
Minimum Makespan Multi-vehicle Dial-a-Ride

Inge Li Gørtz?, Viswanath Nagarajan, and R. Ravi??

1 Technical University of Denmark. E-mail: ilg@imm.dtu.dk
2 IBM T.J. Watson Research Center. E-mail: viswanath@us.ibm.com

3 Tepper School of Business, Carnegie Mellon University. E-mail: ravi@cmu.edu

Abstract. Dial-a-Ride problems consist of a set V of n vertices in a metric space
(denoting travel time between vertices) and a set of m objects represented as
source-destination pairs {(si, ti)}m

i=1, where each object requires to be moved
from its source to destination vertex. In the multi-vehicle Dial-a-Ride problem,
there are q vehicles each having capacity k and where each vehicle j ∈ [q] has
its own depot-vertex rj ∈ V . A feasible schedule consists of a capacitated route
for each vehicle (where vehicle j originates and ends at its depot rj) that together
move all objects from their sources to destinations. The objective is to find a fea-
sible schedule that minimizes the maximum completion time (i.e. makespan) of
vehicles, where the completion time of vehicle j is the time when it returns to
its depot rj at the end of its route. We consider the preemptive version of multi-
vehicle Dial-a-Ride, where an object may be left at intermediate vertices and
transported by more than one vehicle, while being moved from source to des-
tination. Approximation algorithms for the single vehicle Dial-a-Ride problem
(q = 1) have been considered in [3, 10].

Our main results are an O(log3 n)-approximation algorithm for preemptive multi-
vehicle Dial-a-Ride, and an improved O(log t)-approximation for its special case
when there is no capacity constraint (here t ≤ n is the number of distinct depot-
vertices). There is an Ω(log1/4 n) hardness of approximation known [9] even for
single vehicle capacitated preemptive Dial-a-Ride. We also obtain an improved
constant factor approximation algorithm for the uncapacitated multi-vehicle prob-
lem on metrics induced by graphs excluding any fixed minor.

1 Introduction

The multi-vehicle Dial-a-Ride problem involves routing a set of m objects from their
sources to respective destinations using a set of q vehicles starting at t distinct depot
nodes in an n-node metric. Each vehicle has a capacity k which is the maximum number
of objects it can carry at any time. Two versions arise based on whether or not the
vehicle can use any node in the metric as a preemption (a.k.a. transshipment) point -
we study the less-examined preemptive version in this paper. The objective in these
problems is either the total completion time or the makespan (maximum completion
time) over the q vehicles, and again we study the more challenging makespan version
of the problem. Thus this paper studies the preemptive, capacitated minimum makespan
multi-vehicle Dial-a-Ride problem.
? Sponsored in part by a grant from the Carlsberg Foundation.

?? Supported in part by NSF grant CCF-0728841.

While the multiple qualifications may make the problem appear contrived, this is
exactly the problem that models courier or mail delivery over a day from several city
depots: preemption is cheap and useful for packages, trucks are capacitated and the
makespan reflects the daily working time limit for each truck. Despite its ubiquity,
this problem has not been as well studied as other Dial-a-Ride versions. One reason
from the empirical side is the difficulty in handling the possibility of preemptions in a
clean mathematical programming model. On the theoretical side which is the focus of
this paper, the difficulty of using preemption in a meaningful way in an approximation
algorithm persists. It is further compounded by the hardness of the makespan objective.

The requirement in preemptive Dial-a-Ride, that preemptions are allowed at all ver-
tices, may seem unrealistic. In practice, a subset P of the vertex-set V represents the
vertices where preemption is permitted: the two extremes of this general problem are
non-preemptive Dial-a-Ride (P = ∅) and preemptive Dial-a-Ride (P = V). However
preemptive Dial-a-Ride is more generally applicable: specifically in situations where
the preemption-points P form a net of the underlying metric (i.e. every vertex in V has
a nearby preemption-point). I.e., approximation algorithms for preemptive Dial-a-Ride
imply good approximations even in this general setting, wherein the precise guarantee
depends on how well P covers V .

We note that although our model allows any number of preemptions and preemp-
tions at all vertices our algorithms do not use this possibility to its full extent. Our
algorithm for the capacitated case preempts each object at most once and our algorithm
for the uncapacitated case only preempts objects at depot vertices.

The preemptive Dial-a-Ride problem has been considered earlier with a single ve-
hicle, for which an O(log n) approximation [3] and an Ω(log1/4−ε n) hardness of ap-
proximation (for any constant ε > 0) [9] are known. Note that the completion time and
makespan objectives coincide for this case.

Moving to multiple vehicles, the total completion time objective admits a straight-
forward O(log n) approximation along the lines of the single vehicle problem [3]: Using
the FRT tree embedding [7], one can reduce to tree-metrics at the loss of an expected
O(log n) factor, and there is a simple constant approximation for this problem on trees.
The maximum completion time or makespan objective, which we consider in this paper
turns out to be considerably harder. Due to non-linearity of the makespan objective,
the above reduction to tree-metrics does not hold. Furthermore, the makespan objective
does not appear easy to solve even on trees.

Unlike in the single-vehicle case, note that an object in multi-vehicle Dial-a-Ride
may be transported by several vehicles one after the other. Hence it is important for the
vehicle routes to be coordinated so that the objects trace valid paths from respective
sources to destinations. For example, a vehicle may have to wait at a vertex for other
vehicles carrying common objects to arrive. Interestingly, the multi-vehicle Dial-a-Ride
problem captures aspects of both machine scheduling and network design problems.

Results and Paper Outline We first consider the special case of multi-vehicle Dial-
a-Ride (uncapacitated mDaR) where the vehicles have no capacity constraints (i.e.
k ≥ m). This problem is interesting in itself, and serves as a good starting point before
we present the algorithm for the general case. The uncapacitated mDaR problem itself
highlights differences from the single vehicle case: For example, in single vehicle Dial-
a-Ride, preemption plays no role in the absence of capacity constraints; however in

uncapacitated mDaR, an optimal non-preemptive schedule may take Ω(
√

q) longer
than the optimal preemptive schedule (see the full version of the paper). We prove the
following theorem in Section 2.

Theorem 1 There is an O(log t)-approximation algorithm for uncapacitated preemp-
tive mDaR obtaining a tour where objects are only preempted at depot vertices.

The above algorithm has two main steps: the first one reduces the instance (at a constant
factor loss in the performance guarantee) to one in which all demands are between
depots (a “depot-demand” instance). In the second step, we use a sparse spanner on the
demand graph to construct routes for moving objects across depots.

We also obtain an improved guarantee for the following special class of metrics
using the notion of sparse covers in such metrics [14].

Theorem 2 There is an O(1)-approximation algorithm for uncapacitated mDaR on
metrics induced by graphs that exclude any fixed minor.

In Section 3, we study the capacitated preemptive mDaR problem, and obtain our main
result. Recall that there is an Ω(log1/4−ε n) hardness of approximation for even sin-
gle vehicle Dial-a-Ride [9]. A feasible solution to preemptive mDaR is said to be 1-
preemptive if every object is preempted at most once while being moved from its source
to destination.

Theorem 3 There is an O(log3 n) approximation algorithm for preemptive mDaR ob-
taining a 1-preemptive tour.

This algorithm has four key steps: (1) We preprocess the input so that demand points
that are sufficiently far away from each other can be essentially decomposed into sep-
arate instances for the algorithm to handle independently. (2) We then solve a single-
vehicle instance of the problem that obeys some additional bounded-delay property
(Theorem 6) that we prove; This property combines ideas from algorithms for light ap-
proximate shortest path trees [13] and capacitated vehicle routing [11]. The bounded-
delay property is useful in randomly partitioning the single vehicle solution among the
q vehicles available to share this load. This random partitioning scheme is reminiscent
of the work of Hochbaum-Maass [12], Baker [1] and Klein-Plotkin-Rao [14], in trying
to average out the effect of the cutting in the objective function. (3) The partitioned
segments of the single vehicle tour are assigned to the available vehicles; However, to
check if this assignment is feasible we solve a matching problem that identifies cases
when this load assignment must be rebalanced. This is perhaps the most interesting
step in the algorithm since it identifies stronger lower bounds for subproblems where
the current load assignment is not balanced. (4) We finish up by recursing on the load
rebalanced subproblem; An interesting feature of the recursion is that the fraction of
demands that are processed recursively is not a fixed value (as is more common in such
recursive algorithms) but is a carefully chosen function of the number of vehicles on
which these demands have to be served.

Due to lack of space some proofs are omitted from this paper. The proofs can be
found in the full version.

Related Work Dial-a-Ride problems form an interesting subclass of Vehicle Routing
Problems that are well studied in the operations research literature. Paepe et al. [5] pro-
vide a classification of Dial-a-Ride problems using a notation similar to that for schedul-
ing and queuing problems: preemption is one aspect in this classification. Savelsberg
and Sol [18] and Cordeau and Laporte [4] survey several variants of non-preemptive
Dial-a-Ride problems that have been studied in the literature. Most Dial-a-Ride prob-
lems arising in practice involve making routing decisions for multiple vehicles.

Dial-a-Ride problems with transshipment (the preemptive version) have been stud-
ied in [15–17]. These papers consider a more general model where preemption is al-
lowed only at a specified subset of vertices. Our model (and that of [3]) is the special
case when every vertex can serve as a preemption point. It is clear that preemption only
reduces the cost of serving demands: [17] studied the maximum decrease in the op-
timal cost upon introducing one preemption point. [15, 16] also model time-windows
on the demands, and study heuristics and a column-generation based approach; they
also describe applications (eg. courier service) that allow for preemptions. The truck
and trailer routing problem has been studied in [2, 19]. Here a number of capacitated
trucks and trailers are used to deliver all objects. Some customers are only accessible
without the trailer. The trailers can be parked at any point accessible with a trailer and it
is possible to shift demand loads between the truck and the trailer at the parking places.

For single vehicle Dial-a-Ride, the best known approximation guarantee for the
preemptive version is O(log n) (Charikar and Raghavachari [3]), and an Ω(log1/4−ε n)
hardness of approximation (for any constant ε > 0) is shown in Gørtz [9]. The non-
preemptive version appears much harder and the best known approximation ratio is
min{

√
k log n,

√
n log2 n} (Charikar and Raghavachari [3], Gupta et al. [10]); however

to the best of our knowledge, APX-hardness is the best lower bound. There are known
instances of single vehicle Dial-a-Ride where the ratio between optimal non-preemptive
and preemptive tours is Ω(

√
n) in general metrics [3], and Ω̃(n1/8) in the Euclidean

plane [10]. A 1.8-approximation is known for the k = 1 special case of single vehicle
Dial-a-Ride (a.k.a. stacker-crane problem) [8].

The uncapacitated case of preemptive mDaR is also a generalization of a problem
called nurse-station-location that was studied in Even et al. [6] (where a 4-approximation
algorithm was given). Nurse-station-location is a special case of uncapacitated mDaR
when each source-destination pair coincides on a single vertex. In this paper, we handle
not only the case with arbitrary pairs (uncapacitated mDaR), but also the more general
problem with finite capacity restriction.

Problem Definition and Preliminaries We represent a finite metric as (V, d) where
V is the set of vertices and d is a symmetric distance function satisfying the triangle
inequality. For subsets A,B ⊆ V we denote by d(A,B) the minimum distance between
a vertex in A and another in B, so d(A, B) = min{d(u, v) | u ∈ A, v ∈ B}. For a
subset E ⊆ (

V
2

)
of edges, d(E) :=

∑
e∈E de denotes the total length of edges in E.

The multi-vehicle Dial-a-Ride problem (mDaR) consists of an n-vertex metric (V, d),
m objects specified as source-destination pairs {si, ti}m

i=1, q vehicles having respective
depot-vertices {rj}q

j=1, and a common vehicle capacity k. A feasible schedule is a
set of q routes, one for each vehicle (where the route for vehicle j ∈ [q] starts and
ends at rj), such that no vehicle carries more than k objects at any time and each ob-

ject is moved from its source to destination. The completion time Cj of any vehicle
j ∈ [q] is the time when vehicle j returns to its depot rj at the end of its route (the
schedule is assumed to start at time 0). The objective in mDaR is to minimize the
makespan, i.e., minmaxj∈[q] Cj . We denote by S := {si | i ∈ [m]} the set of sources,
T := {ti | i ∈ [m]} the set of destinations, R := {rj | j ∈ [q]} the set of distinct depot-
vertices, and t := |R| the number of distinct depots. Unless mentioned otherwise, we
only consider the preemptive version, where objects may be left at intermediate vertices
while being moved from source to destination.
Single vehicle Dial-a-Ride. The following are lower bounds for the single vehicle prob-
lem: the minimum length TSP tour on the depot and all source/destination vertices
(Steiner lower bound), and

∑m
i=1 d(si,ti)

k (flow lower bound). Charikar and Raghavachari [3]
gave an O(log n) approximation algorithm for this problem based on the above lower
bounds. Gupta et al. [10] showed that the single vehicle preemptive Dial-a-Ride prob-
lem always has a 1-preemptive tour of length O(log2 n) times the Steiner and flow
lower-bounds.
Lower bounds for mDaR. The quantity

∑m
i=1 d(si,ti)

qk is a lower bound similar to the
flow bound for single vehicle Dial-a-Ride. Analogous to the Steiner lower bound above,
is the optimal value of an induced nurse-station-location instance. In the nurse-station-
location problem [6], we are given a metric (V, d), a set T of terminals and a multi-
set {rj}q

j=1 of depot-vertices; the goal is to find a collection {Fj}q
j=1 of trees that

collectively contain all terminals T such that each tree Fj is rooted at vertex rj and
maxq

j=1 d(Fj) is minimized. Even et al. [6] gave a 4-approximation algorithm for this
problem. The optimal value of the nurse-station-location instance with depots {rj}q

j=1

(depots of vehicles in mDaR) and terminals T = S ∪ T is a lower bound for mDaR.
The following are some lower bounds implied by nurse-station-location: (a) 1/q times
the minimum length forest that connects every vertex in S ∪ T to some depot ver-
tex, (b) maxi∈[m] d(R, si), and (c) maxi∈[m] d(R, ti). Finally, it is easy to see that
maxi∈[m] d(si, ti) is also a lower bound for mDaR.

2 Uncapacitated Preemptive mDaR

In this section we study the uncapacitated special case of preemptive mDaR, where
vehicles have no capacity constraints (i.e., capacity k ≥ m). We give an algorithm that
achieves an O(log t) approximation ratio for this problem (recall t ≤ n is the number
of distinct depots). Unlike in the single vehicle case, preemptive and non-preemptive
versions of mDaR are very different even without capacity constraints (there exists an
Ω(
√

q) factor gap, where q is number of vehicles). The algorithm for uncapacitated pre-
emptive mDaR proceeds in two stages. Given any instance, it is first reduced (at the loss
of a constant factor) to a depot-demand instance, where all demands are between depot
vertices. Then the depot-demand instance is solved using an O(log t) approximation
algorithm.

Reduction to depot-demand instances We define depot-demand instances as those in-
stances of uncapacitated mDaR where all demands are between depot vertices. Given
any instance I of uncapacitated mDaR, the algorithm UncapMulti (given below) re-
duces I to a depot-demand instance.

Input: instance I of uncapacitated preemptive mDaR.
1. Solve the nurse-station-location instance with depots {rj}q

j=1 and all sources/ des-
tinations S∪T as terminals, using the 4-approximation algorithm [6]. Let {Fj}q

j=1

be the resulting trees covering S ∪ T such that each tree Fj is rooted at depot rj .
2. Define a depot-demand instance J of uncapacitated mDaR on the same metric and

set of vehicles, where the demands are {(rj , rl) | si ∈ Fj & ti ∈ Fl, 1 ≤ i ≤ m}.
For any object i ∈ [m] let the source depot be the depot rj for which si ∈ Fj and
the destination depot be the depot rl for which ti ∈ Fl.

3. Output the following schedule for I:
(a) Each vehicle j ∈ [q] traverses tree Fj by an Euler tour, picks up all objects

from sources in Fj and brings them to their source-depot rj .
(b) Vehicles implement a schedule for depot-demand instance J , and all objects

are moved from their source-depot to destination-depot (see Section 2).
(c) Each vehicle j ∈ [q] traverses tree Fj by an Euler tour, picks up all objects

having destination-depot rj and brings them to their destinations in Fj .

Note that objects only are preempted at depot vertices. We now argue that the
reduction in UncapMulti only loses a constant approximation factor. Let B denote
the optimal makespan of instance I. Since the optimal value of the nurse-station-
location instance solved in the first step of UncapMulti is a lower bound for I, we
have maxq

j=1 d(Fj) ≤ 4B.

Claim. The optimal makespan for the depot-demand instance J is at most 17B.

Assuming a feasible schedule for J , it is clear that the schedule returned by Uncap-
Multi is feasible for the original instance I. The first and third rounds in I’s schedule
require at most 8B time each. Thus an approximation ratio α for depot-demand in-
stances implies an approximation ratio of 17α + 16 for general instances. Next we
show an O(log t)-approximation algorithm for depot-demand instances (here t is the
number of depots), which implies Theorem 1.

Algorithm for depot-demand instances Let J be any depot-demand instance: note
that the instance defined in the second step of UncapMulti is of this form. It suffices to
restrict the algorithm to the induced metric (R, d) on only depot vertices, and use only
one vehicle at each depot in R. Consider an undirected graph H consisting of vertex
set R and edges corresponding to demands: there is an edge between vertices r and
s iff there is an object going from either r to s or s to r. Note that the metric length
of any edge in H is at most the optimal makespan B̃ of instance J . In the schedule
produced by our algorithm, vehicles will only use edges of H . Thus in order to obtain
an O(log t) approximation, it suffices to show that each vehicle only traverses O(log t)
edges. Based on this, we further reduce J to the following instanceH of uncapacitated
mDaR: the underlying metric is shortest paths in the graph H (on vertices R), with
one vehicle at each R-vertex, and for every edge (u, v) ∈ H there is a demand from u
to v and one from v to u. Clearly any schedule for H having makespan β implies one
for J of makespan β · B̃. The next lemma implies an O(log |R|) approximation for
depot-demand instances.

Lemma 4 There exists a poly-time computable schedule forHwith makespan O(log t),
where t = |R|.
Proof: Let α = dlg te + 1. We first construct a sparse spanner A of H as follows:
consider edges of H in an arbitrary order, and add an edge (u, v) ∈ H to A iff the
shortest path between u and v using current edges of A is more than 2α. It is clear from
this construction that the girth of A (length of its shortest cycle) is at least 2α, and that
for every edge (u, v) ∈ H , the shortest path between u and v in A is at most 2α.

We now assign each edge of A to one of its end-points such that each vertex is
assigned at most two edges. Repeatedly pick any vertex v of degree at most two in A,
assign its adjacent edges to v, and remove these edges and v from A. We claim that at
the end of this procedure (when no vertex has degree at most 2), all edges of A would
have been removed (i.e. assigned to some vertex). Suppose for a contradiction that this
is not the case. Let Ã 6= φ be the remaining graph; note that Ã ⊆ A, so the girth of Ã is
at least 2α. Every vertex in Ã has degree at least 3, and there is at least one such vertex
w. Consider performing a breadth-first search in Ã from w. Since the girth of Ã is at
least 2α, the first α levels of the breadth-first search is a tree. Furthermore every vertex
has degree at least 3, so each vertex in the first α− 1 levels has at least 2 children. This
implies that Ã has at least 1 + 2α−1 > t vertices, which is a contradiction! For each
vertex v ∈ R, let Av denote the edges of A assigned to v by the above procedure; we
argued that ∪v∈RAv = A, and |Av| ≤ 2 for all v ∈ R.

The schedule for H involves 2α rounds as follows. In each round, every vehicle
v ∈ R traverses the edges in Av (in both directions) and returns to v. Since |Av| ≤ 2
for all vertices v, each round takes 4 units of time; so the makespan of this schedule is
8α = O(log t). The route followed by each object in this schedule is the shortest path
from its source to destination in spanner A; note that the length of any such path is at
most 2α. To see that this is indeed feasible, observe that every edge of A is traversed
by some vehicle in each round. Hence in each round, every object traverses one edge
along its shortest path (unless it is already at its destination). Thus after 2α rounds, all
objects are at their destinations.

Tight example for uncapacitated mDaR lower bounds. We note that known lower
bounds for uncapacitated preemptive mDaR are insufficient to obtain a sub-logarithmic
approximation guarantee. The lower bounds we used in our algorithm are the follow-
ing: maxi∈[m] d(si, ti), and the optimal value of a nurse-station-location instance with
depots {rj}q

j=1 and terminals S ∪ T . We are not aware of any lower bounds stronger
than these two bounds. There exist instances of uncapacitated mDaR where the optimal
makespan is a factor Ω(log t

loglog t) larger than both the above lower bounds.

3 Preemptive multi-vehicle Dial-a-Ride
In this section we prove our main result: an O(log2 m · log n) approximation algorithm
for the preemptive mDaR problem. In the full version we remove this dependence on
m, to obtain Theorem 3. We first prove a new structure theorem on single-vehicle Dial-
a-Ride tours (Subsection 3.1) that preempts each object at most once, and where the
total time spent by objects in the vehicle is small. Obtaining such a single vehicle tour
is crucial in our algorithm for preemptive mDaR, which appears in Section 3.2. The
algorithm for mDaR relies on a partial coverage algorithm Partial that, given subsets

Q of vehicles and D of demands, outputs a schedule for Q of near-optimal makespan
that covers some fraction of demands in D. Algorithm Partial follows an interesting
recursive framework where the fraction of satisfied demands is not a fixed value but
some function of the number |Q| of vehicles (Lemma 7). The main steps in Partial are
as follows. (1) Obtain a single-vehicle tour satisfying 1-preemptive and bounded-delay
properties (Theorem 6), (2) Randomly partition the single vehicle tour into |Q| equally
spaced pieces, (3) Solve a matching problem to assign some of these pieces to vehicles
of Q that satisfy a subset of demands D, (4) A suitable fraction of the residual demands
in D are covered recursively by unused vehicles of Q.

3.1 Capacitated Vehicle Routing with Bounded Delay
Before we present the structural result on Dial-a-Ride tours, we consider the classic
capacitated vehicle routing problem [11] with an additional constraint on object ‘de-
lays’. In the capacitated vehicle routing problem (CVRP) we are given a metric (V, d),
specified depot-vertex r ∈ V , and m objects each having source r and respective desti-
nations {ti}i∈[m]. The goal is to compute a minimum length non-preemptive tour of a
capacity k vehicle originating at r that moves all objects from r to their destinations. In
CVRP with bounded delay, we are additionally given a delay parameter β > 1, and the
goal is to find a minimum length capacitated non-preemptive tour serving all objects
such that the time spent by each object i ∈ [m] in the vehicle is at most β · d(r, ti). The
following are natural lower bounds [11], even without the bounded delay constraint: (i)
the minimum length TSP tour on {r} ∪ {ti | i ∈ [m]} (cf. Steiner lower bound), and
(ii) the quantity 2

k

∑m
i=1 d(r, ti) (cf. flow lower bound).

Theorem 5 There is a (2.5 + 3
β−1) approximation algorithm for CVRP with bounded

delay, where β > 1 is the delay parameter. This guarantee is relative to the Steiner and
flow lower bounds.

We now consider the single vehicle preemptive Dial-a-Ride problem given by metric
(V, d), set D of demands, and a vehicle of capacity k. We prove the following structural
result which extends a result from [10].

Theorem 6 There is a randomized poly-time computable 1-preemptive tour τ servicing
D that satisfies the following conditions (where LBpmt is the maximum of the Steiner
and flow lower bounds):

1. Total length: d(τ) ≤ O(log2 n) · LBpmt.
2. Bounded delay:

∑
i∈D Ti ≤ O(log n)

∑
i∈D d(si, ti) where Ti is the total time

spent by object i ∈ D in the vehicle under the schedule given by τ .

3.2 Algorithm for preemptive mDaR

The algorithm first guesses the optimal makespan B of the given instance of preemptive
mDaR (it suffices to know B within a constant factor for a polynomial-time algorithm).
Let α = 1− 1

1+lg m . For any subset Q ⊆ [q], we abuse the notation and use Q to denote
both the set of vehicles Q and the multi-set of depots corresponding to vehicles Q.

We give an algorithm Partial that takes as input a tuple 〈Q, D, B〉 where Q ⊆ [q]
is a subset of vehicles, D ⊆ [m] a subset of demands and B ∈ R+, with the promise
that vehicles Q (originating at their respective depots) suffice to completely serve the

demands D at a makespan of B. Given such a promise, Partial 〈Q,D, B〉 returns a
schedule of makespan O(log n log m) · B that serves a good fraction of D. Algorithm
Partial〈Q,D, B〉 is given in below. We set parameter ρ = Θ(log n log m), the precise
constant in the Θ-notation comes from the analysis.

Input: Vehicles Q ⊆ [q], demands D ⊆ [m], bound B ≥ 0 such that Q can serve D at
makespan B.

Preprocessing
1. If the minimum spanning tree (MST) on vertices Q contains an edge of length

greater than 3B, there is a non-trivial partition {Q1, Q2} of Q with d(Q1, Q2) >
3B. For j ∈ {1, 2}, let Vj = {v ∈ V | d(Qj , v) ≤ B} and Dj be all demands
of D induced on Vj . Run in parallel the schedules from Partial〈Q1, D1, B〉 and
Partial〈Q2, D2, B〉. Assume there is no such long edge in the following.
Random partitioning

2. Obtain single-vehicle 1-preemptive tour τ using capacity k and serving demands
D (Theorem 6).

3. Choose a uniformly random offset η ∈ [0, 2ρB] and cut edges of tour τ at distances
{2pρB + η | p = 1, 2, · · · } along the tour to obtain a set P of pieces of τ .

4. C ′′ is the set of objects i ∈ D such that i is carried by the vehicle in τ over some
edge that is cut in Step (3); and C ′ := D \C ′′. Ignore the cut objects C ′′ in the rest
of the algorithm.
Load rebalancing

5. Construct a bipartite graph H with vertex sets P and Q and an edge between piece
P ∈ P and depot f ∈ Q iff d(f, P) ≤ 2B. For any subset A ⊆ P , Γ (A) ⊆ Q
denotes the neighborhood of A in graph H . Let S ⊆ P be any maximal set that
satisfies |Γ (S)| ≤ |S|

2 .
6. Compute a 2-matching π : P \S → Q\Γ (S), i.e., a function such that the number

of pieces mapping to any f ∈ Q \ Γ (S) is |π−1(f)| ≤ 2.
Recursion

7. Define C1 := {i ∈ C ′ | either si ∈ S or ti ∈ S}; and C2 := C ′ \ C1.
8. Run in parallel the recursive schedule Partial〈Γ (S), C1, B〉 for C1 and the follow-

ing for C2:
(a) Each vehicle f ∈ Q\Γ (S) traverses the pieces π−1(f), moving all C2-objects

in them from their source to preemption-vertex, and returns to its depot.
(b) Each vehicle f ∈ Q\Γ (S) again traverses the pieces π−1(f), this time moving

all C2-objects in them from their preemption-vertex to destination, and returns
to its depot.

Output: A schedule for vehicles Q of makespan (16+16ρ)·B that serves an αlg min{|Q|,2m}

fraction of D.

Lemma 7 If there exists a schedule for vehicles Q covering all demands D, having
makespan at most B, then Partial invoked on 〈Q,D, B〉 returns a schedule of vehicles
Q of makespan at most (16 + 16ρ) · B that covers at least an αlg z fraction of D (here
z := min{|Q|, 2m} ≤ 2m).

The final algorithm invokes Partial iteratively until all demands are covered: each time
with the entire set [q] of vehicles, all uncovered demands, and bound B. If D ⊆ [m] is

the set of uncovered demands at any iteration, Lemma 7 implies that Partial〈[q], D, B〉
returns a schedule of makespan O(log m log n) · B that serves at least 1

4 |D| demands.
Hence a standard set-cover analysis implies that all demands will be covered in O(log m)
rounds, resulting in a makespan of O(log2 m log n) ·B.

It remains to prove Lemma 7. We proceed by induction on the number |Q| of vehi-
cles. The base case |Q| = 1 reduces to the single vehicle preemptive Dial-a-Ride, where
we can serve all the demands D in a 1-preemptive fashion at makespan O(log2 n) · B
using the algorithm from [10]. In the rest of this section, we prove the inductive step.

Preprocessing. Suppose Step (1) applies. Note that d(V1, V2) > B and hence there
is no demand with source in one of {V1, V2} and destination in the other. So demands
D1 and D2 partition D. Furthermore in the optimal schedule, vehicles Qj (any j = 1, 2)
only visit vertices in Vj (otherwise the makespan would be greater than B). Thus the two
recursive calls to Partial satisfy the assumption: there is some schedule of vehicles Qj

serving Dj having makespan B. Inductively, the schedule returned by Partial for each
j = 1, 2 has makespan at most (16+16ρ)·B and covers at least αlg c·|Dj | demands from
Dj , where c ≤ min{|Q| − 1, 2m} ≤ z. The schedules returned by the two recursive
calls to Partial can clearly be run in parallel and this covers at least αlg z(|D1|+ |D2|)
demands, i.e. an αlg z fraction of D. So we have the desired performance in this case.

Random partitioning. The harder part of the analysis is when Step (1) does not
apply: so the MST length on Q is at most 3|Q| · B. Note that when the depots Q
are contracted to a single vertex, the MST on the end-points of D plus the contracted
depot-vertex has length at most |Q| · B (the optimal makespan schedule induces such
a tree). Thus the MST on the depots Q along with end-points of D has length at most
4|Q| · B. Based on the assumption in Lemma 7 and the flow lower bound, we have∑

i∈D d(si, ti) ≤ k|Q| · B. It follows that for the single vehicle Dial-a-Ride instance
solved in Step (2), the Steiner and flow lower-bounds (denoted LBpmt in Theorem 6)
are O(1) · |Q|B. Theorem 6 now implies that τ is a 1-preemptive tour τ servicing D,
of length at most O(log2 n)|Q| · B such that

∑
i∈D Ti ≤ O(log n) · |D|B, where Ti

denotes the total time spent in the vehicle by demand i ∈ D. The bound on the delay
uses the fact that maxm

i=1 d(si, ti) ≤ B.
Choosing a large enough constant corresponding to ρ = Θ(log n log m), the length

of τ is upper bounded by ρ|Q| ·B (since n ≤ 2m). So the cutting procedure in Step (3)
results in at most |Q| pieces of τ , each of length at most 2ρB. The objects i ∈ C ′′ (as
defined in Step (4)) are called cut objects. We restrict our attention to the other objects
C ′ = D \ C ′′ that are not ‘cut’. For each object i ∈ C ′, the path traced by it (under
single vehicle tour τ) from its source si to preemption-point and the path (under τ) from
its preemption-point to ti are each completely contained in pieces of P . Figure 1 gives
an example of objects in C ′ and C ′′, and the cutting procedure.

Claim. The expected number of objects in C ′′ is at most
∑

i∈D
Ti

2ρB ≤ O(1
log m) · |D|.

We can derandomize Step (3) and pick the best offset η (there are at most polyno-
mially many combinatorially distinct offsets). Claim 3.2 implies (again choosing large
enough constant in ρ = Θ(log n log m)) that |C ′| ≥ (1 − 1

2 lg m)|D| ≥ α · |D| de-
mands are not cut. From now on we only consider the set C ′ of uncut demands. Let P
denote the pieces obtained by cutting τ as above, recall |P| ≤ |Q|. A piece P ∈ P
is said to be non-trivial if the vehicle in the 1-preemptive tour τ carries some C ′-
object while traversing P . Note that the number of non-trivial pieces in P is at most

2|C ′| ≤ 2m: each C ′-object appears in at most 2 pieces, one where it is moved from
source to preemption-vertex and other from preemption-vertex to destination. Retain
only the non-trivial pieces in P; so |P| ≤ min{|Q|, 2m} = z. The pieces in P may not
be one-one assignable to the depots since the algorithm has not taken the depot locations
into account. We determine which pieces may be assigned to depots by considering a
matching problem between P and the depots in Step (5) and (6).

Load rebalancing. The bipartite graph H (defined in Step (5)) represents which
pieces and depots may be assigned to each other. Piece P ∈ P and depot f ∈ Q
are assignable iff d(f, P) ≤ 2B, and in this case graph H contains an edge (P, f).
We claim that corresponding to the ‘maximal contracting’ set S (defined in Step (5)),
the 2-matching π (in Step (6)) is guaranteed to exist. Note that |Γ (S)| ≤ |S|

2 , but
|Γ (T)| > |T |

2 for all T ⊃ S . For any T ′ ⊆ P \ S , let Γ̃ (T ′) denote the neighborhood
of T ′ in Q \ Γ (S). The maximality of S implies: for any non-empty T ′ ⊆ P \ S ,
|S|
2 + |T ′|

2 = |S∪T ′|
2 < |Γ (S ∪ T ′)| = |Γ (S)|+ |Γ̃ (T ′)|, i.e. |Γ̃ (T ′)| ≥ |T ′|

2 . Hence by
Hall’s condition, there is a 2-matching π : P\S → Q\Γ (S). The set S and 2-matching
π can be easily computed in polynomial time.

Tour τ
p1

s1

t2
p2

t1

p1

p2

The 1-preemptive tour τ is cut at the dashed lines.

Object 1 is in C ′, it is not cut.

Object 2 is not in C ′, it is a cut object.

s2

S

Γ(S)

P Q

The bipartite graph H

The 2-matching π is shown by dashed edges.

Solved recursively

Fig. 1. Cutting and patching steps in algorithm Partial.

Recursion. In Step (7), demands C ′ are further partitioned into two sets: C1 consists
of objects that are either picked-up or dropped-off in some piece of S; and C2-objects
are picked-up and dropped-off in pieces of P \ S . The vehicles Γ (S) suffice to serve
all C1 objects, as shown below.

Claim. There exists a schedule of vehicles Γ (S) serving C1, with makespan B.

In the final schedule, a large fraction of C1 demands are served by vehicles Γ (S),
and all the C2 demands are served by vehicles Q \ Γ (S). Figure 1 shows an example
of this partition.

Serving C1 demands. Based on Claim 3.2, the recursive call Partial 〈Γ (S), C1, B〉
(made in Step (8)) satisfies the assumption required in Lemma 7. Since |Γ (S)| ≤
|P|
2 ≤ |Q|

2 < |Q|, we obtain inductively that Partial 〈Γ (S), C1, B〉 returns a sched-
ule of makespan (16 + 16ρ) · B covering at least αlg y · |C1| demands of C1, where
y = min{|Γ (S)|, 2m}. Note that y ≤ |Γ (S)| ≤ |P|/2 ≤ z/2 (as |P| ≤ z), which
implies that at least αlg z−1|C1| demands are covered.

Serving C2 demands. These are served by vehicles Q\Γ (S) using the 2-matching
π, in two rounds as specified in Step (8). This suffices to serve all objects in C2 since

for any i ∈ C2, the paths traversed by object i under τ , namely si Ã pi (its preemption-
point) and pi Ã ti are contained in pieces of P \ S . Furthermore, since |π−1(f)| ≤ 2
for all f ∈ Q\Γ (S), the distance traveled by vehicle f in one round is at most 2·2(2B+
2ρB). So the time taken by this schedule is at most 2 · 4(2B + 2ρB) = (16 + 16ρ) ·B.

The schedule of vehicles Γ (S) (serving C1) and vehicles Q \ Γ (S) (serving C2)
can clearly be run in parallel. This takes time (16 + 16ρ) ·B and covers in total at least
|C2|+ αlg z−1|C1| ≥ αlg z−1|C ′| ≥ αlg z|D| demands of D. This proves the inductive
step of Lemma 7.

Using Lemma 7 repeatedly as mentioned earlier, we obtain an O(log2 m · log n)
approximation algorithm for capacitated preemptive mDaR.

References

1. B. S. Baker. Approximation Algorithms for NP-Complete Problems on Planar Graphs.
J. ACM, 41:153–180, 1994.

2. I.-M. Chao. A tabu search method for the truck and trailer routing problem. Computer &
Operations Research, 29:469–488, 2002.

3. M. Charikar and B. Raghavachari. The Finite Capacity Dial-A-Ride Problem. In FOCS,
pages 458–467, 1998.

4. J.-F. Cordeau and G. Laporte. The Dial-a-Ride Problem (DARP): Variants, modeling issues
and algorithms. 4OR: A Quarterly Journal of Operations Research, 1(2), 2003.

5. W. E. de Paepe, J. K. Lenstra, J. Sgall, R. A. Sitters, and L. Stougie. Computer-Aided
Complexity Classification of Dial-a-Ride Problems. Informs J. Comp., 16(2):120–132, 2004.

6. G. Even, N. Garg, J. Könemann, R. Ravi, and A. Sinha. Covering Graphs Using Trees and
Stars. In APPROX-RANDOM, pages 24–35, 2003.

7. J. Fakcharoenphol, S. Rao, and K. Talwar. A tight bound on approximating arbitrary metrics
by tree metrics. In STOC, pages 448–455, 2003.

8. G. N. Frederickson, M. S. Hecht, and C. E. Kim. Approximation algorithms for some routing
problems. SIAM J. Comput., 7(2):178–193, 1978.

9. I. L. Gørtz. Hardness of Preemptive Finite Capacity Dial-a-Ride. In APPROX-RANDOM,
pages 200–211, 2006.

10. A. Gupta, M. Hajiaghayi, V. Nagarajan, and R. Ravi. Dial a Ride from k-forest. In ESA,
pages 241–252, 2007.

11. M. Haimovich and A. H. G. R. Kan. Bounds and heuristics for capacitated routing problems.
Math. Oper. Res., 10:527–542, 1985.

12. D. Hochbaum and W. Maass. Approximation Schemes for Covering and Packing Problems
in Image Processing and VLSI. J. ACM, 32:130–136, 1985.

13. S. Khuller, B. Raghavachari, and N. Young. Balancing minimum spanning and shortest path
trees. In SODA, pages 243–250, 1993.

14. P. Klein, S. A. Plotkin, and S. Rao. Excluded minors, network decomposition, and multi-
commodity flow. In STOC, pages 682–690, 1993.

15. S. Mitrović-Minić and G. Laporte. The Pickup and Delivery Problem with Time Windows
and Transshipment. INFOR Inf. Syst. Oper. Res., 44:217–227, 2006.

16. C. Mues and S. Pickl. Transshipment and time windows in vehicle routing. In 8th Int. Symp.
on Parallel Architectures, Algorithms and Networks, pages 113–119, 2005.

17. Y. Nakao and H. Nagamochi. Worst case analysis for pickup and delivery problems with
transfer. IEICE Trans. on Fund. of Electronics, Comm. and Computer Sci., E91-A(9), 2008.

18. M. Savelsbergh and M. Sol. The general pickup and delivery problem. Transportation
Science, 29:17–29, 1995.

19. S. Scheuerer. A tabu search heuristic for the truck and trailer routing problem. Computer &
Operations Research, 33:894–909, 2006.

