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Abstract—We consider a combinatorial problem derived from haplotyping a population with respect to a genetic disease, either

recessive or dominant. Given a set of individuals, partitioned into healthy and diseased, and the corresponding sets of genotypes, we

want to infer “bad” and “good” haplotypes to account for these genotypes and for the disease. Assume, for example, that the disease is

recessive. Then, the resolving haplotypes must consist of bad and good haplotypes so that 1) each genotype belonging to a diseased

individual is explained by a pair of bad haplotypes and 2) each genotype belonging to a healthy individual is explained by a pair of

haplotypes of which at least one is good. We prove that the associated decision problem is NP-complete. However, we also prove that

there is a simple solution, provided that the data satisfy a very weak requirement.

Index Terms—Combinatorial haplotyping, disease association, dominant disease, recessive disease.

Ç

1 INTRODUCTION

A single nucleotide polymorphism (SNP, pronounced
“snip”) is a site of the human genome showing a

statistically significant variability within a population.
Apart from very rare exceptions, at each SNP, only two
nucleotides (out of A, T, C, and G) are observed and they are
called the SNP alleles. SNPs are the predominant form of
human polymorphism and their importance can hardly be
overestimated. They are widely used in therapeutic,
diagnostic, and forensic applications and a SNP consortium
exists with the goal of designing a detailed SNP map for the
human genome [13], [10].

Humans are diploid organisms, i.e., their DNA is organized
in pairs of chromosomes. For each pair of chromosomes, one
chromosome copy is inherited from the father and the other
copy is inherited from the mother. For a given SNP, an
individual can be either homozygous (i.e., possess the same
allele on both chromosomes) or heterozygous (i.e., possess two
different alleles). The values of a set of SNPs on a particular
chromosome copy define a haplotype. In Fig. 1, we illustrate a
simplistic example of three individuals and four SNPs. The
alleles for SNP 1 in this example are C and G. Individual 1, in
this example, is heterozygous for SNPs 1, 2, and 3 and
homozygous for SNP 4. His or her haplotypes are CCCT

and GAGT.
Haplotyping an individual consists of determining his or

her two haplotypes, for a given chromosome. With the
larger availability in SNP genomic data, recent years have
seen the birth of many new computational problems related
to haplotyping (see [9] for a survey on haplotyping). These

problems are motivated by the fact that it is economically
infeasible to determine the haplotypes experimentally. On
the other hand, there is a cheap experiment that can
determine the (less informative) genotypes. A genotype
provides information about the multiplicity of each SNP
allele, i.e., for each SNP, a genotype specifies if an
individual is heterozygous or homozygous (in the latter
case, it also specifies the allele). Since genotypes are much
cheaper to obtain than haplotypes, a natural solution for
haplotyping has been to define an inference problem to be
solved algorithmically: Compute the correct haplotypes
from the genotypes.

When retrieving haplotypes from genotypes, there is an
inherent ambiguity that comes from heterozygous sites. At
each heterozygous site, to retrieve the haplotypes, one has
to decide how to distribute the two allele values on the two
chromosome copies. Resolving (or explaining) a genotype
requires determining the two haplotypes that yield the
genotype. Given a set of genotypes, the general (computa-
tional) haplotyping problem requires determining a set of
haplotypes such that each genotype is explained by two
haplotypes. Due to their importance, haplotyping problems
have been and are being extensively studied, under many
objective functions (each with specific biological motiva-
tions). Popular formulations include 1) pure parsimony,
which attempts to minimize the total number of distinct
haplotypes used to resolve a given set of genotypes. This
variant of the problem is APX-hard and several optimiza-
tion approaches were proposed for its solution [8], [12], [2],
[11], [14]. Clark’s rule [3] is a common heuristic toward this
end. 2) Perfect phylogeny haplotyping [1], [6], [5] attempts to
resolve the genotypes by a set of haplotypes that admit a
perfect phylogeny on them.

One of the main reasons why haplotypes are so
important and heavily studied is that they are very useful
in diagnostic and medical applications since they are
related to the presence/absence of genetic diseases. In a
very simplistic way, a genetic disease can be considered as a
malfunctioning of a specific gene. A gene does not function
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properly when its encoding sequence has been mutated

with respect to one of its correct versions. Since each gene is

present in two copies (a paternal and a maternal copy), it

may be the case that either copy is malfunctioning. A

genetic disease is called recessive if a person shows the

symptoms of the disease only when both gene copies are

malfunctioning. For a recessive disease, one can be a

healthy carrier, when one copy is malfunctioning but the

other is working properly. Examples of recessive diseases

are cystic fibrosis and sickle cell anemia. A genetic disease is

called dominant if a person shows the symptoms of the

disease when at least one gene copy is malfunctioning.

Examples of dominant diseases are Huntington’s disease

and Marfan’s syndrome.
In this paper, we study the problem of haplotyping the

genotypes of a population consisting of healthy and

diseased individuals. The haplotypes correspond to the

gene sequences. Let us call a haplotype corresponding to a

sequence encoding a working gene “good” and a haplotype

for which the encoded gene is malfunctioning “bad”.

Henceforth, in the context of haplotyping with respect to

a disease, there should exist a coloring into good and bad of

the haplotypes inferred from the genotypes that accounts

for the disease. In particular, assuming that the disease

under study is recessive,

1. in each pair of haplotypes inferred from a healthy
genotype, at least one of the haplotypes is good or

2. in each pair of haplotypes inferred from a diseased
genotype, both haplotypes are bad.

Finding the haplotypes and their coloring into good and

bad was listed in [7] as an interesting open problem in

computational biology. Note that, by reversing the role of

good versus bad and of healthy versus diseased, the same

conditions can be used to study a dominant disease.

1.1 Our Results

The formal definition of the above problem, called

Haplotyping for Disease Association (HDA), will be given

in the next section. In this paper, we prove the following

main results:

Theorem 1. The problem HDA is NP-complete even when

restricted to instances in which there are no two individuals,

one healthy and one diseased, with the same genotype.

Theorem 2. If each genotype has at least two heterozygous sites,

then the instance is feasible and the problem is polynomially

solvable.

Theorem 3. If there exists at least one haplotype that can possibly

be used to explain all genotypes (i.e., all genotypes are

compatible), then the problem is polynomially solvable.

Let us briefly comment on these results. The negative
result of Theorem 1 is, in practice, dominated by the
positive result of Theorem 2. In real-life instances, it is
expected that each genotype has several heterozygous sites
so that each instance should be feasible and polynomially
solvable. Moreover, in populations where the most frequent
alleles have a much higher frequency than the least frequent
ones, it can be shown that genotypes are usually compa-
tible, so Theorem 3 applies.

The existence of a partition of the haplotypes into good
and bad is a biologically necessary condition for a solution
to be correct and, as such, it has been posed as a
combinatorial condition for the haplotyping problem. In
our proof of Theorem 2, however, we employ a strictly
combinatorial argument that derives a mathematically
correct but, most likely, biologically meaningless solution
(i.e., bad haplotypes will be such that their alleles, once
represented as binary values, sum up to a given remainder
modulo 3). Therefore, an important contribution of this
work is to show that the partitioning condition alone is too
weak to capture the essence of the genetic disease under
study and that more constraints must be imposed if the
solution is to in fact explain the genetic disease.

1.2 Haplotyping as a Combinatorial Problem

Let n be the number of SNPs we consider. Arbitrarily fix a
binary encoding of the two alleles for each SNP (e.g., call the
least frequent allele “0” and the other “1”). Once the
encoding has been fixed, each haplotype is represented by a
binary n-vector.

For a haplotype h, we denote by h½i� the value of its
ith component. Given two haplotypes h0 and h00, their sum
is a vector h0 � h00, where the binary operator � is defined
componentwise as

ðh0 � h00Þ½i� :¼
0; if h0½i� ¼ h00½i� ¼ 0;
1; if h0½i� ¼ h00½i� ¼ 1;
2; if h0½i� 6¼ h00½i�:

8<
:
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Fig. 1. The haplotypes of three individuals, with four SNPs.



Any vector g 2 f0; 1; 2gn is called a genotype. Therefore,
for two haplotypes h0 and h00, g ¼ h0 � h00 is a genotype. The
above notation, which defines the sum of two haplotypes,
yielding a genotype, is the standard used in all literature on
haplotyping problems.

Definition 1 (resolution). For g, a genotype, a pair of
haplotypes fh0; h00g such that g ¼ h0 � h00 is a resolution of
g. The haplotypes h0 and h00 are said to resolve g. Let G be a set
of genotypes and H0 and H00 be two sets of haplotypes. We say
that ðH0;H00Þ resolves G if, for every g 2 G, there exist h1 2 H0
and h2 2 H00 such that g ¼ h1 � h2. We call such a resolution
a resolution in ðH0;H00Þ of g.

Definition 2 (ambiguity). Let g be a genotype. Each position i
such that g½i� ¼ 2 is called an ambiguous position. By n2ðgÞ,
we denote the number of ambiguous positions of g. A genotype
is ambiguous if it has more than one resolution, i.e., if
n2ðgÞ � 2.

In the biological interpretation, genotype entries with a
value of 0 or 1 correspond to homozygous SNP sites, while
ambiguous positions correspond to heterozygous sites. In
Fig. 2, we illustrate a case of three individuals, showing
their haplotypes and genotypes.

Definition 3 (compatibility). A haplotype h is compatible
with a genotype g if g½i� ¼ h½i� for g½i� 6¼ 2. Two genotypes g
and g0 are compatible if g½i� ¼ g0½i� whenever g½i� 6¼ 2 and
g0½i� 6¼ 2 (i.e., if g and g0 share at least one compatible
haplotype).

For instance, if h ¼ 0100, g1 ¼ 0212, g2 ¼ 1222, and
g3 ¼ 2211, then h is compatible with g1 but not with g2 or g3.
Moreover, g1 and g2 are not compatible, while g1 and g3 are.

Clearly, a genotype can be resolved only by compa-
tible haplotypes. Given g and h compatible with g, it is
easy to compute the complement of h with respect to g.
This is the unique haplotype, denoted by ½g� h�, for
which h� ½g� h� ¼ g.
Definition 4 (shorthand notation). We denote by 0 a

genotype/haplotype of all 0s. For S � f1; . . . ; ng, we denote
by 1S a genotype/haplotype that is 0 everywhere except at
components in S, where it is 1. We shortwrite 1i for 1fig and
1ij for 1fi;jg. We denote by 2S a genotype that is 0 everywhere
except at components in S, where it is 2.

For instance, if n ¼ 5, it is 13 ¼ 00100, 11;5 ¼ 10001, and
21;2;4 ¼ 22020.

In the problem studied in this paper, the data describe a
population of m individuals, of which mH are healthy and
mD are diseased. An instance consists of two (not
necessarily disjoint) sets of genotypes: GH (the genotypes
from healthy individuals) and GD (the genotypes from
diseased individuals). Let G be the multiset obtained by the
union of GH and GD. Each genotype appears in G once or
twice (when one healthy and one diseased individual have
the same genotype). G can also be viewed as an m� n
matrix with entries in {0, 1, 2}, partitioned in submatrices GD
of mD distinct rows (genotypes) and GH of mH distinct
rows, with m ¼ mD þmH .

We consider a recessive disease and we seek two disjoint

sets of haplotypes, HB (“bad” haplotypes) and HG (“good”
haplotypes), that provide a feasible solution to the follow-
ing problem:

[HAPLOTYPING FOR DISEASE ASSOCIATION (HDA)]

INSTANCE: A set GD of diseased genotypes. A set GH of

healthy genotypes.

PROBLEM: Find a set of haplotypes, partitioned into HG

and HB such that

(i) For each g 2 GD, there is a resolution of g in ðHB;HBÞ;
(ii) For each g 2 GH , there is a resolution of g in

ðHG;HG [HBÞ.
Notice that there may be infeasible instances of HDA.

The smallest such example, for n ¼ 1, is to assume that the
genotype g ¼ 2 is diseased. Then, the only possible
haplotypes, i.e., 0 and 1, must both be bad and, hence,
there cannot be healthy genotypes. More interesting
examples of infeasible instances can be shown, but,
basically, they all result from the same basic issue: If some
haplotypes are forced to be bad or forced to be good, then
the instance may be infeasible. In the following sections, we
will prove that this is the only cause of infeasibility and,
when each genotype has more than one resolution, the
instance is always feasible.

Example. Consider the following instance of HDA:

GH ¼ g1

g2

� �
¼ 2222

0220

� �
; GD ¼

g3

g4

g5

0
@

1
A ¼ 2222

1222
2101

0
@

1
A:

Notice that there are two individuals, one healthy and
one diseased, with the same genotype. A possible
solution is

HG ¼ h1

h2

� �
¼ 0100

0010

� �
; HB ¼

h3

h4

h5

0
@

1
A ¼ 1010

0101
1101

0
@

1
A;

with the following resolutions: g1 ¼ h2 � h5, g2 ¼ h1 � h2,
g3 ¼ h3 � h4, g4 ¼ h3 � h5, and g5 ¼ h4 � h5.

2 THE HARDNESS OF HDA

In this section, we prove that HDA is a difficult problem. In
particular, we prove the following NP-completeness result:
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Fig. 2. Haplotypes and corresponding genotypes.



Theorem 1. Problem HDA is NP-complete even when restricted
to instances in which GD and GH are disjoint.

The proof is based on a reduction from 3SAT, which was
shown to be NP-complete in [4].

Let hU; Ci be an instance of 3SAT, where U ¼
fu1; u2; . . . ; ung is a finite set of Boolean variables and C ¼
C1; C2; . . . ; Cm is a collection of clauses, each containing
precisely three literals over U . A literal over U is either a
variable ui in U (positive literal) or its negation ui (negated
literal). In 3SAT, we are asked to find whether there exists a
truth assignment � : U 7! ftrue; falseg such that each
clause in C contains at least one literal that evaluates to
true under �.

Given the 3SAT-instance hU; Ci, we construct an instance
of HDA as follows:

We introduce one SNP for each literal over U so that
there is a one-to-one correspondence between Û :¼
fu1; u1; u2; u2; . . . ; un; ung and the SNPs in the constructed
instance of HDA. In our intended interpretation of the
reduction, a literal ûi 2 Û should be read as true if and
only if the haplotype 1fûig is in HB. It remains to be
specified how to define GD and GH . First, the genotype 0
is placed in GD. Next, for each i ¼ 1; 2; . . . ; n and so as to
enforce that at most one of the two literals ui and ui can
carry the true value, we place the genotype 1fui;uig in GD
and the genotype 2fui;uig in GH . Finally, for each c ¼
1; 2; . . . ;m and assuming that ûi, ûj, and ûk are the three
literals occurring in clause Cc, in order to represent the
constraint that at least one of these three literals should
evaluate to true, we place the genotype 2fûi;ûj;ûkg in GD
and the genotype 1fûi;ûj;ûkg in GH .

The description of the reduction is complete. It should be
clear that the reduction can be performed in polynomial
time.

The following two lemmas conclude our NP-complete-
ness proof:

Lemma 2. Assume that hU; Ci admits a satisfying truth
assignment. Then, the instance hGD;GHi of the HDA
constructed above is a Yes instance.

Proof. Let � be a satisfying truth assignment. First, place
0 in HB. Next, for each i ¼ 1; 2; . . . ; n, place 1fui;uig in
HB. Moreover, if �ðuiÞ ¼ true, then place 1fuig in HB

and 1fuig in HG; otherwise, do the contrary. For each
c ¼ 1; 2; . . . ;m, where ûi, ûj, and ûk are the three literals
occurring in clause Cc, and assuming that �ðûiÞ ¼ true as
we can also do by possibly renaming the three literals
(and remembering that � is a satisfying truth assign-
ment), place 1fûj;ûkg inHB and 1fûi ;ûj;ûkg inHG. The reader
is invited to check that ðHB;HBÞ resolves GD and
ðHG;HG [HBÞ resolves GH . Moreover, HG and HB are
disjoint. tu

Lemma 3. Assume that the instance hGD;GHi of the HDA
constructed above is a Yes instance. Then, the 3SAT-instance
hU; Ci we started from admits a satisfying truth assignment.

Proof. Let HG and HB be two disjoint haplotype sets such
that ðHB;HBÞ resolves GD and ðHG;HG [HBÞ resolves
GH . Clearly, 0 2 HB since 0 2 GD. Similarly, since
1fui;uig 2 GD, 1fui;uig 2 HB for every i ¼ 1; 2; . . . ; n. Since

2fui;uig 2 GH , both 1fuig and 1fuig belong to HG [HB

and at least one of them belongs to HG. Consider the

truth assignment � : U 7! ftrue; falseg defined by

�ðuiÞ ¼ true if and only if 1fuig 2 HG. We claim that

� is a satisfying truth assignment. Indeed, consider the

generic clause Cc and let ûi, ûj, and ûk be the three

literals occurring in Cc. Clearly, 1fûi;ûj;ûkg 2 HG since

1fûi ;ûj;ûkg 2 GH . Since 2fûi;ûj;ûkg 2 GD, it must hold that, for

at least one of these three literals, say, ûi, we have

1fûig;1fûj;ûkg 2 HB. Without loss of generality, let 1fûig 2
HB and, from our assignment rule above, it follows that

�ð:ûiÞ ¼ false. We have thus argued that, in each

clause Cc, there is at least one literal ûi such that

�ðûiÞ ¼ true, that is, � is a satisfying truth assignment, as

claimed. tu

3 POLYNOMIALLY SOLVABLE INSTANCES OF HDA

3.1 All Genotypes with at Least Two Heterozygous
Sites

The following theorem says that all instances are feasible,

except when some genotypes have only one resolution.

Theorem 4. Assume that, for each genotype g 2 G, n2ðgÞ � 2.

Then, the instance is feasible and a feasible solution can be

readily obtained.

Proof. Let us divide the set of all possible haplotypes into

three classes, H0, H1, and H2, depending on the

remainder in the sum of the bits divided by three. More

formally,

Hi ¼ h :
Xn
i¼1

hi

 !
mod 3 ¼ i

( )
; for i ¼ 0; 1; 2: ð1Þ

Similarly, divide all of the genotypes into three classes

and define G0, G1, and G2 as follows:

Gi ¼ g 2 G : n2ðgÞmod 3 ¼ if g: ð2Þ

We first describe how to resolve genotypes that have
2 	 n2ðgÞ 	 4 and, then, we show how the same type of
solution can be applied to all genotypes. The main idea is
the following: We are going to make all haplotypes in H0

good. We then need to show that, for each healthy
genotype, there is a resolution that uses at least a
haplotype inH0 and, for each diseased genotype, there is
a resolution that does not use a haplotype in H0.

For a genotype g, let us define ~hðgÞ as the haplotype
obtained by replacing each 2 in g with a 0. Given a g with
2 	 n2ðgÞ 	 4, each resolution will consist of two
haplotypes h0 and h00 that “contain” ~hðgÞ and of which
one has k more 1s and the other has n2ðgÞ 
 k more 1s
than ~hðgÞ does. Depending on g, all of the possibilities for
the pair fk; n2ðgÞ 
 kg are described in Table 1.

Notice that there is always a resolution in which we
can add 0, 1, or 2 (modulo 3) to the parity of ~hðgÞ and,
hence, we can make the resulting haplotype belong to
any class Hi we want. Furthermore, notice that there is
always a resolution that skips, in both haplotypes, adding
0, 1, or 2 to the parity of ~hðgÞ and, hence, we can make the
resulting haplotypes not belong to any class Hi we want.
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In particular, Table 2 shows how we should resolve the
genotypes.

Table 2 should be read as follows: For each genotype g,
we locate the row that corresponds to the parity classes
of g and of ~hðgÞ and the column that corresponds to g
being healthy or diseased. Then, the table returns a letter
that identifies one of the six ways of resolving the
genotype described in Table 1. For example, assume that
g ¼ 0212111 is a healthy genotype. Then, g 2 G2 (since
n2ðgÞ ¼ 2) and ~hðgÞ ¼ 0010111 2 H1 so that g should be
resolved in the (a) way, i.e., creating two haplotypes of
which, in one, we replace the two 2s with two 0s
(obtaining 0010111) and, in the other, we replace them
with two 1s (obtaining 0111111).

We now verify that the solution obtained by declaring
all haplotypes in H0 good is feasible. Note that, for each

healthy genotype, whenever ~hðgÞ 2 H0, we always choose

a resolution that adds zero 1s in one of the haplotypes, i.e.,

one of the resolving haplotypes is ~hðgÞ itself. If, on the

other hand, ~hðgÞ 62 H0, we choose a resolution that adds

to the parity of ~h the number of bits needed to obtain a

haplotype in H0. As far as the diseased genotypes are

concerned, as we said before, there is always a resolution
that, in both haplotypes created, does not add i to the

parity of ~hðgÞ (where i ¼ 0; 1; 2). Therefore, if ~hðgÞ
belongs to, say, Hj, we need to not add to its parity

3
 j; otherwise, we would get a haplotype in H0.

However, we can always do this, and how to do it is

reported in the table.
Finally, consider the general case of g with n2ðgÞ > 4.

Then, assume that n2ðgÞ ¼ 3pþ q, with 2 	 q 	 4, so that
g 2 Gq. Then, replace a set S of 3p 2s in g with 1s,
obtaining g0, and solve g0, with n2ðg0Þ ¼ q. This yields a
solution that has two haplotypes h0 and h00 such that
g0 ¼ h0 � h00. Let h0 be obtained by h0 by replacing the
3p 1s in h0 with 0s. Note that the parity of h0 and h0

modulo 3 is the same. Using h0 in place of h0, we have a
resolution of g, i.e., g ¼ h0 � h00. tu

3.2 Compatible Genotypes

Next, we present a second condition for polynomial-time

feasibility.

Theorem 5. Assume that all genotypes in G are mutually

compatible. Then, the problem is polynomially solvable.

Proof. Since all genotypes are mutually compatible, we can

assume (possibly after swapping the 1s into 0s along

some columns) that the matrix G has only entries in {0, 2}.

Two possibilities arise: Either each row of GD has two or

more 2s or there exists a row in GD with less than two 2s.

In the first case, there is a trivial solution: Declare the

haplotype 0 good and all other haplotypes bad; we can

then resolve each genotype in GH with a pair that uses 0

and each genotype in GD with a pair that does not use 0.
Now, consider the case in which a nonempty set B1 of

rows of GD has one or no 2s in each row. Let L be the set
of columns where nonzeros appear in these rows. Call
these the left columns and the other columns are the right
columns. Note that each row in B1 has a unique
resolution and that the forced resolving haplotypes must
be bad. Furthermore, each resolution of this type
contains the haplotype 0. Without loss of generality,
we replace each diseased genotype in B1 with the
haplotypes that it implies. This way, each diseased
genotype has zero or at least two 2s and zero or exactly
one 1. We now decompose the data into (at most) six
parts: B1, B0, and B2 will be a partition of GD and G1, G0,
and G2 will be a partition of GH . The partition of GD is
described as follows: B1 has already been defined. B0

contains all rows of GD that have all of their 2s in left
columns (note that this implies that each row in B0 has at
least two 2s in left columns). B2 contains all rows of GD
that have at least one 2 in a right column (and, in case of
precisely one single 2 in a right column, there is also a 2
in a left column by definition of L).

As for GH , the partition is described as follows: Note
that, for each genotype g 2 Gh, it must be that n2ðgÞ > 1;
otherwise, there is no feasible solution. In G1, we put all
of the rows that have a single 2. Note that none of these
rows should have its 2 in a left column; otherwise, the
problem is infeasible (the unique resolution of the row
would have both haplotypes in B1 and is hence bad). In
G0, we put the rows of GH that have all of their 2s in the
left columns (this implies that each row in G0 has at least
two 2s in left columns). Finally, in G2, we put the
remaining rows (that have at least a 2 in a right column).
See Fig. 3.

LANCIA ET AL.: HAPLOTYPING FOR DISEASE ASSOCIATION: A COMBINATORIAL APPROACH 249

TABLE 1
Resolutions Sorted by the Number of 1s They Introduce

TABLE 2
How to Resolve the Genotypes



Now, resolve the instance as follows: For the diseased,
for each g 2 GD, if g 2 B1, g is resolved as g� g; if g 2 B0

and g has exactly two 2s, say, in positions i and j, then
resolve g as 1i � 1j. In all of the remaining cases, resolve g
as 0� ½g� 0�. For the healthy: For each g 2 G1, say, g ¼ 2i,
resolve g as 0� 1i and declare 1i good; for each g 2 G0, let
fi; jg, i 6¼ j, be two left columns in which g has a 2. Then,
resolve g ¼ 1ij � ½g� 1ij� and declare 1ij good. Finally, for
each g 2 G2, say,ghas a nonzero in right column i, resolve g
as g ¼ 1i � ½g� 1i� and declare 1i good.

We now argue that the solution proposed is feasible. By
construction, the bad haplotypes are defined as follows:
They either have no 1s or have exactly one 1 in a left column
(haplotypes created fromB1 and haplotypes created from
rows of B0 with exactly two 2s in left columns), they have
three or more 1s, all in left columns (haplotypes created
from rows of B0 with more than two 2s), or they have at
least two 1s, of which at least one is in a right column
(haplotypes created from B2).

Now, each healthy genotype that is not in G0 has at
least one haplotype in its resolution with exactly one 1
and, furthermore, this 1 is in a right column. Since the
only bad haplotypes with exactly one 1 have the 1 in a
left column, they cannot conflict with the resolution.

Therefore, the only possibility for a conflict comes
from healthy genotypes in G0. Note that such a genotype
is resolved by using a haplotype that has exactly two 1s,
both in left columns. However (see above), there is no
bad haplotype that has exactly two 1s, both in left
columns. Hence, there is no conflict possible. tu

3.3 Preprocessing

As we have shown in Section 2, HDA is NP-complete, so
there can be instances whose feasibility is hard to verify.
Because of Theorem 4, these instances must have some
forced haplotypes in each solution (caused by nonambig-
uous genotypes). We should then start any attempt to
determine the feasibility of a general instance in which there
are nonambiguous genotypes with the following cascade of
implications:

1. Let B and G be the set of forced bad and good
haplotypes. Initially, B consists of all haplotypes
compatible with genotypes in GD that have < 2
ambiguous sites. Similarly, G consists of all haplo-
types compatible with genotypes in GH that have no
ambiguous sites. Remove from GH and GD all
genotypes used to derive B and G.

2. If B \G 6¼ ;, then stop; the problem is infeasible.
Otherwise, loop through 3-6 until, for a complete
iteration, neither B nor G changes.

3. Let G0 be the subset of genotypes in GH that can be
obtained as h� h0, with h; h0 2 B. If, for any g 2 G0,
all of the compatible haplotypes are in B, stop; the
problem is infeasible.

4. For all g 2 G0 such that there exists only one
haplotype h not in B compatible with g, put h in G
and remove g from GH .

5. Let G0 be the subset of genotypes in GD that can be
obtained as h� h0, with h; h0 2 G. If, for any g 2 G0,
all of the possible resolutions use a haplotype that is
in G, stop; the problem is infeasible.

6. For all g 2 G0 such that there exists exactly one
resolution h� h0 in which both h and h0 are not in G,
put h and h0 in B and remove g from GD.

At the end of the cascade, either the problem has been
declared infeasible or there are two sets B and G of bad and
good haplotypes that must be fixed and all of the unsolved
genotypes have a degree of freedom.

As a corollary of Theorem 4, we have that the problem is
feasible as long as the haplotypes in B fall in suitable parity
classes (e.g., the bad fixed haplotypes skip a certain class
modulo 3, which we can then declare good and use to
resolve the remaining healthy genotypes).

4 CONCLUSIONS

Given a population affected by a genetic disease, it is
expected that all haplotypes can be partitioned into working
and faulty haplotypes (what we called “good” and “bad” in
this paper). This is a biologically necessary condition for a
solution to be correct and, as such, it has been posed as a
combinatorial condition for the haplotyping problem. We
have shown that it is NP-complete to satisfy this condition.
Most importantly, however, we have shown that the
partitioning condition alone is too weak to capture the
essence of the genetic disease under study (it is hardly
believable that a genetic illness is due to the sum of alleles
being a multiple of 3. . . ). A contribution of our paper is that it
proves that more constraints must be imposed in order for the
solution to explain the genetic disease. For instance, it is
usually required that a set of haplotypes derived from a set of
genotypes either fits a perfect phylogeny or is of the smallest
possible size, or both. Hence, we could require either of these
conditions as an extra condition for HDA, thereby perhaps
forbidding a mathematically correct (but biologically mean-
ingless) solution such as that of Theorem 4. Another possible
approach is the following: Assume that an HDA instance is
feasible. We have seen that this may be due to the large
degree of freedom given by heterozygous sites, which we
used to give the “coloring” solution of Theorem 4. However,
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Fig. 3. The generic decomposition. Submatrices labeled XX can contain

any type of rows made of 0s and 2s.



the critical SNPs that are really associated to the disease may
be just a small subset of all SNPs. A natural question then is
what is the minimum set of SNPs for which the solution is
still feasible? We are then led to the following optimization
problem: Remove the largest number of SNPs so that the instance
left is still feasible. We leave these variants of the HDA
problem as directions for future research.
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