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Abstract

We consider a two-player, sequential location game in d-dimensional Euclidean

space with arbitrarily distributed consumer demand. The objective for each player

is to select locations so as to maximize their market share—the mass of consumers

in the vicinity of their chosen locations. At each stage, the two players (Leader and

Follower) choose one location each from a feasible set in sequence. We first show

that (i) if the feasible locations form a finite set in Rd, Leader (the first mover) must

obtain at least a 1

d+1
fraction of the market share in equilibrium in the single-stage

game, and there exist games in which Leader obtains no more than 1

d+1
; (ii) in

the original Hotelling game (uniformly distributed consumers on the unit interval),

Leader obtains 1

2
even in the multiple stage game, using a strategy which is oblivious

of Follower’s locations. Furthermore, we exhibit a strategy for Leader, such that even

if she has no information about the number of moves, her payoff must equal at least

half the payoff of the single-stage game.
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1 Introduction

Starting with the classic Hotelling model [11], there is an extensive literature on loca-

tion games. These games have been applied in several different contexts, including firms

competing in a market (Gabscewicz and Thisse [9] provide a survey), political compe-

tition among parties or candidates (see Shepsle [16] for a survey), and facility location

(surveyed by Eiselt, Laporte, and Thisse [8]).

In this paper, we consider min-max payoffs in a sequential location game with two

players, named Leader and Follower. Given a demand distribution and a feasible set

of locations, each player picks a feasible location in every stage with Leader moving

first. After players have chosen their locations, each consumer buys one unit of the

product from the closest player, breaking ties uniformly at random. We consider the

game without prices, with each player maximizing its market share. We allow players

to locate at previously occupied locations; therefore, it is immediate that Leader has

a first-mover disadvantage in this game. By replicating the moves of Leader, Follower

obtains a payoff no worse than 1
2 . Hence, we focus on the min-max (or worst-case) payoff

of Leader.

Location games without pricing are commonly applied to, e.g., political contests and

the facility location problem. As Osborne and Pitchik [15] show, the (simultaneous-move)

game with prices may not possess a pure strategy equilibrium. With mixed strategy

equilibria, the range of possible outcomes may be quite large. Further, characterizing

the set of mixed strategy equilibria can be difficult. For a similar reason, we consider

the sequential rather than simultaneous location game. On a side note, Prescott and

Vischer [13] show that the outcomes of a sequential location game can differ significantly

from those that obtain in a simultaneous move game.

We first examine a class of games in which the set of feasible locations is finite, and

contained in Rd. Without loss of generality, consumers are distributed over Rd (so there

are d attributes of the product a consumer cares about). Since minimizing Leader’s

payoff is equivalent to maximizing Follower’s payoff, the min-max payoff of Leader is

equivalent to her payoff in a Nash equilibrium. In the single-stage game (with each

player choosing just one location), we characterize completely the set of feasible min-
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max payoffs for Leader over all choices of consumer distribution and location set. All

Nash equilibria of the single-stage game are also subgame-perfect equilibria.

Dasci and Laporte [5] study a similar game where the Leader is already established

as a monopolist with multiple locations, and Follower is contemplating entering the mar-

ket. Both players are allowed to select multiple locations. They provide approximately

optimal location and pricing strategies for both firms. In contrast, the focus of our work

is on providing exact bounds for the disadvantage the Leader is faced with, in a game

with no pricing.

1.1 Our results

We show that there exists a location game in Rd such that observed market shares

are a result of a Nash equilibrium of this game if and only if the share of the first

mover is between 1
d+1 and 1

2 , and the shares of the players sum to 1. That is, over

all location games in d-dimensional Euclidean space, the minimum payoff to Leader in a

Nash equilibrium is 1
d+1 , and the maximum is 1

2 . Further, for any y ∈ [ 1
d+1 , 1

2 ], there exist

instances of the game such that Leader’s equilibrium payoff is exactly y. For example,

with a location set in R2, Leader must obtain at least 1
3 of the payoff.

This result provides an upper bound for the size of the first-mover disadvantage in

such a game. Entry timing games are often characterized by a trade-off between factors

that imply a first-mover advantage (for example, in the political context, an early entrant

has more time to raise money) and those that lead to a disadvantage. Our result implies

that, keeping all other things the same, if the payoff increase as a result of a first-mover

advantage exceeds 1
2 − 1

d+1 = d−1
2(d+1) (so that the total payoff exceeds 1

2), players should

seek immediate entry in the single-stage game. Furthermore, our result provides an

additional reason for the existence of a first-mover disadvantage in market entry order,

complementing the results of Golder and Tellis [10] and Boulding and Christen [2].

We subsequently consider a multi-stage game in which the two players move sequen-

tially at each stage, with Leader picking a location first, followed by Follower. Obtaining

general results on the first-player payoff for multi-stage games may not be feasible. In

particular, Leader’s payoff need not be monotone in the number of stages. We provide
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two examples to demonstrate this. In one, we construct a game in which Leader obtains

1
2 in a Nash equilibrium of the single-stage game, but only 1

3 when the game is extended

to two stages. Conversely, we exhibit a game in which Leader’s payoff converges to 1
2 as

the number of stages grows. We then exhibit a slightly suboptimal result—we provide

a simple strategy for Leader in the game with multiple stages, where Leader can obtain

at least 1
2(d+1) payoff. The result holds even with information asymmetry where Leader

does not know the number of stages but Follower does.

In the original Hotelling game (with the location set being the unit interval, and

consumers uniformly distributed over this interval) with a known number of stages, we

show that in the n-move game, for any n, the min-max payoff of Leader is 1
2 . In fact,

we demonstrate a set of locations such that, if Leader occupies each location in this set,

regardless of Follower’s moves, she obtains a payoff of at least 1
2 .

1.2 Related work

Location games similar to the ones we consider have also been studied in computational

geometry, under the label “Voronoi games.” In these games, the location set is continu-

ous, and the consumers are assumed to be uniformly distributed over some compact set.

Co-location of players is not permitted. Cheong et al. [3], show that when the Voronoi

game is played on a square with uniform demand, the number of moves is large enough,

and Follower locates all his points after observing all of Leader’s moves, Follower obtains

a payoff of at least 1
2 + α for a fixed constant α. Some of the results we obtain here

are cited as open questions by Cheong et al. In particular, we characterize the value

of the sequential game, and the corresponding optimal strategies, in a high dimensional

space. For the Voronoi game on the uniform line and uniform circle, Ahn et al. [1] show

that Leader has a strategy which guarantees her a payoff of strictly more than 1
2 , while

Follower can get a payoff arbitrarily close to 1
2 without actually getting 1

2 . Variations of

the original single-move Hotelling game with multiple players have also been considered

under the name of “competitive facility location.” Eiselt et al. [8] and Dasci and Laporte

[5] provide excellent surveys of some of this work.

3



1.3 Paper outline

We define some preliminaries in the following section. Section 3 contains our main result

characterizing the first-mover disadvantage in the one-round game. We also discuss a

few examples illustrating the effect of changing some of the settings of the game, and

briefly examine a special case of the game with multiple stages. In Section 4, we consider

the location game where the number of rounds is known only to Follower and provide

weaker bounds for the payoffs of the two players. We conclude with some final remarks

in Section 5.

2 Preliminaries

Consider Rd with d ≥ 1, endowed with the Euclidean distance function, δ. Consumers

are distributed on Rd, with distribution F (·) defined over the Borel σ−algebra on Rd.

Without loss of generality, the total mass of consumers is normalized to 1.

There are two players, Leader (she) and Follower (he). L ⊂ Rd denotes a compact set

of points at which players may locate. The game has n stages. At each stage, the players

move in sequence. First, Leader chooses a location in L, and then Follower responds. At

any stage, either player is allowed to choose a location already occupied by either of the

players. The game is therefore represented as a 4-tuple, (n, d, L, F ).

Let si denote the location chosen by Leader at stage i, and ti the location chosen

by Follower. Let Si and Ti denote the first i moves of the two players respectively, with

S0 = T0 = ∅. A pure strategy for Leader at stage i is a map ai : Si−1 × Ti−1 → L.

Similarly, a pure strategy for Follower at stage i is a map bi : Si × Ti−1 → L. A pure

strategy for Leader in the game as a whole is denoted A = (a1, . . . , an) and similarly for

Follower.

After each player has chosen its n locations, each consumer buys 1 unit of the good

from the closest location. If the closest location is not unique, the consumer randomizes

with equal probability over the set of closest locations.

Given a multiset Y of locations chosen by the players and some point v in Rd, we

define δ(v, Y ) = miny∈Y δ(v, y) as the distance between v and the point in Y closest
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to v. Let κY (v) = |{y ∈ Y : δ(v, y) = δ(v, Y )}| be the number of points in Y which

are at minimum distance from v. The demand gathered by a point y ∈ Y is defined as

r(y, Y \ {y}) =
∫

v∈Rd:δ(v,y)=δ(v,Y )
1

κY (v)dF (v). Now let S and T be the locations chosen

by Leader and Follower respectively, at the end of the game. Then, we write Leader’s

payoff as r(S, T ) =
∑

s∈S r(s, S∪T \{s}). Follower’s payoff is r(T, S) = 1−r(S, T ). Note

that by definition, for any location x and set of locations Y , we have r(x, Y ) ≤ r(x, y)

∀y ∈ Y . Occasionally, we use r1(x, y) to denote Leader’s payoff if she locates at x and

Follower locates at y. We also define r2(x, y) = 1−r1(x, y), and suppress the dependence

on x and y when the dependence is unambiguous.

The strategy choices of the two players, a and b, imply chosen locations, S(a, b) and

T (a, b) respectively. Notationally, for convenience, we often suppress the dependence of

S, T on a, b. Leader’s min-max payoff is defined as r1 = maxa minb r(S(a, b), T (a, b)).

Since this is a constant-sum game, a strategy of Follower that minimizes the payoff

of Leader must maximize the payoff of Follower. Hence, when n is known to both

players, the strategies that lead to Leader earning its min-max payoff constitute a Nash

equilibrium of the game.

Without loss of generality, we assume that L spans Rd. Otherwise, we can project

the d-dimensional space orthogonally to the subspace spanned by L. The orthogonal pro-

jection π has the property that for any two location points l1, l2 ∈ L and a demand point

x ∈ Rd, δ(l1, x) ≤ δ(l2, x) ⇔ δ(l1, π(x)) ≤ δ(l2, π(x)). Thus payoffs and equilibrium

strategies in the game remain unaffected.

3 One-round location game

We begin by examining the single-stage game. In focusing on Leader’s min-max payoff,

we essentially bound the size of the first mover disadvantage in this model. Recall that

when the number of stages is known to both players, the min-max payoff of Leader is

identical to its payoff in a Nash equilibrium. We therefore state our result in terms of

Nash equilibrium payoffs.

We first consider the case of a finite location set. (Finiteness of the location set is nec-
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essary to prove Theorem 1 below, as we show in Section 3.2 following the theorem.) The

demand distribution F (·) may be continuous. Let Gd denote the set of all location games

in d-dimensional Euclidean space with a finite location set. Let Gd(1) = (1, d, L, F )

denote a game in Gd.

It is clear that r1 ≤ 1
2 , since Follower can ensure r2 = 1

2 via the strategy b = a, which

replicates each move of Leader. How low can the min-max payoff of Leader be? The

following example shows that, when the location set is in R2, Leader’s payoff can be as

low as 1
3 .
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Figure 1: A location game in the Euclidean plane. Points a, b, and c have demands x,

1
2(1−x) and 1

2(1−x) respectively, and, L = {a′, b′, c′}. Lines are labeled by the Euclidean

distance between their endpoints.

Example 1 Consider the game given by Figure 1, with L = {a′, b′, c′}, and f(a) =

f(b) = f(c) = 1
3 (that is, x = 1

3), where f(v) denotes the density of demand at v.

Follower’s best response is as follows: If Leader chooses a′, Follower chooses b′; if Leader

chooses b′, Follower chooses c′; otherwise, Follower chooses a′. Given this, Leader is

indifferent over {a′, b′, c′}. Regardless of the location she chooses, Leader obtains a
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payoff of 1
3 , with Follower obtaining 2

3 .

In fact, we show that this game represents the worst case for Leader over all such

location games in R2. That is, there does not exist a demand distribution and a finite

location set in R2, such that Leader obtains a Nash equilibrium payoff strictly less than

1
3 in this single-move location game. The result extends more generally: in Rd, Leader

must obtain at least 1
d+1 , and there exists a game in which she obtains exactly 1

d+1 (so

the bound is tight).

Theorem 1 There exists a location game Gd(1) ∈ Gd such that r1, r2 are payoffs in a

Nash equilibrium of Gd(1) if and only if r1 ∈ [ 1
d+1 , 1

2 ] and r2 = 1 − r1.

Proof: It is immediate from the definition of the game that, in any equilibrium, r1 +r2 =

1. We now prove that r1 ∈ [ 1
d+1 , 1

2 ].

“If” part:

Given a value x ∈ [ 1
d+1 , 1

2 ], we construct a game Gd(1) for which r1 = x. For x = 1
d+1 ,

this essentially reconstructs Example 1 in d dimensions. We first construct the game in

the (d+1)-dimensional Euclidean space (for ease of exposition), then project it down to

the d-dimensional Euclidean space.

The set of location points is a simplex given by L = {l1, l2, . . . , ld+1}, where point li

is at position +1 on the ith co-ordinate axis. There are d + 1 demand points vi. Let f

represent the density of demand. Set f(v1) = x ∈ [ 1
d+1 , 1

2 ] and f(vi) = 1
d
(1 − x) for all

i > 1. Fix ε > 0 such that ε � 1. Demand point vi has ith co-ordinate 1 − ε, and for

j 6= i, the jth co-ordinate is ε[(j − i)mod (d + 1)]. This induces the following distance

function between demand points and location points:

δ2(li, vj) =











2 − 2ε[1 + (i − j)mod (d + 1)] + d̂ε2 : i 6= j

d̂ε2 : i = j.

where d̂ = 1 +
∑d

i=1 i2.

For any demand point vj , we can define a precedence relation ≺j as li ≺j li′ if demand

point vj prefers li over li′ , that is, δ(li, vj) < δ(li′ , vj). It follows that for every j, we have

lj ≺j l(j+1)mod (d+1) ≺j l(j+2)mod (d+1) ≺j . . . ≺j l(j−1)mod (d+1)
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This precedence relation is identical to that induced by a Condorcet voting paradox [4]

instance with d + 1 voters and d + 1 choices.

It now follows that r1(li, l(i−1)mod (d+1)) = x for i = 1, and r1(li, l(i−1)mod (d+1)) =

1
d
(1−x) for i > 1. For x ∈ [ 1

d+1 , 1
2 ], we have x ≥ 1

d
(1−x). Leader’s equilibrium strategy,

therefore, is to choose l1, and the resulting payoff is r1 = x.

Finally, we obtain our d-dimensional instance by orthogonally projecting the demand

points to the d-dimensional hyperplane formed by the points in L. Such a projection

reduces each δ2(li, vj) by the same amount, and hence preserves the precedence relation

≺j .

“Only if” part:

Note first that, for any Gd(1) ∈ Gd, as observed earlier, we have r1 ≤ 1
2 in any Nash

equilibrium.

For any subset S of Rd, let F (S) =
∫

v∈S dF (v) represent the total demand of points

in S. In order to prove our result, we need to define the concept of centerpoints. A

point p0 ∈ Rd is a centerpoint if every closed half-space H that contains p0 has demand

F (H) ≥ 1
d+1 . The following theorem may be found in Matoušek [12] (also Edelsbrunner

[6]).

Theorem 2 [Centerpoint Theorem] For any mass distribution F in Rd, there exists

a point p0 such that any closed half-space containing p0 has at least 1
d+1 of the mass.

The centerpoint of a distribution need not be unique; in Example 1, any point in the

convex hull of a, b and c is a centerpoint. However, at least one centerpoint is guaranteed

to exist. In the remainder of this proof, we prove the following (stronger) claim using

centerpoints:

Claim 1 Let p0 be a centerpoint of the distribution F , and let L0 be the set of location

points at minimum distance from p0. Then there exists a point l ∈ L0 such that r1(l, l
′) ≥

1
d+1 for all l′ ∈ L.

If p0 ∈ L0, the claim follows immediately, so suppose p0 6∈ L0. We consider two cases:

Case (i) L0 = {l0}, that is, there is a unique location point closest to the centerpoint p0.

Consider any other location point l′, and let Ho(l0, l
′) = {v ∈ Rd : δ(l0, v) < δ(l′, v)} be
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the open half-space consisting of points closer to l0 than to l′. Since δ(l0, p0) < δ(l′, p0),

there is a closed half-space containing p0 which is fully contained in Ho(l0, l
′). Therefore,

r1(l0, l
′) ≥ F (Ho(l0, l

′)) ≥ 1
d+1 , and locating at l0 ensures that Leader earns at least 1

d+1

payoff.

Case (ii) |L0| > 1. Define a precedence relation on L0 as follows: l ≺ l′ if and only if

r1(l, l
′) < 1

d+1 . We need to show that there exists a point l ∈ L such that there is no

l′ ∈ L with l ≺ l′. We begin by proving that ≺ is acyclic on L0; that is, there is no

sequence of elements (l1, l2, . . . , lk) in L0 with l1 ≺ l2 ≺ l3 ≺ . . . ≺ lk ≺ l1.

For a contradiction suppose L′ = {l1, l2, . . . , lk} ⊆ L0 is a set of location points

forming such a cycle. Let Hi denote the closed half-space of points at least as close

to li+1 as to li; that is, Hi = {v ∈ Rd : δ(li+1, v) ≤ δ(li, v)}. Let H=
i denote the

corresponding hyperplane of points equidistant between li and li+1. Then, li ≺ li+1

implies that F (Hi) − 1
2F (H=

i ) > d
d+1 .

Now let νi be the vector li+1 − li. Then, each half-space is given by Hi = {u ∈ Rd :

u · νi ≥ 0}. We refer to li+1 and li as the location points defining νi. Since L′ is a cycle,

we also have
∑m

i=1 νi = 0. That is, a positive linear combination of these vectors νi sums

to zero.

Now, Carathéodory’s theorem (see Eckhoff [7]) implies that there exists a positive

combination of at most d + 1 of the vectors νi that sums to zero. Without loss of

generality, let these be ν1, . . . , νd′ (2 ≤ d′ ≤ d + 1), and let αi be positive reals such that
∑d′

i=1 αiνi = 0.

Next consider any point x lying in X = ∩d′

i=1Hi. Since x · νi ≥ 0 for all i, 1 ≤ i ≤ d′,

we must have 0 ≤ x · αiνi = −∑

j≤d′,j 6=i x · αjνj ≤ 0, implying that x · νi = 0 for all

i ≤ d′. In other words, X = ∩d′

i=1H
=
i . Note that p0 ∈ X; therefore X is not empty.

For each half-space Hi, we have F (Hi) > d
d+1 + F (X)

2 . Taking complements, F (Hi) <

1
d+1 − F (X)

2 . Therefore, we have F (∪i<d′Hi ∪ X) < d′−1
d+1 − d′−1

2 F (X) + F (X) ≤ d
d+1 +

1
2F (X). Taking complements once again, F (∩i<d′Hi\X) > 1

d+1−
F (X)

2 . But ∩i<d′Hi\X is

disjoint from Hd′ , which has demand greater than d
d+1 + F (X)

2 . This along with F (X) > 0

contradicts the fact that the total demand is 1. Therefore, we have a contradiction, and

the cycle L′ cannot exist.
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We have shown that the relation ≺ is acyclic. An acyclic relation on a finite set must

contain a point l0 which is not preceded by any other point l′ ∈ L0. Such a point can be

found by starting at any point l ∈ L0, and moving to any point l′ ∈ L0 such that l ≺ l′.

Since ≺ is acyclic and L0 is finite, this process must terminate at an l0 such that there

is no point l′ ∈ L0 with l0 ≺ l′.

If Leader locates at l0 and Follower locates at any point l′ ∈ L0, then r1(l0, l
′) ≥ 1

d+1

because l′ does not precede l0. If Follower locates at some point l′ /∈ L0, then the

argument for Case (i) (|L0| = 1) shows that r1(l0, l
′) ≥ 1

d+1 . This completes the proof of

the “only if” part, as well as Theorem 1.

3.1 Choosing the best location point

In Theorem 1 we show that locating at one of the points closest to a centerpoint guar-

antees a payoff of at least 1
d+1 in the one move game. The following example shows that

this does not hold in general for an arbitrary location point closest to a centerpoint, thus

necessitating a proof as given above.

Example 2 Consider the following instance of the location game in 3-dimensional Eu-

clidean space, with the co-ordinates labeled x, y and z respectively. The demand is

concentrated at 4 points: p1 = (1, 0, 0), p2 = (−0.5,−
√

3/2, 0), p3 = (−0.5,
√

3/2, 0) and

p4 = (0, 0, 5). The demands at p1, p2 and p3 are 0.25 − ε, where 0 < ε � 1. The de-

mand at p4 is 0.25 + 3ε. The set of location points consists of a set L′ of several points

at distance 1 from p4 with the z-co-ordinate at least 5.5, and a single location point

l0 = (0, 0, 4).

The only centerpoint of this demand distribution is at p4. All location points are

equidistant from it, since they are all at distance 1. However, if Leader locates at any

point in L′, then Follower can locate at l0 resulting in a payoff of only 1
8 +1.5ε for Leader.

Therefore, if there is more than one location point closest to the set of centerpoints,

one cannot arbitrarily locate at any one of them. By Theorem 1, there must exist a

point closest to a centerpoint, such that locating at that point guarantees at least 1
d+1

payoff for Leader; the point l0 in Example 2 is such a point.
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3.2 Finiteness of the location set

Finiteness of the location set, L, is used in the “only if” part of the theorem to show

that the acyclicity of ≺ implies that we can find a sink node. The following example, a

variant of the largest number game, indicates that there is no extension to a countably

infinite set. Consider the unit interval, [0, 1]. Let f(0) = 1 (so that all demand is at the

point 0). Let L = { 1
n
}n∈Z+

, where Z+ is the set of positive integers. For any point l1

chosen by Leader, Follower can find a point closer to 0, and obtain a payoff of 1.

3.3 Non-monotonicity of payoffs

Consider the game in Gd constructed in the “If” part of Theorem 1, with x = 1
d+1 . Let us

study how the payoff of Leader changes as the number of moves n increases (with both

players knowing n). While the number of moves is less than d + 1, Leader can weakly

increase her payoff by picking at each stage a location where she has not located yet.

When the number of moves is d + 1 or more, the strategy of first locating at all points

in L and then replicating Follower’s previous move guarantees a payoff which converges

from below to 1
2 as n increases.

Given the last remark above, one might conjecture that, in any instance the multi-

stage game, the min-max payoff of Leader is weakly increasing in the number of moves,

n. However, the following example demonstrates that this is not always true.

Example 3 Consider two replicas of the game in Example 1, with location sets Li =

{a′i, b′i, c′i} for i = 1, 2. The demand density is 1
6 at each of the points in Di = {ai, bi, ci},

for i = 1, 2. Further, let a′j be the closest location point in Lj to the demand points Di,

for i = 1, 2 and j 6= i. Let δ(ai, a
′
j) > 2 for i = 1, 2 and j 6= i, so that the points in Lj

are sufficiently far from the points in Di.

Suppose n = 1, so that each player moves just once. Leader’s optimal action is to

choose either a′1 or a′2. If Leader chooses a′1, Follower’s best response is to choose any

of {a′1, a′2, b′2, c′2}, with a corresponding best response set if Leader chooses a1. In either

case, Leader obtains a payoff of 1
2 .

Now, suppose n = 2. Without loss of generality, suppose Leader chooses a location
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in L1 with her first move. Conditional on choosing a point in L1, locating at a′1 is an

optimal action for Leader. Now, Follower responds by locating at b′1. Consider Leader’s

best response. If she chooses any point in L2, Follower will choose the corresponding

point in L2 such that it obtains 2
3 of the demand closest to each of L1 and L2, and hence

captures a payoff of 2
3 in the game. If instead, Leader chooses any point in L1, Follower

will then choose a′2, obtaining all of the demand closest to L2, and at worst 1
3 of the

demand closest to L1, for an overall payoff no worse than 2
3 . Hence, Leader can obtain

no more than 1
3 in the 2-move game.

3.4 Oblivious strategy for the Hotelling context

The above example suggests that there is no general result on the equilibrium payoffs

as n increases. Since results on the general n-move game are difficult to obtain, we

next study the game in Hotelling’s original setting, where the demand is distributed

uniformly over [0, 1]. Let H(n) = (n, 1, [0, 1], U [0, 1]) denote the Hotelling game with n

rounds, L = [0, 1], and f(x) = 1 for x ∈ [0, 1]. We first show that there is no second-

mover advantage in H(n). In particular, for any fixed n, there exists a set of location

points S that Leader can choose which implies that her payoff is at least 1
2 , regardless

of the strategy of Follower.

Theorem 3 For the game H(n), we have r1 = 1
2 .

Proof: Consider S = (s1, s2, . . . , sn), where si = 1
2n

+ (i−1)
n

. This divides the unit line

into n+1 intervals—the two border intervals are of length 1
2n

, while the internal intervals

are of length 1
n
.

Let Follower’s chosen location points be given by T = (t1, . . . , tn). We will show that

each point ti gets payoff at most 1
2n

. This implies that r1 ≥ 1
2 . As observed earlier,

Follower can obtain a payoff of 1
2 by simply replicating each of Leader’s moves (i.e. set

ti = si for each i). First note that, even in the absence of any points ti, the total demand

captured by each point si individually is at most 1
n

for any i.

Consider the point ti. Suppose ti = sj for some j. Clearly, the market share of point

ti is at most 1
2n

from our observation above. Next suppose that ti lies in one of the
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border intervals. Again, since the length of these intervals is 1
2n

, the market share of ti

is at most 1
2n

.

Finally, consider the case when ti lies in some interval (sj , sj+1). If there is at least

one other point tk in this interval, ti and tk may share the total demand in that interval,

each getting at most 1
2n

. If ti is the only point in this interval, then, it gets 1
2(sj+1 − ti)

demand from the left and 1
2(ti−sj) demand from the right. Combining the two, we have

that ti gets at most 1
2n

of the demand. Thus Follower obtains a payoff no greater than

1
2 .

A similar result was obtained independently by Ahn et al. [1], in the context of

Voronoi games, which differ from our location games in that co-location is not allowed

in Voronoi games.

Note that Leader’s strategy in Theorem 3 is oblivious of Follower’s strategy T . Thus,

Leader’s strategy guarantees her a payoff of at least 1
2 even when both players move si-

multaneously at each round, or indeed, even if the order of moves is completely arbitrary.

4 Asymmetric information

Next, we consider an asymmetric-information version of the location game. In this game,

the number of stages, n, is known to Follower but not to Leader. Instead, Leader merely

knows that n ∈ N , where N is some feasible set for the number of stages.

In terms of min-max payoffs, this changes the flavor of the game completely. The

min-max payoff of Leader now contains an additional uncertain element, the number

of stages in the game. As a result, the min-max payoffs in the game can no longer be

thought of as equilibrium payoffs. Given location sets S, T for the two players, and a

known number of stages n, let r1(S, T, n) = r(Sn, Tn) denote Leader’s payoff in the game.

Then, when Leader does not know the number of stages, but only that it lies in some set

N , her min-max payoff is given by r1(N) = maxa minn∈N minbn
r1(S(a, bn), T (a, bn), n).
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4.1 Hotelling context: Uniformly distributed demand on a line

To illustrate the nature of the difficulty in analyzing this case, suppose first that N =

{1, 2}, that is, Leader knows that the number of stages is either 1 or 2. In contrast with

Theorem 2, the following theorem shows that, in the set-up of the original Hotelling

game H, Leader can no longer ensure a payoff of 1
2 across all possible outcomes.

Theorem 4 Suppose Leader knows that n ∈ N = {1, 2}, and Follower knows n. Then,

in the game H(N), we have r1(N) = 5
12 .

Proof: We first show that r1(N) ≥ 5
12 . Consider the following strategy for Leader. She

first locates at s1 = 1
2 . If n = 1, Follower will also choose t1 = 1

2 , so Leader earns exactly

1
2 (that is, r1(1) = 1

2).

Suppose n = 2. Without loss of generality (w.l.o.g.), Follower’s first move is to

t1 ≤ s1. Firstly, if t1 = 1
2 , then Leader chooses s2 = 1

4 . It is easy to verify that in this

case, Leader gets a revenue of at least 7
16 ≥ 5

12 . If 1
3 > t1 > 1

2 , Leader then chooses

s2 = t1 − ε, for some small ε > 0. Now, regardless of Follower’s second move, Follower

obtains a payoff at most 1
2 + (1

2 − t1)/2 ≤ 7
12 . By locating at 1

2 + ε, for some small ε > 0,

Follower obtains a payoff that approximates (but is strictly less than) 7
12 .

On the other hand, if Follower first locates at t1 ≤ 1
3 , then Leader chooses s2 = 5

6 .

Now, if Follower chooses t2 > s1, he earns a payoff at most 7
12 . If t2 = s1, his payoff is

at most 13
24 . For any other point t2 < s1, his payoff is at most 1

2 . Therefore, r1(2) ≥ 5
12 ,

implying r1(N) ≥ 5
12 .

Next we show that r1(N) ≤ 5
12 . Suppose not. Then, Leader’s first move must be

to some point in ( 5
12 , 7

12) (else r1(1) ≤ 5
12). W.l.o.g, suppose Leader’s first move is to

s1 ∈ ( 5
12 , 1

2 ]. Suppose n = 2, and consider the following sequence of play. Follower

chooses t1 = 2
3(1 − s1) < s1. At the second stage, if Leader moves to s2 < s1, then

Follower makes its second move to t2 = s1 + ε for some small ε > 0. Otherwise, Follower

moves to some t2 > s1 that obtains maximum payoff. The latter payoff is at least

1
3(1− s1). A simple calculation again shows that in either of these cases, Follower earns

a payoff of at least 2
3 − s1

6 ≥ 7
12 .
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4.2 General multi-stage location games

The above theorem shows that if H is played with the number of stages restricted to

being no more than 2, then Leader’s min-max payoff is lower than 1
2 . What if Leader

has no information at all about the number of stages? The techniques used for the above

theorem do not extend easily to larger n, since the number of cases increases rapidly as

n increases. However, we show below that a simple strategy guarantees a payoff of 1
4 to

Leader irrespective of the number of rounds in the game.

We in fact show a more general theorem that applies to all sequential two-player

location games, including H and those in Gd. The theorem shows that in a multi-stage

game, Leader must obtain at least 1
2 of her payoff in the single-stage game, even when

she has no knowledge of the number of stages (that is, the set of feasible stages, N , is

the set of positive integers). We prove the theorem by exhibiting a particular strategy

that earns this payoff: locate at the single-stage equilibrium location, then replicate each

move of Follower.

Theorem 5 Suppose that, in a Nash equilibrium of a single stage location game, Leader

earns r1 = ρ. Consider the multiple-stage game in which Leader only knows that n ∈ Z+,

but Follower knows n. In this game, r1(Z+) ≥ ρ
2 .

Proof: Consider the following strategy for Leader. At stage 1, she chooses a location

s1 that yields the payoff of a single-stage equilibrium, ρ. For i > 1, Leader replicates

Follower’s previous move, so that si = ti−1. For any location y ∈ S ∪ T \ {s1}, we have

r(y, S ∪ T \ {y}) ≤ r(y, s1) ≤ 1 − ρ.

Now, r1(S, T, n) ≥ ∑n
i=2 r(si, S ∪ T \ {si}) =

∑n−1
i=1 r(ti, S ∪ T \ {ti}) = r(T, S) −

r(tn, S ∪ T \ {tn}). This implies 2r1(S, T, n) ≥ 1 − r(tn, S ∪ T \ {tn}) ≥ ρ. Thus,

r1(Z+) ≥ minn r1(S, T, n) ≥ ρ
2 .

We get the following immediate implication:

Corollary 6 Suppose Leader has no information about n, but Follower knows n.

(i) for any location game Gd(Z+) ∈ Gd, we have r1 ∈ [ 1
2(d+1) ,

1
2 ].

(ii) for the game H(Z+), we have r1 ≥ 1
4 .
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5 Conclusion

We have shown that in a one move location game in Rd, Leader can always guarantee at

least 1
d+1 of the total payoff. If Leader earns a payoff strictly less that 1

d+1 , this payoff

could not have emerged from a Nash equilibrium of the location game in d-dimensional

Euclidean space. Conversely, for every x ∈ [ 1
d+1 , 1

2 ], there exists a location game such

that Leader obtains a market share exactly x in equilibrium.

In the multiple-move game on a unit line, when both players know the number of

moves, both obtain a payoff of 1
2 in a Nash equilibrium. It would be interesting to

generalize this result to games in higher dimensions.

The situation changes when Leader does not know the number of moves. Even if the

number of moves is 1 or 2, in the game on a unit line, Leader obtains a payoff strictly

less than 1
2 . However, we demonstrate a strategy for Leader, using which she can obtain

at least half the payoff of the single-move game in a Nash equilibrium. An interesting

open problem is to completely characterize this min-max payoff.
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