, reported
in [10]) established that the problem is inapproximable beyond 1.46 unless P = NP.

Several extensions of the facility location model have been considered in the ap-
proximation algorithms literature. Using local search, Pál, Tardos, and Wexler [14]
provided an approximation algorithm for the facility location problem with capacity
constraints on facilities. Meyerson [13] considered an online version of the facility
location problem, wherein client requests are received sequentially, and provided an
algorithm with a bounded performance ratio. The k-median problem is a variant
where facilities have no costs, but one is constrained to opening no more than k of
them. The current best approximation algorithm also uses a local search routine [2].
Ravi and Sinha [16] consider the problem of combining facility location with design-
ing a network in the presence of economies of scale, and provide a constant-factor
approximation algorithm.

However, none of these models incorporate multiple commodities. The first pa-
pers to provide nontrivial approximation algorithms for different versions of MCFL
were (to the best of our knowledge) the conference version of this manuscript [15] and
an independent paper by Shmoys, Swamy, and Levi [18] that appeared in the same
conference. Shmoys, Swamy, and Levi [18] considered somewhat restricted classes of
MCFL problems, and provided constant-factor approximation algorithms for them.
For example, they obtained a 6-approximation if the following restriction is imposed:
There is an ordering on the facilities wherein if facility A precedes facility B, the in-
cremental cost for serving any commodity is no greater at facility A than at facility B.
If, additionally, the facility cost structure is the same in all facilities, the approxima-
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540 R. RAVI AND AMITABH SINHA

tion ratio is improved to 2.391. Subsequent to their work, Svitkina and Tardos [20]
generalized their model to one with a hierarchical structure on the cost function, and
used local search to obtain a constant-factor approximation for the special case when
the facility cost structure is identical in all facilities. We consider more general facility
cost functions, but our results are weaker: The approximation ratio is only logarith-
mic in the number of commodities. We point out (see the discussion in section 3)
that an approximation ratio that is logarithmic in the number of clients is relatively
straightforward for certain cost structures; however, one would typically expect that
the number of clients is much greater than the number of commodities.

1.1. Our results and paper outline. We first consider the MCFL problem,
where the cost of producing a set of commodities at a given facility can be expressed
as the sum of a fixed cost for opening the facility, and commodity-wise incremental
costs for producing specific commodities. In section 2, we provide a (log k + 4)-
approximation algorithm for this problem, where k is the number of commodities. Our
model for MCFL can be extended to allow for more general facility costs. A similar
approximation ratio is obtained, albeit with an (arguably unavoidable) increase in the
computational complexity. This extension is described in section 3. We also study
the hardness of these problems in section 4, and show that our approximation ratios
are close to the inapproximability thresholds, thus supporting our assertion that our
algorithms are close to the best possible (in terms of approximability).

2. Multicommodity facility location.

2.1. Model. Our model and notation extend the well-studied uncapacitated fa-
cility location model. There is a set of clients D, and a set of facilities F , with a
distance function c : D×F → R

+, which is a metric. There is also a set of commodi-
ties S, and each client j has demand for one unit of commodity dj ∈ S. Each client
demands exactly one unit of exactly one commodity, although the same commodity
could be demanded by several different clients. Relaxing this assumption to allow dif-
ferent commodities to be demanded by the same client can be incorporated by making
multiple copies of the client, each demanding one commodity, provided one permits a
solution where different commodities to a client are allowed to be provided by possibly
different facilities. Relaxing the assumption to allow the quantity demanded to be
nonunit is less straightforward. We briefly discuss relaxing the single-commodity-per-
client assumption in section 4.3.

The number of clients |D|, facilities |F |, and commodities |S| are abbreviated
n,m, and k, respectively. We use 2S to represent the set of all subsets of S. A
configuration σ(i) ∈ 2S for facility i is simply a specification of the commodities
one has chosen to manufacture there. In general, the cost of opening facility i in
configuration σ(i) may be an arbitrary general function. In this section, however, we
consider a linear specification of this cost. Each facility i has an opening cost (fixed
cost) f0

i ≥ 0, and for each commodity s, there is an incremental cost fs
i ≥ 0, so that

the cost of opening facility i in configuration σ is fi(σ) = f0
i +

∑
s∈σ f

s
i . The idea is as

follows: Often, installing a facility involves a substantial start-up cost independent of
the commodities manufactured, while the cost of configuring the facility to produce any
commodity involves an incremental cost, particularly if all commodities are somewhat
similar to each other (for example, if an automotive plant is retooled to produce an
additional line of vehicles). Even if the facility costs do not obey this structure exactly,
the costs can often be well-approximated by such a structure. The more general case
of facility costs which depend arbitrarily on the commodities installed is discussed in
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Algorithm MCFL(S,D, d, F, f, c)
Given: (i) Set of commodities S. (ii) Set of clients D, with client j demanding

commodity dj ∈ S. (iii) Set of facilities F , with the cost of facility
i defined by the fixed opening cost f0

i and the incremental cost fs
i

to serve commodity s. (iv) Distance matrix c, with cij denoting the
distance from facility i to client j.

Returns: (i) A set of facilities F ′ ⊆ F to open, and for each facility f ∈ F ′,
the set of commodities σ(f) to be manufactured. (ii) For each client
j, an assignment to an open facility φ(j) ∈ F ′ that manufactures the
commodity required at j; that is, dj ∈ σ(φ(j)).

1: Formulate the integer program (2.1–2.6), and let (x∗, y∗) be an optimal
solution to its linear relaxation.

2: Obtain the “filtered” solution (x, y) as described in section 2.4.
3: Select a subset of clients R as representatives, as described in section

2.5. All clients not in R are assigned a representative in R.
4: Solve the k-set cover instance induced by (x, y) and R as described in

section 2.6. Let ẑ denote the integer solution to this instance.
5: Construct an integer solution (x̂, ŷ) for the problem using ẑ, as de-

scribed in section 2.7. The assignment φ is given by x̂ij for clients in
R, and the assignment of the representatives for clients not in R. The
facilities to open and their configurations are given by ŷ.

Fig. 2.1. Algorithm MCFL(S,D, d, F, f, c).

section 3.

A feasible solution is specified by a set of facilities F ′, together with a configuration
σ(i) of each facility i ∈ F ′, such that each commodity which has at least one client
demanding it is served by at least one facility in F ′. Given F ′, each client j is
assigned to φ(j) ∈ F ′, the nearest open facility which includes commodity dj in its
configuration. The total facility cost is

∑
i∈F ′ fi(σ(i)), the sum of the costs incurred

in opening each facility in F ′ in its chosen configuration. The total service cost is∑
j∈D cj,φ(j), the sum of distances from each client to the facility assigned to it. The

total cost is the sum of these two, and the objective is to minimize the total cost.

2.2. Overview of the algorithm for MCFL. We begin by formulating an
integer program for the problem, and solve its linear relaxation. We then filter the
solution so that each client is fractionally assigned only to facilities that are close
to it. Following this, we select a set of representative clients, and assign all other
clients to these representatives. We then view the fractional solution consisting of
the fractionally opened facilities and the representatives as a fractional solution to an
instance of a variant of the set-cover problem. We then exploit the special structure
of the fractional solution to efficiently round this set-cover instance, which results in
the selection of facilities to be opened and the specification of their configurations.
All representative clients are served by the facilities given by the set-cover solution,
while all other clients are assigned to the same facilities as their representatitives. The
rounding process resembles the technique used by Shmoys, Tardos, and Aardal [19],
but with suitable adaptations to incorporate the multiple commodities.

An overview of the algorithm is provided in Figure 2.1. The details of the algo-
rithm and the analysis are presented in the remainder of this section.
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2.3. IP formulation. The starting point of our algorithm is an integer pro-
gramming formulation for the MCFL problem. The integer program (IP) formulation
(2.1–2.6) shown below extends the basic UFL formulation of Balinski [3] to incorporate
multiple commodities, while also exploiting the linear cost structure of the facilities.
Variable y0i indicates whether or not facility i is opened, and variable ysi indicates
whether or not facility i is serving commodity s. Variable xij indicates whether client
j is served by facility i. Recall that dj is the commodity demanded by client j.

min
∑
i∈F

∑
j∈D

cijxij +
∑
i∈F

k∑
s=0

f s
i y

s
i ,(2.1)

∑
i∈F

xij ≥ 1 ∀j ∈ D,(2.2)

xij ≤ y
dj

i ∀j ∈ D, ∀i ∈ F,(2.3)

ysi ≤ y0i ∀i ∈ F, ∀s ∈ S,(2.4)

xij , y
s
i ≥ 0 ∀j ∈ D, ∀i ∈ F, ∀s ∈ S,(2.5)

xij , y
s
i ∈ {0, 1} ∀j ∈ D, ∀i ∈ F, ∀s ∈ S.(2.6)

The objective function is the sum of the total “service” costs (the transportation
costs from each client to the facility serving it) and the total “facility” costs (the
cost of opening each facility and installing commodities to be manufactured there).
The constraints (2.2) ensure that each client is served by at least one facility. Con-
straints (2.3) ensure that if client j (which requires one unit of commodity dj) is served
by facility i, then commodity dj is installed at facility i. Constraints (2.4) ensure that
if a facility is opened to serve any commodity, then its fixed cost of opening f0

i must
be incurred (by forcing the variable y0i to one).

The linear relaxation of the IP formulation above is therefore (2.1–2.5). Observe
that since this is a minimization program with all costs nonnegative, we do not need
constraints of the form xij , y

s
i ≤ 1 in order to compute the optimal fractional solution.

Since the size of this linear program is polynomial in (n,m, k), an optimal solution can
be found efficiently in time polynomial in (n,m, k). Let (x∗, y∗) denote an optimal
solution of the linear relaxation, with objective function value z∗. We use z∗ as our
lower bound, and the next steps round the fractional solution to an integer solution
with total cost within a bounded factor of z∗.

2.4. Filtering. The next step of the algorithm uses the filtering technique of
Lin and Vitter [11], as was also done in [19]. We fix a constant 0 < α < 1. For every
client j, we define its optimal fractional service cost to be c∗j =

∑
i∈F cijx

∗
ij . Order

the facilities which serve client j according to nondecreasing distance from j. The α
point for client j is the smallest distance cαj such that

∑
i∈F :cij≤cαj

x∗
ij ≥ α.

We now create a new fractional solution (x, y), defined as follows. For each facility
i and commodity s, define ysi = min{1, ys∗i /α}, and also define y0i = min{1, y0∗i /α}.
Define x as follows:

xij =

{
min{1, x∗

ij/α} if cij ≤ cαj ,
0 otherwise.
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Lemma 2.1. The fractional solution (x, y) is feasible for (2.1–2.5). Moreover,
cαj ≤ 1

1−αc
∗
j .

Proof. The definition of (x, y) ensures that the constraints (2.2–2.5) are satisfied.
Also, since c∗j =

∑
i∈F cijx

∗
ij , we have c∗j ≥ ∑

i∈F :cαj ≤cij
cijx

∗
ij . This term, by def-

inition of cαj , is at least (1 − α)cαj . This gives us c∗j ≥ (1 − α)cαj , which results in

cαj ≤ 1
1−αc

∗
j .

For the uncapacitated, single-commodity facility location problem, Shmoys, Tar-
dos, and Aardal [19] round the solution (x, y) into an integer solution by considering
clients in nondecreasing order of cαj , and opening a facility each time with client j as
well as all other clients sufficiently close to j assigned to the opened facility. However,
we are unable to do this because of the presence of multiple commodities: Nearby
clients might require different commodities, and we have to choose in which configu-
ration to open each facility. This requires the introduction of a number of new steps
in our algorithm, which are described in sections 2.5–2.7.

2.5. Selection of representatives. The existence of multiple commodities
presents several difficulties if we attempt to round the fractional solution (x, y). Hence
we introduce a new step where we select a set of clients as representatives such that
no two representatives of the same commodity are fractionally served by the same
facility. We do this representative selection independently for each commodity.

Fix a commodity s, and consider all clients that require commodity s in increasing
order of cαj . Let Ds = {j1, j2, . . . , jns} be the clients in this order. Iteratively, mark
the smallest index (smallest cαj ) client j ∈ Ds as a representative. All clients j′ ∈ Ds

such that there exists a facility i such that xij > 0 and xij′ > 0 are removed from
the list Ds. We do not consider client j′ as a candidate for being a representative,
and instead mark client j as the representative for client j′. Let R denote the set of
representatives over all commodities.

Proposition 2.2. If client j′ ∈ Ds is represented by j ∈ Ds, then cjj′ ≤ 2cαj′ .

Proof. By definition of x, we have xij > 0 only if cij ≤ cαj . We let j′ be
represented by j only if there exists a facility i such that xij > 0 and xij′ > 0.
This means that cjj′ ≤ cij + cij′ ≤ cαj + cαj′ . However, since clients are considered
for inclusion in R in nondecreasing order of their α points, we must have cαj ≤ cαj′ .
Therefore, cjj′ ≤ 2cαj′ .

2.6. Interpretation as a fractional k-set cover solution. The next step of
our algorithm is to cast the fractional solution (restricted to the set R) as the fractional
solution to an instance of the set-cover problem. Informally, the set-cover problem
is to choose a minimum weight subcollection of sets (from a given collection) such
that every element in the given universe appears in at least one set in the chosen sub-
collection. Further discussion of the relationship of MCFL with set-cover is provided
in section 4.

The k-set-cover problem is a special case of the set-cover problem when each set
has cardinality no more than k. We use our fractional solution to construct a k-set-
cover instance and show that y is a fractional solution of the k-set-cover instance. We
use the following IP formulation for our instance of k-set-cover. Recall that we use
the term configuration to denote a set of commodities, and a facility i is said to be
opened in configuration σ ∈ 2S if it serves the commodities in σ. We create a set (i, σ)
with cost fi(σ) for every facility-configuration pair (i, σ). Let zσi be 1 if set (i, σ) is
included in our solution. Our universe consists of all clients in R, and a client j ∈ R
is included in a set (i, σ) if and only if xij > 0 and dj ∈ σ. The k-set-cover instance is
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defined below; subsequently, we will establish that it is indeed a k-set-cover instance
(that is, every set has cardinality no more than k), and we will convert our current
solution (x, y) into a feasible fractional solution for the instance.

min
∑
i∈F

∑
σ∈2S

fi(σ)z
σ
i(2.7)

s.t.
∑

(i∈F,σ∈2S):xij>0,dj∈σ

zσi ≥ 1 ∀j ∈ R,(2.8)

zσi ∈ {0, 1} ∀i ∈ R, σ ∈ 2S .(2.9)

Our k-set-cover instance is defined as in (2.7–2.9), with an element for every client
j ∈ R and a set for every facility-configuration pair. This by itself is an instance that
is exponential in the number of commodities. However, the following lemma casts our
fractional solution y as a fractional solution to the k-set-cover instance so that only
polynomially many facility-configuration pairs have nonzero fractional variables. This
allows us to restrict our attention to a k-set-cover instance (and fractional solution)
of size polynomial in (n,m, k).

Lemma 2.3. There is a fractional solution z to the k-set-cover instance (2.7–2.9)
such that the following hold: (i)

∑
(i∈F,σ∈2S):xij>0,dj∈σ z

σ
i ≥ 1 for all j ∈ R; (ii) for

every facility i, there are at most k configurations for which zσi > 0; (iii) the total cost

of the fractional solution is no more than
∑

i∈F

∑k
s=0 f

s
i y

s
i .

Proof. Consider facility i, and order the commodities so that y0i ≥ y1i ≥ y2i ≥
· · · ≥ yki . For notational convenience, we also define yk+1

i = 0. Observe that without
loss of feasibility and with only a decrease in costs, we can assume that y0i = y1i . Let

[s] = {1, 2, . . . , s}. We open facility i in configuration [s] to extent z
[s]
i = ysi − ys+1

i

for s = 1, 2, . . . , k − 1, and z
[k]
i = yki .

We now verify (i). Consider a client j ∈ R. Define sj to be the index of commod-
ity dj in the ordering of ysi for facility i. Observe that

∑
(i∈F,σ∈2S):xij>0,dj∈σ z

σ
i ≥∑

i∈F :xij>0

∑k
s=sj

z
[s]
i , because the sum in the right-hand side of the inequality is

over a subset of the (set of all possible) configurations considered in the sum on

the left-hand side. By the definition of z
[s]
i , we then have

∑
i∈F :xij>0

∑k
s=sj

z
[s]
i ≥∑

i∈F :xij>0

∑k
s=sj

(ysi − ys+1
i ). This telescopic sum reduces to

∑
i∈F :xij>0 y

dj

i , which

by constraint (2.3) must be at least
∑

i∈F xij . Using constraint (2.2), this quantity
must be at least 1, proving (i).

Each facility i is opened only in the configurations [1], [2], . . . , [k], so (ii) holds.

Consider facility i, and consider all sets (i, σ) corresponding to facility i. The

total cost of these sets in the fractional k-set cover solution is
∑k

s=1 fi([s])z
[s]
i =∑k

s=1 fi([s])(y
s
i − ys+1

i ) =
∑k

s=1 y
s
if

s
i + y0i f

0
i . The last equality follows using y1i = y0i

and the observation that fi([s]) = f0
i +f1

i +· · ·+f s
i , since that is the total cost incurred

if facility i is opened to serve commodities 1, 2, . . . , s. This proves (iii).

We know that the integrality gap of k-set-cover is no more than log k + 1 (see
[22]). Hence we can find an integer solution ẑ of (2.7–2.9) with cost no more than

(log k + 1)
∑

i∈F

∑k
s=0 f

s
i y

s
i . We now use the solution ẑ to obtain an integer solution

(x̂, ŷ).

2.7. Constructing the final integer solution. The final integer solution is
guided by the preceding two steps. We start with the integer solution ẑ to the k-set-



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MULTICOMMODITY FACILITY LOCATION 545

cover instance (2.7–2.9). The facilities to open are given by

ŷσi =

{
1 if ẑσi = 1,
0 otherwise.

The set of open facilities is therefore given by F ′ = {i ∈ F : ŷσi = 1 for some σ ∈
2S}, and the configuration (set of commodities manufactured) of an open facility i is
∪σ∈2S :ŷσ

i =1σ. We convert ŷ into integer variables ŷs in the obvious way: Define ŷsi = 1
for any (i, s) pair if and only if there exists σ such that ŷσi = 1 and s ∈ σ; otherwise,
define ŷsi = 0. Define ŷ0i = maxs{ŷsi }.

We now describe the assignment φ of clients to open facilities by first describing
the integer solution x̂ij . First, consider clients in R. For each such client j, because
of the fact that ẑ is an integer solution to the k-set-cover instance, there must be at
least one facility i ∈ F ′ such that xij > 0 and dj ∈ σ(i); define x̂ij = 1 for the closest
such facility, also defining φ(j) = i. Next, consider a client j not in R. For this client,
there must be a representative j′ ∈ R; define φ(j) = φ(j′) and x̂ij = 1 for i = φ(j).
Define x̂ij = 0 for all other cases.

Lemma 2.4. The solution (x̂, ŷ) is a feasible integer solution for the formulation
(2.1–2.6).

Proof. For every client j ∈ R, the fact that ẑ is an integer solution to the k-
set-cover instance (2.7–2.9) guarantees that there is a facility in F ′ which serves the
commodity demanded by j. This ensures that the constraints (2.2–2.3) are satisfied
for all such clients. For clients j /∈ R, the fact that φ(j) = φ(j′) for some client
j′ ∈ R which demands the same commodity, as j guarantees feasibility of the same
constraints. Nonnegativity and integrality are trivially satisfied; hence (x̂, ŷ) is a
feasible solution for (2.1–2.6).

2.8. Bounding the cost of the solution. We now prove our bound on the
cost of the solution (x̂, ŷ). The overall idea is similar to that of [19], although several
adaptations have to be made to account for the intermediate steps of our algorithm.

Theorem 2.5. The solution (x̂, ŷ) produced by Algorithm MCFL in Figure 2.1 is
a (log k + 4)-approximation for the MCFL instance. Specifically, the following hold:

(i)
∑

i∈F

∑
j∈D cij x̂ij ≤ 3

1−α

∑
j∈D c∗j ;

(ii)
∑

i∈F

∑k
s=0 f

s
i ŷ

s
i ≤ log k+1

α

∑
i∈F

∑k
s=0 f

s
i y

s∗
i .

Proof. We first show (i). For each client j ∈ R, Lemma 2.1 guarantees that xij > 0

only if cij ≤ c∗j
1−α , so we also have x̂ij = 1 only if cij ≤ c∗j

1−α . Next, consider a client

j′ /∈ R, where j ∈ R is its representative. By Proposition 2.2, cjj′ ≤ 2cαj′ ≤ 2
1−α c

∗
j′ .

Since client j′ is assigned to the facility φ(j) that serves j, we have cφ(j)j′ ≤ cφ(j)j +

cjj′ ≤ cαj + 2
1−αc

∗
j′ ≤ 3

1−αc
∗
j′ . Summing the bound on cφ(j)j over all clients j ∈ D

results in (i); that is,
∑

i∈F

∑
j∈D cij x̂ij ≤ 3

1−α

∑
j∈D c∗j .

Next, we establish (ii). From the discussion in section 2.6, it follows that the

solution ŷ is a (log k+1)-approximation to the k-set-cover instance; hence,
∑

i∈F

∑k
s=0

f s
i ŷ

s
i ≤ (log k+1)

∑
i∈F

∑k
s=0 f

s
i y

s
i . Since we defined ysi = min{1, ys∗i /α}, we have (ii).

Therefore, we find that the cost of the integer solution (x̂, ŷ) is bounded from
above by max{ 3

1−α ,
log k+1

α }z∗. This quantity is minimized when 3
1−α = log k+1

α , which

is attained at α = log k+1
log k+4 . This results in the approximation ratio being log k+4.

Notice that in the above result we might be able to trade off α with respect to k to
get improved guarantees for specific instances depending on the relative contributions
of facility costs and service costs in an LP relaxation. Furthermore, if additional
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constraints are imposed to strengthen the linear relaxation, one might be able to
obtain a better integer solution. It is an open question whether such strengthenings
can also help improve the approximation ratio, although in the light of our hardness
results in section 4, improvements beyond some constant times log k are unlikely.

3. General (nonlinear) facility costs. Recall that in our model for MCFL,
we impose a linearity requirement on the cost structure of the facilities. A more
general class of cost functions is subadditive functions. Here, apart from fi(σ) ≥ 0,
the only requirement is that for any two configurations σ and σ′ and any facility i,
we have fi(σ ∪ σ′) ≤ fi(σ) + fi(σ

′). Observe that the linear cost functions considered
in section 2 are subadditive, so that this is a larger class of cost functions.

The main problem with allowing more general cost functions is that the input
size may no longer be polynomial in the number of commodities. If fi(σ) must be
specified for every configuration σ, then for each facility we need a total of 2k numbers
to fully specify its cost structure. Therefore, the size of the input is polynomial in
(n,m, 2k).

We find that some minor modifications of our MCFL algorithm allow us to extend
our algorithm to provide a (log k + 4)-approximation for this more general class of
MCFL problems as well. However, the running time of the algorithm, while polyno-
mial in the input size, is now exponential in the number of commodities. In the rest
of this section, we provide details of the algorithm and analysis for this general case.

The MCFL problem is closely related to the set-cover problem—both because our
algorithm uses a set-cover subroutine, and because the hardness result follows from
the hardness of set-cover. Note that the weighted set-cover with up to k elements
per set and a total of n elements to cover was shown by Halldórsson [9] to be MAX-
SNP-hard even when we allow the algorithm running time polynomial in (n,m, 2k),
implying the same for our general MCFL instance. This provides further evidence
about the intractability of MCFL with general cost functions.

The most general structure on facility cost functions is obtained by removing
the subadditivity requirement. An example of a facility cost structure that is not
subadditive is seen when the cost of manufacturing 2 or fewer commodities is finite,
but manufacturing 3 or more commodities is infinitely costly. One observes that such
a cost function can be used to model capacity constraints on facilities, for which no
IP formulation with a bounded integrality gap is known. We note, however, that
there are constant factor approximation algorithms for capacitated facility location
that use local search [14, 12, 23]; it is an open question whether one can effectively
use local search for MCFL. The MCFL problem with no restriction on facility costs
can be modeled as a general nonmetric UFL problem. For such problems, depending
on the cost structure, it may be possible to recast the MCFL problem as a set-cover
problem, which would yield an O(log n)-approximation. An example of such a cost
structure is seen when all client-facility transportation costs are identical. It is an
open question whether one can obtain tighter approximation ratios for these more
general versions of MCFL.

3.1. Algorithm for MCFL with general subadditive costs. We now show
how our algorithm for MCFL can be extended to the more general case when facility
costs are subadditive, but not necessarily linear. We label this problem S-MCFL
(where the S indicates subadditivity). Recall that the cost function is subadditive if,
for every facility i and every pair of configurations σ and σ′, we have fi(σ ∪ σ′) ≤
fi(σ) + fi(σ

′). The model is otherwise identical to the description in section 2.1.
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Algorithm S-MCFL(S,D, d, F, f, c)
Given: (i) Set of commodities S. (ii) Set of clients D, with client j demanding

commodity dj ∈ S. (iii) Set of facilities F , with the cost of facility i
to serve commodities σ ⊆ 2S given by fi(σ). (iv) Distance matrix c,
with cij denoting the distance from facility i to client j.

Returns: (i) A set of facilities F ′ ⊆ F to open, and for each facility f ∈ F ′,
the set of commodities σ(f) to be manufactured. (ii) For each client
j, an assignment to an open facility φ(j) ∈ F ′ that manufactures the
commodity required at j; that is, dj ∈ σ(φ(j)).

1: Formulate the integer program (3.1–3.5), and let (x∗, y∗) be an optimal
solution to its linear relaxation.

2: Obtain the “filtered” solution (x, y) as described in section 3.2.
3: Select a subset of clients R as representatives, as described in section

3.2. All clients not in R are assigned a representative in R.
4: Solve the k-set-cover instance induced by (x, y) and R as described in

section 3.3. Let ẑ denote the integer solution to this instance.
5: Construct an integer solution (x̂, ŷ) for the problem using ẑ, as de-

scribed in section 3.3. The assignment φ is given by x̂ij for clients in
R, and the assignment of the representatives for clients not in R. The
facilities to open and their configurations are given by ŷ.

Fig. 3.1. Algorithm S-MCFL(S,D, d, F, f, c).

Our algorithm for S-MCFL is very similar to that of MCFL. There are two main
differences: First, the IP formulation is different because the formulation for MCFL
relies critically on the linear nature of the cost function; second, the k-set-cover round-
ing is different, once again because we cannot exploit the linear nature of the cost
function. In the rest of this section, we describe these differences in detail. The
algorithm is described briefly in Figure 3.1.

3.2. IP formulation and initial rounding. The IP formulation (3.1–3.5)
shown below extends Balinski’s formulation [3] of UFL to S-MCFL, and is a mi-
nor modification of the formulation (2.1–2.6) for MCFL. We maintain an indicator
variable yσi for each configuration σ of each facility i. Variable xσ

ij is 1 if and only if
client j is served by facility i in configuration σ, as follows:

min
∑
i∈F

∑
j∈D

∑
σ∈2S

cijx
σ
ij +

∑
i∈F

∑
σ∈2S

fi(σ)y
σ
i ,(3.1)

∑
i∈F

∑
σ:dj∈σ

xσ
ij ≥ 1 ∀j ∈ D,(3.2)

xσ
ij ≤ yσi ∀j ∈ D, ∀i ∈ F, ∀σ ∈ 2S ,(3.3)

xσ
ij , y

σ
i ≥ 0 ∀j ∈ D, ∀i ∈ F, ∀σ ∈ 2S ,(3.4)

xσ
ij , y

σ
i ∈ {0, 1} ∀j ∈ D, ∀i ∈ F, ∀σ ∈ 2S .(3.5)

The objective function is the sum of the total “service” costs (the transportation
costs from each client to the facility serving it) and the total “facility” costs (the cost
of opening each facility in its desired configuration). The constraints (3.2) ensure that
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each client is served by at least one facility, while the constraints (3.3) ensure that a
facility must be open if it is serving some client.

Observe that we do not have constraints of the form
∑

σ∈2S yσi ≤ 1 for facilities
i. That is, we do not explicitly enforce that each facility be opened in no more than
one configuration. Instead, this is implicitly enforced in the optimal solution, since
subadditive costs guarantee that if a facility is opened in two or more configurations,
the cost of opening it in the union of all open configurations is no greater.

By dropping the integrality constraints (3.5) from the integer program above, we
obtain its linear relaxation (3.1–3.4). The size of the linear program is polynomial in
n, m, and 2k; therefore, it can be solved to optimality in running time polynomial in
its size. We use the optimal solution of the linear relaxation, denoted (x∗, y∗) with
the objective function value z∗, as our lower bound.

We then convert the solution (x∗, y∗) to the filtered solution (x, y) as described
in section 2.4, with a few appropriate modifications. Lemma 2.1 continues to hold.

We also select the set of representatives R as described in section 2.5. Proposi-
tion 2.2 also continues to hold. So far, nothing has changed because until this point
in the execution of our algorithm for MCFL, the linearity of the facility costs has not
been used.

3.3. Interpretation as a fractional k-set cover solution. The fractional so-
lution (x, y) can be used to construct a k-set-cover instance as described in section 2.6
and the formulation (2.7–2.9). The following lemma, stated here without proof, is a
counterpart of Lemma 2.3 and allows us to use the k-set-cover rounding procedure to
construct an integer solution.

Lemma 3.1. The formulation (2.7–2.9) is an instance of k-set-cover, and z = y is
a feasible solution for its linear relaxation of cost no more than

∑
i∈F

∑
σ∈2S fi(σ)y

σ
i .

In the case of linear costs, we found that z could be transformed into a fractional
solution to the k-set-cover instance of size polynomial in (n,m, k), which allowed for
rounding in time polynomial in (n,m, k) (Lemma 2.3). However, we no longer have
linear costs, so we cannot find a fractional solution of size polynomial in k. Instead,
we must resort to standard set-cover rounding algorithms [22], where the running
time is polynomial in the input size (therefore, polynomial in 2k). Fortunately, the
integrality ratio of these general rounding procedures is still (log k + 1). As before,
let ẑ denote this integer solution.

The final integer solution for the MCFL problem is given as before. We set ŷσi to
1 if ẑσi = 1, and 0 otherwise. Each client is assigned to the nearest open facility which
manufactures the commodity required by the client; this gives us the x̂ component of
the final solution.

Observe that Theorem 2.5 also does not rely in any way on the special cost
structure of the facilities. Therefore, its analog for S-MCFL continues to hold and
bound the cost of the solution. For completeness, we state the theorem here, but omit
the proof since it is identical to that of Theorem 2.5.

Theorem 3.2. The solution (x̂, ŷ) produced by Algorithm S-MCFL in Figure 3.1
is a (log k + 4)-approximation for the S-MCFL instance. Specifically, the following
hold:

(i)
∑

i∈F

∑
j∈D

∑
σ∈2S cij x̂

σ
ij ≤ 3

1−α

∑
j∈D

∑
i∈F

∑
σ∈2S cijx

∗σ
ij and

(ii)
∑

i∈F

∑
σ∈2S fi(σ)ŷ

σ
i ≤ log k+1

α

∑
i∈F

∑
σ∈2S fi(σ)y

∗σ
i .

Therefore, Algorithm S-MCFL is an (log k+4)-approximation algorithm for mul-
ticommodity facility location with subadditive costs.
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4. Hardness and extensions.

4.1. Hardness of approximation. While the logarithmic approximation ratio
we obtain for the multi-commodity facility location problem may not be entirely
satisfactory, we find that it is the best one can hope for up to constant factors. The
problem is not only NP-complete, it is also inapproximable to a factor better than
Ω(log k), where k is the total number of different commodities in the problem instance.
In this section, we prove this inapproximability by reducing the set-cover problem to
MCFL. It is well known that the set-cover problem cannot be approximated better
than Ω(log k), where k is the total number of elements in the set-cover instance (see,
for example, Arora and Sudan [1]).

An instance of a (weighted) set-cover is specified by a collection C of subsets of
S, each with a weight wc. The objective is to find a minimum weight subcollection
C′ ⊆ C such that ∪c∈C′c = S.

Theorem 4.1. Any ρ-approximation algorithm for MCFL can be used to derive
a ρ-approximation algorithm for weighted set cover.

Proof. Given an instance of a weighted set-cover specified by (S,C,w), we trans-
form it into an instance of MCFL. The set of commodities is the set of elements S.
We also have one client d ∈ D for each commodity s ∈ S, and a facility i for every set
c ∈ C. The distance between any client and any facility is zero. The cost function of
facility i is fi(σ) = wc if σ ⊆ c and fi(σ) = ∞ otherwise. Observe that this facility
cost structure is linear, using the following specification: f0

i = wc; if s ∈ c, then
f s
i = 0; and if s /∈ c, then f s

i = ∞.
Any solution to this MCFL instance with cost less than ∞ is a feasible solution

to the set-cover instance. Moreover, any minimal solution selects each open facility in
only one configuration (namely, its maximal configuration), so that the total cost of
the MCFL solution is the same as the cost of the associated set-cover solution. Hence
any ρ approximation for MCFL yields a ρ approximation for weighted set-cover.

4.2. MCFL with restrictions on the number of commodities per facil-
ity. The MCFL problem studied in section 2 assumes that all commodities can be
manufactured at all facilities. Frequently, the situation is such that any given facility
can manufacture only a subset of the commodities, and one must choose which com-
modities to manufacture only from that subset. We find that if this is the case, our
algorithm has a better performance ratio.

In particular, suppose that while the total number of commodities is k (as before),
each facility has a list of at most t commodities that can be manufactured there, where
t < k. If we run the same algorithm as before, we find that instead of a k-set-cover
instance we now have to solve a t-set-cover instance. Since the approximation ratio
of t-set-cover is (log t + 1), the approximation ratio of our solution is (log t + 4).
If t is much smaller than k, this could represent a substantial improvement in the
approximation ratio.

4.3. Extensions. When defining our model in section 2.1, we had established
that each client requires exactly one unit of exactly one commodity. As noted, relaxing
this assumption to allow more than one commodity to be demanded by a single client
is straightforward provided we allow solutions where different commodities at a client
are served by possibly different facilities. To do this, one would simply create as many
copies of the client as the commodities it requires, and then have each client require
a single commodity. The increase in the size of the problem by this construction is
still polynomial, and the algorithm would work exactly as described.
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5. Conclusion. We have introduced and provided approximation algorithms for
MCFL problems. Our algorithm for MCFL matches the best known approximation
ratio for the appropriate set covering variant it generalizes. Since the number of
commodities t involved in a facility is likely to be much smaller than the number of
clients n, the O(log t)-approximation ratio represents a somewhat credible heuristic
for this problem.

Several open questions remain. The empirical performance of our algorithms, pos-
sibly combined with other heuristics, might reveal further insights into the important
issues one faces when locating facilities to serve multiple commodities. There may
be other natural restrictions on the facility cost functions that enable constant-factor
approximation algorithms; some such restrictions were studied by Shmoys, Swamy,
and Levi [18]. Our study focuses exclusively on the facility location component of
the supply chain; combining this work with routing and inventory decisions would
significantly advance the study of the design of supply chains.
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