Approximation algorithms for
network problems

J. Cheriyan ! R. Ravi 2

September 1998

1C & O Dept., Univ. of Waterloo, Waterloo, CANADA, N2L3G1, jcheriyan@dragon.uwaterloo.ca
2GSIA, Carnegie Mellon University, Pittsburgh, PA 15213-3890, ravi@cmu.edu



Contents

1

Basic Graph Theory and Shortest-Paths Algorithms

1.1 Graph theory terminology . . . . . . . . ... L L
1.2 The running time of algorithms . . . . . .. .. ... ... . . o oL
1.3 Shortest Paths Problems . . . . . . . .. ... . . o
1.3.1  Bellman’s inequalities, node potentials and reduced costs . . . . .. .. ...
1.3.2  Shortest paths arborescence . . . . . .. ... ... oo
1.3.3 Dijkstra’s algorithm . . . . ... ... . o
1.3.4 The Floyd-Warshall algorithm . . . . .. ... ... ... ... ........
The Set Covering Problem
2.1  The problem and its complexity . . . . . .. . ... L o oo
2.2 Applications . . . ... L e e
2.3  The matrix reduction algorithm for set covering . . . ... ... ... ... .....
2.4  The greedy algorithm for set covering . . . . . . . .. ... ... ... ..
2.5 A performance guarantee for the greedy algorithm . . . . . ... ... ... .. ...
2.6 Adirect analysis . . . . ...
2.7 A randomized algorithm . . . . . . .. .. Lo
2.8 EXercises . . . . . . .o e e e e e e e e
Center Problems and Median Problems
3.1 Introduction . . . . . .. e e
3.2 The basic model for median problems and center problems . . . ... .. ... ...
3.3 Center problems (minimax problems) . . . .. ... ... ... .. .........
3.3.1  Multiple centers . . . . . . ... L
3.4 Median problems (minisum problems) . ... ... ... ... .. .........
3.4.1 A single-median algorithm . . . ... ... .. ... ... .. L .
3.4.2 A multimedian heuristic . . . . .. ... 000 o
3.5 Bicriteria Approximations for the k-median Problem . . . . ... ... ... ... ..
3.5.1 Introduction . . . . . .. ..
3.5.2 Hardness of approximation . . . . .. ... .. ... oo
3.5.3 Rounding by filtering . . . . .. ... L o
3.6 Exercises . . . . . .. e e e e

ii

12
12
14
15
16
18
20
21
22



CONTENTS

4 The Uncapacitated Facility Location Problem

4.1 Theproblem . . . . . . . .. . e
4.2 Applications . . . . . . .. e e e e e e
4.3 Linear programming formulations of the UFL problem . . ... ... ... ... ..
44 Duality . . . . . . e e e e e
441 First condensed dual . . . . .. ... Lo oo o
4.4.2 Second condensed dual . . . .. ... Lo oo oo
4.5 Heuristics for solving the UFL problem . . . .. ... ... . ... ... ... ...
4.5.1 The greedy heuristic. . . . . . . ... .. .. oL
4.5.2  The dual descent procedure . . . . . .. ... Lo oL
4.6  The filtering and rounding method for location problems . . . . ... ... ... ..
4.6.1 Introduction . . . . . ... .. L
4.6.2  An integer programming formulation for “minimize” UFL problems and its
LP relaxation . . . . . . . . . e
4.6.3 The Aardal-Shmoys-Tardos algorithm for “minimize” UFL problems
4.7 EXercises . . . . ... e e e e e e e

Minimum Spanning Trees

5.1 Applications . . . . . . . L e e
5.2 Treesand cuts . . . . . . . . L e e
5.3 Minimum spanning trees . . . . . . .. ... L. L oL
5.4  Algorithms for minimum spanning trees . . . . . . . . ... ... L 0oL
5.5 LP formulation of the minimum spanning tree problem . . . .. ... .. ... ...
5.6 More LP formulations of the minimum spanning tree problem . . .. ... ... ..
5.7 ExXercises . . . . . . . e e e e e e

Light Approximate Shortest Paths Trees

6.1 Introduction . . . . . . . L e e
6.2 The preorder traversal of atree . . . . . . . . ... oL o o oL
6.3  An algorithm for finding a light approximate shortest-paths tree . . . . . . . .. ..
6.4 Exercises . . . . . .. e e e e

Approximation Algorithms for Steiner Trees

7.1  The problem and its complexity . . . . . .. ... ... o oo

7.2 Distance network heuristics for Steiner trees . . . . . . . . ... ... ... ...,
7.2.1 Introduction . . . . . . . . ... e
7.2.2  The basic distance network heuristic. . . . . . . .. ... ... ... .....
7.2.3  Mehlhorn’s variant of the distance network heuristic . . . . . . ... .. ...

7.3  The Dreyfus-Wagner dynamic programming algorithm . . . .. ... ... ... ..

7.4 Zelikovsky’s Algorithm . . . . . . . . ... L
7.4.1 Definitions . . . . . . . .. e e e e
7.4.2 Thealgorithm . . .. ... ... . . .
7.4.3 Performance Guarantee . . . . . . . . . . ... ... ... e
7.4.4 Full Steiner Trees . . . . . . . . . . . . e

iii

46
46
47
48
49
49
50
51
51
53
57
57

57
58
61

64
64
65
66
67
69
73
74

78
78
78
80
81



v

10

7.5

CONTENTS

Exercises . . . . . . . e e

Constrained Forest Problems

8.1
8.2
8.3
8.4
8.5
8.6
8.7

Constrained forest problems . . . . .. ... . oL L oo
Proper functions . . . . . . . . . . .. e e
Using proper functions to model problems in network design . . . . . ... .. ...
The LP relaxation of (IP) . . . . . . . . . .. ... . ..
The GW algorithm for the constrained forests problem . . . . . . ... ... .. ...
A performance guarantee for the GW algorithm . . . ... ... ... ... .. ...
Exercises . . . . . . L e e e

Approximating minimum k-connected spanning subgraphs

9.1
9.2

9.3
9.4
9.5

9.6
9.7
9.8
9.9
9.10
9.11
9.12
9.13

Introduction . . . . . . oL
Definitions and notation . . . . . ... ... L L L
9.21 Matching . . . . . . . L e
A 2-approximation algorithm for minimum weight &-ECSS . . . ... ... ... ..
An O(1)-approximation algorithm for minimum metric cost &-NCSS . . . . . . . ..
2-Approximation algorithms for minimum-size .-CSS . . . . . . . ... .. ... ...
9.5.1 Anillustrativeexample . . . . . . ..o oL o
Khuller and Vishkin’s 1.5-approximation algorithm for minimum size 2-ECSS . . .
Mader’s theorem and approximating minimum size 2-NCSS . . . ... ... ... ..
A (14 })-approximation algorithm for minimum-size &-NCSS . . .. ... ... ..
Mader’s theorem . . . . . . . ..o
Approximating minimum-size k-ECSS . . . . . ... o o oo
The multi edge model for minimum k-ECSS problems . . . . . . ... ... ... ..
Bibliographic remarks . . . . . . .. .o o
Exercises . . . . . . L e e e

Minimum cuts

10.1

10.2

10.3

10.4

10.5

A simple minimum cut algorithm . . . . . .. .. ... L Lo oo
10.1.1 Introduction . . . . . . . . ..
10.1.2 The Stoer-Wagner Algorithm . . . . . .. ... ... ... ... ... ... ..
10.1.3 A bound on the number of mincuts . . . . .. ... ... .00,
Gomory-Hu Trees: Existence . . . . . . . . . . ...
10.2.1 Introduction . . . . . . . . ..
10.2.2 Warm-up: Maximum spanning trees . . . . . . .. . ... . ... ... ...
Gomory-Hu Trees: Construction . . . . . . . . . ... .. .
10.3.1 Uncrossingcuts . . . . . . . . . . . L
10.3.2 The construction algorithm . . . . .. .. ... ... ... ... ... ...
Multicuts . . . . . . . o
10.4.1 Introduction . . . . . . . . ..
10.4.2 Two simple algorithms . . . . . . ... . ... .. L o
10.4.3 An efficient algorithm and analysis . . . . . .. ... ... ... ........
Multiway Cuts . . . . . . . . o e

106
106
107
109
110
110
113
119

121
121
122
123
123
124
126
127

. 128

129
132
134
137
139
140
141



CONTENTS

11

12

10.5.1 Introduction . . . . . . . . ..
10.5.2 IP formulation of multiway cuts . . . . . . .. ... ... 0L,
10.5.3 A half-integrality property . . . . . . . .. .. Lo

10.6 Exercises

Graph Separators
11.1 The sparsest cut problem and an LP relaxation . ... ... ... ..........
11.2 The sparsest cut problem: A region-growing algorithm . . . . . ... ... .. ...
11.3 The generalized sparsest cut problem . . . . . . . ... ... ... o oL
11.3.1 Definitions and preliminaries . . . . . . . . .. ... oL oo
11.3.2 {; embeddings and generalized sparsest cuts . . . . ... ... ... .. ...
11.4 Bourgain’s theorem . . . . . . . . .. L L
11.5 From sparsest cuts to balanced separators. . . . . . . ... ... ... ...
11.6 Applications of separators . . . . . . . . ... oL L L
11.6.1 Minimum cut linear arrangement . . . . . . . . . . ... ... Lo
11.6.2 Optimal linear arrangement . . . . . . . . . . . .. ... Lo

11.7 Exercises

Bicriteria Network Design problems

12.1 Introduction . . . . . . . . . . L
12.1.1 Objective functions . . . . . . . . . .. .o e
12.1.2 Performance guarantees . . . . . . . . . . ..o
12.1.3 Previous Work . . . . . . . .o

12.2 Hardness results . . . . . . . . ..

12.3 Bicriteria Formulations: Simple Properties . . . . . . . . .. ... ... ...
12.3.1 Equivalence of Bicriteria Formulations: Robustness . . . . . .. ... ... ..
12.3.2 Comparing with other functional combinations: Generality . . ... ... ..

12.4 Parametric Search . . . . . . . .. L

12.5 Diameter-Constrained Trees . . . . . . . . . . .. . L o

12.6 Exercises

Index

161
162
165
168

172
172
175
179
180
181
185
187
188
189
190
191

196
196
197
197
199
200
201
201
202
204
206
209

214



List of Figures

1.1
1.2

2.1
2.2
2.3

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

4.1

4.2
4.3
4.4
4.5

5.0
5.1
5.2

7.1
7.2
7.3

7.4
7.5
7.6

An example of agraph. . . . . ... Lo oo o
An arborescence. . . . . .. . e e e

Two examples of the set covering problem. . . . .. . ... ... ... ... ...
Modeling the minimum path separator problem as a set covering problem. . . . . . .
The working of the matrix reduction algorithm on an example. . . . . . .. .. ...

Finding a single node center. . . . . . . ... oL L L oL
Finding a single absolute center. . . . . . .. ... ... oo oo oL
An example of a single median problem. . . . . . ... .. o000
Finding a single median and a 2-median. . . . . . ... ... . 0o L0
Network for exercise . . . . . . . . . .. e
Network for exercise . . . . . . . . . .. e
The Petersen graph G = (V, E') and cost matrix [c,,,] for Exercise 9 . . .. .. ...
Graph G = (V, E) and cost matrix [cy,] for Exercise 10. . . . . ... ... .. ...

An example of the uncapacitated facility location problem together with an optimal

solution. . . . ... e e e
Using the greedy heuristic on an example of the UFL problem. . . .. .. ... ...
Using the dual descent procedure on an example of the UFL problem. . . . .. ...
A bad example for the dual descent procedure. . . . .. ... ... ... .......
Graph G = (V, E) and cost matrix [cy,] for Exercise 4. . . ... ... ... .. ...

Ilustrating the LP formulation of the minimum spanning tree problem . . . . . . . .
Network G, ¢ for Problem 5. . . . . . . . .. ...
Network G, ¢ for Problem 6. . . . . . . . ... ... . .

An example of the Steiner tree problem. . . . . . . .. ... ..o o000
Using the distance network heuristic on an example of the Steiner tree problem. . . .
Using Mehlhorn’s variant of the distance network heuristic on an example of the

Steiner tree problem. . . . . . . ... oL
Three cases in the Dreyfus-Wagner recursion. . . . . . .. ... ... ... ... ...
Shapes of subtrees spanned by cores of pairs and triples. . . . . . ... .. ... ...
An example of the Steiner tree problem. . . . . . .. ... ..o 0000,

vi



LIST OF FIGURES vii

8.1
8.2
8.3

9.1
9.2
9.3

10.1
10.2
10.3

11.1
11.2

Using the GW algorithm to solve a Steiner tree problem.. . . . . .. ... ... ... 114
Using the GW algorithm to solve a generalized Steiner forest problem. . . . . . . .. 115
A network G, c for constrained forest problems.. . . . . .. ... o000 118
Ilustrating a 1.5-approximate 2-NCSS heuristic . . . . . . . ... ... ... ... 129
Iustration of Mader’s theorem . . . . . . .. .. ... ... ... . 0 0. 135
Laminar families of tight node sets for 2-edge connectivity . . . . . . . .. ... ... 138
Proof of Proposition 10.10. . . . . . . . . . . . e 154
Case A in the proof of Lemma 10.12. . . . . . . . . . . ... o oo 155
Case B in the proof of Lemma 10.12. . . . . . . . . . . ..o oo o 156
Optimal solutions to the LP for sparsest cuts in four graphs . . . . . . ... ... .. 174

An illustration of the proof of Bourgain’s theorem. . . . . . ... ... ... .... 186



List of Tables

8.1 Example of a proper function

9.1 Approximation guarantees for k-ECSS and &-NCSS . . . . . ... ... ... ...
9.2 Approximation guarantees for k-ECSS in the multi edge model . . . . . .. ... ..

viii



Chapter 1

Basic Graph Theory and
Shortest-Paths Algorithms

This chapter gives some basic information from graph theory and graph algorithms, followed by
a discussion on the shortest paths problem. Since this chapter is based on well-known, standard
results, we do not give the original references, instead we use standard texts in the area.

For graph theory, we refer to Bollobas [2] and Bondy & Murty [3], and readers interested in
more informatiion are refered to those texts. For the design and analysis of algorithms, we refer to
the text by Cormen, Leiserson and Rivest [4].

Our discussion on the shortest paths problem is brief but self-contained. First, Bellman’s
inequalities, node potentials, and shortest paths arborescences (directed trees) are discussed, fol-
lowed by descriptions of Dijkstra’s algorithm and the Floyd-Warshall algorithm. Our treatment
is based on several texts, namely, Ahuja, Magnanti & Orlin [1, Chapter 4], Cormen et al [4,
Chapters 25 & 26], Lawler [8], and Larson & Odoni [6, Chapter 6.2]. Readers interested in more
informatiion are referred to one of the above texts. Readers interested in a compact and accessible
introduction to network algorithms are referred to the chapter by Larson & Odoni.

1.1 Graph theory terminology

A graph G = (V(G), E(G)) consists of a finite set V(G) of nodes and a finite set £(G) of unordered
pairs of (distinct) nodes called edges. (For the most part, we study simple graphs having neither
loops nor multiple edges, so our definition does not allow these.) Usually, there is only one graph
G under consideration, and since there is no ambiguity, we use V instead of V(G) and F instead of
E(G). The number of nodes, |V, is usually denoted by n, and the number of edges, |E|, is usually
denoted by m. For an edge e = {#, y}, nodes # and y are said to be incident to e, and = and y are
called the ends of e. We also denote the edge as zy. Nodes # and y are called adjacent and are
said to be joined by the edge e. Figure 1.1 shows an example of a graph; here n = 7 and m = 9.

The degree of a node v, denoted deg(v), is the number of edges incident to v. Here are the
degrees of the nodes for the example in Figure 1.1.

nodev|s a b ¢ d e t
deg(v) |2 4 2 3 2 3 2
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€5
“ o) :

€3 €4

Figure 1.1: An example of a graph.

Graphs may be represented by matrices. The adjacency matrix = (a;;) of a graph G has its
rows and columns indexed by V(G) and is defined

g — 1 if node 7 and node j are adjacent,
71 0 otherwise.

Here is the adjacency matrix for the example in Figure 1.1.

s a b ¢ d e t
s |01 00100
a |1 01 1010
b |01 01 0 00O
c |01 1 0 0 01
d |1 000010
e |01 0 01 01
t |10 001 010

The incidence matrix B = (b;;) of a graph G has its rows indexed by V(G) and its columns
indexed by E(G) and is defined

b — 1 if node 7 is incident to edge j,
* 0 otherwise.
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Here is the incidence matrix for the example in Figure 1.1.

€1 €9 €3 €4 €5 €g €7 €8 €9
s {1 1 0 0 0 0 0O 0 O
a |1 0 1 0 1 0 0 0 1
b |0 0 1 1 0 0 0 0 O
c |0 0 0 1 1 1 0 0 O
d |0 1 0 0 0 0 0 1 O
e |0 0 0 O O O 1 1 1
t |0 0 0 0O O 1 1 0 O

A subgraph H = (V(H), E(H)) of a graph G is a graph with node set V(H) C V(G) and edge
set E(H) C E(G). Since H is a graph, every element of E(H) is an unordered pair of elements of
V(H); in other words, both ends of every edge of H are nodes of H.

A subgraph H of a graph G is called spanning if V(H) = V(G).

A subgraph H of a graph G is called an induced subgraph if £ (H) contains every edge of E(G)
such that both ends of the edge are in V(H). For a node set S C V(G), the subgraph of G induced
by S means the induced subgraph H of G such that V(H) = S.

Given a graph G = (V(G), E(G)), a walk W is a sequence of nodes and edges

Vo€1V1€2V2 -+ - €47y
where edge ¢;, 1 < i < /£, is incident to nodes v;_; and v;. A walk is also denoted by its node
sequence, e.g., W = wguy...ve. The node vy is called the start node of the walk W, and v, is
called the end node of W. Also, the walk W is said to join vy and vy, and W is called a vg-v, walk.

A trailis a walk with no repeated edges.

A path is a walk with no repeated nodes.

The length of a walk (or trail or path) is defined to be the number of edges in it, e.g., the length
of Wis £.

A cycle is a trail of positive length whose start node and end node are the same but all other
nodes are distinct.

For example, in Figure 1.1, s ey aescesbegaes cegtisawalkoflength6,se; aescegbezsaegeert
is a trail of length 6, s e; a e5 c eg t is a path of length 3, and a e5 c eq b e5 a is a cycle of length 3.

A graph is said to be connected if for every pair of nodes v, w there is a walk joining v and w.
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A (connected) component of a graph is defined to be a subgraph induced by a maximal set S
of nodes such that there is a walk joining every pair of nodes in §.

A graph that has no cycles is called a forest.
A connected graph that has no cycles is called a tree.

Given a node set @ C V, 6(Q) denotes the set of all edges with one end in @ and the other end
in V\Q. (Informally, 6(Q) is the “boundary” of the node set @ in G.) For example, in Figure 1.1,
ta‘king Q = {aa ¢ d’ e} we have 5(@) = {ela €2, €3, €4, €¢, 67}‘

A cut consists of all edges that have one end in @ and the other end in V\Q, where Q is a
node set such that @ # 0 and Q # V; this cut is denoted (Q,V\Q). Clearly, if 0 # Q # V, then
4(Q) = (Q,V\Q). Another example for Figure 1.1 is ({s, a,b,c}, {d,e,t}) = {e2,es,€9}.

A network is a graph (or directed graph), together with zero or more functions from the nodes
to the real numbers, and zero or more functions from the edges to the real numbers. For the most
part, we study networks consisting of a graph G = (V(G), E(G)) and a single real-valued function
on the edges ¢ : E(G) — R called the cost. The cost of an edge e = zy is denoted by either c(zy)
Or Cgy. For a subgraph H of G, the cost of H is defined to be the sum of the costs of all the edges
in H and is denoted ¢(H); so, ¢c(H) = Z c(e).

ecE(H)

1.2 The running time of algorithms

The number of steps executed by an algorithm is called the runing time. This is justified since each
step takes roughly the same time to execute.

Big-Oh notation: Given two functions f and g from the natural numbers to the real numbers, f
is said to be O(g) if there exist positive numbers ng and k such that

Vn>ng @ f(n) <k-g(n).
Informally, when we use this notation, we keep only the asymptotically largest terms, and then

drop their coeflicients.

Ezamples :

2n® — 5n? —2n+ 100 = O(n®).
10n% — 10007 + 10°2Y/2 = O(n?).
logn 6
10° = O(logn).
1000 +10 O(logn)

n?logn

1000 +10%2 + 1012p190 = O(n2 lgn).
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1.3 Shortest Paths Problems

Consider a network consisting of a graph G = (V, F) and a nonnegative cost function ¢ on the
edges. That is, each edge e has a nonnegative real number c(e) assigned to it. Assume that G
is connected; otherwise, we focus on a connected component of G. The cost of a path (or walk)
P = vgejviequs ... v_1epvy is defined to be

c(P) = Zc(ei).

=1

The general problem we consider is to find a path P joining specified nodes such that ¢(P) is
minimum among all such paths. Such a path is called a shortest path.
Two specific problems of interest are:

SINGLE SOURCE:
Given a specified node s, find a shortest path from s to every other node of G.

ALL PAIRS:
Find shortest paths joining every pair of nodes in G.

1.3.1 Bellman’s inequalities, node potentials and reduced costs

The basic idea behind all methods for solving shortest paths problems is this. Let s be a specified
start node. Suppose we know that there is a path from s to v of cost d(v) for each node v, and
we find an edge vt satisfying d(v) + c¢(vt) < d(t). Since appending vt to the path from s to v gives
a path from s to ¢, we know that there is a shorter path to t, of cost d(v) + c(vt). On the other
hand, if each edge vw satisfies d(v) 4 c(vw) > d(w), then the method of constructing a path to ¢
by appending an edge vt to the path to v does not improve on the cost d(t).

To study the properties of the values d(v) (v € V'), we focus on Bellman’s inequalities:

d(s) = 0 (1.1)

d(w) < d(v) + c(vw) for all vw € E. (1.2)

The values d(v) (v € V) satisfying Bellman’s inequalities are called node potentials.
These inequalities and their solutions are fundamental for shortest path problems. We give
some elementary but useful results about node potentials.

Proposition 1.1 If there exists a solution to Bellman’s inequalities, then G, ¢ has no edges of
negative cost.

Lemma 1.2 Ifd:V — R is a solution to Bellman’s inequalities, then for each node v, d(v) is less
than or equal to the cost of any walk W from s to v.
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Proof: Let s = vg,vy,...,vr = v be the sequence of nodes in W. We add the inequalities (1.2)
for the edges of W:

c(vovy)

c(vyv2)

u
—_
<
&)
~—
|
u
—_
<
iy
~—
IAIA

d(vk)_ﬂé(vk—l) < c(vg—1vk)
d(vy) —d(s) < Xl e(vioim) = c(W).

We obtain ¢(W) > d(v) — d(s), and hence by equation (1.1), we find that d(v) < ¢(W). I

Proposition 1.3 Let d : V — R be a solution to Bellman’s inequalities and let E' be the set of
edges satisfying (1.2) with equality, i.e., E' = {uv € E : d(v) —d(u) = c(uv)}. Let E* be obtained
by orienting each edge e € E’ from the end with lower d-value to the end with higher d-value,
E* = {(u,v) : ww € E' and d(u) < d(v)}. Let G* be the directed graph (V, E*). For each node v,
every path from s to v in G* is a shortest s-v path of G, c; if there is at least one such path, then
d(v) is the cost of a shortest s-v path.

Proof: We add the inequalities (1.2) for the edges of a (directed) path P from s to v such that all
of P’s edges are in E*, and obtain d(v) = ¢(P). By Lemma 1.2, the cost of a shortest path must
be at least d(v), so P is a shortest path from s to v. I

Let d: V — R be a solution to Bellman’s inequalities. Define the reduced cost of an edge vw,
denoted ¢(vw), with respect to the node potentials d to be

t(vw) = c(vw) + d(v) — d(w).

The reduced cost of a path P = vgu; ... v, ¢(P), and the reduced cost of a cycle Q = vpvy ... vp00

(ver1 = wo), €(Q), are defined similarly to the cost of a path and of a cycle, namely, ¢(P) =
£ £+1
ZE(vi_lvi) and ¢(Q) = ZE(vi_lvi).

Proposition 1.4 Let d: V — R be a set of node potentials, and for each edge vw, let its reduced
cost be t(vw) = c(vw) + d(v) — d(w). The reduced costs satisfy the following properties.

(1) ¢(vw) is nonnegative for each edge vw.
(2) For any cycle Q, ¢(Q) = ¢(Q).
(8) Let P be a path with start node vy and end node vy. Then ¢(P) = ¢(P) + d(vp) — d(vy).

Proof: The proof is straightforward, using the fact that d satisfies Bellman’s inequalities. For
parts (2) and (3) of the lemma, add the reduced costs of the edges in the cycle @ or the path P as
in Lemma 1.2. I
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1.3.2 Shortest paths arborescence

Before presenting an algorithm for the single-source shortest paths problem, we state a few more
results.

Proposition 1.5 Suppose that G, ¢ has no edges of negative cost. Let W be a walk from vy to vy.
Then there ezxists a path P from vy to vy that is a subsequence of W such that c¢(P) < ¢(W).

Proposition 1.6 Suppose that G, ¢ has no edges of negative cost. Let P = vgvy - - - vy be a shortest
path from vy to vy. Then for any i and j, 0 < i < j <{, P’ = vviy1...v; is a shortest path from
v; to v;.

The optimal solutions to the single-source shortest paths problem have a particularly simple
structure. An s-arborescence T of a graph G = (V, E), where s € V(T'), is a directed graph such
that the node set V(T') equals V(G), the number of edges is |E(T)| = |V(T')| — 1, corresponding to
every (directed) edge (v, w) € E(T) there is an edge vw € E(G), and for each node v € V(T)\{s}
there is exactly one directed path in T from s to v. Alternatively, T is a directed graph with node
set V(@) that has no directed cycles such that corresponding to every (directed) edge (v, w) € E(T)
there is an edge vw € E(G), there are no edges of T' entering node s, and for each node v € V\{s},
there is exactly one edge in T entering v. Roughly speaking, T is a spanning tree such that all
its edges are directed “away” from s. See Figure 1.2. An s-arborescence T of a network G, ¢ is
called a shortest paths s-arborescence of G, c if for each node v € V(T), the path in T from s to
v is a shortest s-v path of G, c. For each node v, if v # s, we take p(v) to be the unique node
such that (p(v),v) is an edge of T', and we take p(s) = 0. We call p(v) the predecessor of v. If we
have a shortest paths s-arborescence T’ of GG, ¢, then a shortest path from s to any node v can be
obtained by starting at v and repeatedly moving to the predecessor until we get to node s, i.e., the
path s ... p(p(p(v))) p(p(v)) p(v) v is a shortest s-v path of G, .

Proposition 1.7 Suppose that G, ¢ has no edges of negative cost, and that G is connected. Then
there exists a shortest paths s-arborescence for G, c.

A shortest paths s-arborescence can be used to find a “tight” solution to Bellman’s inequalities;
conversely, Bellman’s inequalities can be used to check whether a given s-arborescence is a shortest
paths s-arborescence.

Theorem 1.8 Suppose that G is connected and that G, ¢ has no edges of negative cost. Then there
exists a solution d : V — R to Bellman’s inequalities such that for each node v, d(v) is the cost of
a shortest path from s to v. Moreover, an s-arborescence T of G is a shortest paths s-arborescence
if and only if each edge (v, w) of T satisfies (1.2) with equality, i.e., d(w) = d(v) + c(vw).

Using the theorem, it is easy to verify whether an s-arborescence T is a shortest paths s-
arborescence. For each node v, we take d’'(v) to be the cost of the path in T' from s to v (we take
d'(s) = 0). We check whether d’ : V' — ® satisfies Bellman’s inequalities. If yes, then T is a shortest
paths s-arborescence.
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Figure 1.2: An s-arborescence for the graph in Figure 1.1 is indicated by thick lines.

1.3.3 Dijkstra’s algorithm

Dijkstra’s algorithm efficiently solves the single-source shortest paths problem, assuming that the
edge costs are nonnegative. For each node u, let d(u) denote the cost of a shortest path of G, ¢
from s to u. The main idea of the algorithm is this: Suppose that for some node set .S C V' we know
the value d(u) for each u € S. Of course, we have s € S and d(s) = 0. For each node v € V'\ S, we
compute a “temporary label” £(v), where

f(v) =min {d(u)+c(uv) : v€ S, wuveFE}.
(If no edge exists joining a node of S to v, then we define £(v) = c0.)

Lemma 1.9 If v* is a node in V\S such that £(v*) is minimized over all nodes of V\S, then
L(v*) = d(v"), t.e., £L(v") is the cost of a shortest s-v* path of G, c.

Proof: First, note that a shortest path from s to a node u € S such that d(u) + c(uv*) = £(v*),
plus the edge uv* gives a walk from s to v* of cost £(v*). Now let P = vyvivs...v; (s = vy and
v* = v,) be any path from s to v*. To complete the proof, we show that its cost is at least £(v*).
Let v, be the first node of this path not belonging to S. Since the edge costs ¢ are nonnegative,
and £(v") = min £(v), we have

veV\S

c¢(P) > c(vovive...vx) > d(vk—1) + c(vi—1vr) > L(vg) > £(v7).

In other words, the cost of every s-v* path of G, cis at least £(v*). I
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Algorithm Dijkstra’s Algorithm
input: Graph G = (V, F'), nonnegative edge costs ¢, and start node s; G is connected.
output: A shortest paths s-arborescence of G, ¢ given by p: V\{s} = V, and

for each node v, the cost of a shortest path from s to v, d(v).

STEP 0: S :={s};
d(s) :==0; p(s) = 0;
for each node v € V\S do
L(v) :==00;  p(v):=0;

end; (for)
v*i=s; (v* is last node added to S)
while S #V do
STEP 1: for each edge vz do
if € V\S and {(z) > d(v*) + c(v*z)
then L(z) :=d(v*) + c(ve);
p(z) =07
end,; (if)
end,; (for)
STEP 2: (add node v in V\S with smallest £(v) to .S)

find a node y € V\S with £(y) = min{{(v) : v € V\S};
v* =y S:=SuU{v}
d(v*) := £(v*);

end; (while)

Theorem 1.10 Given a network G = (V, E), ¢, where c is nonnegative, and a start node s, Dijk-
stra’s algorithm correctly computes a shortest paths s-arborescence. The running time is O(|V]?).

Remark: Using the Fibonacci heaps data structure, the running time can be improved to O(|E|+

V] log|V]).

1.3.4 The Floyd-Warshall algorithm

The Floyd-Warshall algorithm efficiently solves the all-pairs shortest paths problem, assuming that
the edge costs are nonnegative. First we order the nodes (arbitrarily) as vy, vs,...,v,, where
n = |V|. An intermediate node of a path is any node different from the start node and the end
node. For k = 0,1,2,...,n, we define dk(u, v) to be the cost of a shortest path from u to v, with
the added condition that only nodes {v1,vs,..., vt} can be used as intermediate nodes. (If k =0,
we say that no nodes can be intermediates, i.e., the paths consist of single edges.)

The idea of the algorithm is that the values d*(u,v) can be computed from the values of
d*='(u,v): A shortest path from u to v that uses only {v1,vs,...v;} as intermediate nodes can
either use or not use the node v;. In the former case, its cost is dk_l(u, v). In the latter, its cost is

a1 (ua ’Uk) + k1 (’Uk, ’U).
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The algorithm also computes the values d* (u,u) for all u. All these values remain equal to zero
always if and only if G, ¢ has no edges of negative cost.

Algorithm Floyd-Warshall Algorithm
input: Graph G = (V, F), and nonnegative costs ¢ on the edges.
output: For each pair of nodes u, v, finds the minimum cost of a path from u to v.

STEP O: let d°(u,v) = c(uv) for all uv € E;
let d°(w,u) =0 for all u € V;
let d°(u,v) = oo for all distinct u, v € V x V such that uwv ¢ E;
STEP 1: for k=1,2,...,|V| do
for all u, v e V xV do
d*(u,v) = min{d* 1 (u,v) , d*7(u,vg) + d* 1 (vp, v)};
end; (for)
end; (for)

At termination, if d”(u,u) = 0 for all u € V, then the values d"(u, v) are the required shortest
paths costs.

Theorem 1.11 Given a network G = (V, E), ¢, where ¢ is nonnegative, the Floyd-Warshall algo-
rithm correctly computes the cost of a shortest path between every pair of nodes. The running time

is O(|V]?).

If desired, we can modify the algorithm so that it constructs a shortest paths u-arborescence
for each node v € V. This requires each node v to have |V| predecessor pointers p,(v), each
representing the previous node in a shortest path from u to v, for some v € V.
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Chapter 2

The Set Covering Problem

In this note, we look at the classical set covering problem and analyze the performance of the greedy
approzimation algorithm in three different ways.

2.1 The problem and its complexity

The set covering problem is a fundamental problem in the class of covering problems. Given a finite
set X and a family F = 51,5, ..., S, of subsets of X (i.e., S; C X, j=1,...,n) the set covering
problem is to find a minimum cardinality J C {1,...,n} such that U S; = X. The elements of X
jeJ
are called points. Given a J C {1,...,n}, a point is said to be covered if it belongs to U S;. In
the minimum-cost set covering problem, each set S;, 1 < 7 < n, has a cost c;, and the 1)J1r€c;]blem is
to find a J C {1,...,n} such that each point is covered and Z ¢; is minimum.
jeJ

Define the incidence matrix A of a set covering problem as follows. There are | X | rows in A,
one for each point z; € X, and n columns in A, one for each set S;. The entry a;; of A (the entry
at the intersection of the ¢th row and the jth column) is one if point z; is in set S, otherwise
a;; is zero. Figure 2.1 shows two examples of the set covering problem, along with their incidence
matrices.

An integer linear programming formulation of the set covering problem is as follows. For each
set S;, we have a zero-one variable s;. The intention is that s; = 1 iff set S; is chosen in the
optimal solution. Let 1™ denote a vector with m entries, each of which is 1; it will be clear from
the context whether the vector is a row vector or a column vector (either is possible). Let s denote

51

S3
the n-element column vector

12
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S1 S2 Ss

z2| 1 0 1

A= () 1 1 0
z3| 0 1 1

L4 0 0 1

Sl Sz S3 S4 55 SG

221 0 1 0 0 O
z3 /1 0 1 0 0 O
z3 |0 1 1 0 0 O
zg |0 0O 1 0 0 1
zs |1 0 0 1 0 O
A= 2|1 1 0 1 0 O
zz |0 1 0 1 0 O
zg |0 0 O 1 0 1
zg |1 0 0 0 1 O
10 1 1 0 0 1 0
11 0 1 0 0 1 0
22| 0 0 0 0 1 O

Figure 2.1: Two examples of the set covering problem.

n
(IP) minimize ZSj
=1
subject to As > 1™

s; € {0,1}, 7=1,2,...,n).

For the minimum-cost set covering problem the objective function becomes
n
S e,
=1

Proposition 2.1 The set covering problem is NP-hard.

A rough translation of the proposition is that if there exists a polynomial-time algorithm for
solving the set covering problem, then there exist polynomial-time algorithms for solving each of
the following “hard problems” as well as many other hard problems:

1. integer linear programming,
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2. finding Steiner minimal trees,
3. finding a cut that has the maximum number of edges, and
4. the traveling salesman problem.

In other words, showing that a problem is NP-hard gives evidence that it has no polynomial-time
algorithm, but no lower bound on the running time required for solving the problem is obtained. The
formal proof of the above proposition starts with a problem already known to be NP-hard and shows
that each instance of the problem can be transformed in polynomial running time to an instance of
the set covering problem such that an optimal solution to the latter instance can be used to find an
optimal solution to the former instance. In other words, to prove that the set covering problem is
NP-hard, we show that a problem already known to be NP-hard is polynomzially transformable to the
set covering problem. Consequently, if a polynomial-time algorithm were available for solving set
covering problems, then it could be used to solve the original NP-hard problem in polynomial time.
For many NP-hard problems, the best algorithms known so far are rather inefficient, and amount
to searching through all possible solutions of the input instance. Hence, it is commonly assumed
that no efficient (i.e., polynomial-time) algorithm will ever be found for an NP-hard problem.

2.2  Applications

The set covering problem has many applications. Three are listed here.

(a) Information retrieval:
There are n files Sy, ..., S,, where S; has length c;, and there are m requests for information.
Each unit of information is stored in at least one file. Find a subset of the files of minimum
total length such that searching these will retrieve all the requested information.

(b) Airline crew scheduling:
An airline has m flights @4, . . ., ,,,. These flights can be combined into “flight legs” S1,...,S5,
such that the same crew can service all the flights in leg S;. Find the minimum number of
crews required to service all flights. Note that the number of flight legs may be much larger
than the number of crews.

EXAMPLE

Leg1l Leg2 Leg3 Leg4
Toronto Paris 1 0 0 0
Toronto New York
Toronto Chicago
Chicago Vancouver
Chicago New York
New York Miami

cooo oo
= =R =N
[ R e R S )
P = =]

(¢) Minimum path separator:
An undirected graph G = (V, E) is given, together with m special paths Py, Ps, ..., P,,. Here,
m may be much greater than |V| or |E|. For each edge e; of G, we denote the set of paths
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P = vovgvy 51 = {P2}

Py = vovivy S = {P5}

P3 = vovsvy S3 = {P2}

Py = vzvgvs Sy = {P5}

Ps = vzvivs Sy = { P, Ps}

Ps = vzvpus  S¢ = {P1, Py}
Sy = {Ps, Py}
Sg = {Ps, Ps}

Figure 2.2: Modeling the minimum path separator problem as a set covering problem.

P;, 1 <14 < m, such that e; is in P; by S;. The problem is to find a minimum cardinality set
of edges whose deletion from G disconnects each of the paths Py, Ps, ..., P,.

2.3 The matrix reduction algorithm for set covering

Since no polynomial-time algorithm is available for finding the optimal solution of set covering
problems, it is worthwhile to study heuristics for solving the problem with the goal of obtaining
a performance guarantee (or approximation guarantee) on the heuristic. That is, given a simple
method that finds feasible but not necessarily optimal solutions, the goal is to find whether the
solution returned by the method is within a fixed factor of optimal, for every instance of the
problem.

The matrix reduction algorithm is a heuristic for the set covering problem. Given an instance of
the problem in the form of the incidence matrix, the algorithm “reduces” the matrix by repeatedly
attempting to eliminate rows and columns and in the process the algorithm constructs a J C
{1,...,n} such that if J' C {1,...,n} is an optimal solution of the reduced instance, then J U J' is
an optimal solution of the original instance. The algorithm may find the optimal solution on some
instances, since the reduced instance may be trivial and so an optimal solution J’ for it is easily
found. The algorithm may fail completely on other instances, since it may not succeed in eliminating
even one row or column from the original incidence matrix. Thus there is no performance guarantee
for the matrix reduction algorithm.
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Algorithm Matrix Reduction Algorithm for Set Covering

input: Incidence matrix A (with one row for each point #; in X and
one column for each set S; in F).

output: Partial solution J and “reduced” incidence matrix A’ such that for any optimal
solution J’ of A’, J' U J is an optimal solution of A.

STEP 0: (feasibility check)
if A has a row with all entries zero
then stop, no feasible solution exists;

end;
J =0
repeat

STeEP 1:
if row ¢ has exactly one nonzero entry, say, in column j
then J :=J U {j}; (S; must be chosen in the optimal solution)

eliminate column j, and all rows having a “one” in that column;

end;

STEP 2:
if rows ¢ “dominates” row 7/, i.e., for all columns j, a;; > a;;
then eliminate row ; (every solution that covers ¢’ will cover 7 too)
end;

STEP 3:
if column j is “dominated by” column j’, i.e., for all rows i, a;; < a;;
then eliminate column j; (7' can replace j in every solution)
end;

until (matrix A is empty) or (no rows nor columns are eliminated in the last iteration);

output J and the current matrix A’ obtained by reducing A;

2.4 The greedy algorithm for set covering

The greedy algorithm is a simple method that has a performance guarantee of roughly In(|X]).
This section describes the greedy algorithm, and the performance guarantee is proved in the next
section.
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S1 Sz Ss Ss4 S
0 1 1 0

L1
L2
T3
Ly
Ty
Le

OO R O R R
_— oo R~ O
O R O R OO
_ oo R =
o, OO O

L7

Initially, J = 0.

Step 1 adds 3 to J, and eliminates column S; and rows 21, #4 and zg,

Step 2 eliminates row z3 since it dominates row 5, and

Step 3 eliminates columns S; and S5 since they are dominated by columns
Sy and 57, respectively.

Step 1 adds 1 to J, and eliminates column S; and rows zs and 5, and
then it adds 4 to J, and eliminates column .S, and row z7.

The reduced matrix is empty, so the algorithm stops and outputs an optimal solution
J ={1,3,4},i.e., S1,S3,S4 form a minimum set covering.

Figure 2.3: The working of the matrix reduction algorithm is shown on an example (from Chapter 6,
“Urban Operations Research”, by Larson and Odoni).

Algorithm Greedy Algorithm for Set Covering
input: Family 7 = S1, S, ..., 5, of subsets of a finite set X.
output: J C {1,2,...,n} such that U S;=X.

jeJ
U =X, (U is the set of points that are currently uncovered)
J = 0;

while U # 0 do
choose a subset S;+ in F such that |S;« N U| is maximum among all S; in F;
Ji=JU{i"}

end (while);

output J;
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2.5 A performance guarantee for the greedy algorithm

d
1
For a nonnegative integer d, let the dth harmonic number Z — be denoted by H(d) (take H(0) = 0).
i

=1
Fact 2.2 For d a positive integer, In(d + 1) < H(d) < 1+ In(d).

For sufficiently large integers d, H(d) can be approximated by In(d) = log,(d), where e denotes
the base of the natural logarithm.

ExXAMPLE

d H(d) In(d) In(d+1)
5 1—|—---—|—%: %%2.28333 1.60943 ... 1.79175. ..
10 | 14+ ;= = B8 ~ 292897 | 2.30258... | 2.39789...
25 3.81595...| 3.21887...| 3.25809...
100 5.18737...| 4.60517...| 4.61512...
1000 7.48547...|6.90775...| 6.90875...
10000 9.78760...]9.21034...|9.21044. ..

Theorem 2.3 Consider an instance of the set covering problem given by F = {S1,...,Sn}, where

each S; C X, and X = U?:l S;. Let J,p denote an optimal solution, and let Jyreeqy denote a
solution found by the greedy algorithm. Then

|Jgreedy| S H(ll}a‘xn|s‘7|) ' |J0pt|‘

=1,..,

Proof: Let r denote max;—1 . ,(|S;|).

Let A be the m x n incidence matrix. Consider the linear programming (LP) relaxation (P) of
the integer program (IP) for set covering, and the dual LP (D) of (P). Let y denote the row vector
[y1,-- -, Ym] of the dual variables.

n m
(P) minimize ZSj (D) maximize Zyl
subject to As > 1™ subject to yA < 1"
s; > 0 (7=1,...,n) v > 0 (=1,...,m)

The set covering problem has a feasible solution (since X = [ J}_, S;), hence, both (IP) and (P)
have feasible solutions. Let z;p and zzp denote the optimal values of (IP) and (P), respectively;
so zrp = |Jopt]-

The key point of the proof is this:

there is a way to construct a feasible solution y = [y1, . .., ¥s,] of the dual LP (D) such
that the corresponding objective value > 77", y; is > |Jyreedy|/H (7).
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The theorem immediately follows because

| Jopt| = z1P > 2P > Zyz = [Jgreedyl/H (7).

=1

This sequence of inequalities is worth a detailed study. The first inequality (z;p > zzp) follows
because (P) is a relaxation of (IP). In other words, every feasible solution of (IP), including the
optimal (IP) solution, is a feasible solution of (P), hence, the optimal solution of (P) has objective
value at most z7p. The second inequality (zzp > Y 1%, ¥;) is a direct consequence of linear program-
ming weak duality applied to (P) and (D). The third inequality is guaranteed by the construction
of y.

Here is the construction for y. For every iteration of the greedy algorithm, let U denote the set
of uncovered points at the start of that iteration. Consider an arbitrary iteration, and let the set
chosen in that iteration be 5. We say that each point in SNU is newly covered by S. In other words,
a point z is said to be newly covered by the set .S if S is the first set in the sequence of sets chosen
by the greedy algorithm such that z € S. For each point ¢ € $ N U, define wgt(z) = 1/|5’ NnU|.
Observe that for each point ¢ € X, the quantity wgt(z) is well defined, because for each point
¢ € X, there exists a set S in our family F such that z is newly covered by S. To complete the
construction, for 1 < ¢ < n, the dual variable y; of the point z; is assigned the value wgt(z;)/H (r).
The next three claims show that y = [y1, ..., y:,] satisfies all the constraints of the dual LP (D)
and that Y3i", y; > |Jgreedy|/H(r). The first claim is the crucial step in the proof.

Claim 1: Consider an arbitrary set S € F. Let ¢ denote |S|. Order the points in S in the reverse

order in which they are covered by the greedy algorithm, and let this ordering be 7, z5, .. .,113:1.
Then
wgt(z)) <1/¢, YL=1,2,...,q.

To elaborate on the ordering z,z5, .. .,113:1, focus on the last iteration of the greedy algo-
rithm such that S N U is nonempty; then we order the points in .S N U arbitrarily, and take
them to be z7,z5,.. -a$TSnU|- (Similarly, in an arbitrary iteration of the greedy algorithm such
that the chosen set is, say, S; (where 1 < j < n) we take the points in SN U N S; to be
J’TSOU|J’TSOU|—1’---aiBiSnU|—|SnUnsj|+1-) Now, consider an arbitrary point 2, € S, 1 < £ < g.

Let 2}, be newly covered by the set S. At the start of the iteration that chooses S, all the points
zi, 25, ..., ) are uncovered, i.e., {2,25,...,2,} C SNU. Hence, |SNU| > £. By the definition of
the greedy strategy, the set S chosen in this iteration must have

1SNU| > |SNnU| > ¢

Since the number of newly covered points in S is > ¥, wgt(z)) = 1/|5’ NU|<1/¢.

Claim 2: For every set S € F, Z wgt(z) < H(r).
z€S
Let ¢ = |S|, and let 7,25, ...,z be the ordering of the points in S defined in Claim 1. Then

1 1 1
> wgt(z) = wgt(z))+wgt(zh)+. . +wgt(z))+. . +wgi(z)) < 1—|—§—|—. SRy .—|—a = H(q) < H(r),
€S



20 CHAPTER 2. THE SET COVERING PROBLEM

where the first inequality follows directly from Claim 1, and the last inequality follows since ¢ =
S| < maxj=y,_n(|55]) = 7.

Claim 3: ngt(a:i) = |Jgreedyl-
=1

To see this, focus on a set $ chosen by the greedy algorithm and the corresponding set U as

defined above. Then Z wgt(z) = [SNU|-wgt(z |2 € SNU) =[SNU|/|SNU| = 1. In other
zesSnU

words, for each set § chosen by the greedy algorithm, the newly covered points in S contribute a
total weight of one. Summing over all sets chosen by the greedy algorithm gives Claim 3.

Consider y = [y1, - - ., Ym], Where y; = wgt(z;)/H(r),Vi=1,...,m. Clearly, y is > 0, and by

1 1
Claim 2, for each set .S € F, we have Z Yi = —— Z wgt(z;) < - H(r) = 1. This shows

m 1 m
that y is a feasible solution of (D). Moreover, Claim 3 shows that Zyl = megt(ml) =
=1 r =1
|Jgreedy|
H(r)

. This completes the construction of y, and the proof of the theorem. |

2.6 A direct analysis

In this section, we look at an alternate analysis of the greedy heuristic for set cover that does not
use linear programming duality. Recall that the greedy algorithm chooses sets in iterations, where
in every iteration, the set chosen in one newly covering the maximum number of points.

The key point of the alternate proof is this:

U]
|J0pt| )

When set S;« is chosen by the greedy algorithm, |S;« N U| >

Note that U represents the current set of uncovered points in the above statement. This observation
is a direct consequence of the greedy choice, and the definition of the optimal solution: consider the
optimal cover J,,; which covers all the points in X, and hence also the points in U. By averaging
among the sets in J,,;, the one which covers the maximum number of points in U must cover at
least % Since the greedy algorithm chooses among all the sets the one with the maximum new
coverage, this coverage must be at least as much as claimed.

Let the indices of the sets picked by the greedy algorithm in the order they were picked be
denoted by j(1),...,7(g). Furthermore, for t =1, ..., g, let U; denote the set U just before the set
Jj(+) was picked. Thus, for example, U; = X. Define U1 = (. We can write a simple recurrence

for |Uy|.
[Ut1l = Ut = [Sje) N Uil

By the observation above, we have |Sj(t) NU;| > |t|]Utl|. Substituting and simplifying, we get
op
1
|Us1] < |Uel(1 )

- |J0pt|
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Expanding out the recurrence, we get

1
|J0pt|

Taking natural logarithm and simplifying, we finally get

| X]
t S |Jopt|ln7t (21)

Ue| < 1X](1 - )

Since U, # 0, this immediately implies that |Jgreeqy| = g < |Jopt| In|X|. Note that the perfor-
mance ratio is slightly weaker, namely, In | X'| versus the earlier derived In max;—; .. ,(].S;]). Despite
this shortcoming, there are a couple of corollaries of this analysis that are simpler to derive than
from the earlier proof.

Corollary 2.4 Suppose we run the greedy algorithm only until a constant fraction, say 0 < a < 1
of the points are covered. Then the number of sets used is at most 1+ |Jopt lné

To prove the corollary, we use the first term of one to account for the last iteration before
stopping. At the iteration just preceding this, we have |U| > a - |X| by the stopping rule, and the
claim follows from equation 2.1.

Corollary 2.5 Suppose at every step of the greedy algorithm, we are only able to choose a near-
optimal greedy set, i.e., we choose a set Sj» whose new coverage 1s at least B times the mazimum
among that of all S; in F for some 0 < B < 1. Then the size of the cover output is at most
BlJopt| In | X|.

This corollary is a direct consequence of substituting the weaker guarantee into the analysis
and simplification of the recurrence relation for |U|.

2.7 A randomized algorithm

The greedy algorithm may be viewed as a derandomization of a simple randomized algorithm for
choosing a set cover. The starting point of this algorithm is a solution to the linear program (P) for
set cover. This solution assigns values s; between zero and one to the sets, that sum to zzp. We
can interpret these values as probabilities and choose independently, every set S; with probability
s;. By linearity of expectation, the expected number of sets chosen is z7p.

Next we bound the probability that any point z € X is not covered by the sets chosen in
one round of this randomized selection of sets. The point z is not covered when none of the sets

containing it is chosen. The probability of this event is [];.5,5,(1 —s;) <e " 2jisoe <1
Suppose we repeat the randomoized selection for 'yln |X | rounds. Then the probablhty of not
covering any given point # € X drops to at most ( y7n1Xl < | X|=7. By the union bound, the
probability that some point in X is not covered is at most 3, x |X|™7 < |X|'~7. By choosing a
sufficiently large constant v, we can drive down this probability to any polynomially small factor.
An alternate oblivious rounding algorithm and its derandomization leading to the greedy algo-
rithm is discussed by Young in [8]. The analysis of the greedy heuristic for set covering is due to
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Johnson [3], Lévasz [5], and Chvatal [1]. Our analysis using duality follows the treatment of Chvatal
closely. The direct analysis to the best of our knowledge appeared first in a paper of Leighton and
Rao [4] on approximating graph separators. A tight analysis of the greedy heuristic, with more on
the second order terms is due to Slavik [7].

What will not discuss but is nevertheless another exciting aspect of research on the set covering
problem is its non-approximability. The first result in this area due to Lund and Yannakakis [6]
showed that there is no polynomial time approximation algorithm with performance ration better
than IHL—X| unless NP C DTIM E[npolylog "], an unlikely complexity theoretic assumption akin
to NP C P. After a series of strengthenings, the best known result [2] essentially matches the

performance of the greedy algorithm and shows that there is no polynomial time approximation
algorithm with performance ration better than (1 — o(1))In|X| unless NP C DTIM E[nloslos],

2.8 Exercises

1. Given an undirected graph G = (V, E') with a subset T C V of nodes specified as terminals,
and nonnegative costs ¢ : V' — R on the nodes, the Node Steiner Tree problem is to find
a tree of minimum total cost containing all the terminals. Transform set covering to this
problem to show that it is NP-hard.

(Extra credit) Derive an O(log|V|) approximation algorithm for the Node Steiner Tree prob-
lem. Hint: Formulate this problem as a set cover problem in such a way that it would be
possible to implement a single step of the greedy algorithm in polynomial time.

Is there an approximation algorithm for this problem with performance ratio o(log |V|)?

2. Construct an example of the set covering problem (one for each |X|) such that

(P1) |Jgreedy| > o -logy| X | - |Jopt|, where o is a constant,
(P2) no two rows of the incidence matrix A are identical and

(P3) in the set family F, no set S; is a subset of another set .S.

3. Repeat the above replacing (P1) with |J,,:| > o -logy| X | - zLp where a is a constant.

4. The fixed-charge median problem is defined as follows: we are given a complete undirected
graph G = (V, E), with nonnegative fixed location costs f : V — %, on the nodes and
nonnegative distances d : £ — %, on the edges. The objective is to locate median nodes at a
subset M C V of the nodes. Every non-median node is defined to be serviced by the median
node closest to it under the distances d. The total cost of this median placement is the sum
of the fixed location costs of all the median nodes, and the sum over non-median nodes, of
the distance of the node to its closest median. Formally, the cost of a placement of medians
in Mis (M) =3 ,ep fo+ Xoev_n mingeys dyy. The goal is to find a placement M with
minimum total cost.

Derive an O(log|V]) approximation algorithm for this problem.
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5. (Extra credit) In showing a 2-approximation algorithm for node-multiway cuts, we showed
half-integrality of optimal solutions for a certain linear relaxation of the problem. The dual
to this relaxation is a linear program whose objective is to maximize the total concurrent
flow between terminals specified in the problem. Prove or disprove: for any specification of
integral capacities, there is a maximum flow solution that is also half-integral.

6. Transform set covering to an instance of the Directed Steiner Tree problem: given a digraph
G = (V, A), with a root node » and a subset ' C V of terminals, and nonnegative costs
c¢: A — R, on the arcs, find an outward-directed spanning tree of minimum total cost with
r as the root and containing all the nodes in 7.
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Chapter 3

Center Problems and Median
Problems

This chapter focuses on discrete optimization problems within a spatial context. Two types of
objective functions are of interest: (i) minimizing the maximum cost of serving one of several clients,
the so-called center problem, and (ii) minimizing the sum of the costs of serving several clients, the
so-called median problem. The first few sections discuss well-known results and algorithms from
the area. This part is based on Christofides [2, Chapters 5 & 6], Larson & Odoni [6, Chapter 6.5],
and on two surveys from Mirchandani & Francis [5], namely, [5, Chapter 1] by J. Krarup and
P. M. Pruzan, and [5, Chapter 2] by P. B. Mirchandani. We do not give original references for this
part, and instead refer the reader to the above texts. The last section discusses a seminal paper
of Lin & Vitter [3] that gives a bicriteria approximation algorithm for the k-median problem. Lin
& Vitter introduce their filtering-and-rounding method. This method first solves an LP relaxation,
then uses the LP solution to construct a filtered problem by fixing some variables to zero in the
integer programming formulation. A near-optimal solution to the filtered problem gives a solution
to the original problem such that the objective value is nearly optimal but some of the original
constraints may be violated. Lin & Vitter’s analysis shows that the objective value is within
a guaranteed factor of optimal, and also the “constraint violation ratio” is within a guaranteed
factor. Lin & Vitter’s work is based on earlier results due to Raghavan and Thompson [8], and

Raghavan [7].

3.1 Introduction

In this chapter, we would like to find optimal (or approximately optimal) locations for routine
services, such as airports, factories, warehouses, schools, garbage incinerators, prisons, etc., as well
as for emergency services such as ambulances, fire stations and snow plows. Locational decisions
are based on many factors; some of these factors are physical, economic, social, environmental or
political. Our focus will be on the quantitative analysis of discrete problems. That is, the locations
must be chosen from a finite number of potential sites selected in a preliminary stage.

We focus on three types of problems:

1. Center problems (also called minimax problems):

25
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A given number of facilities (or services) must be located so as to minimize the maximum
travel cost (or maximum travel time) of the users to/from the facilities. These problems
usually arise in applications involving the location of emergency services.

2. Median problems:
A given number of facilities (or services) must be located so as to minimize the average travel
cost (or average travel time) of the users to/from the facilities. These problems usually come
from applications involving the location of routine, nonemergency services.

3. Uncapacitated facility location problems:
Given a number of potential sites, fixed costs for opening a facility at each site, and profits
made by serving certain clients from certain sites, the problem is to choose sites where facilities
should be located and to assign clients to facilities such that the net earnings are maximized.

The uncapacitated facility location problem is studied in the next chapter.

3.2 The basic model for median problems and center problems

A weighted undirected graph (or network) G = (V, E) is used to model the application. Demands
for service originate at the nodes of G. Each node v € V has a real-valued demand h(v); this
indicates the rate (or intensity) at which demands for service originate from node v. Each edge
vw € E has a real-valued cost c(vw); this represents the cost of providing a service (or sending
a commodity) from node v to node w (or from node w to node v). The goal is to locate one or
more facilities to serve the node demands such that a specified objective function is maximized or
minimized. A facility can be located at any point of the network GG, where a point z is either a node
or a location on an edge vw, and in the latter case the point is specified by giving d(z, v) (or d(z, w))
such that d(z,v) + d(z,w) = c(vw) (i.e., we add a “new node” z and “new edges” zv,zw with
costs d(zv), d(zw) such that d(zv) + d(zw) = c¢(vw) ). For a point  and a node v, d(z, v) denotes
the minimum cost of a path between z and v. In other words, if z is a node, then d(z,v) is the

-1
minimum over all paths vgvyvs - - -vy_1vs such that vg = @ and vy = v of ZC(W, vi+1), otherwise,
if  is a point on an edge v'w’ then d(z,v) is the minimum over all patil:sovovlvz -« -vp_1vy such
-1
that vo =2, v =¢ or vy =w,and vy =v of d(z,v1)+ Zc(vi,vi+1). For a set of points
z= {2y, ---,2,} and anode v € V, d(X,v) denotes 216151( d(z;, v)i,:::hat is, d(X,v) is the minimum

cost of a path between any one of the points @; in X and v.

3.3 Center problems (minimax problems)

The problem is to locate k facilities on the points of a given network GG so as to minimize the
maximum cost of a path between a demand node and its “closest” facility. The main applications
are to the location of emergency services such as fire stations, ambulances, etc.
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For a point & of the network G let m(z) denote

max d(z,v),
the cost of a “shortest” path between z and a “farthest” demand node. Recall that a point z is
either a node of G or a location on an edge of G.
The vertez center (or node center) is defined to be a node z* € V such that for every node
yeV,
m(z") < m(y).

The local center of an edge pq is a point z; on pq such that for every point y on pgq,

m(zg) < m(y).

The absolute center of the network G is a point * in G such that for every point y in G (y may be
on an edge of G)
m(z") < m(y).

To find a single node center, we compute the matrix of shortest paths costs for all pairs of nodes,
and then choose a node such that the maximum entry in its row in the matrix is smallest among
the maximum entries of all rows. See Figure 3.1 for an example.

d(v, w)
6 86 Vp Vg VU3 Vg Uy
es ! vn|0 8 8 6 2
4 @ 2 v | 8 0 2 10 6
€6 €2
) vs| 8 2 0 12 8
eq va| 6 10 12 0 4
vs| 2 6 8 4 0

(vs) ° (v2)
5 6. 2

Figure 3.1: Finding a single node center on an example (from Chapter 5, “Graph Theory: An
Algorithmic Approach”, by Christofides). The matrix d of shortest paths costs is shown. Either v;
or vs may be taken as the node center.

Finding a single absolute center is more involved. We start with a simple method, then develop
a more efficient method. Figure 3.2 shows the working on an example.

Algorithm Simple Algorithm for Absolute Center
input: Graph G = (V, F'), nonnegative edge costs c.
output: Absolute center of G, c.

for each edge pq of G, find the local center z,, of the edge;
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choose the local center * (among those found in the previous step) that minimizes m(z*);
output z*, since it is an absolute center of G;

The absolute center of G may not coincide with the node center of G. Moreover, the absolute
center of G may be located on an edge that is not incident to the node center of G.
To develop a more efficient method for finding absolute centers we state two results.

Proposition 3.1 For the set of all points ¢ on a fized edge of G, the mazimum distance function
m(z) is piecewise linear and its slope is always +1 or —1.

Proposition 3.2 For an edge pq, the local center @, satisfies

m(p) + m(q) — c(pg)
2 1)

m(zy) >
where c(pq) denotes the cost of edge pq.

Proof: Consider any point on the edge pg. Let z, 0 < & < ¢(pg), specify the point, where we take
the point with « = 0 to be p and the point with « = ¢(pgq) to be ¢. We take d(z, p) to be z and
d(z, q) to be ¢(p, g) — . The cost of a shortest path between z and a farthest demand node, m(z),
is piecewise linear with a slope of +1 or —1, its value at ¢ = 0 is m(p), and its value at z = ¢(pq)
is m(q). Hence,

m(z) > mp)—z  (Vo: 0<z <c(pg)), and
m(z) > m(q) — (c(pg) — ) (Ve : 0 <z <c(pg)).
Adding the two inequalities above and then dividing by 2, we obtain the result. |

Algorithm Improved Algorithm for Absolute Center
input: Graph G = (V, F'), nonnegative edge costs c.
output: Absolute center of G, c.

find a node center z € V', and let t = m(z);

for each edge pgq in sequence do
if (m(p) + m(q) — c(pq))/2 <t
then find the local center z,, of pg and let t = min{t, m(z,,)};
end (if);

end (for);

output z* and ¢, where z* is the last point that assigned a value to ¢, and ¢ = m(z*);

At termination of the algorithm, the absolute center is the point z* (node center # or local
center z,,) that assigned the last value to t.
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Figure 3.2: Finding a single absolute center for the example in Figure 3.1 (from Chapter 5, “Graph
Theory: An Algorithmic Approach”, by Christofides). For each edge pg, the local center is found
by plotting d(z, v;) for each node v; € V', where 0 < @ < ¢(pq) — in the figure, d(z, v;) is abbreviated
to d(¢). The “upper envelope” of the five d(z, v;)’s is indicated by thick lines: for each point z in
pq, the upper envelope gives the cost of a shortest path from # to a farthest node. The local center
T, is the point that minimizes the upper envelope. The absolute center is the point z* on the edge
vsve with d(z*,vs) = 2 and d(z*, vs) = 4; m(z*) = 6.
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3.3.1 Multiple centers
For a set X = {a1,---, 21} of points of G, let m(z) denote mee%;cd(X, v), where d(X,v) as before

denotes the minimum cost of a path between v and any one of the points #; in X. A set X™ of
points (nodes) of G with |X| = k is called a set of absolute (node) k-centers if m(X*) < m(X) for
every set X of k points (nodes) of G.

Proposition 3.3 The problem of finding absolute (or, node) k-centers is NP-hard.

See “p-Center Problems” by G.Y. Handler in “Discrete Location Theory”, Ed., Mirchandani
and Francis, and Christofides and Viola (1971) for approximation algorithms for multiple center
problems.

3.4 Median problems (minisum problems)

Consider the single facility location problem of Figure 3.3. The network represents an urban area;
the nodes represent locations where demands for services are generated, and the edges represent
the roads between these locations. A single facility is to be located in the area (possibly on one of
the roads), and the users need to travel to the facility. The daily demand for the service at each
node v is shown next to the node; this number is denoted h(v). The length of each road vw is also
given; this number is the cost of vw, c¢(vw). The problem is to choose a location for the facility
such that the average travel distance to it is minimized. The key result in this section, Hakimi’s
theorem (Theorem 3.4), assures us that rather than considering the infinite number of points in
the network, we need to focus only on the |V| nodes: one of the nodes is an optimal location.

For a set of points X (the points in X may be nodes or locations on edges), let J(X) denote

Zh(v)d(X, v). In other words, J(X) is the total cost of serving all the node demands, assuming

vEV
that a facility is located at each point 2; € X and that each node v € V is served from the “closest”

point z; € X, i.e., all the demand of v is served by a point z; € X with d(z;,v) = d(X,v).
A median of network G is defined to be a point z* € G such that for every point z € G,

J(z") < J(=),

i.e., a median is a point that minimizes the total cost of serving all node demands.
A k-median is defined to be a set X; of k points 27,23, - -,z € G such that for every set X},
of k points,
J(X7) < J(X).

If k facilities are to be located at the k points in X}, then finding the k-median X; amounts to
finding the set of k locations that minimizes the total cost of serving all node demands. If each h(v)
is fixed to be the fraction of all calls for service that originate from node v, then J(X}) gives the
average cost of providing the service to all users, and finding the k-median X; amounts to finding
the set of k locations that minimizes the average cost of serving all node demands. The proof of
Hakimi’s theorem for a single median follows; the general case is left as an exercise for the reader.

Theorem 3.4 (Hakimi’s theorem) At least one set of k-medians exists solely on the nodes of G.
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Figure 3.3: An example of a single median problem (from Chapter 6, “Urban Operations Research”,
by Larson and Odoni). Node ¢ is a median of the network.
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Proof: (for a single median) Let 2* be a median of G. If z* is a node, then the proof is done,
so suppose that z* lies strictly inside an edge ww. Partition the node set V into sets U and W (so
UNW =0, and UUW = V), where node v is in U if and only if there is a minimum-cost path
between v and z* that contains u. Without loss of generality, suppose that Zh(v) > Z h(v).

vel veEW
Now,
J(z*) = Zh(v)d(v,az*)
veEV
= Y r)dv,u) +d(u,z%)] + D h(v)d(v,z)
vel veEW
= Zh(v)d(v,u) + Zh(v)d(u,m*) + Zh(v)d(v,a}*)
vel vel veEW
> Y _h()d(v,u) + ) h(v)[d(u,z) + d(v,z7)]
vel veEW
(because Zh(v) > Zh(v))
vel veEW
> Zh(v)d(v,u) + Zh(v)d(v,u)
vel veEW

( using the triangle inequality: d(v,z™)+ d(z™,u) > d(v,u))
= Zh(v)d(v, u)

veV
= J(u).

This completes the proof: the 1-median can always be moved from a point strictly inside an edge
to an end node of the edge without increasing the objective value.

3.4.1 A single-median algorithm

To find a single median in a network, which consists of a graph G = (V, E) and edge costs ¢ : E —
R, we compute the matrix d of shortest paths costs between all pairs of nodes. This computation
is done either using inspection or one of the all-pairs shortest-paths algorithms such as the Floyd-
Warshall algorithm or | V| applications of Dijkstra’s algorithm. Next, we compute the terms h(v)d,,,
by multiplying each column of the matrix d by the demand of node v. Each of these terms gives
the cost of satisfying the demands originating at node v assuming that the facility is located at
node w. The optimum location for the facility can now be found by summing across the entries for
each row w of the [h(v)d,,]| matrix; this gives the total cost of serving all the node demands if the
facility is located at node w. Normalizing the node demands h(v) by dividing by the total demand
Zh(v), we can find the average cost associated with each of the |V'| candidate locations. See the

veV
top part of Figure 3.4 for an example.

Algorithm Single-Median Algorithm
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input: Graph G = (V, F'), nonnegative edge costs ¢, and node demands h: V' — %.
output: A median node.

obtain the matrix d of shortest paths costs;

multiply the vth column of d by the node demand h(v) to obtain the matrix [h(v)dy.];
for each row w of the matrix [h(v)dy,], compute the sum of all terms in the row;

take the median ¢* to be a node whose row sum is minimum;

output z*;

3.4.2 A multimedian heuristic

For small k (or small |[V| — k), the k-median can be found by a straightforward extension of the
single-median algorithm. By Hakimi’s theorem, we only need to consider sets of points consisting

of k nodes. With a total of n = |V| nodes, the number of sets of k nodes to be examined is
<n> N —  ___ Ifboth k and n — k are moderately large, then the number of sets to be
k (n — k)—FEk

examined becomes prohibitively large. For small k, total or average costs for each of the <Z>

sets of locations can be obtained from the [h(v)dy,]| matrix: all the demand from each node v
is “assigned” to the facility “closest” to it, i.e., the facility w that minimizes d,,, among the k
facilities.

The multimedian heuristic algorithm below finds a set S of k nodes that is not guaranteed to
be optimal but is locally optimal in the sense that for any set X of k nodes if X and .S have k — 1
nodes in common, then J(S) < J(X), i.e., S has as good an objective value as any set X obtained
by replacing one node of S. The algorithm begins by finding a single median and then increases
the number of selected points in steps of one at a time until this becomes equal to the required
number, k. By Hakimi’s theorem, only the nodes need to be considered for inclusion in the set S.
See Figure 3.4 for a worked example.

Algorithm Multimedian Heuristic Algorithm
input: Graph G = (V, F'), nonnegative edge costs ¢, node demands h: V — R, and
a number k£ > 1.
output: “Locally optimal” set S with |S| = k; S may not be a k-median,
but for any set X with |[X|=4kand [SNX|=k—-1, J(S) < J(X).

find a single median of G, and suppose that it is node z;
S = {z};
while |S|< k do
(facility addition step)
find a node y € V\S that maximizes J(S) — J(S U {y});
(adding y to S gives the maximum improvement in the objective value)

S = SuU{y};
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Figure 3.4: Finding a single median and an (approximate) 2-median on the example in Figure 3.3
(from Chapter 6, “Urban Operations Research”, by Larson and Odoni). The matrix [h(v) dy,] is
shown. The optimum location for the facility (single median) is at node c.

)

[h(v) dyw] row
a b ¢ d e f g h ( sums )
0 4 6 6 6 0 32 6| a [ 60 ]
12 0 4 9 4 0 28 5| b 62
9 2 0 3 3 0 20 3| ¢ 40
6 3 2 0 4 0 24 4| d 43
18 4 6 12 0 0 32 6| e 78
154 4 9 5 0 12 1| f 50
24 7 10 18 8 0 0 3| ¢ 70
18 5 6 12 6 0 12 0| A 59

single median: node ¢, with J({c}) = 40.

2-median heuristic:

facility addition: find mi‘rfl J({y, c}).
ye

y— a|blc|d|e| flg]|h
J({y,c}) 31|38 | —|34|37|30|20|29

let S = {g,c}, with J(S) = 20.
solution improvement:
try swapping ¢ with each of @, b, d, e, f, hin turn:
S = {d, g} with J(S) = 18 gives improvement;
try swapping d with each of a, b, ¢, e, f, hin turn: no improvement;

try swapping g with each of a, b, ¢, e, f, hin turn: no improvement;
stop and output S = {d, g} with J(S) = 18.
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(solution improvement step)
swapP: for each z € S do
for each y € V\S do
if J({y} U (S\{z})) < J(9)
then S = (S\{2}) U {y};

go to SWAP;
end (if);
end (for);
end (for);
end (while);
output S;

3.5 Bicriteria Approximations for the k-median Problem

In this section, we sketch a bicriteria approximation algorithm for an important facility location
problem, the k-median problem. The performance guarantees are nearly best-possible.

3.5.1 Introduction

The k-median problem is an important problem that arises in a variety of contexts from facility
location, clustering and data compression: In the most general version of the problem, we are
given a complete directed graph with nonnegative costs ¢;; in its arcs (4j). The objective is to
choose k vertices as medians so that the sum of the costs from every vertex to its closest median
is minimized. The symmetric version of the problem is the undirected counterpart of the problem
obeying ¢;; = cj;. Another special case arises when the (symmetric or asymmetric) costs obey the
triangle inequality.

The k-median problem can be viewed as the bicriteria problem of minimizing simultaneously
the number of medians used and the sum of costs to the nearest medians. Call the latter quantity
“median cost.” In our terminology, this is the problem (Number of medians, Median cost, Empty
subgraph) or simply (Number of medians, Median cost). Note that following our convention, we
have imposed a budget k on the first objective in the above formulation.

We shall study a rounding method due to Lin and Vitter [3] that works on the linear program-
ming relaxation of a natural IP formulation for the problem. First, we review hardness results on
approximating this problem.

3.5.2 Hardness of approximation

The k-median problem is very closely related to the dominating set problem in an undirected graph.
In the latter problem, we are given an undirected graph G = (V, E') and a positive integer k, and
the task is to determine if there exist a dominating set of G of size at most k. In other words, does
there exist k nodes in G such that every vertex is either one among these k or is adjacent to one
among these k vertices.
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Even when the cost matrix for the k-median problem is symmetric and obeys the triangle
inequality (i.e., metric), it is hard to obtain a (o(logn), 1) approximation in an n-node problem.

Theorem 3.5 Let f(n) = o(logn), and suppose there exists a (f(n),1) approzimation algorithm
for the k-median problem on an n-node graph with metric costs (i.e., if Vi, is an optimal median set,
the approzimation algorithm outputs a set U of medians with |U| < f(n)k and Y,y minjepy{c;;} <
ey minjev, {ci;}). Then both the dominating set and set covering problems can be approrimated

within a factor of O(f(n)).

Proof: We use a reduction from the dominating set problem. Given an unweighted graph G,
we use its edges to define a metric on its nodes, namely the shortest path metric using edges in
G. Thus c;; is the number of edges in a shortest path between 7 and j in G. Suppose a minimum
dominating set in GG has size k. Then there is a solution to the corresponding k-median problem
with median cost at most n — k.

Conversely, suppose the approximation algorithm for the median problem outputs a median set
U with at most f(n)k vertices and median cost at most n—k. We bound the number of vertices non-
dominated by U, i.e., not in or adjacent to U. We claim there can be at most f(n)k such vertices.
For otherwise, the median cost of the solution U would be at least 2f(n)k + (n — f(n)k — f(n)k).
The first term is a lower bound on the median cost of all the nondominated vertices, while the
second term is a lower bound on the cost of all the remaining vertices other than those in U, and
those that are nondominated. The resulting median cost is greater than n — k, a contradiction.
Now, it is easy to form a dominating set out of U: simply include all the nondominated vertices in
the set to obtain a dominating set of size at most 2f(n)k. This implies the theorem. I

For the same problem, without the triangle inequality, it is easy to show that there is no (1, p)
approximation for any p.

Theorem 3.6 Let p > 1 and suppose there exists a (1, p) approzimation algorithm for the k-median
problem on an n-node graph with symmetric costs. Then there is a polynomial time algorithm for
the dominating set problem.

Proof: We use a similar reduction from the dominating set problem as before. Given an un-
weighted graph G, we now define ¢;; to be one if the edge ij is in G, and to be p(n — k) + 1 if 45 is
not an edge. Suppose a minimum dominating set in G has size k. Then there is a solution to the
corresponding k-median problem with median cost at most n — k.

Conversely, a (1, p) approximation algorithm will return a median set of size at most k such
that its median cost is at most p(n — k). But by our cost function, every node in the graph must
be adjacent to this median set since the cost of every non-edge is more than p(n — k). Thus the
returned median set is dominating, giving us an algorithm for the dominating set problem. I

In fact the proof of the above theorem is approximation preserving and gives the following
stronger theorem.

Theorem 3.7 Let p > 1 and suppose there exists a (f(n), p) approzimation algorithm for the k-
median problem on an n-node graph with symmetric costs. Then there is a f(n)-approzimation
algorithm for the dominating set problem.
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The fact below is a consequence of a straightforward approximation-preserving reduction (do
it!) of the set covering problem to a dominating set problem in an undirected graph.

Fact 3.8 A f(n)-approzimation algorithm for the dominating set problem implies an O(f(n))-
approzimation for the unweighted set cover problem.

By the known hardness results on the set covering problem [3], we can infer that f(n) = Q(Inn).

3.5.3 Rounding by filtering

In this section, we present a ((1+ 1)H(n), 1+ €)-approximation for the general k-median problem
for any € > 0. To do this, we first formulate the problem as an integer program.

Formulation

The choice variables in our IP formulation correspond to deciding whether a median is located
at any given node. Let y; denote this choice, i.e., y; = 1 exactly when vertex j is chosen as a
median node. To formulate the objective function, it is convenient to have a variable that denotes
for every vertex %, the closest median node to this vertex that it is assigned to. Let z;; denote the
assignment of node ¢ to median j. thus #;; = 1 exactly when y; = 1 (node j is a median) and
vertex ¢ is assigned to j, where node j is the closest median node to i. Now we are ready to write
down the integer programming formulation.

(IP) minimize Z Z Cijij
1€V eV
subject to Z z; > 1 VieV

JEV

Dy <k

JjeEV
zij < Yj Y i,j eV

zi;,Y; € {0,1} VZ,] eV

The LP relaxation of the above formulation relaxes the last set of integrality constraints to
allow the variables z;; and y; to take rational values between 0 and 1.

A solution to the linear programming relaxation is completely characterized by a fractional
assignment 3; to the variables y;. The remaining fractional variables z;; can be set “optimally” as
follows [1].

We assign each vertex to all its nearest fractional medians whose yj;-values sum to at least 1.

Formally, sort the values ¢;; for j € V so that ¢;;, ;) < ¢ij,5) < ---¢ij,()- Let p be the index such
that Y07 gy < 1< Y8, 4. Then set ; = gjj for j = j1(4), ..., jp-1(d), and 2,5 ;) = 1 — 57 4.

For all other j, set z3; = 0.

Filtering

The key idea in rounding the LP solution g; is to filter out (set to zero) some of the integral
assignments z;; by using information from ;. In this case, this corresponds to allowing every
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vertex ¢ to be assigned only to the remaining (non-filtered) centers. We must do the filtering so
that there is still a good median solution where every vertex ¢ can be assigned to some non-filtered
vertex that is chosen in the solution. In our case, we can view this assignment as a fractional set
covering problem and hence derive a good filtering rule.

Denote by C; the cost contribution of vertex i to the fractional median cost, i.e. C; =
> jev Cij®ij. For a given € > 0, define the neighborhood of ¢ to be

S;i={j¢€ V|Cij < (1 + E)Ci}.

The filtering now disallows the choices z;; for those j that are not in the neighborhood S;. Despite
this, if we regard y; as fractional choices for the medians, by our filtering rule, we ensure that every
vertex ¢ still has enough fractional medians that it can be assigned to.

Lemma 3.9 For everyi € V and e > 0,

> di>
; .

ies:; 1+e

Proof: We prove by contradiction. Suppose }_;cs 4 < 15? Then

C; = Zcijzzz}j

JjeEV
> > cijai;
JgSi
> (1 + E)CA'@ Z a)}j
JgSi
5 €
> (1 C;(1 -
> (149G - 1)
_ 6
The contradiction proves the lemma. |

Transformation to set covering

The above lemma allows us to look upon the problem of assigning medians to cover the neigh-
borhoods S; of all the vertices in the graph as a set covering problem. We must now choose a
small number of medians to cover all the sets S;. Note that this restriction immediately implies a
bound on the total median cost of our choice since every vertex 7 is assigned to some median within

distance at most (14 €)C; = (14+¢€) Y. j € Vai;.

Lemma 3.10 Suppose every vertez i is assigned to a median within its neighborhood S;. Then the
median cost of the resulting solution is at most (1 + €)Y ;cy > ev Cij®ij, which in turn is at most
(14 €) times the the optimal k-median cost.
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It remains to solve the resulting set cover problem to find an integral solution with a minimum
number of medians. To this end, we can use the several algorithms we studied earlier for rounding
a fractional solution to the set cover problem. However, we still do not have a fractional feasible
solution for the set cover problem of assigning medians to cover all the neighborhoods S;. However,
Lemma 3.9 is useful in producing such a solution.

Set y; = (1 + )y] for every vertex 7 € V. By lemma 3.9, for any vertex ¢, we have

Zygzzl+ )g; > 1.

JES; JES;

In other words, y; s a fractional solution to the set covering problem and the total fractional value

Zyj<21‘|' 14 )k

JjeEV JjeV

of this solution is

Using any of numerous approximation algorithms for the set covering problems we saw earlier,
we can find an integral solution of size at most the fractional cover times H(n) where n is the size
of the largest set and H(n) = 1 + % 4+ ...+ % <Inn + 1, the nt" harmonic number. In our case
n is at most the number of nodes in the graph since every set is a neighborhood of nodes. Thus
the value of the approximate set cover we find is at most (1 + 1) H(n)k. Thus, we have proved the
following theorem.

Theorem 3.11 For any € > 0, there is a ((1 + %)H(n), 1 + €)-approzimation for the general k-
median problem on an n-node graph.

3.6 Exercises

1. Find (i) the node center, and (ii) the absolute center of the network G, ¢ in Figure 3.5 using
any method you like. First, give a precise explanation of your method.

() ’ ")

Figure 3.5: Network for exercise

2. Construct a network (G, ¢ such that the absolute center is located on an edge that is not
incident to the node center.

3. The goal is to show that the following algorithm finds a single absolute center of a tree.
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Algorithm Single Absolute Center of a Tree
input: Tree G = (V, E), and nonnegative edge costs c.

output: Absolute center z*.

choose an arbitrary point z in G}

find an (end) node v, that is farthest from z, i.e., d(, v,) = max,cv d(z, v);
find an (end) node v; that is farthest from v,, i.e., d(v,, v;) = max,cv d(vs, v);

let 2* be the midpoint of the path from v, to vy;
output z*; (2" is the absolute center of G, ¢)
Show that for all points z € G we must have
m(z) = m(z*) + d(z, z7).

Hence, argue that

m(vs) = 2 m(z™)
and, therefore, that 2* must lie on the path associated with m(v,) and must be at the halfway
point between v, and wv;.

. Explain whether or not the following method finds the absolute center of a graph G = (V, E)

with respect to edge costs ¢c: £ — R

Find a pair of nodes 2, y such that the cost of a shortest path from « to y, d(z, ), is maximum
among all pairs of nodes. Take the absolute center z* to be a point at the middle of a shortest
path from z to y.

. Either prove the following statement or give a counterexample: For every network G, ¢ (G

is any graph, ¢ is any nonnegative cost function on its edges) and a single absolute center z*
of G, c there exists a pair of nodes v, and v; such that z* is the absolute center of a shortest
path from v, to v; (i.e., 2* is at the halfway point between v, and v;).

. (More improved algorithm for absolute center; from Chapter 6, “Urban Operations Research”,

by Larson and Odoni.) The goal is to obtain an algorithm for the absolute center that is better
than the improved algorithm (page 28), by using a better lower bound L2(pg) given below for
the value m(z;) of the local center z, of an edge pq. For the edge pq, let v, € V and v, € V
denote the farthest nodes from p and g, respectively, i.e., m(p) = d(p, v,) and m(q) = d(q, v,).
Clearly, the local center z, of pq satisfies m(zy) > max(d(zs,v,), d(z4,v,)). Prove:

(a) For apoint z in the interior of edge pq (i.e., € pq, ¢ # p and z # q), max(d(z, vp), d(z,vy))
may attain at most a single local minimum.
(b) Such a local minimum, if it exists, is attained at the point € pg whose distance from
p along edge pq is
c(pg) + d(g, vp) — d(p, vq)
2 ’
and at this point max(d(z,v,), d(z,v,)) attains the value
d(p, vg) + d(g, vp) + c(pq)
5 .

Ls(pq) =
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m(p) + m(q) — c(pq)

(¢) La(p,q) > , 1.e., La(p, ¢) provides a better lower bound on m(z,)

than the one used in the algorithm on page 28.

7. (Location of a “supporting facility”; from Chapter 6, “Urban Operations Research”, by Larson

and Odoni.) Consider the network of Figure 3.6 and suppose that the nodes v represent five
cities, the numbers next to the nodes give the demands h(v) of the cities, and the numbers
next to the links vw give the mile length ¢, of roadways connecting the cities. Cars travel
on the roadways at an effective speed of 30 m.p.h. Assume that a major facility, say an
airport, has been located at some point on this network. A regional planning group now
wishes to install a high-speed transportation link to the airport with a single station. The
high-speed vehicles will travel on the network at twice the speed of cars and their route will
be the shortest route to the airport. It is assumed that travelers to the airport will choose
the combination of transportation modes which minimizes their access time to the airport
(ignoring transfer times). To clarify the description above, assume that the airport is at
node b and that the single station of the high-speed link is located at node e. Then, the
access time to the airport of travelers from node e is 25 minutes. However, the access time
of travelers from node a is still 40 minutes. (It would take travelers from node a exactly 20
minutes to get to node e by car and then another 25 minutes to get from node e to node b,
so that it is better to go directly to the airport by car.)

2

a b

Figure 3.6: Network for exercise

(a) Show that no matter where the airport is located, an “optimal location” for the station
of the high-speed vehicles must be on a node of the graph, where an optimal location is
one that minimizes the total weighted travel distance to the airport for travelers from
the five cities. Note that the airport is not restricted to be at one of the nodes of the
network. Alternatively, show this for a general network rather than for this specific case
only.
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(b) Assuming that the airport is located at node b, where should the station be located?
Devise an algorithm for solving this type of problem.

(c) Assume now that travel time, in minutes, by car between any two points  and y on the

d 2
network is given by f(dg,) = % , Where d,, is the minimum cost of a path between

the two points, and that travel time through the high-speed link between the same two

1/d,
points is given by g(d,,) = 5 <?y

would you answer part (b) now?

2
> . The optimal location may not be on a node. How

(d) Show that the result you proved in part (a) holds as long as the functions f(d,,) and
9(dzy) are both concave in d,, (Mirchandani 1979).

8. Prove Hakimi’s k-median theorem, Theorem 3.4.

(Hint: Suppose X} is a k-median, and ¢ € X} is not a node. Focus on the nodes v € V
such that d(z,v) < d(Xp\{z},v).)

9. Consider the k-median problem on the graph G = (V, E') in Figure 3.7. This is the Petersen
graph. Note that there are 10 nodes, 15 edges, and every node v € V has degree equal to 3.
Take the cost of each edge to be 1. Take the node set V' to be {1,2,...,10}. The matrix of
shortest paths costs [cy,] is given in Figure 3.7.

001221212 2 27
1012222212
2101212222
2210122122

1221022221

lowl =19 51 2201221
1222210122
222122101 2
2122222101
2222112210 ]

Figure 3.7: The Petersen graph G = (V, E') and cost matrix [c,,] for Exercise 9

(a) Prove or disprove:
The objective value of the 2-median problem is at least 11, i.e., the optimal value of
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(IP) is at least 11, where (IP) is the integer programming formulation of the 2-median
problem. Recall that (IP) has a variable y; for each node j € V, and has a variable z;;
for each ordered node pair ¢,7 € V x V.

(b) Consider the LP relaxation (P) of (IP). Let § be given by
9 =1/5, Vi€ V.

Compute the optimal Z with respect to g, and find the objective value of (P) correspond-
ing to the feasible solution Z, 7.

10. The aim is to apply Lin & Vitter’s Filtering & Rounding method to an example of the k-

median problem, for £ = 1. Recall the integer linear programming formulation (IP) of the
k-median problem, and the LP relaxation (P) of (IP).

Consider the k-median problem in Figure 3.8 below. Note that £ = 1. The “cost matrix”
[cyw] for all node pairs v,w € V x V is given in Figure 3.8.

24 22 15 13
@ e 20 22 20 18

7

0 2 11 21 24 20 10
2 0
@ 9 7
10 o] | 119
v 21 19 12 10 0 3 8 18
15

10
10 12 19 21 18 15 10 O

oo w
(&2 B e
o Ot

10

Figure 3.8: Graph G = (V, E') and cost matrix [c,,,] for Exercise 10.

Let ¥ give a feasible solution to (P), where ¥ is:
?//\2 = 1/4a ?74 = 1/4a ?76 = 1/4a ?78 = 1/4a and ?//\j = Oa V] € {1a 3a 5a 7}

e Find Z that minimizes the objective function with respect to .

Take ¢ = 1/2 and apply the Filtering & Rounding method as follows.

For each node ¢, compute the cost 6’1 = Zjev ¢;;%;; and compute the neighborhood V;.

Write down the set covering problem for the filtered problem, by making use of the
neighborhoods V;.

Solve the set covering problem, using either inspection or the greedy heuristic.
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11. Recall the bicriteria k-median problem (number of medians, median cost). We discussed a

((1+1)H(n),1+ ¢)-approximation for any € > 0 in an n-node graph. The goal here is to give
an (O(1),0(1))-approximation algorithm for the special case of metric costs. In detail:
Suppose that the cost matrix [cyy] (Vv,w € V X V) is symmetric and satisfies the triangle
inequality. Let € > 0 be the parameter. Then modify the filtering and rounding method to
find a set of columns J* such that

1
< )k,

and

Z min c; < 3(1 + E)ZLP,

iev i€
where z7p is the optimal value of the LP relaxation. (In other words, the modified method
may increase the number of medians by a factor of (1 + %) and must achieve an objective

value within a factor of 3(1+ ¢€) of zzp.)
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Chapter 4

The Uncapacitated Facility Location
Problem

This chapter is based on two sources, namely, the survey by Cornuejols, Nemhauser and Wolsey [5,
Chapter 3], and a recent paper by Aardal, Shmoys and Tardos [9]. The book by Nemhauser and
Wolsey [6] has a detailed discussion on the topic of this chapter.

The results of Aardal et al are based on earlier results of Lin & Vitter [3, 4], and Raghavan
& Thompson [8, 7.

4.1 The problem

Given a set of potential sites, a set of clients, and relevant profit and cost data, the goal is to find
a maximum-profit plan giving the number of facilities to open, their locations and an allocation of
each client to an open facility.

In detail, the input to an uncapacitated facility location (UFL) problem consists of

e aset J = {1, ..., n} of potential sites for locating facilities,
e aset I = {1, ..., m} of clients whose demands need to be served by the facilities,
e a profit ¢;; for each 7 € I and j € J; this is the profit made by satisfying the demand of client

i from a facility located at site j, and

a fixed nonnegative cost f; for each j € J; this is the (one time) cost of opening a facility at
site j.

The problem is to select a subset Q (Q C J) of sites, to open facilities at these sites, and to
assign each client to exactly one facility such that the difference of the variable profits and the
fixed costs is maximized. The number of facilities to be opened, |@Q|, is not prespecified, rather it
is determined by an optimal solution. The profits ¢;; usually depend on several factors such as the
per unit production cost of a facility at site 7, the per unit transportation cost from j to ¢, and the
selling price to client 2. An example problem and its optimal solution are shown in Figure 4.1.

46
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m = |I|=3, n=|J|=3
i = 1 for(j=1,...,n)
011
C = 1 01
1 1 0

Optimal solution: S = {1, 2}, i.e., open facilities at sites 1 and 2. Assign client 1 to site 2, client 2
to site 1, and client 3 to site 1 to obtain an optimal value of 1.

Figure 4.1: An example of the uncapacitated facility location problem together with an optimal
solution.

Proposition 4.1 The UFL problem is N P-hard.

Proof: Given an instance of the set covering problem, we can construct an instance of the
UFL problem such that an optimal solution to the UFL problem gives an optimal solution to the
set covering problem. First, we construct a bipartite graph based on the set covering instance:
for each point z; there is a node #; in the “left side” of the bipartite graph, and for each set
S;, S; C{z1,2s,..., 2y}, there is a node S; in the “right side” of the bipartite graph. There is an
edge z;S5; if and only if point z; belongs to set S;. The instance of the UFL problem is as follows:
the set of clients is {1, ..., @}, the set of potential sites is {S1,Ss,...,5,}, the profit ¢;; is
taken to be either zero if edge #;S; is present or —co otherwise, and the fixed cost f; (for each
j=1,...,n) is taken to be 1.

Thus, the problem is to open the minimum number of facilities such that each client (point)
z; can be assigned to a facility (set) S; adjacent to it (that contains z;). It is easily seen that a
solution of the UFL instance (set of sites to be opened) is optimal if and only if the corresponding

solution of the set covering instance is optimal.

4.2  Applications

The UFL problem is used to model many applications. Some of these applications are: bank
account allocation, clustering analysis, lock-box location, location of offshore drilling platforms,
economic lot sizing, machine scheduling and inventory management, portfolio management and
the design of communication networks. We describe the first two applications. The bank account
location problem arises from the fact that the clearing time for a check depends on the city ¢ where
it is cashed, and the city 7 where the paying bank is located. A company that pays bills by cheque
to clients in several locations finds it useful to open accounts in several strategically located banks.
It pays the bill to the client in city ¢ from a bank in city j that maximizes the clearing time. Here
I is the set of cities where clients are located, J is the set of potential bank locations, f; is the
cost of maintaining an account in city j, and c;; is the monetary value of the clearing time between
cities 7 and j. In clustering analysis, we are given a set I of objects, and the problem is to partition
them into clusters such that objects in the same cluster are similar. Here, J is a subset of I, and
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consists of potential cluster representatives; the c;;’s give the similarity between objects ¢ and j;
the f;’s may be either zero, in which case the clustering is entirely based on the similarity between
objects, or the f;’s may be large, in which case the number of clusters tends to be minimized.

4.3 Linear programming formulations of the UFL problem

We start with the an integer linear programming formulation of the problem. For each potential
site j € J we have a zero-one variable z;. The intention is that a facility is opened at site j iff
z; = 1. For each client 7 € I and site j € J, we have a zero-one variable y;;. The intention is that
the demand of client 7 is served by the facility at site j iff y;; = 1.

(IP) maximize zip = Z Z Cij Yi; — Z fizj
el jed JjeJ
subject to Z ¥; = 1 Viel
jeJ
¥i; < oz YViel,VjeJ (Il)
z; € {0,1} vjieJ
vi; € {0,1} Viel,VjeJ (12)

Even if the integrality constraints on the y;; are relaxed, i.e., even if the constraints (I2) above
are replaced by
¥; > 0 Viel, VjeJ,

the resulting mixed integer program is equivalent to (IP) above.
EXERCISE: Prove the above claim.

Another integer programming formulation, (WIP), is obtained from (IP) by replacing the mn
constraints (/1) by the n constraints

Z Yi; < me; Vjeld. (Ill)
1€l

Each of the constraints (I1') is obtained by summing the m constraints y;; < @; in (/1) for a
fixed j € J.

Fact: A set of numbers z; (j € J), y;;(¢ € I, j € J) is a feasible solution of (WIP) if and only if
it is a feasible solution of (IP).

Proof: Clearly, every feasible solution of (IP) is a feasible solution of (WIP). Consider a so-

lution z;, y;; of (WIP). Suppose that for some k € J, «j = 1. Then the constraints Zyij =1
jed

(for each ¢ € I) ensure that each y;; is at most 1. Otherwise, if 23, = 0, then y;, = 0, Vi € I. Since

all the constraints of (IP) are satisfied, the result follows. I

The linear programming relaxation of (IP) (respectively, (WIP)), called the strong (respectively,
weak) LP relaxation and abbreviated (SLPR) (respectively, (WLPR)), is obtained by replacing the
integrality restrictions on the z;’s by linear constraints, i.e., the constraints

z; € {0,1}, Vied
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are replaced by the constraints

0<ez; <1, Vjeld.
(SLPR) maximize z = Z Z Cij Yij — Z i z;
el jeJ ieJ
subject to > g = 1 Viel
jeJ

¥i; < oz Viel,Vjeld
z; < 1 Vjed
z; > 0 Vjed
yi; > 0 Viel,Vijeld

Fact: Every feasible solution of (SLPR) is a feasible solution of (WLPR), but there may be feasible
solutions of (WLPR) that are not feasible solutions of (SLPR).

In practice, the strong LP relaxation performs remarkably well, giving integer optimal solutions
on many instances of the UFL problem. The performance of (WLPR) is far poorer. Unfortunately,
the computational cost of solving (SLPR) for large instances is high, since the number of constraints
is n + m + nm. Specialized methods for solving (SLPR) are being developed by researchers.

4.4  Duality

To write down the dual of the strong LP relaxation, we introduce dual variables u;, i € I,

w;j, 1 €1, j€J,and t;, j € J, corresponding to the (SLPR) constraints Z?ﬁj = 1(Viel),
jeJ

yi; — 2; < 0Miel, VjelJ), and z; < 1(V; € J), respectively. The dual LP is as

follows:

(DuaL SLPR) minimize w = Zul + Z t;
el jeJ
subject to t; — Zwii > —f Vield
el

u; + Wi > Gy Viel, Vjed

Uu; free Viel
w;; > 0 Viel, VjelJ

t; > 0 Vied

It is possible to write two condensed forms for (DuaL SLPR), though the resulting duals are
not linear programs.

4.4.1 First condensed dual

Suppose that all the variables u; in (DuaL SLPR) have fixed values. Then, to minimize the
objective function, we must assign each w;; the minimum value such that the constraints u; +w;; >
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c; (Viel,VjeJ)and w;; >0 (Viel,VjeJ) are satisfied. This gives
wij = (cij —w)", Vi€l Vjel,

where for an expression a, (a)t means max(a,0). Now, consider the variables t; (V5 € J).
To minimize the objective function, we must assign each ¢; the minimum value such that the

constraints t; — Zwii >—f; (VjeJ)andt; >0 (Vje€ J) are satisfied. So, let
el

_I_
t; = (Zwij—fj) , Vi e J.
el
Substituting the formula for w;; above we get
_I_
t; = (Z(Cij — ui)"' — f]) , VjeJ.
el

This gives the first condensed dual:

(CD1)  w= "M 5 i+ e (Sier(es — w) = £)*}.

4.4.2 Second condensed dual

In a feasible solution of the dual LP (DuaL SLPR), suppose that there is a £ € J such that ¢

_I_

is positive, that is, (Z(Clk — ;) — fk) is positive. Then there exists a uy(£ € I), such that
el

ca. — ug > 0. If we increase uy by an amount e(e > 0), then ¢; will decrease by ¢, therefore the

objective value stays the same; also, all dual constraints will continue to hold. It follows that there

always exists an optimal solution to the dual LP with
t; <0 Vi e J.

To see this, use the above procedure repeatedly until each ¢; is at most zero. We also add the
constraints u; < ma}c(cij) (Vi € I); clearly, all optimal solutions of the dual LP satisfy these
J€

constraints. This gives the second condensed dual:

(CD2) minimize w = Zul
1€l
subject to Z(CU —u)t—f <0 Vied
1€l
; < ” € 1.
u < I;lea}(c ) Vi €
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4.5 Heuristics for solving the UFL problem

This section develops two well known heuristics for solving the UFL problem, namely, the greedy
heuristic and the dual descent procedure. These heuristics simultaneously find a candidate solution
z; € {0,1},y;; € {0,1} (Vj € J, Vi € I) to the UFL problem instance as well as a feasible solution
for the dual of the strong LP relaxation. By linear programming weak duality, the objective value
of every feasible solution of (DuaL SLPR) gives an upper bound on the optimal value of (SLPR),
and hence it gives an upper bound on the optimal value of the UFL instance. So, not only do we
obtain a candidate solution to the UFL instance, but also an indication of how “far” this solution
is from being optimal.

4.5.1 The greedy heuristic

We start with an empty set S of open facilities, and at each step we add to S a site j € J\S that
yields the maximum improvement in the objective value. For a set S, S C J, of open facilities, the

objective value is given by
2(8) = > max{eii} - 3 fi-
el ! jES
For a site j € J\S, let p;(S) = 2(SU{j}) — 2(S) denote the change in the objective value when
a new facility is opened at j. For the currently open set of facilities S and for each client ¢ € I,
define ;(S) to be mag'c{cij}; define u;(0) to be 0. That is, u;(S) is the maximum profit obtained
j€

from serving client ¢ using only the facilities in S. Then
2(8) = ui(S) = > _fi
el JjES
and further
pi(8) = 2(SU{j}) — 2(S) = D (cij — wi(S))" ~ £
1€l
In each iteration of the greedy heuristic, we compute p;(S) for each j € J\S. If either J\S is empty
or p;(S) < 0 for each j € J\S, then we terminate the heuristic. Otherwise, we add to S a j € J\S
whose incremental value p;(.S) is maximum. See Figure 4.2 for an example.
Consider the first condensed dual of (SLPR), (CD1), and for each ¢ € I let the ith dual variable
u; be assigned the value u;(S) defined above. Then the dual objective value corresponding to S is

N
w(u(S)) = Y wi(S)+ (Z(Cz‘j —ui(S)* - fj)

1€l jeJ \iel
= > uw(S)+ > (i(S)*,
el JjES
because each j € S has Z(CU —u(S)T - fi =p;(S).

el
For the final solution S¢ found by the greedy heuristic, each j € J\S® has pj(SG) < 0, hence
the dual objective value is
w(u(S%)) = Zui(SG).

1€l
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Figure 4.2: Solving an example of the uncapacitated facility location problem by the greedy heuristic
(from Chapter 3, “Discrete Location Theory”, Ed., Mirchandani & Francis).

Iteration 1:

Iteration 2:

So=10, Z(So)=0, u(Se)=1[0000].

Pl(SO) Pz(SO) P3(SO) P4(SO) P5(SO) pG(SO)
16 15 15 12 10 13

w(u(So)) = (0) + (81) = 81.
S1:= {1}, since pi(Sp) > 0 is maximum.

Si={1}, =2(S1)=16, u(S)=[665 2]

p2(51) p3(51) pa(S1) p5(S1) pe(S1)
2+1)—2=1[(2)-2=0|1)-2=-1|(2)-3=-1|(2)-3=-1

Iteration 3:

w(u(S1)) = (19) + (1) = 20.
Sy :={1,2}, since p2(S1) > 0 is maximum.

Sy={1,2}, 2(S3)=16+1=17, u(S,)=1[6853].

p3(S2) Pa(S2) p5(S2) Pe(S2)
2)-2=0|(1)-2=-1|(1)-3=-2|(1)-3=—-2

w(u(S2)) = (22) + (0) = 22.
stop, since p;(Sz) <0, Vje J\S,.

The greedy solution is S¢ = {1,2}, with objective value Z% = 17.
The dual greedy value W& is the best upper bound computed on the optimal value: we =
“min w(u(Sy)) = w(u(s))) = 20
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The greedy heuristic actually computes the dual objective value w(u(S)) for the set S in each
iteration, and takes the smallest of these values to be the upper bound W& that is returned at the
end, since this value is the least upper bound computed on the optimal value of (SLPR). See the
example in Figure 4.2.

The proofs of the next two results may be found in Cornuejols, Fisher and Nemhauser (1977).
Below, e s 2.71828 denotes the base of the natural logarithm.

Theorem 4.2 For the UFL problem, the objective value Z€ of the candidate solution found by the
greedy heuristic is at least

e—1

1 .
W + ; (%I}g}lcn - ij) :

jeJ
Theorem 4.3 For the k-median problem with c;; > 0 for all i and j (here, f; =0 for all j), the

objective value ZC of the candidate solution found by the greedy heuristic is at least

e—1
e

we.

4.5.2 The dual descent procedure

The dual descent procedure for solving the UFL problem works well on most instances, but it
may perform poorly on hard instances. This procedure is used by the program DUALOC (by
Erlenkotter (1978)), which is one of the best programs available for solving UFL problems.

The procedure attempts to find a good solution uy, . . ., 4, to the second condensed dual, (CD2),
and then uses the complementary slackness conditions to find a candidate solution for the UFL
problem instance. The dual variables u; (Vi € I) are initialized to I;lea}{cij}. This gives a feasible

solution to the constraints
Z(Cij — ui)"' — fj < 0 V] eJ (*)
el
of (CD2). Then the procedure repeatedly steps through all the indices ¢ € I in an arbitrary but
fixed order and attempts to decrease u; as follows: if u; can be decreased to

I}lea:;( {cij : eij < wi}

(i.e., the largest profit ¢;; for client ¢ that is strictly less than u;) without violating the constraint
(*) above, then this is done, otherwise u; is decreased to the smallest value such that the constraint
(*) continues to be satisfied. The procedure terminates when there is an iteration such that no
u; (Vi € I) is decreased. The complementary slackness conditions for finding a candidate solution
to the UFL instance are as follows: A pair of feasible solutions z;, y;; (Vi € I, Vj € J) and u;
(Vi € I) to (SLPR) and it dual, respectively, forms optimal solutions only if

;=0 or tj— > wij=—Ff (Vjed),
1€l
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or, in term of (CD2), only if

z; = 0 or Z(Cij — ui)‘i' — fj =0 (V] S J)
el

This gives us the following complementarity conditions:

z; (Z(Cij — ui)"' — f]) =0 Vi e J.

1€l

Given a feasible solution (uq,...,u,) of (CD2), if Z(CU — ;)" — f; < 0, then we fix z; at zero.
el
Let J(u), J(u) C J, be the set of all sites j such that the constraint () holds with equality, i.e.,

J(u):{jEJ:Z(cij—ui)"'—fj:O}.

1€l

Then, we find a minimal subset K(u) of J(u) such that for all ¢ € I, mI?(x {ci;} = mjetx) Cij
JE €

(possibly, K(u) = J(u)). The set K (u) is the set of sites where facilities are opened. The objective
value of the UFL instance corresponding to K (u) is given by

=2 max {eij} = >, fi

K(u
ier 16K FEK (u)

An example is shown in Figure 4.3.

The dual descent procedure cannot find the optimal solution to every instance of the UFL
problem, simply because the optimal value of the UFL instance may be less than the optimal
value of the strong LP relaxation. Moreover, the procedure is not guaranteed to find an optimal
solution to the condensed dual (CD2). The example in Figure 4.4 has an optimal dual solution
u* = (1,1, 1) with objective value w* = 3, however, the solution found by the dual descent procedure

is uPP = (0, 2, 2) with objective value wDD =4.

Proposition 4.4 Let K(u) be defined as above. For each client i, let k; be the number of sites in
K (u) whose profit c;; is greater than u;, ki = |{j € K(u) : ¢;; > u;}|. If k; is at most one for each
i € I, then K(u) is an optimal set of open facilities for the UFL problem.

Proof: Focus on a client 7. If k; = 0, then we have

max {Cl]} =u; = u; + Z Cz] i a
JeR () JEK (u)

and if k; = 1, then we have

max {c”} =u; + Z Cij — u;)t.
jeK(u JEK (u)
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Figure 4.3: Solving an example of the uncapacitated facility location problem by the dual descent
procedure (from Chapter 3, “Discrete Location Theory”, Ed., Mirchandani & Francis).

6 6 8 6 0 6
6 8 6 0 6 6
¢ = 5 03 6 30
2 30 2 4 4
Step | ur uz usz uy Z (cij—u)™ — f;
el
no. j=1 j=2 =3 j=4 j=5 j=6
0 8 8 6 4 -3 -2 -2 -2 -3 -3
1 6 8 6 4 -3 -2 0 -2 -3 -3
2 6 6 6 4 -3 0 0 -2 -3 -3
3 6 6 5 4 -3 0 0 -1 -3 -3
4 6 6 5 3 -3 0 0 -1 -2 -2
5 6 6 4 3 -2 0 0 0 -2 -2
In the last iteration, u; cannot decrease otherwise the constraint
> (eij—u)t — f;<0 ()

el
is violated for j = 3, and us cannot decrease otherwise the constraint (%) for j = 2 is violated; us

is decreased from 5 to 4 (not 3, since that violates the constraint (%) for j = 4); u4 cannot decrease
otherwise the constraint (%) for j = 2 is violated.

The dual objective value is wDD(u) = Zul =19, J(u) ={2,3,4}, and K(u) = {2, 3,4}.

el
Opening facilities at sites 2, 3, and 4 gives an objective value of A~ (84+8+6+43)—(2+2+2) = 19.
This solution is optimal, since ZPP = PP (u). Optimality also follows from Proposition 4.4.
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Figure 4.4: An example of the uncapacitated facility location problem on which the dual descent
procedure fails to find an optimal solution for the dual (CD2) (from Chapter 3, “Discrete Location
Theory”, Ed., Mirchandani & Francis).

m = 3, =3
F =12 2 2]
0 2 2
C = 2 0 2
2 2 0
Step | ur us ug || Y. (cij—u)t — f
el
no. j=1 53=2 j=3
0 2 2 2 -2 -2 -2
1 0o 2 2 -2 0 0

In the last iteration, ui, us and us are prevented from decreasing further by the constraints (*) for
j =2, 3 and 2, respectively.

wDD(u):Zui:4>w*:3.
1€l

Now, consider the objective value of the UFL instance corresponding to the given solution K (u),

(K (u))

Z]g}gx {cii}— > fi

el JEK (u)

Z (uz + Z Cij — i ) Z f]a
el JEK (u) JEK (u)
douit D (Z(%’ — )t - fj)

el JjEK (u) \2€l

Z u;, (since complementarity ensures that for each j € K(u),
el

Z(CU — )t — f; is at zero)

el
w(u).

Since the dual objective value equals z(K(u)), K(u) must be an optimal solution. I
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4.6 The filtering and rounding method for location problems

4.6.1 Introduction

This section describes the filtering and rounding method, a recently developed method for finding
approximately optimal solutions to NP-hard location problems. The method starts from an optimal
(or near-optimal) solution to an appropriately formulated LP (linear programming) relaxation, and
obtains a near-optimal solution to the original location problem. There are two major steps. The
filtering step uses the optimal LP solution to construct a “filtered problem” by fixing some variables
to zero in the integer programming formulation. Thus the filtered problem is a restricted version
of the original location problem. The critical point is this:

every integral solution of the filtered problem is guaranteed to have its objective value
“near” (i.e., within a (1 + ¢)-factor of) the optimal value of the original LP.

The rounding step produces a feasible integral solution to the filtered problem, either by using
a simple randomized heuristic for “rounding” a “fractional solution” (i.e., a solution to the LP
relaxation) to the filtered problem, or by using a simple greedy heuristic (nonrandomized) for the
same task.

In our application, the “minimize” UFL problem with symmetric costs that satisfy the triangle
inequality, the method does give a feasible integral solution whose objective value is “near” the
optimal value.

The filtering and rounding method originated from the work of Lin & Vitter (1992). They apply
it to the k-median problem. The application to the “minimize” UFL problem with restricted costs
is due to Aardal, Shmoys and Tardos (1997).

4.6.2 An integer programming formulation for “minimize” UFL problems and
its LP relaxation

Let V be a set of nodes. Let I C V be a set of client nodes, and let J C V be a set of site nodes.
For each pair of nodes v, w € V, let c,,, be the service cost for v, w. For each site node j € J, let f;
be the fized cost for opening a facility at j. The “minimize” UFL problem is to open facilities at a
subset of sites J* C J and to assign each client ¢ € I to a facility j € J* so as to minimize the sum
of the “service costs”, namely, > ;c;{ci; | j € J* is the unique facility assigned to serve client i} ,
and the “fixed costs”, namely, > ;¢ j« f;.

Here is an integer linear programming formulation of the “minimize” UFL problem. Let (IP)
denote this integer linear program, and let z7p denote the optimal value of (IP). For each site j € J
we have a zero-one variable y;. The intention is that a facility is opened at site j iff y; = 1. For
each client ¢ € I and site j € J, we have a zero-one variable z;;. The intention is that the demand
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of client 7 is served by the facility at site j iff z;; = 1.

(IP) =z1p = minimize Z Z Cij Tij + Z i vs
el jeJ jeJ
subject to Z Ti; = 1 Viel
jeJ
zij < Yj VieI,Vjeld
Y; € {0,1} Vied
T € {0,1} Viel,Vijeld

The linear programming relaxation of (IP) is obtained by replacing the integrality restrictions
on the y;’s by linear constraints, i.e., the constraints

y; €{0,1}, Vied

are replaced by the constraints
0<y; <1, Vel

Also, the integrality restrictions on the z;;’s are replaced by nonnegativity constraints
0 < z;5, Vie I, Vjed

Let (LP) denote this relaxation, and let zz,p denote the optimal value of (LP).

4.6.3 The Aardal-Shmoys-Tardos algorithm for “minimize” UFL problems

Recall that a function ¢ : V' x V—R is said to satisfy the triangle inequality if the following holds
for all triples of nodes u,v,w, c¢(v,w) < c(v,u)+ c(u, w).

Theorem 4.5 (Aardal, Shmoys & Tardos (1997)) Suppose that the service costs ¢ and the
fized costs f are nonnegative. If the costs matriz [cyw] (Vv,w € V) is symmetric and satisfies the
triangle inequality, then there is a 3-approzimation algorithm for the “minimize” UFL problem. In
fact, the approzimation algorithm delivers a feasible integral solution ,y to (IP) whose objective
value is at most 3zpp.

We will prove a weaker version of this theorem. The proof will describe an approximation
algorithm, and we will prove that it achieves an approximation guarantee of 4. Let ¢ be a fixed
parameter. (It will turn out that the best choice is € = 1/3.) Focus on the objective function of
(IP) or (LP), and note that it consists of a “service cost” part (3,7 > c s ¢ij@i;) and a “fixed cost”
part (ZjeJ f;y;). Let z}p and z}jp denote the values of the “service cost” part and of the “fixed
cost” part in an optimal solution to (LP).

Let Z,% be an optimal solution to (LP). For each client 7 € I, define C; = 7,7 ¢;;@;;. Note
that z7p = > ;c;Ci. As in the Lin & Vitter algorithm for the k-median problem, take V; = {j €
J | eij < (1+€)Ci}

Recall the main lemma in Lin & Vitter’s analysis of their algorithm.
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Lemma 4.6 For allic I,

N €
20>
i€V; 1+e

We construct a “near optimal” feasible solution Z,y to the “filtered” (LP), by taking

1+e€, . .

¥ = min{1, (

By the above lemma, for all ¢ € I, we have } ..y y; > 1.

We take [2;;] (Vi € I,Vj € J) to be optimal with respect to ; (Vj € J). (That is, we take g to
be fixed, and use the greedy procedure to find @ such that the service costs are minimized.)

The second part of the algorithm starts with the “fractional” solution z,y and executes several
iterations. In each iteration, at least two fractional variables y; are assigned integer values. In more
detail, one fractional variable y; is assigned the value 1, and one or more fractional variables y;
are assigned the value 0. This immediately implies that several of the fractional variables z;; are
assigned integer values of 0 or 1. We use Z,y to denote the current solution, through all iterations.
At the start of the second part, z, v is obtained from the optimal LP solution as described above.
At termination, 2, § will be a feasible integral solution to (IP), and its objective value will be proved
to be < 4zpp.

Let J = {7 € J | 0 < gy; < 1} denote the set of sites whose variables have fractional values in
the current solution . Let I = {# €I]|3djeJ suchthat 0 < Z;; < 1} denote the set of clients
that are partially assigned to a “fractional site.”

Fact 4.7 For each client i in f, there 1s no site j € J such that z;; > 0 and y; = 1, and moreover,

{j € J | 2;; > 0} must contain at least two “fractional sites” j € J.

The goal in each iteration is to maintain the following:

Induction hypothesis:

(1) z,y is a feasible solution to (LP).

- 1 1 -
@ Y55 < 594, = ESHY s
jeJ € € jes

-~

(3) Viel : %ij>0:>Cij§(1‘|‘€)Ci-

(4) Viel : Zcijfij < 3(1 + 6)6’1
jeJ

The induction basis is that parts (1)—(4) of the induction hypothesis hold at the start (of the
second part of the algorithm). Part (1) follows from Lin & Vitter’s main lemma; part (2) holds by
our choice of y; < (14 €)¥;/¢, Vj € J; parts (3) and (4) hold by our choice of V;, Vi € I.

An iteration starts by choosing a client h € I that minimizes @h, ie., Ch < @i, Viel.
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Let L = {j € J | @n; > 0}, and note that L C J. That is, L consists of the sites assigned to
serve the client h by the current solution z,y. By the fact above, every site in L is “fractional”,
and L must have > 2 sites.

Let H={i€ I|dj € L such that Z;; > 0}, and note that H C I. That is, H consists of those
clients who are served by at least one “fractional site” in L according to the current solution z, y.

Choose £ € L that minimizes fy, i.e., fy < f;,Vj € L. In words, £ is the “fractional site” serving
our chosen client h that has the smallest fixed cost.

We now change the current solution z,7 to z’,7":

we take gy = 1 and take g = 0,Vj € L — {£};

for all clients ¢ € H, we take Zj, = 1 and take Z}; = 0 V] e J — {{};
for all the remaining variables, we take ¥ yJ =y; and J: = Zjj.

Finally, we must prove that the new solution #’, 7’ satisfies the induction hypothesis, assuming
that the previous solution z,y did so.

Part(1) obviously holds.

For part(2), note that 3. ; f;y, = deL fi9;+>jcs—r fiy;- Focus on the first term, >, f]yj
We claim that it is at least f, = > ;cp, f]y] To see this, firstly note that > .. y; > 1 (since z,¥y
is feasible for (LP), we have Y .c; p; = > ;e h; = 1 and 5 < y;,Vj € J). Secondly, note that
fe < f;,Vj € L, by our choice of £.

Part(3) obviously holds because all clients 7 in the new I were in I — H, and so have the same
values before and after the iteration for their variables z;;(Vj € J).

For part(4), consider any client ¢ € H. We claim that ¢;; < 3(1 + 6)6’ To see this, firstly
note that by the definition of H, there must be a site j € L with z;; > 0, hence c” <1 + 6)6’
Secondly, note that by the definition of L, both Zj; > 0 and Zp, > 0, hence ¢;; < (1 + E)Ch and
cne < (14 e)é’h. Since [c¢yy] is symmetric and satisfies the triangle inequality, and moreover, we
chose client h to minimize C}, over all i € I, , we have

cie < cij+ cin+ cne < cij + enj+ene < (L+€)(Ci + Crn + Cr) < (14 €)(3C5).

To derive the approximation guarantee of 4, we take ¢ = 1/3 and apply the induction hypothesis
to the final solution Z,y, which is guaranteed to be integral. Then we see that the final solution
Z,y has service cost

3(1+€ > Ci=3(1+¢)zip < 4zip,
el

(by part(3) of the induction hypothesis), and has fixed cost

1+ €

€

f f
)zrp < 4z1p,

<(

(by part(4) of the induction hypothesis).
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4.7 Exercises

1. (From Chapter 3, “Discrete Location Theory”, Ed., Mirchandani and Francis.) Consider the
instance of the UFL problem defined by m =5, n=38, f;=2forj=1,...,8,and

3 63 56 4 30
4 45 3 5 2 0 5
C=143 43 40465
5 3 46 04 6 3
5 5403 6 5 3

(a) Use the greedy heuristic to find a solution. Give the greedy value Z¢ and the dual
greedy value WC.

(b) Give the optimal value W' of the weak linear programming relaxation (use the CPLEX
optimizer).

(c) Apply the dual descent procedure, cycling through the indices 7. Give the value WPP (u)
found by this procedure. Is the set K (u) an optimal set of open facilities for this problem
instance?

2. Repeat parts (a)—(c) of the previous problem for another instance of the UFL problem defined
bym=4,n=5,f=[12345], and

9 7 6 7 8
79 8 5 6
¢= 8 7 10 9 8
5 9 8 11 10

3. (From Chapter 3, “Discrete Location Theory”, Ed., Mirchandani and Francis.) Let P denote
the set of nine integral points in the square 0 < 2 < 2, 0 < y < 2. For any point ¢ € P, let z;
and y; be its coordinates. Consider the instance of the UFL problem defined by m = n = 9,
fj=2forallj € P,and ¢;; = —|2; — z;| — |y; —y;| for all 4, j € P.

(a) Use the greedy heuristic to find the values Z% and W¢.

(b) Apply the the dual descent procedure and find the value WPP (u). Is the set K (u) an
optimal set of open facilities for this problem instance?

4. Apply the Aardal-Shmoys-Tardos algorithm (based on the Filtering & Rounding method) to
the following “minimize” UFL problem:

V:{1’2’3’4’5’6’7’8}’ I:{1’3’5’7}’ J:{2’4’6’8}'

The fixed costs f; for the sites j € J are

Fo =400, fi =800, fs=400, fs= 200.
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Figure 4.5: Graph G = (V, E) and cost matrix [c,,,]| for Exercise 4.
The service costs are given by the matrix [c,,,] (Vv,w € V X V) in Figure 4.5. Note that the
matrix [¢,,] is symmetric and satisfies the triangle inequality.
Start with the fractional solution ¥ given by
Yo=1/4, §s=1/4, FJs=1/4, ys=1/4.
Take the parameter ¢ = 1/2.
5. The aim here is to consider a generalization of the “minimize” UFL problem and to develop

a 4-approximation algorithm.

In the “minimize” UFL problem, suppose that each client ¢ € I has a nonnegative real-valued
demand h; (different clients may have different demands). Consider the modified objective

function
minimize Z Z hicijei; + Z ;-
el jeJ JjeJ
Modify the Aardal-Shmoys-Tardos algorithm so that it finds a feasible integral solution Z,y

whose objective value is < 4zpp, where zpp is the objective value of the LP relaxation using
the above objective function.
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Chapter 5

Minimum Spanning Trees

This chapter is based on well-known results. Our discussion follows Ahuja, Magnanti & Orlin [1,
Chapter 13] and the survey by Magnanti and Wolsey [8].

The focus of this chapter is on the linear programming formulation of the minimum spanning
tree problem due to Edmonds. Also, we describe the well-known algorithms of Kruskal and Prim for
finding minimum spanning trees. For further details and data structures for efficiently implementing
these algorithms, we refer the reader to Cormen et al [4].

5.1

Applications

We start with some applications of the minimum spanning tree problem.

(a)

Minimum-cost road interconnection network:

There are n towns in a region. For certain pairs ¢ and j it is feasible to build a direct road
between i and j, and there is a cost ¢;; incurred if the road ij is built. The problem is to
construct enough roads so that every pair of towns can communicate (perhaps indirectly),
and the total construction cost must be minimized.

Finding routes with maximum bottleneck capacity:

There are n computers connected by a network such that for certain pairs ¢ and j there is a
direct link with a capacity of ¢;; bits/second. For each pair of computers, the problem is to
find a path between them (i.e., a sequence of direct links) such that the bottleneck capacity
(i-e., the smallest link capacity in the path) is as large as possible. (See Problem 3 for more
details.)

Reducing data storage:

There is a 2-dimensional array such that the rows have similar entries and differ only at a
few places. Let c;; denote the number of different entries in rows ¢ and j. The problem is to
store the array using a small amount of storage space. One solution is to store a reference
row ¢ completely, and for the remaining rows j to store only the positions and entries where
rows ¢ and j differ.

64
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(d) Cluster analysis:

Given a set of n data points, the problem is to partition it into “clusters” such that data
points within a cluster are “closely related” to each other. Kruskal’s minimum spanning tree
algorithm (see Section 5.4) maintains “clusters” and at each iteration “merges” the “closest”
two clusters. The algorithm starts with n clusters, and ends with one. Each stage of the
algorithm gives a partition of the data points into clusters. Consequently, several solutions
to the clustering analysis problem can be found by running Kruskal’s algorithm on the given
data points.

5.2 Trees and cuts

This section has some fundamental results on trees and cuts that are used in this chapter and the
later chapters. We recall a few definitions from Chapter 1. A tree is a connected graph that has no
cycles. Given a node set Q@ C V, §(Q) denotes the set of all edges with one end in @ and the other
end in V\@Q. A cut consists of all edges that have one end in Q and the other end in V\Q, where
Q is a node set. this cut is denoted (Q, V\Q). Clearly, if § # Q # V, then §(Q) = (Q, V\Q).

Proposition 5.1 A graph G = (V, E) is connected if and only if for every node set Q C V,
0£Q#V,8(Q)#0.

Proof: Suppose that there is a node set @, 0 # Q # V, with §(Q) = 0. Then G is not connected
because for any node v € @ and any node w € V\Q (both v and w exist) there is no path from
v to w in G. For the other direction, start with any node v; let Q = {v} and let F' be an edge
set that is initially empty. As long as Q # V, there is an edge ¢z in §(Q) with ¢ € Q and z ¢ Q.
Repeatedly, add the edge ¢z to F' and add z to . By induction on the number of steps, observe
that the subgraph (@, F') contains a path from the start node v to each node ¢ € Q. Hence, when
Q =V, then (Q, F) is a connected spanning subgraph of G, implying that G is connected. (In fact,
the final F' is (the edge set of) a spanning tree of G.)

Theorem 5.2 Let T' = (V, F) be a graph. The following statements are equivalent:
(a) T is a tree, or equivalently, T is connected and has no cycles.
(b) There is exactly one path between each pair of nodes in T.

(c) T contains |V | — 1 edges and is connected.

(d) T contains |V| — 1 edges and has no cycles.
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Theorem 5.3 Let G = (V, E) be a graph, and let F C E be an edge set such that T = (V, F) is a
spanning tree of G.

(a) For every edge e € F (e is a tree edge) the subgraph T\{e} = (V, F\{e}) is a forest consisting
of two trees, say, T1 = (V1,F1) and Ts = (Va, F2) (i.e., removing e disconnects T' into two
trees). The node sets Vi, Vo form a partition of V.. For every edge € in the cut (Vi,Va), the
subgraph (T\{e}) U {e} = (V, (F\{e}) U {e}) is a spanning tree of G (i.e., adding € joins the
two trees into one).

(b) If ¢’ is an edge in E\F (€' is a nontree edge), then the subgraph T' = (V, FU{e'}) has ezactly
one cycle (i.e., adding e’ to T gives one cycle). The cycle consists of e and the unique path
i T between the ends of €.

(c) Let T be the subgraph in part (b). For every edge e in the unique cycle of T' the subgraph
T"\{e} = (V, (Fu{e'})\{e}) is a spanning tree of G (i.e., removing e from T' gives a spanning
tree).

5.3 Minimum spanning trees

Let G = (V, E) be a graph, and let each edge ij € E have a real-valued cost c(ij). We also use ¢;;
to denote the cost. The cost of a subgraph G’ = (V’, E’), denoted ¢(G’) or ¢(E’), is defined to be
the sum of the costs of all edges in G/, Z c(e). A minimum spanning tree of G is defined to be a

ecE'’
spanning tree of G whose cost is minimum. Recall that a spanning tree is a connected subgraph of

G that has no cycles.
The next two results give two alternative characterizations of minimum spanning trees.

Proposition 5.4 (Cut optimality condition) A spanning tree T = (V,F) of a graph G =
(V, E), cis a minimum spanning tree w. 7. t. ¢ if and only if for every edge ij € F and every edge
kL in the cut (V1,Vs), where Vi and Va are the node sets of the two trees in T\{ij},

Cij < Cy.

Proof: Suppose that T is a minimum spanning tree of G. Let ij be any edge in F, and let k{¢
be any edge such that nodes k and £ are in different trees of the subgraph T\{ij} (i.e., k€ is as in
the proposition). By Theorem 5.3 the subgraph H = (T'\{4j}) U {k{} is a spanning tree of G, so
¢(H) > ¢(T'). This implies that ¢;; < cpy.

For the other direction, suppose that T satisfies the cut optimality condition but T is not a
minimum spanning tree of G. Let T be a minimum spanning tree of G that has as many edges as
possible in common with T, i.e., T* maximizes |E(T™) N E(T)| among all minimum spanning trees
of G. Let ij be an edge of T that is not in T (¢j exists since T' # T*). Let (Vi, V) be the cut
formed by removing ij from T, where V7 and V5 are the node sets of the two trees in T\{é5}, and
let ¢ be in V7 and let j be in V5. Consider the unique path in 7™ from ¢ to j. At least one edge k{
in this path is in the cut (V3, V) (otherwise all nodes in the path would be in V7). Since T satisfies
the cut optimality condition, ¢;; < cg¢. Hence, removing the edge k¢ from 7™ and adding the edge
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ij gives a new subgraph T = (T*\{kf}) U {¢j} that has ¢(T"*) < ¢(T™). T** is a spanning tree
by Theorem 5.3. This contradicts our definition of T, since T** is a minimum spanning tree of G
that has one more edge in common with 7' than T*.

Proposition 5.5 (Path optimality condition) A spanning tree T = (V, F) of a graph G =
(V,E), ¢ is a minimum spanning tree w. r. t. ¢ if and only if for every edge ij € E\F (ij is a
nontree edge) and every edge k{ in the unique path of T between i and j

Cij 2 Cht -

Proof: Suppose that T is a minimum spanning tree of G. Let ij be any edge in F\F, and
let k¢ be any edge in the unique path of T between ¢ and j. By Theorem 5.3 the subgraph
H = (T U {ij})\{k£} is a spanning tree of G, so ¢(H) > ¢(T'). This implies that ¢;; > cps.
The other direction can be proved in one of two ways:

(1) Similarly to the previous proposition, assume that 7" satisfies the path optimality condition but
T is not a minimum spanning tree of G. Let T™ be a minimum spanning tree of G that has as many
edges as possible in common with 7', let 75 be an edge of T that is not in 7', and let k£ be an edge
of the unique ¢-j path of T that is in the cut given by T*\{4;} (i.e., k¢ € F and k¢ € (V1, V), where
V1 and V; are the node sets of the two trees in T*\{ij}.) Then the spanning tree (T"\{35}) U {k{}
gives the desired contradiction.

(ii) Alternatively, show that if T' satisfies the path optimality condition, then it satisfies the cut
optimality condition (we skip the details). Then the proof is completed by applying the previous
proposition. |

Proposition 5.6 LetT = (V, F') be a minimum spanning tree of G = (V, E), and let F' be a subset
of F. Let (S,V\S) be a cut that contains no edge of F', and let ij be an edge of minimum cost in
this cut. Then there exists a minimum spanning tree of G that contains all edges in F' U {ij}.

Proof: If the edge ¢j is in F, then the proof is done. Otherwise, T' contains at least one edge pq
such that pq is in the cut (S, V\S) (since T is connected) and pq # ij. By the proposition ¢;; < c¢p,.
Then the subgraph H = (T'\{pg}) U {45} is a spanning tree (by Theorem 5.3) and ¢(H) < ¢(T).
That is, H is a minimum spanning tree whose edge set contains F’ U {ij}.

5.4 Algorithms for minimum spanning trees

This section presents two efficient algorithms for constructing minimum spanning trees, namely,
Kruskal’s algorithm and Prim’s algorithm. Kruskal’s algorithm is also called the greedy algorithm.
Given a set of objects, the greedy algorithm attempts to find a feasible subset with minimum (or
maximum) objective value by repeatedly choosing an object of minimum (maximum) cost from
among the unchosen ones and adding it to the current subset provided the resulting subset is
feasible. In particular, Kruskal’s algorithm works by repeatedly choosing an edge of minimum cost
among the edges not chosen so far, and adding this edge to the “current spanning forest” provided
this does not create a cycle. The algorithm terminates when the current spanning forest becomes
connected.
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Algorithm Kruskal’s Minimum Spanning Tree Algorithm
input: Connected graph G = (V, E) and edge costs ¢: E — R.
output: Edge set F C E of minimum spanning tree of G.

F:=0; (F is the edge set of the current spanning forest)
linearly order the edges in E according to nondecreasing cost;
let the ordering be ey, e, ..., ¢ g;
for each edge ¢;, i1 =1,2,...,|E|, do

if U {e;} has no cycle

then F := F U {e;}; (add the edge to the current forest)
if |F| = |V| — 1 then stop and output F; end,
end; (if)
end; (for)

Theorem 5.7 Kruskal’s algorithm is correct and it finds a minimum spanning tree. Its running

time is O(|V||E|).

Proof: At termination of the algorithm, F is (the edge set of) a spanning tree since it has |[V| -1
edges and contains no cycle (see Theorem 5.2). Further, F' satisfies the path optimality condition:
Consider any edge 7j that is not in F'. At the step when the algorithm examined ¢j, F' contained
the edges of a path between 7 and j. Each edge kl in this path has ¢y < ¢;j, since kl is examined
before 7j. This shows that the path optimality condition holds. Then by Proposition 5.5, F' is a
minimum spanning tree.

Remark: By using appropriate data structures, the running time of Kruskal’s algorithm can be
improved to O(|E|log|V']).

Prim’s algorithm starts with a “current tree” T that consists of a single node. In each iteration,
a minimum-cost edge in the “boundary” §(V(T)) of T is added to T', and this is repeated till T is
a spanning tree.

Algorithm Prim’s Minimum Spanning Tree Algorithm
input: Connected graph G = (V, E) and edge costs ¢: E — R.
output: Minimum spanning tree T' = (S, F) of G.

F:=0; (F is the edge set of the current tree T')

S := {v}, where v is an arbitrary node; (S is the node set of T')

while S #V do
among the edges having exactly one end in S, find an edge 75 of minimum cost;
F:=FU{ij};
S:=SU{i71\S); (add the end node in V'\S)

end; (while)
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Theorem 5.8 Prim’s algorithm is correct and it finds a minimum spanning tree. Its running time

is O(|V]?2).

Remark: By using the Fibonacci heaps data structure, the running time of Prim’s algorithm can

be improved to O(|E|+ |V|log|V]).

5.5 LP formulation of the minimum spanning tree problem

We start with an integer linear programming formulation, called (IP), of the minimum spanning
tree problem, and then study the linear programming (LP) relaxation of (IP). Usually, when the
integrality constraints of an integer program are relaxed to give a linear program, then the feasible
region becomes larger, and so the optimal solution of the linear program may be considerably better
than that of the integer program. Surprisingly, Theorem 5.9 below shows that an optimal solution
of (IP) is also an optimal solution of the LP relaxation. In other words, the LP relaxation exactly
formulates the minimum spanning tree problem.

First, introduce a zero-one variable z;; for each edge ¢j in the given graph G = (V, E). The
intention is that the set of edges whose variables take on the value one, F' = {ij € E : z;; = 1},
should form (the edge set of) a spanning tree. By Theorem 5.2, this can be achieved by ensuring
that |F| = Z z;; = |V| — 1 and F contains no cycle. To impose the latter condition, we use the

1j€E
so-called sugtour-elimination constraints :

Z z;; <|S]—-1, VS CV.
ijeB+es,jeS

To see that these constraints “eliminate” all cycles in F' = {ij € E : z;; = 1}, suppose that there
is a cycle D = vy ...vv; (ve41 = v1) such that for each edge e = v;v;41, 1 <4 < £, in the cycle
2, = 1; then for the set S = V(D) = {v1,..., v}, we have Z z;; > £ = 15|, ie., the
ijeB: i€5,j€S
subtour-elimination constraint for S = V(D) is violated.
The constraint Z z;; = |V| — 1 is implied by the first constraint in (IP) together with the

ijeE
subtour-elimination constraint for S = V.
(IP)  minimize Z Cijtij
ijeE
subject to Z z; > |V|-1
ijeE
> e <181, VS CV
ijeE: i€S.jeS
z;; € {0,1}, Vije E

The LP relaxation of (IP) is obtained by replacing the integrality constraints z;; € {0,1} (Vij €
E) by the constraints z;; > 0 (Vij € E). The constraints z;; < 1 need not be added explicitly,
since they are implied by the subtour-elimination constraints for node sets S of size two. The LP
and its dual LP (in standard form) are given below; n denotes |V|.
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(LP) minimize Z Cijtij
ijcE
subject to Z z;; > n-—1
ijcE
> —z; > —|S|+1, VSCV
ijeB: i€5,j€S
z; > 0, Vij e £
(Dual LP) maximize (n—1)y; — Z (IS] - 1)ys
SCcv
subject to Y1 — Z ys < ¢y, Vij e £
SCV: §3i,53j
vn > 0
Yys > Oa VS C vV

Recall from linear programming duality that given a feasible solution z* = [z}; (Vij € E)] of (P)
and a feasible solution y* = [y1,ys (VS C V)] of (D), both are optimal solutions of the respective
LPs if and only if the complementary slackness conditions hold. The complementary slackness
conditions are as follows:

[primal] zij >0 = o= Z Yys = &, Vije B
SCV: $34,53j
n>0 = Z zij = |V| -1
dual el
| ] ys >0 = Z z; = |S]—-1, VS CV.

ij€E: i€S,jES

Theorem 5.9 Let T* be a minimum spanning tree constructed by Kruskal’s algorithm, and let z*
be the incidence vector of the edges in T*, i.e.,

otherwise.

§ {1 if i € E(T%)
Tii= ) o

Then z* is an optimal solution of the LP relazation of (IP).

Proof: We construct a feasible solution y* of the dual LP that satisfies the complementary
slackness conditions with respect to z*. It follows from linear programming duality that z* and y*
are optimal solutions of the LP relaxation of (IP) and its dual, respectively.

The procedure for constructing y* is called the dual greedy algorithm. Let m denote the number
of edges, |E|; since G is a connected graph, m > |V| — 1. Order the edges in F in nondecreasing
order of the costs, and let the ordering be e, es, ..., e, where c(e1) < c(ez) < --- < ¢(ey,). For
each i, 1 <1 < m, let E; denote the edge set {ey,...,e;}. For each i, 1 < ¢ < m, let S; denote
the node set of the connected component that contains e; in the subgraph (V, E;); s0 S,,, = V. In
general, several indices ¢,7,k,... may have S; = S; = S = ---. Observe that the node sets S;
are explicitly “constructed” during the execution of the greedy algorithm (Kruskal’s algorithm):



5.5.  LP FORMULATION OF THE MINIMUM SPANNING TREE PROBLEM 71

Edges ordered by cost:

€1, €2, €3, €4, €5, Cg, €7

be, de, ce, be, cd, ab, ac

Execution of Kruskal’s algorithm: current spanning forest (V, F)

B
@ © @ e
© @ oae

S; : node sets of components of (V, F)
Slz{bac} S2:{d’e} S3:{b,C,d,€}:S4:S5 Se=V =
{a’ b’ C’ d’ e}
e(S:)
last edge of MST with be de ce ab
both ends in S;
f(Si)
first edge of MST with ce ce ab —
exactly one end in 5;
ys, = e(£(5)) —ele(S)) | 10 5 15 0
Y1 35, since c(e(V)) = c¢(ab) = 35
is positive

Figure 5.0: Ilustrating the LP formulation of the minimum spanning tree problem on an example.
The optimal values of the dual variables y; and yg, are computed from the execution of Kruskal’s
algorithm.
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these node sets are precisely the node sets of the connected components of the current spanning
forest (V, F). For each node set S C V, S # V,if § = S, for some ¢, 1 < ¢ < m, then define
e(S) to be the edge e; where " = min S; = S, and define f(S) to be the edge e;+ where

2 1<i<m
= {Iyn< S; D S,5; # 5. Let f(V) be undefined, and define e(V') to be the edge ep+ where
j: 1<5<m
k* = N {Iélkn< Sk =V, ie., e(V) is the last edge added to the minimum spanning tree 7 by the

greedy algorithm. If there is no ¢, 1 < ¢ < m, such that S = S, then e(S) and f(S) are undefined.
Again, e(S) and f(.S) have specific meanings in the execution of the greedy algorithm: if at some
step of the execution, S is the node set of a connected component of the current spanning forest
(V,F), then e(S) = vw denotes the last edge added to the current F' that has both end nodes v
and w in S, and (assuming S # V') f(S) denotes the first edge added to the minimum spanning
tree T (i.e., the final F') with exactly one end node in S. Fix the dual solution y* to be

c(f(S)) — c(e(S)) if S=85,(1<i<m) and S#V
Yy = —c(e(V)) if S=V and ¢(e(V)) <0
0 otherwise
. { 0 if c(e(V)) <0
o= c(e(V)) otherwise.

Clearly, y* is nonnegative. To prove that y* satisfies the remaining constraints of the dual LP,
consider an arbitrary edge e; = vw. The constraint for vw may be written as

oo ys > —clvw) 5. (%)
SCV: S3v,53w

Focus on the left-hand side of inequality (*) above. Assume that the edge e(V') has ¢(e(V)) < 0;
the other case (c(e(V)) > 0) is handled similarly. Then yi = 0 and y;; = —c(e(V)). Define
Uy, Us, ..., U to be the sequence of node sets

Ul = Sl

U, = Si/, where ¢; = f(Ul)
Uis1 = Sg, where e, = f(U;)

Ug = V= S(k er=FUe_1))"

In the execution of the greedy algorithm, Uy, Us,...,U; (U1 = S;) are the node sets of the suc-
cessive connected components of (V, F') that contain the edge e; = vw; in other words, the step
of the execution that adds the edge f(U;), 1 < j < £, to the current spanning subgraph (V, F)
“constructs” the node set U;;; by merging U; with the node set of another connected component

of (V, F). Now observe that

¢
> ¥s=Du;
7=1

SCV: S3v,53w
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because for every node set S, if S # U; (for all j, 1 < j < {), then either y5 = 0 (since S # S;, for
all 4, 1 <4 < m) or S does not contain both the ends v and w of the edge e;. Inequality (*) follows
because

£
Z:y*uj = [e(f(Uh) — c(e(U1))] + [e(f(U2)) —c(e(U2))] + -+ +

[e(f(Ue-1)) = e(e(Ue-1))] + [—e(e(V))] =
= —c(e(th)) = - cvw),

since for j =1,...,£—1, f(U;) = e(Ujt1), and c(e(S;)) < c(e;).

The primal complementary slackness conditions hold because for every edge e; = vw in the
minimum spanning tree T*, c(e(S;)) = c(e;), therefore y* satisfies the constraint (*) of the dual
LP with equality.

Observe that the dual complementary slackness conditions hold, because for every node set
S;i, 1 < ¢ < m, there are exactly |S;| — 1 edges of T that have both ends in S; (since for each
S, the subgraph of T* induced by S; is connected); the remaining node sets S have y§ = 0. This
completes the proof of the theorem. |

5.6 More LP formulations of the minimum spanning tree problem

We give two more linear programming relaxations of the minimum spanning tree problem that are
obtained by relaxing the integrality constraints in two natural integer programming formulations.
The second relaxation here, but not the first, is an exact formulation of the minimum spanning
tree problem.

Our first integer programming formulation, (IP.,:), is based on Theorem 5.2(c) and Proposi-
tion 5.1: A spanning tree is a connected graph with |V| — 1 edges, where a graph is connected iff

every node set Q CV, 0 #£Q # V, has |§(Q)| > 1.

(IP.y:) minimize Z cijtij
ijEE
subject to Z z; = |[V]-1
ijeE
Yoo ey > 1, VSCV,0£S+V
ijEE: i5€5(5)
zi; € {0,1}, Vij € E

The LP relaxation (LP,:) of (IP.y:) is obtained by replacing the integrality constraints z;; €
{0,1} (Vij € E) by the constraints z;; > 0 (Vij € E). In general, the optimal solution z* of
(LP.y:) may not correspond to a spanning tree, because some of the values z;; may be fractional
(not integral). In other words, the feasible region of (LP.,:) may have fractional extreme points.

Our second integer programming formulation, (IPg..:), is a “directed” version of (IP.,:). We
obtain a directed graph D = (V, A) from the original graph G = (V, E), by replacing each edge
ij € E by the arcs (directed edges) (¢,7) and (j,%); so, 4 = {(¢, ), (4,%) : ij € E}. We choose an
arbitrary node r € V to be the “root node”. The goal is to find a directed spanning tree T’ = (V, F)
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of D rooted at r, that is, to find F C A such that |F| = |V| — 1, and for each node v € V\{r}, F
contains the arc set of a directed path from r to v. In other words, |F| = |[V| —1 and for every node
set S CV (S #V) withr € S, F must contain at least one arc from the directed cut (S, V\S).
Here, a directed cut (S, V\S) consists of all the arcs (¢,7) € A such that i € S and j € V\S. Such
an arc set F is necessarily the arc set of a directed spanning tree rooted at r, and its undirected
version gives the edge set of a spanning tree of G.

(IPgewt)  minimize Z Cij&4j
ijeE
subject to Ti; = Yug) T Y Vije E
X vy = V-1
(7,7)€EA
y(l,]) 2 ]_, VS g V, S # V, rc S
(1.5)€A: (1,5)€(S,V\S)
z; > 0, Vije B

The LP relaxation (LPgeyut) of (IP4.u:), obtained by replacing the integrality constraints Yiig) €
10,1} (V(4,7) € A) by the constraints y; ;) > 0 (V(¢,5) € A), gives an exact formulation of the
minimum spanning tree problem.

5.7 Exercises

1. Let G = (V, E) be a graph, and let the edges be partitioned into two sets R and B (i.e.,
the edges are colored either red or blue). Suppose that there exists a spanning tree Tr with
E(Tr) C R (i.e., every edge in TR is red), and another spanning tree Tp with E(Ts) C B
(i.e., every edge in Tp is blue). Let k be an integer between 0 and |V| — 1. Use induction to
show that G has a spanning tree T' with |E(T) N R| = k (i.e., the number of red edges in T
is k).

2. Let GG be a graph, and let each of its edges have distinct cost, i.e, for any two different edges
ij and kI, ¢;; # cp1. Let r be a given node of G. Prove or disprove:

(a) G has a unique minimum spanning tree.

(b) G has a unique shortest paths tree with root node r.

3. (Bottleneck spanning trees.) Let G = (V, E) be a graph, and let ¢ be a cost function on the
edges. A spanning tree such that the maximum cost of an edge in it is as small as possible
among all spanning trees of G, c is called a bottleneck spanning tree.

(a) Show that a minimum spanning tree of G, ¢ is also a bottleneck spanning tree.
(b) Prove or disprove the converse:
A bottleneck spanning tree of G, ¢ is a minimum spanning tree.

4. (Most vital edge.) Let G = (V, E') be a graph, and let ¢ be a cost function on the edges. Let
mst(G, ¢) denote the cost of a minimum spanning tree of G, c¢. An edge e € E is called vital
if mst(G’, ¢’y > mst(G, c¢), where G’, ¢’ is obtained by deleting edge e from G, ¢ (i.e., e is vital
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Figure 5.1: Network G, ¢ for Problem 5.

if its deletion strictly increases the cost of a minimum spanning tree). A most vital edge is a
vital edge whose deletion increases the cost of the minimum spanning tree by the maximum
amount. Does every network G, ¢ contain a vital edge? Suppose that a network contains a
vital edge. Describe an efficient algorithm for finding a most vital edge.

(Hint: Use the cut optimality conditions.)

5. Consider the graph and edge costs in Figure 5.1.

(a) Find a minimum spanning tree using Kruskal’s algorithm.
(b) Find a minimum spanning tree using Prim’s algorithm.

(c¢) Find a shortest paths tree with root node s using Dijkstra’s algorithm.

6. (a) For the graph G = (V, F) and edge costs ¢ given in Figure 5.2, formulate the problem
of finding a spanning tree of _maximum cost as a linear program.

(b) Write the dual LP and the complementary slackness conditions for the example in
part (a).

(¢) For G, ¢ and the LP you wrote in part (a), use the dual greedy method to write down
an optimal solution to the dual LP. Verify the complementary slackness conditions.

(d) Generalize your solution of the previous part to an arbitrary graph G, and arbitrary
edge costs c.

(e) Solve the LP in part (a) using the CPLEX optimizer.

7. (Sensitivity analysis.) Let G = (V| E') be a graph, and let ¢ be a cost function on the edges.
Let T be a minimum spanning tree of G, ¢. For an edge ij € F, define its cost interval to
be the set of all real numbers v such that if the cost ¢;; is changed to vy (but all other edge
costs stay the same), then 7™ continues to be a minimum spanning tree w.r.t. the new costs.
(a) Describe an efficient method for determining the cost interval of a given edge 7j.
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Figure 5.2: Network G, ¢ for Problem 6.

(Hint: Consider two cases: when 45 € T* and when ij ¢ T*, and use the cut and path
optimality conditions.)
(b) Determine the cost interval of every edge for G, c in Figure 5.2.

. Construct an example to show that the feasible region of the linear programming relaxation

(LP.yt) (page 73) may have fractional extreme points.

Prove that the feasible region of (LP.,:) contains the feasible region of the linear programming
relaxation (LP) in Section 5.5, by showing that every feasible solution z : E — R of (LP)
satisfies all the constraints of (LP.y:).

. Prove that the linear programming relaxation (LPg.y:) of (IP4eut) (page 74) gives an exact

formulation of the minimum spanning tree problem.
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Chapter 6

Light Approximate Shortest Paths
Trees

This chapter is based on a paper by Khuller, Raghavachari and Young [4]. Awerbuch, Baratz and
Peleg have related results on so-called shallow light trees [3].

There are some other recent papers on related topics. Althofer et al [1] study spanners of
weighted graphs. Mansour and Peleg [5], Salman et al [6], and Awerbuch and Azar [2] give ap-
proximation algorithms for related problems in network design where the objective function is
nonlinear.

6.1 Introduction

Given a graph G = (V, E), nonnegative costs c(e) on the edges e € E, and a specified root
node s, can we always find a spanning tree that has both approximately minimum cost and that
approximately preserves the cost of shortest s-v paths for all nodes v? Does a shortest paths tree
(with root s) or a minimum spanning tree always achieve these goals? Unfortunately, the answer
to the second question is no — demonstrating this is left as an exercise for the reader.

For any tree T of G, recall that ¢(T') denotes the cost of the tree ¢(T') = Z c(vw). For any
vweT
node v, let d(v) denote the cost of a shortest s-v path. Let T, denote a shortest paths tree of G

with root s, and let Ths denote a minimum spanning tree of G. Let a and 8 be numbers > 1. A
spanning tree T of G is called an (o, 3) light approximate shortest-paths tree (LAST) if

1. for all nodes v € V, the cost of the unique s-v path in T is at most « - d(v), and

2. ¢(T) < B-c(T}y), where Ths is a minimum spanning tree of G.

6.2 The preorder traversal of a tree

Before developing the LAST algorithm, we need to define a preorder traversal of a tree and to prove
a lemma on preorder traversals. Let T be a tree, and take s to be the root node. Consider any
node v. A node w adjacent to v in T is called the parent of v if w lies on the unique v-s path in
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T, otherwise, w is called a child of v. Every node except s has one parent (s has no parent), and
has zero or more children. For a node v € V, the subtree of T" with root v is the subgraph of T
induced by all nodes # such that v lies in the unique z-s path of T'.

Let the number of nodes in T be n. A preorder numbering (or depth-first-search numbering)
of T assigns the numbers 1,...,n to the nodes of T'. More precisely, a preorder numbering is a
bijection from V(T') to {1,2,3,...,n} such that the root s is assigned the number 1, and for each
child v; of s, the subtree T; with root v; is assigned a preorder number using the numbers

2+ i V(T)|, ..., 1+ > _|V(TY)I.

=1

The following algorithm computes a preorder numbering of 7' using the recursive procedure PRE-
ORDER.

Algorithm Preorder Numbering of a Tree
input: Tree T and root node s.
output: Preorder numbering num(v), Vv € V(7).

i:=1; (initialize global variable)
PREORDER(S); (call recursive procedure to do the numbering)
for each node v do

output num(v) end,;

procedure PREORDER(node v);
num(v) := 4;
=14+ 1;
for each child w of v do
PREORDER(w); (call recursive procedure)
end; (for)

end; (procedure)

The next lemma is used in the analysis of the LAST algorithm. For any two nodes v and w in
a tree T', let dr(v, w) denote the cost of the unique path in T between v and w.

Lemma 6.1 Let T be a spanning tree with root s. Let zg, z1, ...,z be any k nodes of T, arranged
according to a preorder numbering of T. Then

k
ZdT(Zl—l,Zi) < 2¢(T).

=1

Proof: Focus on the walk W formed by “doubling” every edge of T' and making a preorder
traversal of T'; if we draw T on the plane such that each edge is drawn as a thin strip, then W
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corresponds to the boundary of the drawing of 7. Since each edge occurs exactly two times in W,
the cost of W, ¢(W), equals 2 ¢(T") = 2 Z c(e) (recall that the cost of a walk W = vov1vs...vp
ecE(T)

£
is Zc(vi_l,vi)).

=1
Note that the first occurrence of node z;(0 < 7 < k) on W precedes the first occurrence of
node z;;1 on W, because in the preorder numbering 2, precedes 2z; precedes ...precedes z;. Hence,
the edges of W can be partitioned into edge-disjoint sequences W(z;,z;4+1) (0 < 7 < k) and
W (2, z0). The lemma follows since for each of these subwalks W(z;, z;+1), the cost, c¢(W (z;, ziy1))
is > dr(zi, zit1)-

6.3 An algorithm for finding a light approximate shortest-paths
tree

This section presents the LAST algorithm, and proves that for any given numbers o, 1 < «, and

B, B>1+ ﬁ, the algorithm correctly finds an (o, 8) LAST. Let T denote a minimum spanning

tree of the given network. Step 3 of the following algorithm constructs a spanning subgraph

H = (V, E') of G that contains Ty such that for each node v, the cost of a shortest s-v path in H

is at most a - d(v). Theorem 6.2 below proves that the cost of H, Z c(vw), is at most G- ¢(Ths).
vweE!

Algorithm (a, ) Light Approximate Shortest-paths Tree
input: Graph G = (V, F'), root node s, nonnegative edge costs c,
numbers « and 8 such that « > 1, > 1+ ﬁ

output: Spanning tree T of G which is an («, 3) LAST.

STEP 1: find a minimum spanning tree Ths of G, c¢;
find a shortest-paths tree T's of GG, ¢ with start node s;
STEP 2: find a preorder numbering of Ty using s as the start node;
STEP 3: H := Ty;
for each node v in the preorder sequence of Tj; do
find a shortest s-v path P in H;
if ¢(P) > a-d(v)
then add all the edges in a shortest s-v path in G to H;
end; (if)
end; (for)
STEP 4: find a shortest-paths tree 7" of H with start node s;
output T

Theorem 6.2 Leta>1and B =1+ ﬁ be two numbers. In the subgraph H,

1) for each node v, the cost of a shortest s-v path is at most « - d(v), an
; h nod th t hortest th is at ta-d d
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(ii) the total cost c(H) is at most B - ¢(Thr).

Proof: Step 3 of the algorithm ensures that part (i) holds. We prove part (ii). Let zp = s, and
let z1, 2, ...,z be the preorder sequence of vertices that caused the edges of shortest paths to be
added to H in Step 3. When z; (¢ =1,...,k) is examined in Step 3, H contains the s-z; walk
formed by taking the last path P;_; (from s to z;_1) added to H followed by the path in T3 from
z;_1 to z;, and the cost of this walk is

d(zi—1) + d7,,(zi—1, z)

Since the shortest s-z; path P; in H has at most this cost, and since ¢(P;) > - d(z;) (from Step 3),
we have

d(zi—1) + dry, (2im1, 21) > - d(z)

or
a-d(z) — d(zi—1) < dry,(zie1, 2i)-
Summing over all i =1,..., k, and noting that d(z9) = 0, we have
a-d(z1) — d(z0) < dr,, (20, 21)
a-d(ze) —d(z1) < dr,, (21, 22)
a-d(z) — d(zk-1) < dry, (zk—1, 21)
a-d(z) + X (a - Dd(z) < i, dry,(zio1,2),
k k

or Z(a - 1)d(z;) < Z dr,,(zi—1, z;). From the previous lemma, the right-hand side is at most

k 2 ¢(Tw) k
2 ¢(Tum), hence, Y d(z) < T The proof is complete since c(H) = c(Tar) + Y _ d(z) <
a j—

<1 + %) o(Taa). I

6.4 Exercises

1. Construct a family of networks G, ¢ (one for each |V(G)|) and a root node s € V(G) such
that given numbers o and 3 as in the algorithm, and any positive number ¢, the cost of the
spanning tree output by the («, 8) LAST algorithm is at least

2

(1+ a1 e)e(Tnr),
where ¢(Tas) is the cost of a minimum spanning tree of G, c.

2. A breadth-first-search (BFS) ordering of a tree with root s is obtained by doing a BF'S traversal
of the tree, and numbering the nodes in the order in which they are visited. Alternatively,

it is the numbering obtained by setting the number of s to 1, then ordering the nodes in a
“level” of the tree according to the number of their parents, and then numbering the nodes
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in sequence. Prove or disprove:

Suppose that Step 3 of the (a,8) LAST algorithm traverses the minimum spanning tree

Ty in BFS order (instead of using preorder), then the subgraph H has cost ¢(H) at most
(1+ Z57)e(Tm).
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Chapter 7

Approximation Algorithms for Steiner
Trees

7.1 The problem and its complexity

Let G = (V, E') be an undirected graph, let each edge ij € E have a nonnegative real-valued cost,
and let N be a set of terminal nodes, N C V. A tree T' of G (that is, the node set V(T') is a subset
of V and the edge set E(T') is a subset of E) is called a Steiner tree if it contains all the terminal
nodes, V(T') O N. Nonterminal nodes, nodes in V\N, may be present in T'; nodes in V(T)\N
are called Steiner nodes. The problem is to find a Steiner tree T whose cost ¢(T') = 32;jc (7 ¢(47)
is minimum among all Steiner trees; an optimal solution T is called a Steiner minimal tree (SMT
for short). See Figure 7.1 for an example. The problem, even with unit costs on the edges, is
NP-hard, so an efficient algorithm (i.e., one that runs in time polynomial in |V]) for finding an
optimal solution would give efficient algorithms for solving all NP-complete problems. So it is likely
that any algorithm ever designed for finding Steiner minimal trees will be inefficient.

Figure 7.1: An example of the Steiner tree problem; the terminal node set is N = {a, b, g}. The
terminal nodes (nodes in N) are circled in bold. A Steiner minimal tree is indicated by thick lines;
it has cost 8.
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Nevertheless, the problem has many practical applications such as routing in VLSI layout, the
design of communication networks, accounting and billing for the use of telephone networks, the
phylogeny problem in biology, etc. Moreover, it has generated interesting mathematical questions
and conjectures, from the days of Fermat (1601-1665) to the present.

Two special cases of the Steiner tree problem are solvable by efficient algorithms: If all nodes
are terminals, that is, if N = V, then we have the minimum spanning tree problem, and an optimal
solution can be found using, e.g., the greedy algorithm (Kruskal’s algorithm). If there are exactly
two terminal nodes, say, N = {s,t}, then we have the shortest s-t path problem, and an optimal
solution can be found using Dijkstra’s algorithm.

Our main focus in this chapter is on heuristics for the Steiner tree problem and on deriving their
performance guarantees. First we present a simple heuristic called the distance network heuristic
with performance ratio 2 and an efficient variant due to Mehlhorn. Then we present Zelikovsky’s
recent algorithm with a better performance ratio of %.

7.2 Distance network heuristics for Steiner trees

7.2.1 Introduction

An instance of the Steiner tree problem consists of a graph G = (V, E), a nonnegative real-valued
cost ¢ : B — R, on the edges, and a set N of terminal nodes. Let Tg(N) and ¢(Tg(N)) denote a
Steiner minimal tree and its cost, respectively. For any two nodes v and w of G, let dg (v, w) denote
the cost of a shortest path between v and w in G, i.e., dg(v, w) = min e, ¢(v;—1v;), where the
minimization is over all paths P = vgvy...v¢ in G from v = vy to w = vy. For a node v and a set
of nodes S, dg(S,v) denotes 3161.15'1 da(w,v), i.e., the cost of a shortest path from any node in S to

v. Given any subset V' of the nodes of G, the distance network D¢ (V') is defined to be a graph
whose node set is V' and such that for every pair of nodes v € V’/, w € V’, the edge vw is present;
the cost of an edge vw, denoted cp(vw), is defined to be dg(v, w). In other words, Dg(V’) is the
complete graph on the node set V' together with the edge costs cp(vw) = dg(v, w) (for all edges
vw). For every edge vw in G, observe that dg(v, w) < c(vw). This gives us the following.

Fact: For every edge vw of the distance network Dg(V”), if vw is an edge of G, then cp(vw) <
c(vw).

A real-valued nonnegative function on pairs of nodes £ : V x V. — R, is said to satisfy the
triangle inequality if for every three nodes v, w and @, £(v,w) < {(v,z) + £(z,w). Clearly, the
shortest paths costs d : V x V' — R, satisfy the triangle inequality, and this gives the following.

Fact: In the distance network Dg(V’), the edge costs cp satisfy the triangle inequality.

The next few results consider the distance network D = Dg(V), i.e., all nodes of G are present
in D.

Proposition 7.1 Let N be the set of terminal nodes, let Ta(N) be a Steiner minimal tree of G with
terminal node set N, and let Tp(N) be a Steiner minimal tree of the distance network D = Dg(V)
with terminal node set N. Then the cost of Tp(N) equals the cost of Tg(N).
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Proof: We show first that ¢cp(Tp(N)) < ¢(Tg(N)), and then that ¢(T¢(N)) < cp(Tp(N)). For
every edge vw of Tg(N), note that it is present in D and that its cost in D, cp(vw), is at most
c(vw). Hence, we obtain the first inequality. To prove the second inequality, replace each edge vw
of Tp(N) by a shortest v-w path of G, and call the resulting graph T”. Clearly, T’ is a connected

subgraph of G that contains all nodes in N, and moreover its cost ¢(T”) = Z c(e) equals
c€E(T")

ep(Tp(N)). Let T” be a spanning tree of T’. Then T” is a Steiner tree of G for the terminal node

set N, and its cost ¢(T") is at most ¢(T") = ep(Tp(NV)). I

Lemma 7.2 Let N be a set of terminal nodes. There erists a Steiner minimal tree Tp(N) in the
distance network D = Dg(V') such that each Steiner node has degree at least 3.

Proof: If Tp(N) has any Steiner nodes having degree one, then these may be removed; the
resulting tree is still a Steiner tree for the terminal set N. So suppose that every Steiner node of
Tp(N) has degree > 2. Consider any Steiner node v of degree two, and let v and w be the nodes
adjacent to v in Tp(N). Clearly, the distance network D contains all three edges uw, uv and vw,
and by the fact above, the edge costs satisfy the triangle inequality:

ep(uw) < ep(uv) + cp(vw).

By replacing the node v and its two incident edges in Tp(N) by the edge uw, we obtain a Steiner
tree for N whose cost is at most ¢cp(Tp(N)). We repeat this procedure until there are no Steiner
nodes of degree less than three. I

Proposition 7.3 Let N be a set of terminal nodes. There exists a Steiner minimal tree Tp(N) in
the distance network D = Dg(V') such that the number of Steiner nodes is at most |N| — 2.

Proof: Let s be the number of Steiner nodes in T = Tp(N). By the previous lemma, we may
assume that each Steiner node has degree at least 3 in 7. Hence, the sum of the degrees of all
nodes in T is at least |N|+ 3s. Also, the sum of the node degrees equals 2|E(T)| =2|V(T)| -2 =
2|N|+ 2s — 2. Since |N|+ 3s < 2|N|+ 2s — 2, we see that s < |[N| — 2.

7.2.2 The basic distance network heuristic

We construct the distance network Dg(N), where N is a specified set of terminal nodes, and then
find a minimum spanning tree M of Dg(N). By replacing each edge vw of M by a shortest v-w
path in G we obtain a new subgraph 7’ of G. Finally, we find a minimum spanning tree of 7’,
repeatedly remove any Steiner nodes of degree one, and output the resulting tree Tpyz. Clearly,
Tpnp contains all the terminal nodes. See Figure 7.2 for a worked example.

Algorithm Distance Network Heuristic for Steiner Minimal Trees
input: Graph G = (V, F'), nonnegative edge costs ¢, terminal node set N.

output: Tree Tpy g that contains all nodes in N; ¢(Tpran) < (2 — ﬁ)c(Tg(N)).
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STEP 1: construct the distance network Dg(N) for N, G and c;
(for each pair of terminal nodes v, w, edge vw has cost cp(vw) = dg(v, w))

STEP 2: find a minimum spanning tree M of Dg(N) (w.r.t. costs ¢p);
STEP 3: replace each edge in M by a corresponding shortest path in G, ¢

to get a subgraph T of G;
STEP 4: find a minimum spanning tree (call it Tpyg) for the subgraph of G, ¢

induced by the nodes in T";
STEP 5: repeatedly delete from T'pyzr nonterminal nodes of degree one;

output the resulting tree Tpy;

Theorem 7.4 For every graph G, cost function ¢ : E(G) — R4, and terminal node set N, the

2 ) e(Ta(N)).

distance network heuristic finds a Steiner tree Tpng such that ¢(Tpnm) < (2 — N

Proof: Let L be a walk on T¢(N) that uses each edge exactly twice and that visits every node of
Ta(N). In other words, L is the “boundary” in a drawing of T¢(N) on the plane. The cost of L is
¢(L) = 2 ¢(Tg(N)). Order the terminal nodes according to their first occurrence on L, assuming
that L starts with a terminal node z;, and let the terminal nodes in the ordering be z1, 2o, . . ., z&,
where we use k for |N| and we take zp11 to be z;. Let L(z;,zi41), 1 <4 <k, denote the subwalk
of L between the first occurrence of z; and the first occurrence of z;11; note that L(z;, z;11) may
contain several other terminal nodes z;, j < i. By choosing the start node z; appropriately, we

e(I) _ 2e(To(N)

remove the edges of this subwalk from L, and call the resulting walk L’. Clearly, L' has cost
2
c(L) < <2 — E) ¢(Tg(N)). The proof of the theorem follows from the next result.

can ensure that the subwalk L(zg,zry1) = L(zk,21) has cost at least

Fact: The cost of Tpyg is at most ¢(L’).

Proof: To prove the claim, consider any subwalk L(z;, z;41), 1 <4 < k — 1, of L' and observe that
the edge z;z;41 in the distance network Dg(N) has cost cp(zizi11) = da(zi, ziv1) < e(L(zi, zit1)),
since the minimum cost of a path in G from z; to z;4; is at most the cost of L(z;, z41). Hence,
the union of the edges zle_l, 1<i<k-1,0f Dg(N) gives a spanning tree T' of Dg(N) whose

cost ¢p(T') is at most Z (2i,2i41)) = ¢(L’). Since the cost of the Steiner tree Tpy g found by

the distance network heurlstlc is at most the cost of a minimum spanning tree of Dg(N), it follows
that ¢(Tpnp) < ep(T) < ¢(L’). This proves the claim.

Proposition 7.5 The time complexity of the distance network heuristic is O(|N|(|E|+|V|-log|V])).

Proof: In the first step, in order to construct Dg(N), we have to compute shortest paths costs
starting from each terminal node z € N. This needs |N| applications of Dijkstra’s shortest-paths
algorithm. Each application of Dijkstra’s algorithm contributes O(|E|+ |V|-log|V]) to the running
time. The above time bound suffices for the remaining steps.
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Dg(N)  and its

min. spanning tree

ToNe

min. spanning tree
of subgraph T’

Figure 7.2: The example of the Steiner tree problem in Figure 7.1 is solved using the distance
network heuristic. The terminal node set is N = {a, b, g}. The networks G, ¢ and Dg(N), ¢p are
shown, along with subgraph T’ and Tpyg. Note that Tpxg is not an SMT.
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7.2.3 Mehlhorn’s variant of the distance network heuristic

Mehlhorn [5] modifies the first step of the distance network heuristic so that it computes a graph
D" = (N,E’) and arc costs ¢/ : B/ — $, instead of the distance network Dg(N). The rest of
Mehlhorn’s variant (after the construction of D’ and ¢’) is the same as in the distance network
heuristic. It turns out that D’ and ¢’ can be computed by one application of Dijkstra’s shortest-
paths algorithm, hence the overall time complexity for finding Ty becomes (|E|+ |V|-log|V]).
c(Tpnr)
(Te(V))

The performance guarantee of Mehlhorn’s variant, , is the same as in the distance network

pewisic namely, (2 2 )
euristic, namely, - — .
|V

For each terminal node z; € N, define N(z;) to be the set containing z; and all nonterminal
nodes v € V\N that are “closer” to z; than to any other terminal node z;, z; # z; if a nonterminal
node v is “closest” to two or more terminal nodes z;, z;, ..., i.e., if dg(v,2;) = dg(v,z;) = --- =

mi]{rl da(v, z), then v is included in the set of the terminal node having the smallest index among
LS
%,7,... In symbols,

N . veV\N :  dg(v,z) =minen de(v,z) and

N(z) = {z}U { i=min{j=1,...,|N| : dg(v,z;) = min,en dg(v,2)}
Thus, the sets N(z;), z; € N, form a partition of the node set V. For every pair of terminal nodes
zi, zj, if G has an edge between a node in N(z;) and a node in N(z;), then the edge z;z; is present
in D', i.e.,

E'={zzj, zz € N, zz€ N : Jve N(z), Jw e N(z) : vw € E(G)}.

Informally, an edge of D’ may “represent” several different edges of G. The cost of an edge z;z;
in E’ is taken to be the minimum cost of a path from z; to z; in G that uses exactly one of the
edges that “represent” z;z;. The path may contain several edges that either have both end nodes
in N(z;) or have both end nodes in N(z;). That is, ¢ : E — R, is defined by

' (ziz5) = eB(G). vg\}?zi)’ N () {da(z,v) + c(vw) + da(w, z;)} .
D’ is a subgraph of the distance network Dg(N), and it may be a proper subgraph of Dg(N),
i.e., some edges of Dg(N) may be missing from D’. Moreover, even if an edge z;z; of Dg(N) is
present in D', its cost in D', ¢/(z;2;), may be greater than its cost in Dg(N), cp(ziz;) = da(z, 2;).
Figure 7.3 shows D’ and Dg(N) for an example.

D’ can be easily constructed using a single application of Dijkstra’s shortest-paths algorithm.
We add a new start node vg to GG, and for each terminal node z; € N, we add the edge vgz; to G
and fix the edge cost to be zero, c(vpz;) = 0. We assume that none of the original edges of G has
zero cost. Then we take the start node to be vy and find a shortest-paths tree T's with root wvy.
Removing vy and its incident edges from T's gives a collection of subtrees, each subtree containing
exactly one terminal node z; and zero or more nonterminal nodes (here, we use the assumption on
the costs of the original edges of G). For each terminal node z;, N(z;) is the set of nodes in the
subtree containing z;. The shortest-paths costs d(v), v € V, computed by Dijkstra’s algorithm
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D' and min. spanning tree

S/

O ;

Figure 7.3: The example of the Steiner tree problem in Figure 7.1 is changed to have terminal node
set N = {a,b,c¢, g}, and then solved using Mehlhorn’s variant of the distance network heuristic.
The network G, c is shown, along with an SMT and the node sets N(z), z € N. The networks
D¢ (N), ¢p and D', ¢’ are shown for comparison, though Mehlhorn’s variant uses only D', ¢’. Note
that Tpy g is not an SMT.
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are exactly the values dg(v,2;), 2z € N and v € N(z;), that we need to compute ¢’ : B/ — R,.
By examining each edge vw of G such that v and w are in different sets N(z;) and N(z;), it is
straightforward to compute the edge costs ¢’ for D’. The next lemma, which is the key result on
D’, shows that every minimum spanning tree of D', ¢’ is a minimum spanning tree of Dg(N), cp.
Based on this lemma, we compute a minimum spanning tree M’ of D', ¢’. Then we replace each
edge vw of M’ by a shortest path from v to w in G, ¢ to obtain a subgraph 7. Tpyg can be
obtained from 7", by using the last two steps of the basic distance network heuristic. Figure 7.3
shows a worked example.

Theorem 7.6 Mehlhorn’s variant of the distance network heuristic computes Tpn g in time O(|E|+
[V -log|V]).

Lemma 7.7 Let M’ be a minimum spanning tree of D' with respect to the edge costs ¢’. Then M’
is @ minimum spanning tree of Dg(N) with respect to the edge costs cp.

Proof: We claim that there exists a minimum spanning tree M* of Dg(N) such that each edge
z;z; of M* is present in D’, and the cost of the edge in D', ¢/(2;2;), equals the cost in Dg(N),
¢p(zz;). Suppose that the claim is true. Then M™ is obviously a minimum spanning tree of D’
w.r.t. ¢/, since any spanning tree of D’ has cost at least cp(M™*). By definition, any other minimum
spanning tree M’ of D’ w.r.t. ¢’ has exactly the same cost as M*, i.e., ¢/(M') = ¢/(M*) = ep(M™),
therefore M’ must be a minimum spanning tree of Dg(N) w.r.t. cp.

The claim is proved by contradiction. Suppose that the claim is false. Let M be a minimum
spanning tree of Dg(N) that

(i) has the maximum number of edges in D', i.e., |E(M) N E’| is maximized over all minimum
spanning trees of Dg(N), ¢p, and moreover,

(ii) the total cost with respect to ¢’ of the edges in both M and D’ is minimum, i.e., Z c(e)
e€eE(M)NE’
is minimized over all minimum spanning trees of Dg(N), ¢p satisfying (i).

Either an edge z,z; of M is not present in D’ or there is an edge z,2z; of M with ¢/(z,2;) >
cp(zszt) = dg(zs,2:t). Let P be a shortest path from z, to z in G, with respect to the costs
c. Consider any edge v*w* of P such that v* and w* are in distinct sets, say, v* € N(z) and
w* € N(z;). By the definition of N(z;), we get dg(z;,v*) < dg(zs,v*), and by the definition of
N(z;), dg(z;, w*) < dg(z¢, w*). Clearly, D’ contains the edge z;z;. The cost of this edge w.r.t. ¢ is

weB(0), vEN ), wen(sy) V9OV ) ¥ lv) F dolw, %)}

dg(zi,v™) + c(vw™) + dg(w”, 2;)
da(zs,v™) + c(vw™) + dg(w”, zt)
c(P)

dG(Zs, Zt)

ep(zszt).

C/(ZiZj)

1 IA A
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That is, for every one of the edges v*w* of P with v* and w* in distinct sets N(z;) and N(z;), the
edge z;z; is present in D’, and ¢/(2z;) < ¢p(2z,2:). These edges form a walk P’ from z, to z in
D’ since P is a z,-z; path in G: indeed, if we start with the subgraph P and for each z; € N we
“contract” all nodes in N(z;) into a single node z;, then we obtain P’.

If we remove edge z,2z; from M, then we obtain a partition N,, Ny of the nodes of Dg(N),
where N, is the set of nodes in the subtree of M\{z,2;} containing z,, and N; = N\N,. Since
P’ is a walk from z, to z;, at least one of its edges zi*z; has one end node in N, and the other in
Ny, i.e., 27z is in the cut (Ns, Nt). By replacing the edge z,2; in M by the edge z;z7, we obtain
another spanning tree M of Dg(N). M is a minimum spanning tree of Dg(N) because its cost
ep(M) = ep(M) — cp(2z,2t) + ep(2; 2}) is at most ep(M), since cp(z]z5) < ¢(22}) < ep(z.2:) by
the derivation above. Now, by our assumption on M, either edge z,2; is not in D’ or z,2; is in D’

but ¢/(zs2:) > cp(2s2t). In the first case, M has more edges in D’ than M, and in the second case

Yo dle< DD dle) since ¢'(272) < ep(2zs2t) < /(2021).

ecE(M)NE' e€eE(M)NE’

In either case, we have a contradiction to the definition of M, and so our claim is proved. The
lemma follows.

7.3 The Dreyfus-Wagner dynamic programming algorithm

The Dreyfus-Wagner algorithm (1972) is one of the oldest exact algorithms for finding a Steiner
minimal tree. Its time complexity is exponential in |N|. The algorithm is based on dynamic
programming. It uses a recursion to derive the cost of a Steiner minimal tree from the costs of
Steiner minimal trees for subsets of the given terminal node set. For a node set D C V and a node
v € V, let S(v, D) denote the cost of a Steiner minimal tree for the terminal node set DU {v}. The
recursion is:
S(v,D) = 1131613 {dg(v, w) + (D;énDli’ICID (S(w, D) + S(w, D\D’))} .

Note that D’ is a proper subset of D in the recursion. Possibly, v = w in the recursion, in which
case dg(v, w) = 0. Informally, in a Steiner minimal tree for D U {v}, node w is a “junction node”,
i.e., a terminal node or a nonterminal node of degree at least 3, such that all internal nodes in the
path from v to w are nonterminal nodes of degree 2. The three main cases of the recursion are
shown in Figure 7.4.

Let N be the given set of terminal nodes, and let ¢ be an arbitrary node in N. Initially, the
algorithm computes dg (v, w) for all pairs of nodes v, w € V; note that S(v, {w}) = dg(v, w). Then
for all integers £ between 2 and |N| — 2, in sequence, for all D C N\{q} such that |D| = £ and for
allv e V, S(v,D) is computed. Finally, S(¢, N\{q}) is computed, and this gives the cost of a
Steiner minimal tree.

Theorem 7.8 The Dreyfus-Wagner algorithm computes the cost of a Steiner minimal tree. The

running time of the algorithm is O(3WI(|V]) + 2VI(|V|?) + [V|?).
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Figure 7.4: An illustration of the three main cases in the Dreyfus-Wagner recursion. The node v
and the terminal nodes are indicated by either bold circles or shaded circles.
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If |[N|is small, say, |N| = O(log |V'|), then note that the algorithm runs in polynomial time.

The algorithm has to be supplemented in order to find a Steiner minimal tree, rather than the
cost of an SMT. This is done by backtracing, that is, by examining the sets D C N in the reverse
order of the cost-determining computation, assuming that the values S(v,D), v € V, D C N,
have been stored for later use. We start with D = N\{q}, and find the “junction node” w and
the partition D = D’ U D”, D' N D" = (), that determine the value of S(¢, D). Then we compute
the “junction node” and the optimal partition for each of D’ and D" by recomputing S(w, D’) and
S(w, D"). Continuing this process, we find the Steiner minimal tree.
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Algorithm Dreyfus-Wagner Dynamic Programming Algorithm for Steiner Minimal Trees.
input: Graph G = (V, F'), nonnegative edge costs ¢, terminal node set N.
output:

STEP O:

STEP 1:

STEP 2:

STEP 3:

Cost of a Steiner minimal tree.
for every pair of nodes v,w € V, do
compute dg(v, w), the minimum cost of a v-w path;
end; (for)
fix ¢ to be an arbitrary node in N;
(singleton sets)
for each t € N\{q} do
for each v € V do S(v, {t}) := dg(v, t); end;
end; (for)
(subsets of size 2,3,...,|N|— 2)
for £:=2to |N|—2do
for each D C N\{g¢} such that |D|={ do
S(v,D):=o00, forallv € V; (initialize)
choose an arbitrary node z € D;
for each w € V do
s:=o00; (temporary variable)
for each D' C D with z € D' do
s := min(s, S(w,D’)+ S(w, D\D’));
end; (for)
for each v € V do
S(v, D) :== min(S(v, D), dg(v, w) + s);
end; (for)
end; (for)
end; (for)
end; (for)
(find final solution for N\{q})
C :=o00; (initialize)
choose an arbitrary node z € N\{q};
for each w € V do
s:=o00; (temporary variable)
for each D' C N\{¢} with z € D’ do
s == min(s, S(w, D) + S(w, (N\{g)\D'));

end; (for)
C :=min(C, dg(q,w) + s);
end; (for)

output C;
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7.4 Zelikovsky’s Algorithm

In this section, we present an algorithm with improved performance ratio for the Steiner problem
due to Zelikovsky [7]. This version of the proof appeared in two lectures in January 1997 at MPI,
Saarbruecken, Germany, by Ulrich Féssmeyer; The following treatment is from a manuscript by
Kurt Mehlhorn, in which Naveen Garg filled in some details. The proof of a key lemma is incomplete
however. The following description may be useful in presenting a different point of view of looking
at Zelikovsky’s algorithm.

7.4.1 Definitions

Recalle that we used Tg(N) to denote the optimal Steiner tree in G for the terminals N. In the
sequel, whenever we consider optimal Steiner trees for subsets S of nodes, we always do so in the
input graph G so for ease of notation we drop the subscript and assume that we always compute
the optimal tree in G. Thus we shall henceforth use T'(S) to denote an optimal Steiner tree for the
terminal set S in G.

7.4.2 The algorithm

The starting point of Zelikovsky’s algorithm is the 2-approximate solution from the distance network
heuristic. The algorithm maintains a complete graph on the terminal nodes. The edge costs of this
graph decrease as the algorithm progresses through several phases. In particular, in each phase,
the cost of exactly two edges decreases. The approximate solution maintained by the algorithm is
the minimum cost spanning tree of this graph.

Suppose there are f phases in the algorithm. Let G represent the graph maintained by the
algorithm just before the i*" phase. Thus, in our notation, Gy = Dg(N), the complete graph
on node set N with costs denoting shortest distances in G. Let M,; denote the minimum cost
spanning tree of G;. The performance guarantee of the distance network heuristic guarantees that
c(To) < 2¢(T(S)).

Before we describe the details of each phase, we need a few more definitions. For terminals z
and y we use Bridge;(z,y) to denote the heaviest edge on the path from z to y in M;. For a triple
Tr = {z,y, z} of distinct vertices let

Bridge;(T'r) = {Bridge;(z,y), Bridge;(z, z), Bridge;(y, z)}.
Proposition 7.9 |Bridge;(T)| = 2.

Proof: Let My, be the subtree of M; spanned by Tr. The tree Mr, contains a unique point ¢
such that the tree-paths p;, p,, and p, from c to z, y, and z respectively are pairwise edge-disjoint®.
Assume without loss of generality that the heaviest edge of Mr, lies on p, then Bridge;(z,y) =
Bridge;(z, z) # Bridge;(y, z).

For ease of notation we assume in the sequel that Bridge;(Tr) consists of Bridge;(z,y) and
Bridge;(z,z). In this case, we also say that the triple T'r is 2-light with respect to the tree M;.

!¢ may be equal to one of x or y or z in which case the corresponding path has length zero.
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Note that this is equivalent to saying that the heaviest edge in M7, defined in the proof above lies
on the path p,. Note that c¢(Bridge;(Tr)) = c(Bridgei(z,y)) + c(Bridge;(z,z)). For a triple Tr
let

gain;(T) = c(Bridge;(T)) — c(T(Tr)).

Zelikovsky’s algorithm terminates when there is no triple of positive gain. If there is a triple of
positive gain in the i-th phase let Tr; = {2, y, z} be the triple with maximum gain. We obtain G;11
by adding edges zy and zz to G; with costs c(Bridge;(z,y)) — gain;(Tr;) and c(Bridge;(z,2)) —
gain;(Tr;) respectively. The minimum spanning tree M;;; of G;41 is clearly M; — Bridge;,(Tr;) U
{zy,zz}. Also, c(M;+1) = c(M;) — 2 - gain;(Tr;), i.e., the cost of the minimum spanning tree
decreases by twice the gain. This implies that

e(My) = e(Mp) — 2 - Zgaini(Tri). (7.1)

2

7.4.3 Performance Guarantee

To analyze the performance guarantee we first observe some important properties of the spanning
tree M; during the course of the algorithm. We do this next.

In each phase the algorithm replaces two edges of the current spanning tree by new ones. It is
helpful to view these replacements as taking place consecutively. So, the M;’s evolve by selecting
pairs {a, b} of terminals and replacing Bridge;(a,b) by ab. The new edge has lower cost than the
old edge, the replaced edge had the largest cost on the cycle closed by the new edge, and the new
edge separates exactly the same terminals as the old edge, i.e., for any terminals # and y, the
path from 2 to y went through Bridge;(a,b) before the replacement if it goes through ab after the
replacement.

This allows us to argue that for any two terminals z and y the cost of their bridge never
increases.

Lemma 7.10 For any two terminals ¢ and y and for any i € {0,1,..., f — 1}, the following is
true: c(Bridge;(z,y)) > c(Bridge;11(z,y)).

Proof: When moving from M; to M;,; we replace two edges. A replacement substitutes an edge
ab for the edge Bridge;(a,b). If ab does not lie on the path from z to y then Bridge;(z,y) does
not change. Otherwise, the edge ab closes a cycle po ¢ in M; and paths p, and p, connect z and
y to the common endpoints of p and ¢. In M; the path from z to y is p, 0 g o p, and in M;;; the
path from z to y is p; o po p,. Since Bridge;(a,b) is the heaviest edge on the cycle p o ¢ the claim
follows. I

We can now show that every edge whose cost is decreased and hence is included in the minimum
spanning tree is retained in the final tree M.

Lemma 7.11 For all j, Bridge;(Tr;) consists only of edges of G.

Proof: The proof of this lemma is at the crux of the analysis but is however beyond the scope of
these notes. A short version of the proof may be found in the Appendix of [3]. I
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The Steiner tree finally output when the algorithm terminates is the shortest paths in G cor-
responding to edges of G retained in My, as well as the optimal trees for all the triples used to
decrease edge costs in the course of the algorithm. It is now straightforward to bound the cost of
this tree.

Lemma 7.12 The Steiner tree output by Zelikovsky’s algorithm has cost at most (c(Mo)+c(My))/2.

Proof: Each edge of My is either original or new. Lemma 7.11 tells us that once a new edge is
added to some M; it will stay in the minimum spanning tree of the auxiliary graph till the end of the
algorithm. In other words, My consists of some original edges and the new edges introduced by the
triples, T'rg, Tr1, ..., Try_1. Construct a subgraph G’ of G consisting of the paths corresponding
to the edges of M; N Gy and the Steiner minimal trees T(Tro), ..., T(Trs_1)) and let T be a
minimum spanning tree of G'. The cost of T is at most c¢(My) 4+ X ;(c(T(Tr;)) — (c(Bridge;(Tr;)) —
2. gain;(Tr;))) = c(My) + X, gain;(T'r;) since any triple Tr; adds a Steiner tree of cost ¢(T(T'r;)(
to G’ in replacement of edges of cost c¢(Bridge;(Tr;)) — 2 - gain;(Tr;) of My. Hence,

(T) < o(My)+ Zgaini(Tri)
= (c(My)+c(Ms)+2- Zgaini(Tri))/2
= (e(My) + ¢(Mo))/2
since ¢(My) = c¢(My) — 2- >, gain;(Tr;) from equation 7.1. I
We recall the main result from the previous section.
Lemma 7.13 ¢(Mp) < 2-¢(T(N)).

To bound the cost of the tree T output by Zelikovsky’s algorithm, we still need to bound c¢(Mjy)
independent of C(Mj). We shall prove the following result in the next section.

Lemma 7.14 ¢(My) <

Wt

(T (N)).
With this, we can prove the performance guarantee of Zelikovsky’s algorithm.

Theorem 7.15 Zelikovsky’s algorithm finds a Steiner tree T with cost at most % times the mini-
mum.

Proof: From lemmas 7.12, 7.13 and 7.14, we get

e(T) (c(Mo) + c(My))/2
(2+5/3) - ¢(T(N))/2

(11/6) - ¢(T(NV)).

<
<
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7.4.4 Full Steiner Trees

A Steiner tree for terminal set .S is said to be full if all nodes in S are leaves of this tree. The full
components of any Steiner tree for S are its maximal full subtrees. Finally, a Steiner tree of § is
said to be k-restricted if all its full components have at most k leaves. We shall denote an optimal
(minimum cost) k-restricted Steiner tree for S by T*(S). Note that T(S) = T!5I(S).

We prove Lemma 7.14 in this section by proving the following two results.
Lemma 7.16 c¢(M;) < ¢(T3(N)).
Lemma 7.17 ¢(T3(N)) < 3 - ¢(T(N)).

Note that Zelikovsky’s algorithm and the analysis via the above two lemmas can be used to
derive even better performance guarantees for the case of special metrics such as rectilinear or #;
metrics. See [1] for more on this development.

Next we demonstrate that My is not costlier than an optimal 3-restricted Steiner tree by ex-

amining the natural 3-restricted tree defined by it on the terminals.
Proof: of Lemma 7.16 Let My be the minimum spanning tree of the final auxiliary graph. There
are no triples of positive gain with respect to M;. Consider an optimal 3-restricted Steiner tree
T3(N). Each full component of T?(N) has either two or three leaves. Let Tr be the triples of
terminals induced by the full components with three leaves and let Pr be the pairs of terminals
induced by the full components with two leaves. Then

o(T°(N)) = > e(Tr))+ D o(T(pr))

treTr prePr

We need to show that c¢(M;) < ¢(T3(N)). To this end, we define a tree M, of cost at most
¢(T3*(N)) on N and then show that M} is a minimum spanning tree of the graph M;UM,,. The edges
of M, are defined as follows: For each pair p = zy € Pr we put the edge zy with cost ¢(T'(pr)) into
M, and for each triple tr = {z, y, z} we put the edges zy and zz into M, with costs c(Bridges(z,y))
and c(Bridges(z, z)), respectively?. Since gain(tr) < 0 we have ¢(Bridge(ir)) < ¢(T(tr)). Thus,
c(M,) < ¢(T3*(N)). The graph M, is clearly connected and since the number of edges of M, is
|Pr| 4+ 2|Tr|=|N| -1, M, is a tree.

It remains to show that My is a minimum spanning tree of My U M,. This follows from the
cycle rule for minimum spanning trees. Assume that we start with M; and add the edges of M,
one by one. Let zy be an edge of M,. If 2y comes from a pair p then the cost ¢(T'(pr)) of the edge
is at equal to the cost of the edge zy in G. Similarly, if zy comes from a triple then it is clearly a
heaviest edge in the cycle which it closes. I

Finally we bound on the cost of an optimal 3-restricted tree with respect to the optimum
solution®.
Proof: of Lemma 7.17

Recall that T(N) denotes an optimal Steiner tree for the terminals N. We may assume
w.l.o.g. that T(N) is full. Otherwise, we apply the following argument to each full component.

*Recall that we adopted the convention that Bridge(T) consists of Bridge(x,y) and Bridge(z, z).
3The following proof is due to Vijay Vazirani transmitted via Naveen Garg.



100 CHAPTER 7. APPROXIMATION ALGORITHMS FOR STEINER TREES

We also assume for the moment that 7'(N) is binary. If not, we replace any internal node of out-
degree larger than 2 by a chain of nodes of degree 3, give all new edges cost zero, and apply the
argument to the resulting tree. If there are nodes of degree 2 in the original tree, we may shorcut
over such nodes by using the triangle inequality on the costs (w.l.o.g.).

Root T'(N) at an arbitrary internal vertex, add an edge to the root, and three-color the edges
of T(N). We define a 3-restricted Steiner tree for each color class of edges and show that the total
cost of the three trees is at most 5¢(T'(N)). The lemma follows by averaging.

We may assume w.l.o.g. that T'(N) is ordered such that for every vertex v the path to the
rightmost leaf a(v) in its subtree is the shortest path to any leaf in v’s subtree. Note that this
definition is consistent with all the internal nodes: if the internal node u has [ as its closest leaf and
the path from u to [ uses the child a of u, then [ is also a closest leaf to a. We define the 3-restricted
Steiner tree for a color class by specifying the triples of nodes that are to form full subtrees.

Consider any of the color classes and let (u, |parent|(u)) be an edge of the color class.

e If w has children @, b and a sibling ¢ then include the optimal Steiner tree for the triple
{a(a), a(b), a(c)} into the Steiner tree for the color class and call {a,b,c} the core of the
triple.

e If u has children a, b but no sibling, i.e., u is the root, add the edge {a(a), a(b)} into the
Steiner tree for the color class and call {a, b} the core of the pair.

e If u has a sibling ¢ but no children, i.e., u is a terminal, add the edge {u, a(c)} into the Steiner
tree for the color class and call {u, ¢} the core of the pair.

We claim that all the edges added for a color class define a Steiner tree for N, which, by
construction, is 3-restricted. This is readily proved by induction. Consider the edges of any color
class bottom up and argue that after considering an edge (u, parent(u)) all terminals in the subtree
rooted at parent(u) are connected by the edges added so far for this color class.

It remains to show that the total cost of the three trees is at most 5 - (T'(IV)). Note first that
the cost of each tree is the sum of the costs of the minimum Steiner trees of the pairs and triples
defining the tree. Note next that the cost of the minimum Steiner tree for a pair of triple is bounded
by the cost of the subtree of T'(N) spanned by the pair or triple. The cost of the subtree spanned
by a pair or triple has two components:

e the cost of subtree spanned by the elements in the core of the pair or triple.
e the cost of the paths connecting v to a(v) for v in the core of the triple or pair and

We bound the total cost of the two contributions separately.

Consider first the subtrees spanned by the cores of pairs and triples. They have the shapes
shown in Figure 7.5.

Each edge of T(N) belongs to exactly three such trees, namely once as the edge inducing the
pair or triple, once as the sibling of the inducing edge, and once as the child of the inducing edge.
Thus, the sum of the costs of the subtrees spanned by the cores is exactly 3 - (T(NV)).

It remains to sum the costs of the paths from v to a(v) over all v over all cores. We use S to
denote this sum. Clearly, we need to consider only v’s that are not terminals (leaves). Each such
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Figure 7.5: Shapes of subtrees spanned by cores of pairs and triples.

v is contained in the boundary of at most two subtrees spanned by cores, namely the core induced
by the edge connecting the sibling of v with the parent of v and the core induced by the edge
connecting the parent of v with the grand-parent of v. We conclude that S is bounded by twice the
cost of the paths from v to a(v) summed over all v. Let 8(v) be the leaf reached from v by going
right once and then always left. The path v — §(v) is at least as long as the path v — «a(v) and
the former paths are disjoint. Thus, the sum of their lengths is bounded by ¢(T(N)) completing
the proof.

Further improvements on Zelikovsky’s ideas are investigated by Berman and Ramaiyer|[2].

7.5 Exercises

1. Consider the Steiner tree problem. Suppose that the set $* of Steiner nodes in an optimal
solution is available. How would you find a Steiner minimal tree?

2. Let N be a set of points in the Euclidean plane. Take the cost of an edge ij to be the
Euclidean distance between points ¢ and j.

(a) Let T* be a Steiner minimal tree in the Euclidean plane, and let  be a Steiner point
in T*. Explain whether the number of edges of T* incident to z can be either (i) one?
or (ii) two?

(b) Let |[MST(N)| denote the cost of a minimum spanning tree of N, and let |SMT(N)|
denote the cost of a Steiner minimal tree. Prove that [MST(N)| < (2 — %) |SMT(N)|.

3. Consider the following example of the set covering problem consisting of 10 points 1, ..., #1o,
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and 7 sets Sy, ..., S7. The incidence matrix is
Sy S Ss Ss S5 S Sr
1 1 1
1 1 Lo
1 1 1| z3
1 1 1 1| 24
A=1]1 1 1 1 x5
1 1 1 zg
1 1 1 1 z7
1 1 1 1 zg
1 1 1 1 Zg
1 1 1 1 10

(a) Convert the set covering example into an example of the Steiner tree problem. Use the
shortest paths heuristic to find a solution TSP)H to the Steiner tree problem. What is
SPH

the theoretical guarantee g on the ratio ZE;OPT),

(b) Use your solution in part (a) to find a solution to the set covering example. Explain
your working.

where T pr is a Steiner minimal tree?

(c) An optimal solution of the dual (D) of the LP relaxation of the integer programming
formulation (IP) of the set covering problem is

y3=0 y2=0 3y =0

Y3=0 yo=13 wy10=0,

=1 y=13

Y6=0 yr=73
where y; is the dual variable for point #;. Discuss whether your solution in part (b) is
optimal, and explain your reasoning.

(d) Consider solving the set covering problem (in general), using the algorithm in parts (a)
and (b). Is it true that the set cover J,j 4, found by this algorithm satisfies |J,140| <
g |Jopt|, where Jop is an optimal solution, and g is as in part (a)? Explain your answer.

4. Solve (approximately) the Steiner tree problem defined by the graph G = (V, E) and the
edge costs ¢ in Figure 5.2 taking the terminal node set to be N = {a, b, f}. Use each of the
following algorithms:

(a) the shortest paths heuristic,
(b) Mehlhorn’s variant of the distance network heuristic, and

(c) Dreyfus and Wagner’s dynamic programming algorithm.

5. Repeat parts (a)—(c) of the previous problem for the example of the Steiner tree problem in
Figure 7.6; the terminal node set is N = {a, ¢, e,g}.

6. For a set of terminal nodes N, let £(IN') denote the minimum number of leaf nodes in a Steiner
minimal tree of N. Clearly, 2 < {(N) < |N|. Show that the performance guarantee of the
distance network heuristic can be improved to

T 2
c(Tonm) < <2 B > ‘

(Te(N)) )
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Figure 7.6: An example of the Steiner tree problem.

7. Give a detailed implementation of Mehlhorn’s distance network heuristic, focusing on Steps 1,
3 and 5 of the basic distance network heuristic (page 86). Show that Step 4 (finding a minimum
spanning tree of the (node-induced) subgraph 7’ of G) can be avoided by appropriately
implementing Step 3 (transforming minimum spanning tree M of Dg(N) into subgraph 7"
of G) using information from Step 1 (constructing Dg(N)).

8. The goal here is to study an integer programming formulation (IP) of the Steiner tree problem
that is similar to the integer programming formulation of the minimum spanning tree problem
in Chapter 5. Let G = (V, E) be the input graph, let N be the set of terminal nodes, and let
the cost of edge i¢j be denoted by ¢;; (c¢i; > 0, V;; € E). The integer program (IP) has a
zero-one variable z; for each node ¢ € V\N. The intention is that an optimal solution of (IP)
has zf = 1 iff node 7 is a Steiner node in the corresponding Steiner minimal tree.

(IP)  minimize Z Cijtij
ijeE
subject to Z zi; > Z zi)+|N| -1
ijeE 1€EVAN
oooom; < ()] @)+ |SNN| -1, VS CV
ijEE: 1€8,5€S8 1€ES\N
z;; € {0,1}, Vije E
zi € {0,1}, Vie VAN

(a) Consider the Steiner tree problem with G, ¢ as in Figure 5.2 and terminal node set
N ={a, b, e}. For this instance, formulate (IP), the LP relaxation (P), and the dual LP
(D) of (P). Solve (IP) and (P) using the CPLEX optimizer.
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(b) Discuss the complementary slackness conditions for the LP (P), and use these to design
a primal-dual algorithm that (approximately) solves the Steiner tree problem.

(Note: When you submit (IP) to CPLEX, make sure that the right-hand side of each con-
straint is a number, i.e., move all the z;’s to the left-hand side.)
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Chapter 8

A General Approximation Technique
for Constrained Forest Problems

This chapter studies an approximation algorithm due to M.X.Goemans and D.P.Williamson for
so-called constrained forest problems, see [3] and [4]. The algorithm is based on the primal-dual
method for solving a linear programming relaxation of the problem. For further details see these
papers. In the context of network design problems, such approximation techniques were first
presented by Agrawal, Klein and Ravi [1].

Subsequently this primal-dual method of Goemans and Williamson has been extended to several
other network problems. Williamson et al [11] apply it to the generalized Steiner network problem,
and Ravi and Williamson [9] apply it to the min-cost k-node connected spanning subgraph problem.
Chudak et al [2] give 2-approximation algorithms based on the primal-dual method for the minimum
feedback vertex set problem in undirected graphs. The primal-dual method appears to provide a
versatile paradigm for the design and analysis of approximation algorithms.

We mention that Jain [7] has recently given a 2-approximation algorithm for the generalized
Steiner network problem; this algorithm is based on repeatedly solving LP relaxations of the prob-
lem, but does not use the primal-dual method.

8.1 Constrained forest problems

Several problems in network design can be modeled as constrained forest problems. Some examples
are: the minimum spanning tree problem, the shortest s-¢ path problem, the minimum-cost T-join
problem, the Steiner minimal tree problem, the generalized Steiner forest problem, and the point-
to-point connection problem (the last two are defined below). Moreover, assuming that the edge
costs satisfy the triangle inequality, the GW (Goemans-Williamson) approximation algorithm can
be applied to find approximately optimal solutions to the minimum-cost perfect matching problem
and the exact tree (or cycle or path) partitioning problem. The key result in this chapter is that for
(proper) constrained forest problems, the GW algorithm finds a solution whose cost is guaranteed
to be within a factor of two of the optimal cost. Thus a variety of NP-hard problems in network
design can be approximately solved within a factor of two, using this algorithm. The algorithm
finds optimal solutions to the minimum spanning tree problem and the shortest s-t path problem,;
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for the first problem, the GW algorithm specializes to Kruskal’s algorithm, and for the second it
resembles a variant of Dijkstra’s algorithm.

The GW algorithm may be viewed in several ways: It is a primal-dual algorithm, based on
the linear programming relaxation of an integer programming formulation of a constrained forest
problem; the algorithm is guided by the complementary slackness conditions and alternately per-
forms updates on the primal LP solution and the dual LP solution. Also, the algorithm may be
regarded as an adaptive greedy algorithm that repeatedly selects an edge with minimum reduced
cost; the algorithm is adaptive, since the reduced costs are updated throughout the execution. The
algorithm runs in time O(n%logn) on a graph with n nodes.

The definition of a proper function is given later, along with the requirements for a set of edges
to satisfy a proper function.

Given an undirected graph G = (V, E), nonnegative edge costs ¢ : E — %, and a proper
function f :2Y — {0,1} (that is, f assigns a value of 0 or 1 to each subset S of V), the problem is
to find an edge set H C E that satisfies f such that its cost, ¢(H) = > . Ce, is minimum.

Recall our notation §(S), where S is a node subset: §(5) is the set of edges with one end in S and
the other end in V\S. An edge set H is said to satisfy f if

|[HN6(S) > f(9), VS cV.

That is, H satisfies f if the number of edges of H with exactly one end in S is at least f(S), for
all node subsets S.

An integer linear programming formulation of a constrained forest problem is easily obtained
from the above problem statement:

(IP) minimize Zce T,
el
subject to Z z. > f(9), VS CcV
¢€3(S)
z. € {0,1}, Vee€ E.

8.2 Proper functions

A function f : 2 — {0,1} (assume that f(V) = f(0) = 0) is called proper if it satisfies the two
properties of symmetry and maximality (also called disjointness):

[symmetry]  f(S) = f(V\9), VS CV,
[maximality] f(AUB) < f(4) + f(B), for any two disjoint subsets A, B of V.

The maximality property may be restated as :

f(A)=0, f(B)=0 = f(AUB)=0 for any two disjoint subsets A, B of V.

An example of a proper function is given in Table 8.1; the next proposition shows that the
function in the example is proper.
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Proposition 8.1 Given a graph G = (V, E) and a set of “terminal nodes” N C V, the function
F(S) given by
1 if 0£ASNN#AN

0 otherwise

-1
is a proper function.

Proof: We must show that f satisfies

(i) symmetry:
Forany S CV,if SNN # 0 and SN N # N, then (VAS)NN # 0 and (V\S)N N # N.
Hence, f(S) = f(V\S).

(ii) maximality:
Consider disjoint subsets A and B of V, and suppose that f(AU B) = 1. Then there is a
terminal node z € AU B, say, z is in A, and also a terminal node z’ that is notin AU B. Now
consider AN N. Since z€ A, ANN #0. Since 2’ ¢ AUB, 2z ¢ ANN,andso ANN # N.
Hence, f(A4) =1.

|
S f(S) S F(5)

0 0 {a,b,c} 0
{a} 1 {a,b,d} 1
{b} 1 {a,b, e} 1
{c} 1 {a,c,d} 1
{d} 0 {a,c, e} 1
{e} 0 {a,d, e} 1
{a,b} 1 {b,c,d} 1
{a,c} 1 {b,c, e} 1
{a,d} 1 {b,d, e} 1
{a, e} 1 {c,d, e} 1
{b, c} 1 {a,b,c,d} 0
{b, d} 1 {a,b,c,e} 0
{b, e} 1 {a,b,d, e} 1
{c,d} 1 {a,c,d, e} 1
{c, e} 1 {b,c,d, e} 1
{d, e} 0 {a,b,c,d, e} 0

Table 8.1: An example of a proper function. The graph G = (V, E) has 5 nodes q,b, ¢, d and
e, and has N = {a,b,c} as a set of “terminal nodes”. The function f is given by f(S) = 1 if
0 #£SNN#N,and f(S) =0 otherwise
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8.3 Using proper functions to model problems in network design

Four problems in network design are given here. The first three are NP-hard, whereas for the
fourth problem, there is a polynomial-time algorithm based on matching theory. Each of the four
problems can be modeled as a constrained forest problem such that the function f is proper. Hence,
by applying the GW algorithm, an approximately optimal solution whose cost is within a factor
of two of the optimal value can be obtained. For each of the four problems, first, the problem is
defined, then the appropriate function f is given.

(i) Steiner tree problem:
Given a set N C V of terminal nodes, find a minimum-cost tree that connects all nodes in N.

) 1 if0#AESANEN
VSV 1(8) = { 0 otherwise.
(ii) Generalized Steiner forest problem :
Given p sets of terminal nodes Ny, N3, ..., N, (these need not be disjoint), find a minimum-
cost forest that connects all nodes in N;,¢ = 1,2,...,p. (The number of trees in the forest

may be either 1,2,...,0r p.)

0 #SNNy#N;or

0 #SNNy# Nyor
WS CV: £(S) = .
0+£SNN,#N,

0 otherwise.

(iii) Point-to-point connection problem :
Given a set C' = {cy,..., ¢y} of source nodes, and a set D = {d;,...d,} of destination nodes,
find a minimum-cost forest such that each connected component of the forest contains the
same number of source nodes and destination nodes.
1 if SnC SND
VSV ﬂ&:{ §ncl#ISn Dl

0 otherwise.

(iv) T-join problem :
Given a node set T of even cardinality, find a set of edges F' of minimum cost such that every
node in 7 is incident to an odd number of edges of F.

1 if |SNT|is odd,
0 otherwise.

VS CV: ﬂ&:{

The function f in part (i) has been shown already to be proper; the other three parts are left
as an exercise.
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8.4 The LP relaxation of (IP)

The linear programming (LP) relaxation of our integer linear programming formulation of a con-
strained forest problem (IP) and the dual LP are as follows. In the LP relaxation, the constraints

z. <1, Ve € E,

are redundant, since for every feasible solution z*, any > > 1 may be replaced by 2} = 1 without
violating any constraints, and moreover the objective value } c.z} does not increase.

(LP relaxation) (Dual LP)
minimize z= Z Cee maximize w = Z F(S)ys
ecE SCV
subject to Z z. > f(S), VS CV |subject to Z ys <c., Ve€FE
e€d(S) S:e€4(S)
z. >0, Ve € E ys > 0, vScVvV

The complementary slackness conditions are as follows:

[primal] z. >0 = Z Yys =¢., YVe€F
S:e€d(S)

[dual]  ys>0 = > z.=f(5), VSCV
e€d(9)

The GW algorithm is driven by the primal complementary slackness conditions; the dual com-
plementary slackness conditions do not always hold, but they are needed in the analysis of the
performance guarantee.

8.5 The GW algorithm for the constrained forests problem

The GW algorithm augments a subset F' of the edges by one edge in each iteration (initially, F' = 0),
until F satisfies the proper function f. Let F'* denote F' at the end of the last iteration. Although
F™ satisfies f, it may not be a minimal edge set satisfying f. The last step of the algorithm is a
clean-up step that constructs a subset F’ of F* consisting of edges that are necessary to satisfy f.
That is, F’ is obtained from F* by removing edges e such that F*\e satisfies f. The clean-up step
is essential for obtaining the performance guarantee.

The algorithm starts with the dual feasible solution ys = 0, V.S C V, and a primal solution
that is infeasible, z, = 0, Ve € E. At each iteration, corresponding to the edge set F' there is a
solution (that may not be feasible) of the primal LP:

{1 ifecF
LTe =

0 otherwise.
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At any step, let C' be the node set of a connected component of the subgraph formed by the current
edge set F', i.e., C induces a maximal connected subgraph of (V, F). Then C is called an active
component if f(C) = 1. Note that if C C V is an active component, then the current edge set F’
does not satisfy

6(C)N F| > £(C),
but for every proper subset C’ C C the current edge set F' does satisfy

B(CYNF > 1> F(C).

At each iteration, the algorithm finds the maximum ¢ such that for each active component C, the
dual variable yo can be increased by e without violating any constraint of the dual LP, and then
increases y¢ for all active components C by e. After this increase, one or more edges e* € §(C), C
an active component (clearly, e* € E\F), satisfy

Z Ys = Cex,

SCV:e*€d(S)

i.e., the edge e* becomes “tight” in the sense that the corresponding constraint in the dual LP
now holds with equality. One such edge e* = ij is added to F, that is, in the primal LP, 2«
is increased from zero to one. Clearly, e* satisfies the primal complementary slackness condition
when it is added to F'; this fact is useful for the analysis. Let C(¢) and C(j) denote the node
sets of the components containing 7 and j respectively, before the edge e* = ij is added to F.
After ¢j is added to F, both C(¢) and C(j) will satisfy the constraint [§(S) N F| > f(S5), since
16(C(%)) N F| =1 > f(C(7)) (similarly for C(j)). However, the new connected component that
contains the edge e* = ¢j and has node set C' = C'(¢) UC(j) may have f(C) =1 and so C' may now
be an active component. The algorithm repeats the above iteration, augmenting edges to F, until
F satisfies the proper function f. A sketch of the algorithm follows.

Initialize:
ys =0, V.S C V; (y satisfies all constraints of the dual LP)
F :=0;

while F does not satisfy the given proper function f do
let € be the maximum number such that the dual variables y¢ of all active components C' can be
increased to y¢ + € without violating any constraint of the dual LP;
for each active component C, increase y¢ by ¢;
at least one edge e* = ij € §(C), C an active component, becomes tight, i.e.,

ys becomes equal to cex;

S:e*€d(S)

add e* to F;
end; (while)

perform the clean-up step, and output the resulting forest F’;
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The key result on the GW algorithm is the following performance guarantee.

Theorem 8.2 Let F' C E be the forest output by the GW algorithm, let ys(S C V) be the dual
solution at termination of the algorithm, and let Z5p be the cost of an optimal solution. Then

Zce§22y5§2ZfP.

ecF'! SCV

In other words, the GW algorithm finds a feasible solution whose cost is at most two times the
optimal cost. The second inequality in the theorem follows because the objective value of every
feasible solution of the dual LP is at most the optimal value of the LP, Z7 5, by linear programming
weak duality, and Zj p is at most Zjp, since (LP) is a relaxation of (IP).

Before presenting the proof of the first inequality in the theorem, a detailed implementation of
the GW algorithm is given, followed by two examples of the working of the algorithm, see Figures 8.1
and 8.2. To obtain a reasonably efficient implementation of the algorithm, two issues need to be
examined, namely, how to maintain the dual variables y5, S C V, and how to discover the active
components in each iteration. The algorithm maintains a list (or set) I' of the node sets C' of the
connected components of the current subgraph (V, F). Initially, I' consists of |V| singleton sets {v},
one for each v € V. In each iteration, when edge ij is added to F, the components containing the
end nodes 7 and 7, namely, C (%) and C(j), “merge”, that is, C(z) and C(j) are removed from I' and
are replaced by C(i) UC(j). The active components are precisely the node sets C' in I' such that
F(C) =1, and these are easily discovered by the algorithm. Let I'; be the set of active components,
I''={C CV:f(C)=1and CisinT}. Since the algorithm raises the dual variables y¢ for the

node sets C' € T'; by ¢, the dual objective value, Z f(S)ys, increases by € - |I'1|. In the detailed

SCV
implementation, there is a variable LB which gives the current dual objective value. Rather than

explicitly maintaining all the dual variables, yg, S C V, the algorithm maintains a value d(v) for
each node v such that
d(v) = Z Ys, Vv e V.
SweS
Initially, d(v) = 0 for each node v, and in each iteration, if the node v is in an active component,
then d(v) is increased by ¢, otherwise d(v) stays unchanged. Clearly, this ensures that the above
assertion on d: V — R, holds at the start of each iteration.

Algorithm GW Constrained Forest Algorithm.

input: Graph G = (V, E), edge costs ¢ : E — %, proper function f:2"V — {0,1}.

output: Forest F' C FE satisfying f, and value LB such that LB < Zjp < ¢(F') < 2-LB
where Z7p is the cost of an optimal solution.

F :=0;

LB := 0;

I:={{v}:veV}

for each v € V do d(v) := 0; end;

while 3C €T such that f(C) =1 do
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(there exists an active component ()
find an edge e* =ij withi € C(¢) e T'and j € C(j) € I, C(¢) # C(4),
cij — d(9) — d(j)

that minimizes ¢ =

F(CH)+ F(CG))
for each v € C €T do if f(C) =1 then d(v) := d(v) + ¢; end; end;
1= Z F(O); (71 is the number of active components)
cer
LB :=LB + €-71;
F:=FU{ij};

I':=M\{C@H,CHNU{CHUCHE))
end (while);

CLEAN-UP:
F':={ee€ F:3D CV : D is aconnected component of (V, F\{e}) and f(D) =1};

8.6 A performance guarantee for the GW algorithm

The proof of the approximation guarantee for the GW algorithm, Theorem 8.2, is presented here.
Recall the statement of the theorem:

Let F' C E be the forest output by the GW algorithm, let ys(S C V) be the dual solution at
termination of the algorithm, and let Z7p be the cost of an optimal solution. Then

Zce§22y5§2ZfP.

ecF'! SCV

The proof hinges on the next lemma. The lemma characterizes the number of edges of the final
output F’ (after the CLEAN-UP step) in the “boundary” 6(C') of a node set C such that f(C) = 0.
The lemma fails if F’ is replaced by F*, where F* denotes the forest F' just before the CLEAN-UP
step.

In the proofs below, a connected component of a subgraph of G (such as the subgraph (V, F))
is sometimes identified with its node set; this should not cause any confusion.

Lemma 8.3 For every node set C C V, if f(C) =0, then the final output F' has either zero or
two or more edges with exactly one end in C, i.e.,

f(C)y=0 - S5(CYNF'|=0 or [§(C)NF'|>2.
Proof: The following fact is needed to prove the lemma.

Fact: If S is a subset of V such that f(S) = 0, and B is a subset of S such that f(B) = 0,
then f(S\B)=0.
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Figure 8.1: Steiner tree problem on the graph G = (V, E') with terminal node set N = {a, b, f} is
approximately solved using the GW algorithm. In the list I, the active components are indicated

by boxes. The final solution F” is indicated in thick lines.

4
I
2
SN
[ e —d()—d()
edge e* = ij | €= 7t oG 4(v) LB r
added to F abcde fyg

START — 0000000 0

F=90 {al}[{b}]{c} {d},{e},|{1}}{g}
ae oo =1 1100010 | 3

{ae}),| {b} |, {c},{d},|{f}]{g}
de e =1 2200120 | 6
{aed} )| {b} | {c},[{f}]{g}
fg 2250 =0 2200120 | 6
{aed}|| {b} | {c},|{f g}
cf 55 =0 2200120 | 6
{aed}),| {b} }|{¢c, f g}
bd 2272 =0 2200120 | 6
{a"b’d’e}’ {C’f’g}
e T =T [TIILITE[ 7
{a’bicid’e’f’g}
F* = {ae,bd, ce,de,cf, fg}
the CLEAN-UP step removes edge fg
final forest: F' = {ae,bd, ce,de,cf}, ¢(F') = 8.
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Figure 8.2: Generalized Steiner forest problem on the graph G = (V, E') with terminal node sets
N; ={a, b} and N, = {c¢, g} is approximately solved using the GW algorithm. The proper function
f:2V — {0,1} is given by f(S) = 1 if either § # SN N; # Ny or § A SN Ny # Ns, and f(S) =10
otherwise. In the list T, the active components are indicated by boxes. The final solution F’ is
indicated in thick lines.
F' is an optimal solution, since the edge costs are integral and [LB | = [7.5] > ¢(F").

4
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2
2
f
* __ 2z _ Ci‘—d(i)_d(.)
edge e* = ij E_Wf(c(]j)) d(v) LB r
added to F abcde fyg
START — 0000000 0
F=10 {a}p{bipj{ct{dh{eh{fH|{g}
ae oo =1 1110001 | 4
{a,e} )| {b} || {c} [ {d} {f} {8}
ce ZIO-1 [§3%0%03] ¢
{a,cie} ]| {b} ({d} {/}|{e}
cf =BA0_1 2220102 | L
{a,C,e,f}, {b} ’{d}’ {g}
fg =0 2220102 | 2
{acefg}y| {b} | {d}
de e =0 2220102 | 2
{a"c’d’e’f’g} ) {b}
bd 51 =0 2220102 | 2
{a’b’c’d’e’f’g}

F* = {ae,bd, Ce,dE,Cf, fg}

the CLEAN-UP step removes edge ce
final forest: F' = {ae, bd, de,cf, fg}, c(F') =8.
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Proof: (of the fact) Consider the set S\B, and note that its complement, V\(S\B) is the union
of two disjoint sets V'\\S and B. Now,

F(S\B) = f(V\(S\B)), by symmetry,
= f((V\S)u(B))
< f(V\S)+ f(B), by maximality,

f(S)+ f(B), since f(V\S) = f(S) by symmetry,
0+ 0. |

The lemma is proved by contradiction. Suppose that there is a node set C' such that f(C) =0
and [6(C)NF’| = 1. Let e* be the unique edge of F’ with exactly one end in C'. Let F* denote the
forest F' just before the CLEAN-UP step. Let C'* be the node set of the connected component of the
forest F* that contains C, and let the node sets of the two connected components formed from C*
by removing e* be N* and (C*\N~). Fix the notation such that C is a subset of N*. There are
two cases.

case (1):

case (2):

N*=C.

Then f(N*) = f(C) = 0. Further, f(C*) = 0, since by the definition of F*, the node set D
of each connected component of (V, F*) has f(D) = 0. From the above fact it follows that
F(C*\N*) = 0. This gives the desired contradiction, since the CLEAN-UP step should have
removed the edge e* from F’.

N*D>C.

Then §(C) N F* has one or more edges, besides the edge e*. Let €*,ey,..., e be the edges
in 6(C) N F*. Removing each of the edges e;, 1 < ¢ < k, from F* disconnects C* into
two connected components, one containing C' and one contained in N*. Let Cy,...,Ch,
C; C N*(1 < i < k), denote the node sets of the latter kind of connected components of
(V, F*\e;), 1 < i < k. Clearly, the node sets C, (4, ..., C} are (pairwise) disjoint, and N* is
the union of these node sets. Since the CLEAN-UP step removes the edges ey, ..., e} from F*
to obtain F, it follows that f(C;) = 0 for each ¢, 1 < ¢ < k. Hence, by maximality,

F(N™) < F(C) + F(CL) + ..+ F(Cr) = 0.

Now, the proof is completed as in case (1).

Proof: (Theorem 8.2) For every edge e added by the algorithm to F

Z Ys = Ce-

S:e€d(S)

That is, each edge e added to F satisfies the primal complementary slackness condition. Hence,

doee = D D W

ecF'! ecF’ S:e€d(S)

= 3 ys-[8(S)n F|.
SCcV
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The proof is completed by using induction on the number of iterations to show that

Z ys - |6(S) N F'| < 2 Z ys- (1)

SCV SCcvV

The induction basis holds, since at the start of the algorithm ys¢ = 0, V.S C V, hence inequal-
ity (1) holds. For the induction step, note that in each iteration, for each active component C in
the list I', y¢o increases by ¢, and for all remaining sets S C V, ys stays the same. That is, the
left-hand side of inequality (1) increases by
e Y, f(O)-16(C)n F,

c:Ccer

and the right-hand side of inequality (1) increases by

2¢ Z F(C).

c:Ccer

Inequality (1) would continue to hold if

Y fe)BOnFl < 2 Y fe), @)
c¢:cel c:Ccer
that is, if the average number of edges of F’ in the “boundary” §(C) of an active component C is
at most two.

The proof is completed by showing that inequality (2) holds. Construct a graph H from the
list I': the nodes of H correspond to the node sets in I'; and there is an edge C'D in H iff in the
original graph G = (V, E) there is an edge e € F’ such that e € §(C) and e € §(D). That is, the
graph H is obtained from the subgraph (V, F’) of G by contracting each node set C in the list I'.
Fact: The graph H is a forest.

For the rest of the proof, assume that no tree of H has a single node, i.e., assume that in the
original graph G each node set C' in the list T' has [§(C) N F’| > 1. The proof is easily modified for
the case when the assumption does not hold.

Since H is a forest, it has at most |V(H)| — 1 edges, and so the sum of the degrees of the nodes
in H is at most 2(|V(H)| — 1). In terms of the original graph G this gives

Y ls@)ynrFl < 2(T-1) (3)
cer

From Lemma 8.3 and the assumption above, it follows that in the original graph G for each node
set C' in the list ' with f(C') =0, |6(C) N F'| is at least two. Summing over all node sets C' in T
with f(C) = 0 gives
Y A-fO)-EC)nF > 2) (1~ f(0)),
cer cer
or, multiplying through by —1,
Y (FO)-n-sC)nF < 2 (F(O)-1). (4)
cer cer
Adding inequalities (3) and (4) gives the desired inequality (2).
The proof of the induction step is now complete, and so the theorem has been proved. |
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Figure 8.3: A network G, c¢ for constrained forest problems.
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Exercises

Let f be a proper function, and let S* C V' be a set maximizing f(S*). Prove that there is a
node v € S* such that f({v}) = f(S57).

. A function f : 2V — {0, 1} is said to satisfy the complementarity property ifforall A C S C V,

F(S) = F(A) =0 = F(S\A) =o.

(a) Prove that for symmetric functions f, the maximality property is equivalent to the
complementarity property.

(b) Let f:2V — {0,1} be a (not necessarily symmetric) function satisfying maximality and
complementarity. Show that the symmetrization f,,,, is a proper function, where f,,,,
is given by

faym (8) = max(f(S), f(V\5)), VSCV.

. A function h : 2V — {0,1} is said to be uncrossable if h(V) = 0, and

VACV,BCV h(A)=h(B)=1 =  either ((AUB)=h(ANB)=1, or
h(A\B) = h(B\A) = 1.

Prove that any function g : 2V — {0, 1} satisfying maximality is uncrossable.

. In each of parts (ii), (iii) and (iv) of Section 8.3, prove that the function f is proper.

. Let G = (V, E) be a graph, and let ¢ : E — R be a nonnegative cost function on the edges.

The goal is to use the GW (Goemans-Williamson) algorithm to find a minimum spanning

tree (MST) of G, c.

(a) State the function f : 2V — {0, 1} to use for finding an MST, and prove that the function
f is proper.

(b) Explain why the following is true:
If the GW algorithm is applied to G, ¢ with an appropriate proper function f, then it
finds a minimum spanning tree.

. Use the constrained forest algorithm of Goemans and Williamson to solve the following prob-

lems on the network GG, ¢ in Figure 8.3.

(a) Find (an approximate) Steiner minimal tree with terminal node set N = {b, ¢, h}.

(b) Solve (approximately) the generalized Steiner forest problem with Ny = {a,b, e} and
Ny ={d,j}.

(c) Solve (approximately) the point-to-point connection problem with the source set C' =
{b, e, f} and the destination set D = {a, h, j}.

(d) Solve (approximately) the T-join problem with T = {a, b, e, f, h, j}.
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Chapter 9

Approximating minimum k-connected
spanning subgraphs

9.1 Introduction

This chapter focuses on (approximately) minimum k-connected spanning subgraphs of a given
graph G = (V, E). We study both k-edge connected spanning subgraphs (abbreviated k-ECSS),
and k-node connected spanning subgraphs (k-NCSS). When stating facts that apply to both a
k-ECSS and a k-NCSS, we use the term k-connected spanning subgraph (k-CSS). We take G to
be an undirected graph. Mostly, we take G to be a simple graph (i.e., G has no loops nor multiple
edges), but while discussing the general k-ECSS problem, we study both simple graphs and multi
graphs (i.e., graphs with multiple copies of one or more edges). Let n and m denote the number of
nodes and the number of edges, respectively.

Several different types of the linear objective function (i.e., vector of edge costs c,,,) have been
studied. The most general case is when the objective function is nonnegative but is otherwise
unrestricted. Two special types of objective functions turn out to be of interest in theory and
practice: (1) the case of unit costs, i.e., the optimal solution is a k-ECSS or a k-NCSS with the
minimum number of edges, and (2) the case of metric costs, i.e., the edge costs ¢, satisfy the
triangle inequality.

Table 9.1 summarizes the best approximation guarantees currently known for the several types
of k-CSS problems discussed above. At present, for minimum k-CSS problems, approximation
guarantees better than 2 are known only for the case of unit costs and for some cases of metric
costs. For nonnegative costs, it is not known whether or not the following problem is NP-complete:
for a constant ¢ > 0, find, say, a 2-ECSS whose cost is at most (2 — €) times the minimum 2-ECSS
cost.

Note that every node in a k-CSS has degree > k, hence, the number of edges in a k-ECSS or a
k-NCSS is > kn/2.

The problem of finding a minimum k-ECSS or minimum k-NCSS is already NP-hard for the
case k = 2 and unit costs. There is a direct reduction from the Hamiltonian cycle problem because
G has a Hamiltonian cycle iff it has 2-ECSS (or 2-NCSS) with n edges. Recently, Fernandes [10,
Theorem 5.1] showed that the minimum-size 2-ECSS problem on graphs is MAX SNP-hard.

121
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Table 9.1: A summary of current approximation guarantees for minimum k-edge connected span-
ning subgraphs (k-ECSS), and minimum k-node connected spanning subgraphs (k-NCSS); k is an
integer > 2. The references are to:

e Cheriyan & Thurimella, IEEE F.O.C.S. (1996),

e Frederickson & Ja’Ja’, Theor. Comp. Sci. 19 (1982) pp. 189-201,

e Khuller & Vishkin, JACM 41 (1994) pp. 214-235,

e Khuller & Raghavachari, J. Algorithms 21 (1996) pp. 434-450, and

¢ Ravi & Williamson, 6th ACM-SIAM S.0.D.A. (1995) pp. 332-341.

Type of objective function
Unit costs Metric costs Nonnegative costs
k-ECSS 14 (2/(k+1)) [CTI6] see last entry 2 [KV94]
simple-edge | 1.5 for k=2 [KV94] | 1.5 for k =2 [FJ82]
model
k-NCSS 1+ (1/k) [CT96] | 2+ (2(k —1)/n) [KRI6] | 2H (k) = O(log k) [RW95]

The last section of this chapter has some bibliographic remarks, and discusses the sequence
of papers that led up to the results in this chapter, see Section 9.12. The discussion may not be
complete. (We hope to rectify any errors and omissions in future revisions of the chapter.)

9.2 Definitions and notation

For a subset S’ of a set .S, S\\S’ denotes the set {# € S|z ¢ S'}.

Let G = (V, E) be a graph. By the size of G we mean |E(G)|. For a subset M of E and a node
v, we use deg;s(v) to denote the number of edges of M incident to v; deg(v) denotes degg(v). An
z-y path refers to a path whose end nodes are # and y. We call two paths openly disjoint if every
node common to both paths is an end node of both paths. Hence, two (distinct) openly disjoint
paths have no edges in common, and possibly, have no nodes in common. A set of k& > 2 paths
is called openly disjoint if the paths are pairwise openly disjoint. By a component (or connected
component) of a graph, we mean a maximal connected subgraph, as well as the node set of such a
subgraph. Hopefully, this will not cause confusion.

For node set S C V(G), d¢(S) denotes the set of all edges in E(G) that have one end node
in S and the other end node in V(G)\S (when there is no danger of confusion, the notation is
abbreviated to 6(5)); 6(S) is called a cut, and by a k-cut we mean a cut that has exactly k edges.
A graph G = (V, E) is said to be k-edge connected if |V| > k 4 1 and the deletion of any set of
< k edges leaves a connected graph. For testing k-edge connectivity, currently Gabow [17] has a
deterministic algorithm that runs in time O(m + k?nlog(n/k)), while Karger [27] has a randomized
algorithm that runs in time O(m + kn(logn)3).

For a subset Q@ C V, N(Q) denotes the set of neighbors of Q in V\Q, {w € V\Q |wv € E, v €
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Q}. A separator S of G is asubset S C V such that G\S has at least two components. A k-separator
means a separator that has exactly k nodes. A graph G = (V, E) is said to be k-node connected if
|V| > k + 1, and the deletion of any set of < k nodes leaves a connected graph. For testing k-node
connectivity, currently Rauch Henzinger, Rao and Gabow [37] have (1) a deterministic algorithm
that runs in time O(min(k?n?, k*n + kn?)) and (2) a randomized algorithm that runs in time
O(kn?) with high probability provided k = O(n'~¢), where € > 0 is a constant.

An edge vw of a k-node connected graph G is called critical w.r.t. k-node connectivity if G\vw
is not k-node connected. Similarly, we have the notion of critical edges w.r.t. k-edge connectivity.

9.2.1 Matching

A matching of a graph G = (V,E) is an edge set M C FE such that degy,(v) < 1, Yv € V;
furthermore, if every node v € V has degy,(v) = 1, then M is called a perfect matching. A graph
G is called factor critical if for every node v € V, there is a perfect matching in G\v, see [32].
An algorithm due to Micali and Vazirani (1984) finds a matching of maximum cardinality in time
O(m+/n). If the graph is bipartite, there is a much simpler algorithm for finding a matching of
maximum cardinality due to Hopcroft and Karp (1972), but the running time remains the same.

9.3 A 2-approximation algorithm for minimum weight £-ECSS

Let G = (V, E) be a graph of edge connectivity > k, and let ¢ : E — R, assign a nonnegative cost to
each edge vw € E. This section gives an algorithm that finds a k-ECSS G’ = (V, E’) such that the
cost ¢(E') = Y em c(vw) is at most 2¢(E,yt), where E,,; denotes the edge set of a minimum-cost
kE-ECSS (i.e., for every k-ECSS (V, E"), ¢(E") > ¢(Eospt)). This result is due to Khuller & Vishkin
[30]. The algorithm is a straightforward application of the weighted matroid intersection algorithm,
which is due to Lawler and Edmonds. For our application there is an efficient implementation due
to Gabow [17]. This section and the next one use directed graphs, and so we include definitions
and notation pertaining to directed graphs in the box below.

For a directed graph D = (V, A), where V is the set of nodes and A is the set of arcs, we use (v, w)
to denote an arc (or directed edge) from v to w. The node v is called the tail of (v, w), and the node
w is called the head. The arc (v, w) is said to leave v and to enter w. For a node set S C V, an arc
(v, w) is said to leave S if v € S and w € V'\ S, and (v, w) is said to enter S if w € S and v € V'\S.
For a node set S C V, the directed cut 6p(.S) or 6(S) consists of all arcs leaving .S (note that 6(.5)
has no arcs entering S). The bidirected graph D = (V, A) of an undirected graph G = (V, E) has
the same node set, and for each edge vw € E, the arc set A has both the arcs (v, w) and (w,v). The
undirected graph G = (V, E) of a directed graph D = (V, A) has the same node set, and for each
arc (v,w) € A or each arc pair (v, w), (w,v) € A, the edge set E has one edge vw (i.e., G has one
edge corresponding to a pair of oppositely oriented arcs). A directed graph is called acyclic if its
undirected graph has no cycles. A directed graph is called a directed spanning tree if its undirected
graph is a spanning tree. A branching (V, B) with root node vy is a directed spanning tree such
that for each node w € V, there is a directed path from vy to wj; in other words, |B| = |V| — 1,
each node w € V\{vg} has precisely one entering arc, vy has no entering arc, and (V, B) is acyclic.
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The weighted matroid intersection algorithm efficiently solves the following problem (P) (and
many others). Let D = (V, A) be a directed graph, let ¢ : A — % assign a real-valued cost to
each arc, let vy be a node of D, and let £ > 0 be an integer. The goal is to find a minimum-cost
arc set ' C A such that F is the union of (the arc sets of) k arc-disjoint branchings with root
vg. In other words, the goal is to find F' C A such that ¢(F) is minimum and F = B; U...U By,
where By, ..., By are pairwise arc disjoint, and for i = 1,..., k, (V, B;) is a branching with root vg.
Gabow’s implementation [17] either finds an optimal F or reports that no feasible F' exists, and
the running time is O(k|V|log|V|(J4| + |V |log |V])).

To find a minimum-weight k-ECSS of G, ¢, we first construct the bidirected graph D = (V, A)
of G, and assign arc costs to D by taking c(v, w) = c¢(w,v) = c(vw) for each edge vw € E. Note
that ¢(A) = 2¢(F). (It may be helpful to keep an example in mind: take G to be a cycle on n > 3
nodes, and take k = 2.) Choose an arbitrary node vy € V. Observe that for every node set .S with
vg € S and S # V, the directed cut 65 (S) has > k arcs because the corresponding cut in G, §¢(5),
has > k arcs. The next result shows that this directed graph D has a feasible arc set FF C A for
problem (P) above.

Theorem 9.1 (Edmonds) If a directed graph D = (V, A) has |6p(S)| > k for every S C V with
vg €S and S # V', where vy is a node of D, then D has k arc-disjoint branchings with root vy.

We apply the weighted matroid intersection algorithm to D, ¢, vy, where vg is an arbitrary node,
to find an optimal arc set F' for problem (P). Let 67 () denote a directed cut of (V, F). Clearly,
|0F(S)| > k, for every S C V with vy € S and S # V, because F contains k arc-disjoint directed
paths from vy to w, for an arbitrary node w € V\S. Let G’ = (V, E’) be the undirected graph
of (V, F). First, note that G’ is k-edge connected (i.e., every nontrivial cut of G’ has > k edges),
because for every S C V with § # .S # V, either vy € S or vy € V\S and so either |67(S)| > k or
66 (V\S)] > E.

We claim that ¢(E') < 2¢(E,p). To see this, focus on the minimum-cost k-ECSS G =
(V, Eopt). The directed graph D, of G,y has total arc cost = 2¢(E,yp), and (reasoning as above)
the arc set of D, contains a feasible arc set F for our instance of problem (P). Hence, the arc set F
found by the weighted matroid intersection algorithm has cost < 2¢(E,;). Moreover, ¢(E’) < ¢(F),
so ¢(E') < 2¢(Eopt)-

Theorem 9.2 There is a 2-approzimation algorithm for the minimum cost k-ECSS problem. The
running time is O(knlogn(m + nlogn)).

9.4 An O(l)-approximation algorithm for minimum metric cost
k-NCSS

Let G = (V, E) be a graph of node connectivity > k, and let the edge costs ¢ : B — R form a
metric, i.e., the edge costs satisfy the triangle inequality, c¢(vw) < c(ve) + c(zw), for every ordered
triple of nodes v, w, . This section gives an algorithm that finds a k-NCSS G’ = (V, E) such that
the cost ¢c(E') = 3, ,em c(vw) is at most (2 + (2k/n))c(Eopt), where E,,; denotes the edge set of
a minimum-cost k-NCSS. This result is due to Khuller & Raghavachari [29], and it is based on an
algorithm of Frank & Tardos [14] for finding an optimal solution to the following problem. Given
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a directed graph D = (V, A) with arc costs ¢: A — £, and a node vy € V, find a minimum-cost
arc set F' C A such that (V, F') has k openly-disjoint directed paths from vy to w, for each node
w € V\{vo}. Gabow [16] has given an implementation of the Frank-Tardos algorithm that runs in
time O(k2|V|%| A]).

The k-NCSS algorithm first modifies the given undirected graph G by adding a “root” node vy.
For this, we examine all nodes v € V to find a node v; such that the total cost of the cheapest k—1

k
edges incident to v is minimum possible. Let v, ..., v; be k—1 neighbors of v; such that Z c(v1v;)
7=2
gives this minimum. We add a new node vy to G, together with the edges vgvy, vovs, . . ., vous, and

we assign each new edge a cost of zero (the edge costs may no longer form a metric, but this
does not matter). Let D = (V U {vg}, A) be the directed graph of the resulting undirected graph
(VU{wvo}, EU{wvgvy,...,vovr}). The arc costs of D are assigned by taking c(v, w) = c¢(w, v) = c(vw)
for every edge vw in the graph. We apply the Frank-Tardos algorithm to D, ¢, v, to find a minimum-
cost arc set FU{(vo,v1),- .-, (vo,v)} such that (VU{vo}, FU{(vo,v1),. .., (vo,v)}) has k openly-
disjoint directed paths from vy to w, for each w € V. We obtain a k-NCSS G’ = (V, E’) by taking
the undirected graph of (V,F) and for 1 < ¢ < j < k, adding the edge v;v; if it is not already
present, i.e., G’ is the “union” of the undirected graph of (V, F) and a clique on the nodes vy, .. ., vg.
(Note that G’ is a simple graph.)

Suppose that G’ is not k-node connected. Then G’ has a (k—1)-separator S, i.e., there is a node
set S with |S| < k—1 such that G’\'S has > 2 components. All the nodes in {vy,...,v}\S must be
in the same component since G’ has a clique on vy, . . ., v. Moreover, each node w € V has k paths to
vy, ..., U such that these paths have only the node w in common; to see this, focus on the k openly-
disjoint directed paths from vy to w in the directed graph (V U {vo}, F U {(vo,v1),-- ., (vo, vk)}).
For every node w € V\ S, at least one of these k paths is (completely) disjoint from S. Therefore,
in G'\ S, every node w € V\S has a path to some node in {vy,...,vt}. This shows that G'\S is
connected, and contradicts our assumption that S is a separator of G’. Consequently, G’ is k-node
connected.

Consider the total edge cost of G’, ¢(E’). Reasoning as in Section 9.3, note that ¢(F) < 2¢(Eopt).
(In detail, the directed graph of (V U{vo}, Eopt U {(vo,v1), ..., (vo, vx)}) has cost 2¢(E,p), and the
arc set of this directed graph gives a feasible solution for the problem solved by the Frank-Tardos
algorithm; hence, the optimal arc set F' found by the Frank-Tardos algorithm has cost < 2¢(E,pt).)
Let ¢* denote the total cost of the k — 1 cheapest edges incident to vy, i.e., ¢* = 2522 ¢(vyv;). Now
consider the total edge cost of the clique on vy, ..., ;. Since each edge v;v; (for 1 < i < j < k) has
c(vivj) < e(viv;) + ¢(v1v4), it can be seen that Z c(viv;) < (k —1)c*. For each node v € V,

1<e<i<k
let dopt(v) denote the set of edges of E,: incident to v; clearly, |8opt (V)| > k, Vv € V. By our
choice of v; and vy, ..., v, each node v € V has ¢(dype(v)) = Z c(vw) > kc*/(k —1). Since

vwESopt (v)
Y ey C(Oopt(v)) = 2¢(Eopt), we have ¢ < 2(k — 1)c(Eqpt)/(kn). Hence, Z c(vv;) < 2(k —
1<i< <k
1)2¢(E,pt)/ (kn). Summarizing, we have c(E’ F)+ Z c(vivy) < (242(k—1)%/(kn))c(Eopt)-
1<i<5<k

Theorem 9.3 Given a graph G and metric edge costs ¢, there is a (2 + (2k/n))-approzimation
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algorithm for finding a minimum-cost k-NCSS. The running time is O(k*n’m).

9.5 2-Approximation algorithms for minimum-size k-CSS

In this section, we focus on the minimum-size k-CSS problem (note that every edge has unit cost)
and sketch simple 2-approximation algorithms. Then, in preparation for algorithms with better
approximation guarantees, we give an example that illustrates the difficulty in improving on the
2-approximation guarantee for minimum-size k-CSS problems.

A graph H is called edge minimal with respect to a property P if H possesses P, but for every
edge e in H, H\e does not possess P. Thus, if a k-edge connected graph G is edge minimal, then
for every edge e € E(G), G\e has a (k — 1)-cut. Similarly, if a k-node connected graph G is edge
minimal, then for every edge e € E(G), G\e has a (k — 1)-separator.

The proof of the next proposition is sketched in the exercises, see Exercise 1

Proposition 9.4 (Mader [33, 34]) (1) If a k-edge connected graph is edge minimal, then the
number of edges is < kn.

(2) If a k-node connected graph is edge minimal, then the number of edges is < kn.

Parts (1) and (2) of this proposition immediately give 2-approximation algorithms for the
minimum-size k-ECSS problem and the minimum-size k-NCSS problem, respectively. Here is the
k-NCSS approximation algorithm; we skip the k-ECSS approximation algorithm since it is simi-
lar. Assume that the given graph G = (V, E) is k-node connected, otherwise, the approximation
algorithm will detect this and report failure. We start by taking £’ = E. At termination, £’ will
be the edge set of the approximately minimum-size k-NCSS. We examine the edges in an arbitrary
order ey, es, ..., ey, (Where E = {e1, es,...,e,}). For each edge e; (for 1 < i < m) we test whether
or not the subgraph (V, E'\e;) is k-node connected. If yes, then the edge e; is not essential for
k-node connectivity, so we update E’ by removing e; from E’| otherwise (i.e., if (V, E'\e;) is not
k-node connected), we retain e; in E’. At termination, (V, E’) will be an edge-minimal k-NCSS
because whenever we retain an edge in E’ then that edge is critical w.r.t. k-node connectivity. The
approximation guarantee of 2 follows because every k-NCSS has > kn/2 edges, whereas |E’| < kn
by the proposition. The approximation algorithm runs in polynomial time, but is not particularly
efficient, since it executes |E| tests for k-node connectivity. Simple and fast 2-approximation algo-
rithms for the minimume-size k-CSS problem are now available, yet the simplicity of the proofs for
the above approximation algorithm is an advantage.

Another easy and efficient method for finding a k-CSS with < kn edges follows from results of
Nagamochi & Ibaraki [36] and follow-up papers. A k-ECSS (V, E’) with |E’| < kn can be found
as follows (assume that G is k-edge connected): we take E’ to be the union of (the edge sets of)
k edge-disjoint forests Fi, ..., Fj, where each F; (for 1 < ¢ < k) is the edge set of a maximal but
otherwise arbitrary spanning forest of G\(Fy U ...U F;_1). In more detail, we take F; to be the
edge set of an arbitrary spanning tree of G. Then, we delete all edges in F} from G. The resulting
graph G\(F}) may have several connected components. In general, we take F; (for 2 < ¢ < k) to
be the union of the edge sets of spanning trees of each of the components of G\(F; U ...U F;_y).
The next result is due to [36] and Thurimella [39], independently.
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Proposition 9.5 If G = (V, E) is k-edge connected, then the subgraph (V, E') is also k-edge con-
nected, where E' = Fy U...UFy, and F; (1 < i < k) is the edge set of a mazimal spanning forest of
G\(FLU...UF;_;).

Proof: Suppose that (V, E’) is not k-edge connected. Then it has a cut 6'(S) of cardinality
< k — 1. Since G is k-edge connected, there must be an edge vw in G such that vw ¢ E’ and
veS wdgS (ie,vw € dg(9)). Fori=1,...,k, note that vw ¢ F; implies that F; has a v-w path
(otherwise, adding vw to F; gives a forest of larger size). Clearly, the v-w paths in Fy, ..., F} are
edge disjoint. This is a contradiction since G’ has both k edge disjoint v-w paths and a k£ — 1 cut
separating v and w. I

Obviously, |E’| < k(n — 1). Consequently, the k-ECSS found by this algorithm has size within
a factor of 2 of minimum. The obvious implementation of this algorithm runs in time O(km).
Nagamochi & Ibaraki [36] give a linear-time implementation for this algorithm.

In fact, Nagamochi & Ibaraki [36] show that the maximal forests Fy, ..., Fy, computed by their
algorithm are such that the subgraph (V, E’) is k-node connected if G is k-node connected, where
E' = Fy U...UF. A scan-first-search spanning forest with edge set F' is constructed as follows:
Initially, F/ = (. An arbitrary node v; is chosen and scanned. This may add some edges to F'. Then
repeatedly an unscanned node is chosen and scanned, until all nodes are scanned. If the current
F is incident to one or more unscanned nodes, then any such node may be chosen for scanning,
otherwise, an arbitrary unscanned node is chosen. When a node v is scanned, all edges in E\F
incident to v are examined; if the addition of an edge vw to F will create a cycle in F (i.e., if F
already has a v-w path), then the edge is rejected, otherwise vw is added to F. The next result is
due to Nagamochi & Ibaraki [36]. Other proofs are given in [13, 3]. We skip the proof.

Proposition 9.6 If G = (V,E) is k-node connected, then the subgraph (V,E') is also k-node
connected, where E' = Fy U ...UF}, and F; (1 < i < k) is the edge set of a mazimal scan-first-
search spanning forest of G\(Fy U ...U F;_1).

It follows that the algorithm in [36] is a linear-time 2-approximation algorithm for the minimum-

size k-NCSS problem.

9.5.1 An illustrative example

Here is an example illustrating the difficulty in improving on the 2-approximation guarantee for
minimum-size k-CSS problems. Let the given graph G have n nodes, where n is even. Suppose
that the edge set of G, E(G), is the union of the edge set of the complete bipartite graph K (n—t)
and the edge set E,p; of an n-node, k-regular, k-edge connected (or k-node connected) graph. For
example, for k = 2, E(G) is the union of E(Kj (,_z)) and the edge set of a Hamiltonian cycle.
A naive heuristic may return E(Kj, (,_r)) which has size k(n — k), roughly two times [Eqy[. A
heuristic that significantly improves on the 2-approximation guarantee must somehow return many
edges of E,p.
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9.6 Khuller and Vishkin’s 1.5-approximation algorithm for min-
imum size 2-ECSS

This section describes a simple and elegant algorithm of Khuller & Vishkin [30] for finding a 2-ECSS
(V,E') of a graph G = (V, E) such that |E’| < 1.5|E,,|, where E,; is the edge set of a minimum
size 2-ECSS. Assume that the given graph G = (V, E) is 2-edge connected. Khuller & Vishkin’s
algorithm is based on dfs (depth-first search). (The relevant facts about dfs are summarized below.)
We use T to denote the dfs tree as well as its edge set. The subtree of T rooted at a node v is
denoted by T'(v). For notational convenience, we identify the nodes with their dfs numbers, i.e.,
v < w means that v precedes w in the dfs traversal (or preorder traversal) of T'. For a node v, the
deepest backedge emanating from T'(v) is denoted db(v), i.e., db(v) = we, where wz is a backedge,
w is a node of T'(v), and for every backedge uy with v in T'(v), z < y.

We initialize E’ to be the edge set of the dfs tree, T. Then we make a dfs traversal of T', and
when backing up over an edge uv in T' (at this point the algorithm has already completed a dfs
traversal of T'(v)) we check whether uv is a cutedge of the current subgraph (V, E’). If yes, then
we add db(v) to E’, otherwise, we keep the same E’.

At termination, (V, E') is a 2-ECSS of G because there are no cutedges in (V, E’). To see this,
note that G has no cut edges, and so every edge uv € T has a well-defined backedge db(v) such
that ¢ < u, where z is the end node of db(v) that is not in T'(v). In other words, if uwv € T is a
cutedge of the current subgraph (V, E’), then we will “cover” uwv with a backedge wz such that w
isin T(v) and z < u.

The key result for proving the 1.5 approximation guarantee is this:

Proposition 9.7 For every pair of nodes v; and v; such that the algorithm adds backedges db(v;)
and db(v;) to E’, the cuts 6(T(v;)) and 6(T (v;)) have no edges in common.

Proof: Let v; precede v; in the dfs traversal. Let db(v;) = wz and let db(v;) = yz. Either v;
is an ancestor of v;, or there is a node v with children v; and vy such that v; is a descendant of
v and v; is a descendant of vy. In the first case, v; < z (i.e., w;v; € T is not “covered” by the
backedge db(v;), where u; is the parent of v; in T'), and so every edge in the cut §(T'(v;)) has both
end nodes in T'(v;); hence, the two cuts 6(T(v;)) and 6(T'(v;)) are edge disjoint. In the second case,

the proposition follows immediately. |

Theorem 9.8 Let G = (V,E) be a 2-edge connected graph, and let E,, be the edge set of a
minimum-size 2-ECSS. There is a linear-time algorithm to find a 2-ECSS (V, E') such that |E'| <
1.5 Egpt|.

Proof: It is easily checked that the algorithm runs in linear time. Consider the approximation
guarantee. Clearly, |E,y| > n, since every node is incident to > 2 edges of E,,;. We need
another lower bound on |E,|. Let v, vs,. .., v, denote all the nodes such that the algorithm adds
the backedge db(v;) (for ¢ = 1,...,p) to E’, i.e., E' = T U {db(v1),...,db(vp)}. Since the cuts
0(T(v1)),...,8(T(vp)) are mutually edge disjoint, and E,,; has at least two edges in each of these
cuts, we have |E,,:| > 2p. Hence, |E,,| > max(n, 2p). Since |E’| = (n — 1) + p, we have

|E'| n—l_l_p<15
|Eoptl = n 2p —
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9.7 Mader’s theorem and a 1.5-approximation algorithm for min-
imum size 2-NCSS

(a) e

Un
U1
U3 U4 Us Vs v7 Vp—
V2 Un—1
b
S o e G o G— —0

Figure 9.1: Tllustrating the 2-NCSS heuristic on a 2-node connected graph G = (V, E); n = |V| is
even, and k = 2. Adapted from Garg, Santosh & Singla [20, Figure 7].

(a) A minimum-size 2-node connected spanning subgraph has n + 1 edges, and is indicated by
thick lines (the path vy, vs,...,v, and edges viv7 and e. = vsv,,).

(b) The first step of the heuristic in Section 9.7 finds a minimum-size M C E such that every node
is incident to > (k — 1) = 1 edges of M. The thick lines indicate M; it is a perfect matching. The
second step of the heuristic finds an (inclusionwise) minimal edge set F' C E such that (V, M U F)
is 2-node connected. F' is indicated by dashed lines — the “key edge” e, is not chosen in F.
|MUF|=1.5n—5.

(c) Another variant of the heuristic first finds a minimum-size M C F such that every node is
incident to > k = 2 edges of M. The thick lines indicate M (M is the path vy, vs, ..., v, and edges
V1U3, Vp_2Vy). The second step of the heuristic finds the edge set F' C FE indicated by dashed lines
— the “key edge” e, is not chosen in F. (V, M U F) is 2-node connected, and for every edge vw in
F, (V,M U F)\vw is not 2-node connected. |M U F|=1.5n — 3.

This section focuses on the design of a 1.5-approximation algorithm for finding a minimum-size
2-NCSS. The analysis of the 1.5-approximation guarantee hinges on a deep theorem due to Mader.
Section 9.8 has a straightforward generalization (from k = 2 to an arbitrary integer k£ > 2) of the
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algorithm and its analysis for finding a k-NCSS with an approximation guarantee of 1 4 (2/k).
A more careful analysis improves the approximation guarantee of the generalized algorithm to
1+(1/k); we sketch this but skip the proof of a key theorem. Although the analysis of approximation
guarantee relies on Mader’s theorem only and not its proof, a proof of Mader’s theorem is given in
Section 9.9.

The running time of the approximation algorithm for 2-NCSS is O(m+/n), because it uses
a subroutine for maximum cardinality matching, and the fastest maximum matching algorithm
known has this running time. Given a constant ¢ > 0, the approximation algorithm for 2-NCSS
can be modified to run in linear time but the approximation guarantee becomes (1.5 + €). Also,
the linear-time variant uses a linear-time algorithm of Han et al [23] for finding an edge minimal
2-NCSS. The first algorithm to achieve an approximation guarantee of 1.5 for finding a minimum-
size 2-NCSS is due to Garg et al [20]; moreover, this algorithm runs in linear time. The Garg et
al algorithm may be easier to implement and it may run faster in practice, but the analysis of the
approximation guarantee is more sophisticated and specialized than the analysis in this section.
We do not describe the algorithm of Garg et al, but instead refer the interested reader either to
[20] or to the survey paper by Khuller [31].

Assume that the given graph G = (V, E) is 2-node connected. The algorithm for approximating
a minimum-size 2-NCSS consists of two steps.

The first step finds a minimum edge cover M C F of G. An edge cover of (G is a set of edges
X C F such that every node of G is incident with some edge in X. An edge cover of minimum
cardinality is called a minimum edge cover. One way of finding a minimum edge cover M is to start
with a mazimum matching M of G, and then to add one edge incident to each node that is not
matched by M. Clearly, M is an edge cover. Let def(G) denotes the number of nodes not matched
by a maximum matching of G, i.e., def(G) = |V| — 2|M|. Then we have |M| = | M|+ def(G). We
leave it as an exercise for the reader that every edge cover of G has cardinality > |]\7f| + def(G),
hence, M is in fact a minimum edge cover. (Hint: for an edge cover X, let ¢ be the minimum
number of edges to remove from X to obtain a matching; now focus on | X| and gq.)

The second step is equally simple. We find an (inclusionwise) minimal edge set F' C E\M such
that M U F gives a 2-NCSS. In other words, (V, M U F) is 2-node connected, but for each edge
vw € F, (V,M U F)\vw is not 2-node connected. An edge vw of a 2-node connected graph H is
critical (w.r.t. 2-node connectivity) if H\vw is not 2-node connected. The next result characterizes
critical edges; for a generalization see Proposition 9.15.

Proposition 9.9 An edge vw of a 2-node connected graph H is not critical iff there are at least 3
openly disjoint v-w paths in H (including the path vw).

Proof: If H has exactly two openly disjoint v-w paths, then vw is obviously a critical edge since
H\vw has a cut node (since H\vw does not have two openly disjoint v-w paths). For the other part,
suppose that H has > 3 openly disjoint v-w paths. By way of contradiction, let ¢ be a cut node of
H\vw, i.e., let S = {c} be a 1-separator of H\vw. Nodes v and w must be in the same component
of the graph H' obtained by deleting S from H\vw (since H\vw has > 2 > |S| openly disjoint v-w
paths). This gives a contradiction, because adding the edge vw to H' gives a disconnected graph
H' 4+ vw (since the new edge joins two nodes in the same component), but H' + vw = H\S, and
H\ S must be a connected graph, since H is 2-node connected and |S| = 1.
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To find F efficiently, we start with F = () and take the current subgraph to be G = (V, E)
(which is 2-node connected). We examine the edges of E\M in an arbitrary order, say, ey, es, . . ., e
(£ = |E\M]). For each edge e; = v,w;, we attempt to find 3 openly disjoint v;-w; paths in the
current subgraph. If we succeed, then we remove the edge e; from the current subgraph (since e; is
not critical), otherwise, we retain e; in the current subgraph and add e; to F' (since e; is critical).
At termination, the current subgraph with edge set M U F' is 2-node connected, and every edge
vw € F is critical. The running time for the second step is O(m?).

Let E’ denote M U F, and let E,,; C E denote a minimum-cardinality edge set such that
(V, Eopt) is 2-edge connected.

Our proof of the 1.5-approximation guarantee hinges on a theorem of Mader [34, Theorem 1].
A proof of Mader’s theorem appears in Section 9.9. For another proof of Mader’s theorem see
Lemma 1.4.4 and Theorem 1.4.5 in [1]. Recall that an edge vw of a k-node connected graph H is
called critical (w.r.t. k-node connectivity) if H\vw is not k-node connected.

Theorem 9.10 (Mader [34, Theorem 1]) In a k-node connected graph, a cycle consisting of
critical edges must be incident to at least one node of degree k.

Lemma 9.11 |F| <n-—1.

Proof: Consider the 2-node connected subgraph returned by the heuristic, G’ = (V, E’), where
E' = M U F. Suppose that F' contains a cycle C. Note that every edge in the cycle is critical,
since every edge in F is critical. Moreover, every node v incident to the cycle C has degree > 3 in
G’, because v is incident to two edges of C, as well as to at least 1 edge of M = E'\F. But this
contradicts Mader’s theorem. We conclude that F is acyclic, and so has < n — 1 edges. The proof
is done.

Lemma 9.12 |E'| = |M| + |F| < 1.5n 4 def(G) —

Proof: By the previous lemma, [F| < n —1. A minimum edge cover M of G has size |M| =
|M| + def(G), where M is a maximum matching of G. Obviously, |M| < n/2. The result follows.

The next result, due to Chong and Lam, gives a lower bound on the size of a 2-ECSS.

Proposition 9.13 (Chong & Lam [5, Lemma 3]) Let G = (V, E) be a graph of edge connectivity
> 2, and let |E,p| denote the minimum size of a 2-ECSS.
Then |Eyp| >max(n + def(G) — 1, n).

Proof: Consider a closed ear decomposition of (V, E,), i.e., a partition of E,p,; into paths and
cycles Py, Ps, ..., P, such that P; is a cycle, and each P; (for 2 < ¢ < ¢) has its end nodes but
no internal nodes in common with P; U ...U P,_; (the end nodes of P, may coincide). By the
minimality of E,,, each P; contains at least two edges, i.e., there are no single-edge ears. Clearly,
|Eopt| = ¢ + n — 1, where ¢ is the number of ears in the decomposition. By deleting one edge of
Py, and the first and the last edge of each P; (i > 2), we obtain a partition of V into completely
disjoint paths. Each of these disjoint paths has a matching such that at most one node is not
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matched. Taking the union of these matchings, we obtain a matching of (V, E,p) such that at most
¢ nodes are not matched. Clearly, ¢ > def(G), since def(G) is the number of nodes not matched
by a mazimum matching of G = (V, E'). Hence, |E,,| > def(G) +n — 1. I

Theorem 9.14 Let G = (V, E) be a graph of node connectivity > 2. The heuristic described
above finds a 2-NCSS (V, E') such that |E'| < 1.5|E,|, where |E,p| denotes the minimum size of
a 2-ECSS. The running time is O(m+/n).

Let € > 0 be a constant. A sequential linear-time version of the heuristic achieves an approzi-
mation guarantee of (1.5+ €).

Proof: The approximation guarantee follows from Lemma 9.12 and Proposition 9.13, since

|E'| 1.5n+ def(G) — 1 0.5n
<14 ——<1.5.
|Eopt| — max(n + def(G) — 1,n) — + n ]

Step 1 can be implemented to run in O(m+/n) time, since a maximum matching can be computed
within this time bound. The obvious implementation of Step 2 takes O(m?) time, but this can be
improved to O(n+m) time by using the algorithm of Han et al [23]. Thus the overall running time
is O(m+/n).

Consider the variant of the algorithm that runs in linear time. Let M denote a maximum
matching of G. For Step 1, we find an approximately maximum matching. For a constant e,
0 < € < 0.5, the algorithm finds a matching M’ with |[M’'| > (1 — 2¢)|M| in O((n+m)/e) time. We
obtain an (inclusionwise) minimal edge cover M of size < (1 + 2¢)|M| + def(G) by adding to M’
one edge incident to every node that is not matched by M’. Moreover, in linear time, we can find
an edge minimal 2-NCSS whose edge set contains the minimal edge cover M, see [23]. Now, the
approximation guarantee is (1.5 + ¢).

9.8 A (1+;)-approximation algorithm for minimum-size k-NCSS

This section presents the heuristic for finding an approximately minimum-size k-NCSS, and proves
an approximation guarantee of 14 (1/k). The analysis of the heuristic hinges on a theorem of Mader
[34, Theorem 1], see Theorem 9.10. Given a graph G = (V, EF), a straightforward application of
Mader’s theorem shows that the number of edges in the k-NCSS returned by the heuristic is at
most

(n— 1)+ min{|M| : M C F and degy,;(v) > (k- 1), Vv € V},

see Lemma 9.16 below. An approximation guarantee of 14(2/k) on the heuristic follows, since the
number of edges in a k-node connected graph is at least kn/2, by the “degree lower bound”, see
Proposition 9.17. Often, the key to proving improved approximation guarantees for (minimizing)
heuristics is a nontrivial lower bound on the value of every solution. We improve the approximation
guarantee from 1 + (2/k) to 1 4 (1/k) by exploiting a new lower bound on the size of a k-edge
connected spanning subgraph, see Theorem 9.18:

The number of edges in a k-edge connected spanning subgraph of a graph G = (V, E)
is at least n/2] + min{|M| : M C E and degy,;(v) > (k— 1), Vv € V}.
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Assume that the given graph G = (V, E) is k-node connected, otherwise, the heuristic will
detect this and report failure.

Let E* C E denote a minimum-cardinality edge-set such that the spanning subgraph (V, E*)
is k-edge connected. Note that every k-node connected spanning subgraph (V, E’) (such as the
optimal solution) is necessarily k-edge connected, and so has |E’| > |E*|.

We need a few facts on b-matchings, because the k-NCSS approximation algorithm uses a
subroutine for maximum b-matchings. Let G = (V, E') be a graph, and let b : V' — Z_ assign a
nonnegative integer b, to each node v € V. The perfect b-matching (or perfect degree-constrained
subgraph) problem is to find an edge set M C E such that each node v has deg;;(v) = b,. The
maximum b-matching (or maximum degree-constrained subgraph) problem is to find a maximum-
cardinality M C E such that each node v has degys(v) < b,. The b-matching problem can be
solved in time O(m!?(logn)!%\/a(m, m)), see [18, Section 11] (for our version of the problem,
note that each edge has unit cost and unit capacity, and each node v may be assumed to have
0 < b, < deg(v)). Also, see [21, Section 7.3].

The heuristic has two steps. The first finds a minimum-size spanning subgraph (V, M), M C E,
whose minimum degree is (k — 1), i.e., each node is incident to > (k — 1) edges of M. Clearly,
|M| < |E*|, because (V, E*) has minimum degree k, i.e., every node is incident to > k edges of E*.
To find M efficiently, we use the algorithm for the maximum b-matching problem. Our problem is:

min{|M]| : degps(v) > (k—1), Vo € V, and M C E}.

To see that this is a b-matching problem, consider the equivalent problem of finding the complement
M of M w.r.t. E, where M = E\M:

max{|M]| : degz7(v) < deg(v) + 1 -k, Vv € V, and M C E}.

The second step is equally simple. We find an (inclusionwise) minimal edge set F' C E\M such
that M U F gives a k-node connected spanning subgraph, i.e., (V, M U F) is k-node connected and
for each edge vw € F, (V, MU F)\vw is not k-node connected. Recall that an edge vw of a k-node
connected graph H is critical (w.r.t. k-node connectivity) if H\vw is not k-node connected. The
next result characterizes critical edges.

Proposition 9.15 . An edge vw of a k-node connected graph H is not critical iff there are at least
k + 1 openly disjoint v-w paths in H (including the path vw ).

To find F efficiently, we start with F = () and take the current subgraph to be G = (V, E)
(which is k-node connected). We examine the edges of E\M in an arbitrary order, say, ey, es, . . ., e
(£ = |E\M]). For each edge e; = v;w;, we attempt to find (k+ 1) openly disjoint v;-w; paths in the
current subgraph. If we succeed, then we remove the edge e; from the current subgraph (since e; is
not critical), otherwise, we retain e; in the current subgraph and add e; to F' (since e; is critical).
At termination, the current subgraph with edge set M U F is k-node connected, and every edge
vw € F is critical. The running time for the second step is O(km?).

The proof of the next lemma hinges on a theorem of Mader [34, Theorem 1], see Theorem 9.10.
The proof is similar to the proof of Lemma 9.11 and so is omitted.

Lemma 9.16 |F| <n-—1.
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Proposition 9.17 Let G = (V, E) be a graph of node connectivity > k. The heuristic above finds
a k-NCSS (V, E') such that |E'| < (1 + (2/k))|Eopt|, where |E,y| denotes the cardinality of an

optimal solution. The running time is O(k>n® + m!>(logn)?).

Proof: The approximation guarantee follows because |E,,:| > (kn/2), so

(M| +|F] _ M| |F

— + <1+
|E0pt| |E0pt| |E0pt|

(o) = 1+ /)

We have already seen that M can be found in time O(m!*(logn)?) via the maximum b-matching
algorithm, and F can be found in time O(km?). The running time of the second step can be
improved to O(k®n?); this is left as an exercise. I

To improve the approximation guarantee to 1 + (1/k), we present an improved lower bound
on |E*|, where E* denotes a minimum-cardinality edge set such that G* = (V, E*) is k-edge
connected. Suppose that E* contains a perfect matching Py (so |Py| = n/2). Then |E*| > (n/2) +
min{|M*| : M* C E, degp«(v) > (k—1),Vv € V}. To see this, focus on the edge set M’ =
E*\P,. Clearly, every node v € V is incident to at least (k — 1) edges of M’, because degg«(v) > k
and degp (v) = 1. Since M™* is a minimum-size edge set with degy,«(v) > (k—1), Vv € V, we have
|M*| < |M'| = |E*| — (n/2). The next theorem generalizes this lower bound to the case when E*
has no perfect matching. We skip the proof.

Theorem 9.18 Let G* = (V, E*) be a graph of edge connectivity > k > 1, and let n denote |V|.
Let M* C E* be a minimum-size edge set such that every node v € V is incident to > (k — 1) edges
of M*. Then |E*| > |M*| + |n/2].

Theorem 9.19 Let G = (V, E) be a graph of node connectivity > k. The heuristic described above
finds a k-NCSS (V, E') such that |E'| < (14 (1/k))|Eopt|, where |E,p| denotes the cardinality of

an optimal solution. The running time is O(k*n® + m!>(logn)?).

Proof: The approximation guarantee of 1 + (1/k) follows easily from Theorem 9.18, using an
argument similar to Proposition 9.17. We have E' = M U F, where |F| < (n — 1). Moreover,
since M is a minimum-size edge set with degy,;(v) > (k — 1), Yv € V, Theorem 9.18 implies that
| M| < |Eopt| — [n/2] < |Eopt| — (n—1)/2. Hence,

M|+ |F| _ B = (n—1)/2+ (n— 1)
|E0pt| - |E0pt|

<1+ 22 < qym,
|E0pt|

where the last inequality uses the “degree lower bound”, |E,p| > kn/2.

The running time analysis is the same as that in Proposition 9.17. I

9.9 Mader’s theorem

This section has Mader’s original proof of Theorem 9.10; no other proof of this theorem is known.
Recall that an edge vw of a k-node connected graph G is called critical if G\vw is not k-node
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connected. In other words, vw is critical if G\vw has a separator of cardinality < k, i.e., if
there exists a set S with |S| < k — 1 such that (G\vw)\S is disconnected. Note that this graph
has precisely two components, one containing v and the other containing w, because by adding
the edge vw to this graph we obtain the connected graph G\S (since G is k-node connected and
|S| < k). This observation is used several times in the proof.

We repeat the statement of Mader’s theorem, see Theorem 9.10.

G y

Figure 9.2: An illustration of the proof of Mader’s theorem.

Theorem (Mader) In a k-node connected graph, a cycle consisting of critical edges must be inci-
dent to at least one node of degree k.

Proof: Let G = (V,E) be a k-node connected graph. By way of contradiction, let C' =
ag, a1, ...,a-1,09 be a cycle such that each edge is critical. Suppose that deg(ap) is > k + 1.
For notational convenience, let @ = ag, s = a; and ¢ = ay_;. In the graph G\as, let S be an
arbitrary (k — 1)-separator whose deletion results in two components (S exists because edge as is
critical for G), and let V, , and V, denote (the node sets of) the two components, where a € V, ,
and s € V;. Similarly, let V,; and V; denote (the node sets of) the two components of (G\at)\T,
where T is an arbitrary (k — 1)-separator of G\at, and a € V,; and ¢t € V;. See Figure 9.2. The key
point is that

|Vi| < |V,,s| and symmetrically |Vi| < |V,4];

this is proved as Claim 1 below.

The theorem follows easily from this inequality. Suppose that each node a; incident to the cycle
C has degree > k+ 1. For 0 < ¢ < £ —1, let n; denote the number of nodes in the component
of (G\a;a;1+1)\S; that contains node a;, where S; is an arbitrary but fixed (k — 1)-separator of
(G\a;a;41) (the indexing is modulo ¢, so ay = ag). For example, using our previous notation,
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ng = |V, 6| and ny_y = |V4|. By repeatedly applying the above inequality we have,
Ng_1 < ng<ny <...<ny_1.
This contradiction shows that some node a; incident to the cycle C has deg(a;) = k.

Claim 1 Let G be a k-node connected graph. Let a be a node with deg(a) > k+ 1, and let as and
at be critical edges. Let S and T be arbitrary (k — 1)-separators of G\as and G\at, respectively.
Let the node sets of the two components of (G\as)\S be V, , and V;, where a € V, , and s € V.
Similarly, let the node sets of the two components of (G\at)\T be V,+ and Vi, where a € V,; and
t € Vi;. Then

Vil < |Vas| and symmetrically |Vi| < |V,4].

The claim follows from three subclaims. See Figure 9.2. Observe that the node set V is
partitioned into three sets w.r.t. S, namely, V, ,,V,, S. This partition induces a partition of T' into
three sets that we denote by Ty = V,NT, Ty =V, ,NT and T5 = SNT, respectively (possibly some
of these subsets of T may be empty). Similarly, V' is partitioned into three sets w.r.t. 7', namely,
Vat, Vi, T, and this gives a partition of S into three sets So = V; NS, 51 =V, NS and So =SNT.
Let V, denote V, , NV, 4, and note that a € V.

One way to see the proof is to focus on the four “arms” of the “crossing” separators .S and 7.
By taking two consecutive “arms” together with the “hub” S NT, we get a candidate separator,
say, X; note that X may not be a separator of G. The proof focuses on the “bottom” candidate
separator X =T U (SNT)US; and the “top” one Y =Ty U (SNT)U.Sy. A closer examination
shows that X U {a} is a genuine separator of G but Y is not.

Subclaim 1 |Sg| < |T}| and symmetrically |To| < |.Sy].

By way of contradiction, suppose that |So| is > |Ti|. Focus on the set X = T3 U(SNT)US;. Since
| X| =|S| = |So|l + |T1| and |S| = k — 1, we have |X| < k — 2. Since deg(a) > k + 1, a has at least
three neighbors in V'\ X; two of these are s and ¢; let b be a third one, i.e., ab € E and b ¢ X U{s, t}.
By the definition of S and T, b ¢ V, and b ¢ Vi, hence, b € V, = V, , NV, ;. Therefore, V,\{a}
is a nonempty set. It is easily checked that N(V,\{a}) C {a} U X. (This is left as an exercise for
the reader.) Clearly, |[{a} U X| < k-1, and |V,\{a}| < |V| = (k + 3), since the complementary
node set contains S UT U {a, s, t}. We have a contradiction, because the k-node connectivity of G
implies that every node set V' with 0 < |[V'| < |V| — k has at least k neighbors. This shows that
|So| < |T1|. Similarly, it follows that |To| < |.Sy].

Subclaim 2 V, NV, = 0.

Let Y = SoU(SNT)UT,. Note that |Y| = |S|—|S1|+|To| < |S| = k—1, by the previous subclaim.
By focusing on V, NV;, and carefully observing that neither a nor one of a’s neighbors is in V, NV,
it is easily checked that |V,NV;| < |V|—(k+2) and N(V,NV;) C Y. As in the proof of the previous
subclaim, the k-node connectivity of G implies that the set V, N V; is empty.

Subclaim 3 |V}| < |V, ,| and symmetrically |V,| < |V, 4.

We have

Vil = Vas NV + SOV + VNV
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S |Va,sm‘/t|+|va,smT|
= |Va,8| - |Va| < |Va78| -1,

where the first inequality follows because |V, , N T| = |T1| > |So| = |S N V4| by Subclaim 1, and
|Vs N Vi = 0 by Subclaim 2, and the second inequality follows because |V,| = |V, , NV, > 1.
Similarly, it can be proved that |V,| < |V, 4|.

|

9.10 Approximating minimume-size k-ECSS

The heuristic can be modified to find an approximately minimum-size k-ECSS. We prove a (1 4+
(2/(k+1)))-approximation guarantee. The analysis hinges on Theorem 9.22 which may be regarded
as an analogue of Mader’s theorem [34, Theorem 1] for k-edge connected graphs.

In this section, an edge e of a k-edge connected graph H is called critical if H\e is not k-edge
connected. Assume that the given graph G = (V| E) is k-edge connected, otherwise, the heuristic
will detect this and report failure.

The first step of the heuristic finds an edge set M C E of minimum cardinality such that
every node in V is incident to > k edges of M. Clearly, |M| < |E,p|, where E,; C E denotes
a minimum-cardinality edge set such that (V, E,;) is k-edge connected. The second step of the
heuristic finds an (inclusionwise) minimal edge set F' C E\M such that M U F is the edge set of a
k-ECSS. In detail, the second step starts with F = ) and E’ = E. Note that G' = (V, E’) is k-edge
connected at the start. We examine the edges of F\M in an arbitrary order e, es,.... For each
edge e; = v;w; (where 1 < ¢ < |[E\M|), we determine whether or not v;w; is critical for the current
graph by finding the maximum number of edge disjoint v;-w; paths in G’.

Proposition 9.20 An edge v;w; of a k-edge connected graph is not critical iff there exist at least
k+1 edge disjoint v;-w; paths (including the path v;w;).

If v;w; is noncritical, then we delete it from E’ and G’, otherwise, we retain it in E’ and G’,
and also, we add it to F. At termination of the heuristic G' = (V,E’), E' = M UF, is k-edge
connected and every edge vw € F is critical w.r.t. k-edge connectivity. Theorem 9.22 below shows
that |F| < kn/(k+ 1) for k > 1. Since |E,,:| > kn/2, the minimum-size k-ECSS heuristic achieves
an approximation guarantee of 14 (2/(k + 1)) for & > 1.

The next lemma turns out to be quite useful. A straightforward counting argument gives the
proof, see Mader [33, Lemma 1].

Lemma 9.21 Let G = (V, M) be a simple graph of minimum degree k > 1.

(i) Then for every node set S C V with 1 < |S| < k, the number of edges with ezactly one end
node in S, |6(S)|, is at least k.

(i) If a node set S C V with 1 < |S| < k contains at least one node of degree > (k + 1), then
|6(S)| is at least k4 1.

The goal of Theorem 9.22 is to estimate the maximum number of critical edges in the “com-
plement” of a spanning subgraph of minimum degree k in an arbitrary k-edge connected graph H.
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Laminar family F of tight node sets Tree T of F

o o :::\\
L V(H)
° . o [
® 4,
° ) e A
Laminar family F’ of tight node sets Tree T' of F’

Figure 9.3: Two laminar families of tight node sets for a 2-edge connected graph H (k = 2).

(a) The laminar family F covers all critical edges of H. F consists of the node sets Ay, ..., As,
where each A; is tight since |6(4;)| = 2 = k. For a node set A;, ¢; is the node set 4;\ | J{4, € F |
A; C A;, A; # A;}. Note that ¢, = A; for the inclusionwise minimal A4;, i.e., for ¢ = 1,4,5,7,8.
Also, the tree T corresponding to F U {V(H)} is illustrated.

(b) The laminar family F’ covers all critical edges of E(H)\M, where M C E(H) is such that
every node is incident to at least & = 2 edges of M. M is indicated by dotted lines. All edges
of E(H)\M are critical. F’ consists of the tight node sets A;, A;. Also, the node sets @1, ¢, are
indicated (¢; = A;), and the tree T’ representing F' U {V(H)} is illustrated.
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Clearly, every critical edge e € E(H) is in some k-cut 6(A.), Ac C V(H). By a tight node set S
of a k-edge connected graph H we mean a set S C V(H) with |6 (S)| =k, i.e., a node set S such
that 6z (S) is a k-cut. As usual, a family of sets {S;} is called laminar if for any two sets in the
family, either the two sets are disjoint, or one set is contained in the other. For an arbitrary subset
F’ of the critical edges of H, it is well known that there exists a laminar family F of tight node
sets covering F', i.e., there exists F = {A;, A, ..., As}, where A; C V(H) and 6(4;) is a k-cut, for
1 < i < ¢, such that each edge e € F' is in some 6(4;), 1 < i < £. (For details, see [11, Section 5].)
It is convenient to define a tree T corresponding to F U {V(H)}: there is a T-node corresponding
to each set A; € F and to V(H), and there is a T-edge A;A; (or V(H)A;) iff A; C A; and no other
node set in F contains A; and is contained in A;. Note that the T-node corresponding to the node
set A; of the laminar family F is denoted by A;, and the T-node corresponding to the node set
V(H) is denoted by V(H). Each T-edge corresponds to a k-cut of H. Suppose that the tree T is
rooted at the T-node V(H). We associate another node set ¢; C V(H) with each node set A; of
F:
¢ =ANJ{A € FlAC A A% A}

In other words, a T-node A; € F that is a leaf node of T has ¢; = A;, otherwise, ¢; consists of
those H-nodes of A; that are not in the node sets A’, A”, ..., where A’, A", ... € F correspond to

the children of A; in the tree T'. For distinct T-nodes A; and A;, note that ¢; and ¢; are disjoint.
£

£
Another useful fact is that U 0(4;) = U 0(¢;), because every edge in §(¢;) is either in §(4;) or in
=1 =1
0(A"),8(A"), ..., where A", A" ... € F correspond to the children of 4; in the tree T'. See Figure 9.3
for an illustration of F = {A;}, the family of node sets {¢;}, and the tree T for a particular graph.

We skip the proof of the next theorem.

Theorem 9.22 Let H be a k-edge connected, n-node graph (k > 1), and let M C E(H) be an edge
set such that every node in V(H) is incident to at least k edges of M. Let F be the set consisting
of edges of E(H)\M that are critical w.r.t. k-edge connectivity, i.e., F C E(H)\M and every edge

k
e € F isin a k-cut of H. Then, |F| < k_l_l(n—l).

Theorem 9.22 is asymptotically tight. Consider the k-edge connected graph GG obtained as
follows: take £ 4 1 copies of the (k + 1)-clique, Co, C1,...,Cy, and for each ¢ =1, ..., £, choose an
arbitrary node v; in C; and add k (nonparallel) edges between v; and Cy. Take M = |J!_, E(C}),
and F' = E(G)\M. Observe that |F| =k(n — (k+1))/(k+1).

Theorem 9.23 Let G = (V, E) be a graph of edge connectivity > k > 1. The heuristic described
above finds a k-edge connected spanning subgraph (V, E') such that |E'| < (14 (2/(k+1)))|Eopt,
where | E,p;| denotes the cardinality of an optimal solution. The running time is O(k*n’+m!>(logn)?).

9.11 The multi edge model for minimum k-ECSS problems

For minimum k-ECSS problems, two different models have been studied, depending on the number
of copies of an edge e € E(G) that can be used in the desired subgraph: (1) in the simple-edge
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Table 9.2: A summary of current approximation guarantees for minimum k-edge connected span-
ning subgraphs (k-ECSS) in the multi edge model; k is an integer > 2. The references are to:
e Goemans & Bertsimas, Math. Programming 60 (1993) pp. 145-166, and ¢ Goemans, Williamson
& Tardos, personal communication (1994) cited in Karger’s Ph.D. thesis.
Type of objective function

Unit costs Metric costs Nonnegative costs
k-ECSS see last entry see last entry | 1.5 for k even [GB93]
multi-edge | 1+ O(1)/k [GTW94] 1.5+ (1/2k) for k odd [GB93]
model

model, at most one copy of an edge can be used, and (2) in the multiedge model, an arbitrary
number of copies of an edge may be used. Some but not all of the approximation algorithms and
guarantees for the simple-edge model extend to the multiedge model; this happens when the input
graph may be taken to be a multigraph, because then we can take the given (simple) graph G and
modify it into a multigraph by taking k copies of every edge e € E(G). In the other direction,
some of the current approximation guarantees in the multiedge model are strictly better than the
corresponding guarantees in the simple-edge model.

For minimum k-ECSS problems and the multiedge model, there is no difference between metric
costs and nonnegative costs, because we can replace the given graph G and edge costs ¢ by the
“metric completion” G’, ¢/, where G’ is the complete graph on the node set of G, and ¢, is the
minimum c-cost of a v-w path in G, see Goemans & Bertsimas [22, Theorem 3].

9.12 Bibliographic remarks

Given a graph, consider the problem of finding a minimum-size 2-edge connected spanning subgraph
(2-ECSS), or a minimum-size 2-node connected spanning subgraph (2-NCSS). Khuller & Vishkin
[30] achieved the first significant advance by obtaining approximation guarantees of 1.5 for the
minimum-size 2-ECSS problem. Garg et al [20], building on the results in [30], obtained an approx-
imation guarantee of 1.5 for the minimum-size 2-NCSS problem. These algorithms are based on
depth-first search (DFS), and they do not imply efficient parallel algorithms for the PRAM model.
Subsequently, Chong & Lam [5] gave a (deterministic) NC algorithm on the PRAM model with an
approximation guarantee of (1.5 + ¢) for the minimum-size 2-ECSS problem, and later they [7] and
independently [4] gave a similar algorithm for the minimum-size 2-NCSS problem. In the context
of approximation algorithms for minimume-size k-connected spanning subgraph problems, Chong &
Lam [5] appear to be the first to use matching. For the minimum-size k-ECSS problem on simple
graphs, Cheriyan & Thurimella [4], building on earlier work by Khuller & Raghavachari [29] and
Karger [26], gave a 1+ (2/(k+1))-approximation algorithm. The k-ECSS approximation algorithm
in [4] does not apply to multigraphs. For the minimum-size k-ECSS problem on multigraphs, a
1.85-approximation algorithm is given in [29], and a randomized (Las Vegas) algorithm with an

approximation guarantee of 1 4+ /[O(logn)/k| is given in [26].
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In the context of augmenting the node connectivity of graphs, the first application of Mader’s
theorem is due to Jordan [25, 24].

One of the first algorithmic applications of Mader’s theorem appears to be due to Jordan [25, 24];
Jordan applied the theorem in his approximation algorithm for augmenting the node connectivity
of graphs. The key lemma in the analyses in Sections 9.7, 9.8 above, namely, Lemma 9.11 (also,
Lemma 9.16) is inspired by these earlier results of Jordan. The analysis of the k-NCSS heuristic
for digraphs is similar, and hinges on another theorem of Mader [35, Theorem 1], which may be
regarded as the generalization of [34, Theorem 1] to digraphs. An approximation guarantee of
14 (1/k) is proved on the digraph heuristic by employing a simpler version of Theorem 9.18, to
give a lower bound on the number of edges in a solution.

9.13 Exercises

1. Prove both parts of Proposition 9.4 using the following sketch.

For part 2, note that every edge e € E(G) is critical w.r.t. k-node connectivity, since G is
edge-minimal k-node connected. Apply Mader’s theorem (Theorem 9.10) and focus on edges
that have degree > k + 1 at both end nodes.

2. Prove the following generalization of Chong and Lam’s lower bound on the number of edges

in a 2-ECSS.

Proposition 9.24 Let G = (V, E) be a graph of edge connectivity > k > 1, and let |Ep|
denote the minimum size of a k-edge connected spanning subgraph. If G is not factor critical,

k k
then |Egpt| > §(n—|— def(G)). In general, |Eop| > §max(n—|— def(G) — 1, n).

(Hint: One way is via the Gallai-Edmonds decomposition theorem of matching theory.)

3. Adapt the 1.5-approximation algorithm for a 2-NCSS in Section 9.7 to find a 2-ECSS whose
size is within a factor of 1.5 of minimum. Assume that the given graph G is 2-edge connected.

(Hint: Focus on a block (i.e., a maximal 2-node connected subgraph) G’ of G. Is it true
that the size of an optimal 2-NCSS of G’ equals the size of an optimal 2-ECSS of G'?)

4. Show that the running time of the second step of the approximation algorithm for a minimum-
size k-NCSS can be improved to O(k*n?).

(~Hint: Use Nagamochi & Ibaraki’s [36] sparse certificate E for k-node connectivity. Here,
E C E, |E| < kn, and for all nodes v, w, (V, E) has k openly disjoint v-w paths iff G has k
openly disjoint v-w paths.)

5. (Research problem) Given a graph, is there a 1 + (1/k)-approximation algorithm for finding
a minimum-size k-ECSS? What about the special case k = 37
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Chapter 10

Minimum cuts

In this note, we first look at an algorithm due to Stoer and Wagner for finding minimum cuts in
graphs without computing flows. We also look at a randomized approach to finding min cuts due to
Karger and co-authors that allows us to bound the number of minimum cuts in a graph. Then, we
describe two kinds of spanning trees of a capacitated undirected graph that capture the structure of
minimum cuts in the graph - flow-equivalent and cut-equivalent trees.

We then present a simple 2-approzimation algorithm for the problem of breaking up an undirected
graph into k connected components for a pre-specified k using edges of minimum total capacity: this
is the k-cut problem. The multiway cut problem is to find a minimum capacity set of edges or
nodes whose removal puts a given set of terminals sy, s, ..., s in an undirected graph in different
connected components. We finally describe a 2-approzimation algorithm for this problem based on
a half-integral relazation of an integer programming formulation of the problem.

10.1 A simple minimum cut algorithm

10.1.1 Introduction

Let G = (V, E') be a connected undirected graph. Given a node set Q C V, 6(Q) denotes the set of
all edges with one end in @ and the other end in V\Q. (Informally, 6(Q) is the “boundary” of the
node set Q in G.) A cut consists of all edges that have one end in @ and the other end in V\Q,
where @ is a node set such that @ # 0 and Q # V; this cut is denoted (Q, V\Q).

Let every edge ¢j € F be assigned a nonnegative capacity ¢(¢j). The capacity of a cut is defined
as the sum of the capacities of the edges in it, i.e. ¢(Q,V\Q) = > iies(Q) ¢(¢j). The minimum cut
problem is to find a cut in G with the smallest capacity.

Background

The minimum cut problem arose first in studies relating to how much “flow” could be sent between a
source and destination in a network. A flow can be intuitively thought of as a set of paths between
the source and destination that share the capacities of the edges without over-using them. An
obvious upper limit on the number of such flow paths between a pair of nodes is the capacity of any
cut that puts the pair in opposite sides of the cut. The well-known maximum-flow minimum-cut

145



146 CHAPTER 10. MINIMUM CUTS

theorem [6, 7, 21] asserts that the maximum number of such flow paths between a pair is equal to
the capacity of a minimum cut separating them. Notice that we are not talking about the minimum
cut in the graph here but a minimum cut separating the pair in question.

Connectivity of a graph

The capacity of a minimum cut in an undirected graph is also called the edge-connectivity of the
graph. Consider the case of an undirected graph with all edge capacities being one. The edge-
connectivity between a pair of nodes is simply the maximum number of paths between the pair
such that the paths are pairwise edge-disjoint. In the sense of the previous paragraph, this is just
the maximum flow between this pair, whose value equals the minimum cut separating them. The
edge-connectivity of the whole graph is defined as the minimum edge-connectivity between any
pair of nodes in it. Thus, trees have edge-connectivity one, a cycle has edge-connectivity two and
a k-dimensional hypercube has edge-connectivity k (check this yourselves!).

The notion of edge-connectivity can be easily generalized to node-connectivity by thinking of
the nodes as being capacitated. Thus we now consider simple graphs where each node is assumed to
have a capacity of one. The node-connectivity between a pair of nodes is defined as the maximum
number of paths between the pair such that these paths are pairwise node-disjoint except at the
two extremes (source and destination itself). Such paths are sometimes also termed openly-disjoint.
There is a counterpart of the maximum-flow minimum-cut theorem for node-capacitated graphs,
which ascertains that the maximum number of openly disjoint paths between a pair of nonadjacent
nodes equals the minimum capacity of any node-cut that separates them. This node-cut is defined
as a set of nodes that puts the pair in two different connected components upon its removal.

An undirected graph is said to be k-edge connected if its edge-connectivity is k and k(-node)
connected if its node connectivity is k.

Algorithms for finding cuts

The first algorithms for computing the minimum cut in a graph were based on finding maximum
flows. Combined with a structure called Gomory-Hu trees, these methods involved n different calls
to an algorithm to find a maximum-flow between a pair of vertices on an n-node graph!. The fastest
flow algorithm currently available is based on the Push-Relabel technique of Goldberg and Tarjan
[10, 19] and run in time O(nm) on an n-node m-edge graph 2. Hao and Orlin [15] extended this
method to piggyback all the n flow computations in asymptotically the same time for one, giving
an algorithm for finding the minimum cut in time O(nm).

An alternate set of algorithms for finding the minimum cut do not use flow. They grew out of
early work of Mader [20] that showed that every k-edge connected graph has a subgraph that is
k-edge connected and has only O(kn) edges. Subsequent work of Nishizeki and Poljak [25] showed
how this subgraph can be constructed as a union of forests. Nagamochi and Ibaraki [22, 23] gave
fast algorithms for constructing such subgraphs. A short proof of a generalization of the results of
Nagamochi and Ibaraki to mixed cuts containing both edges and nodes was presented by Frank,

! Actually, you don’t really need to know about the Gomory-Hu tree to show that you can find the min cut in at
most n flow computations. Find a simple way to do this yourself by a suitable choice of source-destination pairs.
2The O hides poly-logarithmic factors.



10.1. A SIMPLE MINIMUM CUT ALGORITHM 147

Ibaraki and Nagamochi [8]. Since we only examining the edge-version of the minimum cut problem
we follow an even simpler treatment due to Stoer and Wagner [27]. The paper by Frank, Ibaraki and
Nagamochi remains a valuable reference for the most general result provable using this approach.

10.1.2 The Stoer-Wagner Algorithm

First we will introduce a simple operation on a graph G involving a pair of distinct nodes u and
v called node identification. This operation simply identifies these two nodes into one new node,
deleting self loops if any but retaining parallel edges; the resulting graph is denoted by G,,. The
following proposition sheds light on the effect of a node identification on a minimum cut in a graph.

Proposition 10.1 The cuts of the graph G, are exactly the cuts of G that do not separate u and
v.

Therefore, we infer that a minimum cut in G is the minimum of two quantities: the minimum
cut in Gy, and a minimum cut separating v and v (i.e., with these two nodes on the two sides of
the cut). The proposition guarantees that these two cases are mutually exhaustive. Furthermore
we have the following simple algorithm for finding a minimum cut.

Algorithm Node Identification Algorithm for finding a Minimum Cut
input: Graph G = (V, F'), nonnegative edge capacities ¢
output: A subset of nodes S C V such that §(S) is a minimum capacity cut of G.

STEP 1: initialize cut S + undefined and capacity C' + oo;
while G has more than one node do

STEP 2: Pick two distinct nodes s and ¢ and
compute a minimum capacity cut §(S’) separating s and ¢;
STEP 3: if (S, V\S") < C
STEP 4: C (S, V\S') and S « 5/;
end (if);
STEP 5: replace G by G ;

end (while);
output the cut 6(5);

At the outset this algorithm does not appear particularly better than the earlier algorithms - in
fact, it still requires the computation of n — 1 minimum cut and hence maximum flow computations,
on an n-node graph. The only minor advantage is that the size of the graph on which we are
computing the flow is deceasing by one as we progress in the algorithm.

A critical advantage of the above algorithm reveals itself from a close inspection of STEP 2.
In this step we have the choice of picking any two surviving nodes s and t in the graph to find a
minimum cut separating s and t. The idea is to choose a pair s, ¢ such that this minimum cut is
easy to find without using flows.
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Legal Orderings

Define an ordering of the nodes of G, say, v1,vs, ..., v, to be legalif v; is arbitrary and for every ¢ >
2, v; is the node with the maximum total capacity of edges joining it to the nodes {vi,va, ..., v_1.
If we use ¢;(v) to denote Y7 _, ¢(v,v), then v; is a node maximizing ¢;_1(v) over all the remaining
nodes v. The usefulness of legal orderings stems from the following result.

Theorem 10.2 Ifvy,...v, is a legal ordering of the vertices of G, then 6({v,}) is a minimum cut
separating v,_1 and v, in G.

For any node subset V' of G, let G(V') denote the subgraph of G induced by the nodes in V’,
namely, only the set of edges with both endpoints in V’. The theorem follows from the following
lemma about legal orderings.

Lemma 10.3 Let vq,...v, be a legal ordering of the vertices of G. Let v be any verter in
{vit1,Vit2,...,vn}. Then in the graph G({v1,va,...,v;,v}), the minimum cut separating v and
v; has capacity at least c;(v).

Proof: The proof is by induction on 7. The basis when ¢ = 1 is trivial. Assume the lemma is true
for ¢ —1; we’ll prove for ¢. Consider a vertex v € {v;11,...,v,}. By the induction hypothesis, in the
graph G({v1,vs,...,v;—1,v}), the minimum cut separating v and v; has capacity at least ¢;_1(v).
Similarly, in the graph G({v1,v2,...,v;}), the minimum cut separating v and v; has capacity at
least ¢;—1(v;). These imply that in the graph G({vi,vs, ..., v;,v}), the minimum cut separating v
and v; has capacity at least ¢;(v).

Suppose for a contradiction that in the graph G({vy, vs, ..., v;, v}), the minimum cut separating
v and v; has capacity less than ¢;(v). Since ¢;(v) = ¢(v;v) + ¢i—1(v), this implies that after deleting
the edge v;v (if it exists) from this graph, the minimum cut separating v and v; has capacity less
than ¢;_1(v). Call this cut C'. Consider which side of this cut lies the vertex v;_;.

Case 1. If v;_; lies on the same side of C' as v, then C is also a cut separating v;_; and wv; in the
graph G({v1,vs,...,v;}). Thus the capacity of C is at least ¢;_1(v;). By the choice of v; in
the legal ordering, ¢;—1(v;) > ¢;—1(v). This contradicts the assumption that C has capacity
less than ¢;_1(v).

Case 2. If v;_; lies on the opposite side of C' to v, then C is also a cut separating v;_; and v in the
graph G({v1,vs,...,v;—1,v}). Thus its capacity must be at least ¢;_;(v), a contradiction.

This completes the proof of the lemma. |

How efficiently can a legal ordering be found? The key step is to find the next vertex in the
ordering by looking for the vertex with the maximum capacity into the set of already assigned
nodes. This step is similar to a step of Dijkstra’s shortest path algorithm or a step of Prim’s
minimum spanning tree algorithm. By using similar data structures a legal ordering of an n-node
m-edge graph can be found in time O(m + nlogn).
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Min cut algorithm using legal orderings

A legal ordering identifies a pair of vertices, v,_1 and v,, such that the cut around the singleton set
{v,} is a minimum cut separating v,,_; and v,,. Notice that we cannot force a given pair of vertices
to be the last two vertices of a legal ordering. Nevertheless, after an efficient computation, we find
a pair of vertices and a minimum cut separating them. By using this pair of vertices in STEP 2
of the node identification algorithm, we can implement each iteration of the algorithm efficiently
giving an overall running time of O(mn + n? logn) for our minimum cut algorithm.

10.1.3 A bound on the number of min cuts

A randomized version of the node identification algorithm due to Karger and Stein [18] can be used
to show a simple upper bound on the number of minimum cuts in an undirected graph. Let c(e)
denote the capacity of an edge e € E; we extend the notation and use ¢(E) to denote the total
capacity of all the edges in the graph.

Algorithm Random Contraction Algorithm
input: Graph G = (V, F'), nonnegative edge capacities ¢
output: A set of edges forming a minimum cut in G with probability at least ﬁ .

while G has more than two nodes do

STEP 1: choose an edge randomly where edge e is chosen with probability cc((g)

~—|

STEP 2: if the chosen edge is uv, replace G by G, .
output the set of edges forming the unique cut of the resulting graph G,

Theorem 10.4 Fiz C to be a minimum cut of a graph G on n nodes. Then the probability that
the random contraction algorithm running on G outputs C is at least ﬁ
Proof: We would like to lower bound the probability of the good event that no edge of C' is
touched in the course of the contraction algorithm.

First let us estimate the probability that an edge of C' is contracted in the first iteration of the

algorithm when the first edge to be contracted is chosen.

Pr(an edge of C is contracted) = C(E)
c

where ¢(C) denotes the total capacity of the cut C'. Note that we can write ¢(E) = £ 3>, cq c({v}, V\{v}).

Since C' is a minimum cut, we have for any v € G that ¢(C) < ¢({v}, V\{v}). Substituting back
we get that ¢(F) > 1 -n-c(C) and that
2

Pr(an edge of C is contracted) <
n

It is straightforward to extend this argument to show that after 7 contractions by the algorithm,
2

n—1

Pr(an edge of C is contracted) <
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Therefore after ¢ contractions, assuming that C' survives,

2 —1—2
Pr(an edge of C is not contracted) > 1 — .— n—e i
n—i n—i

Finally we have that

Pr(the algorithm outputs C) = Pr(no edge of C is ever contracted)
n—2 n-2-1 n—2—(n—-3)
(n—2)(n—3)...2-1
n(n—1)...4-3
2
n(n —1)

v

We have the following corollary.
Corollary 10.5 The number of distinct minimum cuts in an undirected graph is at most ﬂnz—_ll

The corollary follows by using the Theorem to observe that for every distinct minimum cut, the
probability of the algorithm returning that particular cut is at least ﬁ Returning a pair of
distinct minimum cuts is a pair of mutually exclusive events and the bound follows.

This bound on the number of different minimum cuts is the best possible in the sense that there
is an n-node graph with exactly @
cut.

Karger and co-workers have extended this paradigm to provide a series of algorithms with better
and better running times and better success probabilities of returning a minimum cut. For details

of these methods and an empirical evaluation of the different approaches to computing minimum

cuts. Namely, each pair of edges in an n-cycle is a minimum

cuts, see [3] and the references therein.

10.2 Gomory-Hu Trees: Existence

In this section, we look at two kinds of spanning trees of a capacitated undirected graph that
capture the structure of minimum cuts in the graph.

10.2.1 Introduction

Let G = (V, E) be a connected undirected graph, and as before, let every edge 7j € E be assigned
a nonnegative capacity c(ij). We define two types of trees on the same vertices as G. Note that
we do not require that the edges of T be a subset of the edges of G — in both cases, the tree T is
only intended to capture the structure of minimum cuts in G.

A cut-equivalent tree (relative to G) is defined as a tree T with V(T') = V(G) with the
following property: for every edge zy € E(T'), the removal of zy from T partitions V(T') = V(G)
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into two subsets X > ¢ and Y 5 y; then we require the cut 6(X) in G to be a minimum capacity
cut separating # and y.

A flow-equivalent tree is defined as a tree with V(I") = V(G) along with nonnegative capac-
ities ¢’ assigned to the edges of T' with the following property: for any pair of nodes z and y, the
maximum flow between # and y has the same value in both G and 7. By the max-flow min-cut
theorem, this translates to requiring that the minimum cut separating z and y has the same value
in both G and T'.

Note that a cut-equivalent tree is uncapacitated while the flow-equivalent tree is capacitated.
However, there is a natural assignment of capacities ¢’ to the edges of a cut-equivalent tree: for
every edge zy in the tree, let X be the component of T' — zy containing z; then we assign ¢/(zy) =
¢(X,V\X), namely, the capacity of the cut §(X) separating  and y in G. A cut-equivalent tree
with these capacities is called a Gomory-Hu tree, named after its discoverers Gomory and Hu
[12].

First we begin with a simple observation.

Proposition 10.6 Let vi,vs,..., v be a sequence of distinct nodes of G. Let c¢;; denote the value
of a minimum cut separating v; and v;. Then

cir, > min{cya, €23, .. ., Ck—1,k}

Proof: Consider tracing the path from v; to v along vs,...,ve_1 (this path need not exist in
G). This path must cross any cut separating v; and vy at least once. Hence, a minimum cut of
value ¢y separating v; and vg must also separate a consecutive pair of nodes v; and v;y; for some
i €{1,2,...,k— 1}. This implies the claim. |

Proposition 10.7 A cut-equivalent tree is also flow-equivalent, when each edge is assigned its
capacity in the natural way described above.

Proof: Let T be the cut-equivalent tree with capacities ¢/, and let s and ¢ be a pair of distinct
nodes. We’'ll show that the minimum cut separating s and ¢ has value equal to the minimum
¢’-value of an edge in the s — ¢t path in T'. Let this path be P = {s = vy, vs,...v; = t}. Applying
Proposition 10.6 to P yields that c,; > ¢; ;41 = ¢4y for some pair v; = ¢ and v;;; = y of consecutive
vertices in the path.

Since T is cut-equivalent, the cut induced by the two components of T — zy is a minimum cut
separating = and y of value c,, in G. Note that this cut also separates s and ¢, and has value ¢,
giving ¢, < Cyy.

Combining the two inequalities above, we see that c,s = c;,, which shows that T is flow-

equivalent. |

10.2.2 Warm-up: Maximum spanning trees

The existence of flow-equivalent trees implies that there is a lot of redundancy in the minimum

cut values between different pairs of vertices. Among the possible ﬂn2_—11 values, there are at most

n — 1 distinct ones represented in the flow-equivalent tree. Note that the minimum cut between
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a pair of vertices in the flow-equivalent tree is the smallest capacity of an edge in the unique tree
path between them.

To build intuition, we will first show a simple proof of existence of flow-equivalent trees. This

gy - . . . . . n(n—1)

proof will imply an algorithm for constructing such trees which involves carrying out ———

imum cut computations. In the next section, we will strengthen this result in two directions: by

reducing the number of cut computations to n — 1 and by building a cut-equivalent tree.

min-

Given an undirected graph G = (V, E) with nonnegative weights w,. on its edges e € FE, a
maximum spanning tree of G is a spanning tree of maximum total weight in G. Methods for
finding minimum spanning trees extend to find maximum spanning trees as well. For example,
a Kruskal-like algorithm adds edges in decreasing order of weight disregarding edges that form a
cycle, until a spanning tree is formed. A Prim-like algorithm grows a core of nodes and extends the
core by always using the maximum weight edge coming out of the core to identify the next vertex
to pull into the core. A simple property of maximum weight spanning trees is summarized below.

Proposition 10.8 Let T be a mazimum spanning tree and let f — @y be a non tree edge. Then
wy < we for an edge tree e on the path between ¢ and y in T.

Proof: The argument is similar to that for minimum spanning trees. Assume for a contradiction
that wy > w, for appropriate edges e and f. Replacing e with f in T results in a different tree

T — e+ f that has more weight than T, contradicting that 7' is maximum weight. I

To show that a capacitated undirected graph G has a flow-equivalent tree, we construct a
complete weighted graph G* with the same nodes as G. We define the weight of an edge zy in G*
to be the value c;, of a minimum cut separating z and y in G.

Lemma 10.9 A mazimum spanning tree of G* is a flow-equivalent tree for G.

Proof: Let T be a maximum spanning tree of G*, and let s and ¢ be a pair of distinct nodes in
T. Let P = {s = vy, vs,...vp =t} be that path in T between s and t.

Suppose k = 2 and st is an edge of T', then trivially, by the definition of the weight function of
G*, the minimum cut separating s and ¢ has value equal to the weight of the edge st in T.

Now suppose k > 3 and so the edge st is not in 7. By Proposition 10.6, ¢, > ¢; ;41 = cgy for
some pair v; = & and v;; = y of consecutive vertices in the path P. By Proposition 10.8, ¢, < cgy.

Combining these gives that ¢, = ¢, and thus T is flow-equivalent for G. |

The above proof gives a simple algorithm for constructing a flow-equivalent tree. First run
@ minimum cut computations to determine the weights of the edges in G*. Then we can use
a maximum spanning tree algorithm to compute 7" from G*.

10.3 Gomory-Hu Trees: Construction

In this section, we present an algorithm for constructing a cut-equivalent tree of an n-node graph
using only n — 1 cut computations. Before that we present a few preliminaries on uncrossing cuts.
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10.3.1 Uncrossing cuts

A pair of sets S and Q (where 0 # S,Q # V) are said to be crossing if each of the four sets
SNQ,S-Q,Q—Sand V —Q — S is non-empty. A pair of cuts §(S) and 6(Q) are said to be
crossing if the sets S and @) are crossing sets.

In the sequel, we use the term s—¢ minimum cut to denote a cut of minimum capacity separating
a pair of distinct vertices s and ¢ in G. Also we will always use Y = V\X, B = V\ A and similarly
for Y’ and B’.

A real-valued set function f :2Y — ® defined on node-subsets is submodular if it satisfies
FX)+ F(Y) > F(XUY)+ F(XNY)
for all X, Y C V. We may extend the definition and call f weakly submodular if it satisfies
F(X) + F(Y) > max(F(X UY) + F(X OY), F(X = ¥) + f(¥ — X))

for all X, Y C V.
Consider the function defined on S C V as ¢(S) = ¢(S, V\S), the capacity of the cut §(5).

Proposition 10.10 The capacity function on node subsets ¢ : 2V — R is weakly submodular.
Proof: The proof proceeds by showing the following two inequalities.

(i) forall X, ACV,
e(X)+c(A) > c(XUA) +c(XNA)

(ii) forall X,ACV,
e(X)+c(Ad)>e(X —A)+c(A-X)

The proof for both parts follows from a simple counting argument: consider two cuts J(X) and
0(A) and look at the different kinds of edges in the right-hand side to verify that they occur with

at least the same multiplicity in the left hand side as well. See Figure 10.3.1. I

The main application of the weakly submodular property of cuts is in uncrossing a pair of
crossing cuts. By uncrossing this pair of cuts, we mean replacing them by another pair, say 6(X’)
and 6(A’) such that X’ and A’ do not cross, and the two new cuts have the same properties as the
old cuts. For example, if §(X) and 6(A) were both minimum cuts in G, than §(X’) and §(A’) will
also both be minimum cuts.

As another example, suppose §(X) and 6(A) were 2 — y and ¢ — b minimum cuts respectively;
Then, the pair of uncrossed cuts §(X’) and §(A’) will also be 2 — y and a — b minimum cuts
respectively. We show these two applications of weak submodularity to uncrossing cuts in the next
two lemmas.

Lemma 10.11 Suppose §(X) and 6(A) are crossing minimum cuts of G. Then §(X N A) and
(X UA) are also minimum cuts and they are non-crossing. Similarly, 6(X — A) and 6(A— X) are
also non-crossing minimum cuts.
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Figure 10.1: Proof of Proposition 10.10. The dotted edges are counted with the same multiplicity
in both inequalities. Edges of the type labeled 1 are not counted in the right-hand side of (i), while
edges of type 2 are not counted in the right-hand side of (ii). This results in the inequality rather
than equality.

Proof: The proof is a direct application of proposition 10.10. Part (i) gives that
e(X)+c(4A) > c(XUA) +c(XNA)

Since X and A cross, both §(X U A) and §(X N A) are nonempty sets of edges and have capacity
at least that of a minimum cut. But both terms on the left hand side are values of the minimum
cut by definition and so both §(X U A) and §(X N A) must be minimum cuts as well. The proof
for the other pair is similar using the second part of proposition 10.10. I

Lemma 10.12 Let 6(S) be an s —t minimum cut where s € S andt € T =V\S, and let §(X) be
an ® —y minimum cut, wherez € X andy € Y = V\X. Assume that S and X cross. Then there
ezxists a pair 6(S’) and 6(X') of noncrossing of s —t and ¢ — y minimum cuts in G.

Proof: The proof is essentially a lengthy case analysis investigating the various relative locations
of the vertices , y, s and ¢, and using Proposition 10.10 extensively. We will consider two possible
cases for the location of ¢ and y relative to s and t.

Case A: Both z and y are in the same side of the cut 6(.9), say in S. Without loss of generality,
assume that s € SN X. There are two subcases to consider. (see Figure 10.3.1).

1. t e TNY: Apply proposition 10.10 (i) to the pair of crossing cuts 6(S) and §(X) to get
e(S)+e(X)>e(SNX)+e(SUX)

Note that §(S) and 6(X) are minimum cuts for the pairs s — ¢t and # — y respectively. Fur-
thermore, §(S N X) separates  and y while 6(SU X)) separates s and t in this case. Thus the
inequality must be tight with 6(SNX) being a minimum cut separating  and y and §(SUX)
being a minimum cut separating s and ¢.
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S T

Figure 10.2: Case A in the proof of Lemma 10.12. The location of the node t in the two subcases
1 and 2 are shown as ¢; and t, respectively.

2. t € TN X: The proof is similar. We apply proposition 10.10 (i) to the pair 6(S) and 6(Y) in
this case to obtain

e(S)+c(Y)>e(SNY)+e(SUY)

Again §(S) and 6(X) are minimum cuts for the pairs s—¢ and « — y respectively. Furthermore,
d(SNY) separates z and y while §(SUY') separates s and ¢ in this case. Thus the inequality
must be tight with §(S NY’) being a minimum cut separating # and y and 6(SUY') being a
minimum cut separating s and t.

Case B: z and y are in opposite sides of the cut §(S), say # € S and y € T'. There are two
subcases to consider depending on the location of s. (see Figure 10.3.1).

1. s € SN X. In this case, the cut (SN X) is an s — ¢ cut while §(SU X) is an # — y cut. By
submodularity, both are also minimum.

2. s € SNY. There are two further subcases depending on the location of t. In the first and
more routine case, t € T NY (denoted 31 in figure 10.3.1). In this case, §(Y NT) is an s — ¢
cut while §(Y UT) is an « — y cut. Again, by submodularity, they are both minimum.

The more interesting subcase is when ¢t € T'N X (denoted ¢35 in the figure). Note that we
cannot directly apply submodularity to any pair of crossing cuts here. However, in this case,
4(S) is an « — y cut while §(X) is an s — ¢ cut. Since both cuts are minimum, they both
have the same value. Applying weak submodularity for a single pair of cuts, say 6(S) and
4(X) now shows that all four cuts (SN X),8(SUX), (S — X) and §(X — S) have the same
value. We can now use 6(SNX) and 6(SNY) as the pair of minimum # — y and s — ¢ cuts
respectively.
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S T

Figure 10.3: Case B in the proof of Lemma 10.12. The location of the node s in the two subcases
1 and 2 are shown as s; and s, respectively. In the subcase 2 when s is located at s,, the two
possible locations of the node ¢ are labeled ¢5; and 95 respectively.

Corollary 10.13 Consider an undirected graph G and let s and t be distinct nodes. Also let © and
y be distinct nodes such that  may be a and y may be b. Let §(X) be an & —y minimum cut, where
ze€Xandy €Y =V\X. Let G(z*) denote the graph obtained from G by identifying all the nodes
in X to a single node, and let G(y*) be similarly defined. Then, either §(X) is a minimum s —t
cut, or there is a mintmum s — t cut of G that is also a cut in either in G(z*) or G(y*).

Proof: Suppose §(X) is not a minimum s — ¢ cut. Let §(S) be a minimum s — ¢ cut. If S and X

do not cross, then the side of §(X) containing S continues to contain a minimum s — ¢ cut of G.
Otherwise, S and X cross and we can use the proof of Lemma 10.12 to conclude that there is

a minimum s — ¢ cut in G that is also a cut in either G(z*) or G(y*). I

10.3.2 The construction algorithm

The algorithm for constructing a cut-equivalent tree starts with the tree being a single “supernode”
containing all the nodes of G. At each step, a supernode containing at least a pair of real nodes
is split by computing a minimum cut between the pair, and a tree edge is added between the two
resulting supernodes. The procedure stops when every supernode contains exactly one original
node of G at which point we have a tree spanning the nodes of G.

Algorithm Cut-Equivalent Tree

input: Graph G = (V, F'), nonnegative edge capacities c.

output: A cut-equivalent tree T for G.

STEP 1: initialize T to be a single supernode containing all nodes of G;
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while there is a supernode containing more than a single node do

STEP 2: pick a supernode U containing nodes z and y;
STEP 3: form a new contracted graph GY as follows:
for each subtree of T' attached to U,
STEP 4: contract to a single node all the nodes of G contained in this subtree;
(delete self loops but retain parallel edges)
STEP 5: find a min cut §(X) separating z and y in GJ;
STEP 6: update T as follows:
STEP T: split supernode U into two supernodes X and Y

partitioning the nodes in U according to the cut defined by X;
for every supernode W adjacent to U originally
STEP 8: reconnect W to either X or Y
depending on which side of the cut §(X) that W appeared in G¥;
output the tree T

The time complexity of the algorithm is dominated by the minimum cut computations in step 5,
and there are n — 1 calls to this procedure for an n-node graph.

Correctness

Theorem 10.14 The algorithm above outputs a cut-equivalent tree.

The theorem is proved by showing the following lemma?®. Let T; represent the tree after 7 iterations
of the algorithm through steps 2-8, i.e., after ¢ minimum cut computations. Note that any edge
T, represents a unique cut in G defined by the bipartition of nodes according to this edge in 7.
Also the cut represented by any edge in 7T; continues to be represented in all the subsequent trees
T;, j > 1.

Lemma 10.15 Consider the tree T;. Let a and b be any two nodes in G where a € S(a) and
b € S(b) for supernodes S(a) and S(b) in T;. Suppose that the supernodes S(a) and S(b) are either
identical or separated by at most one edge in T;. Then there is a minimum a — b cut such that

(i) all of the edges of the cut are either in Gf(a) or in Gf(b) or
(1) this cut is defined by the edge separating S(a) and S(b) in T;.

Note that case (i) of the claim applies only when S(a) and S(b) are distinct supernodes that
are adjacent in T;.

Proof: The proof is by induction on ¢. The basis when ¢ = 0 corresponds to a single supernode
and the minimum a — b cut obviously appears in the graph induced by all the nodes. Suppose the
claim holds for ¢, we’ll prove it for i+ 1. Suppose in T; that a € S(a) and b € S(b). By the inductive

hypothesis, the minimum a — b cut is either in Gf(a) or Gf(b) (assume without loss of generality it

3Thanks to Rachel Rue for proposing the lemma that unifies two lemmas suggested earlier for the proof.
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is in Gf(a) in this case), or is the cut represented by the edge between the two distinct supernodes
S(a) and S(b) in T;. We consider these two cases separately.

1. The minimum a— b cut is in G£*). Let 4(A) be the minimum a — b cut and B = V(Gf(a))\A.
If the (¢4 1)st iteration puts a and b in supernodes that are more than one edge away in T;1;
we cease to worry about this pair of nodes in enforcing the inductive claim.

Suppose that a and b are in supernodes at most one edge away in 7; ;. Then the cut in Gf(a)
between them will be affected only if the (¢ 4 1)st cut was found on the supernode S(a), i.e.,
in this iteration, in step 2, U = S(a). In the following, if S(a) # S(b), replace b by b*, the
supernode representing S(b) in Gf(a). Suppose the minimum z — y cut found by the algorithm
in the graph Gf(a) in step ¢+ 1 is §(X), where a € X without loss of generality. Note that
may be identical to a and/or y may be identical to b. Let ¥ = V(Gf(a))\X. The supernode
containing a after this iteration is S’(a) = S(a)\Y, and that containing b is S'(b) = S(b)\X.
By Corollary 10.13 with G = Gf(a) and A = S and B =T, the minimum a — b cut §(A4) of
Gf(a) is either 6(X) or it survives in one of Gf/(a) or Gf/(b). In the former case, we have a cut
in T; 41 of type (¢¢), while in the latter, it is of type (7).

2. The minimum a — b cut is defined by the edge separating S(a) and S(b) in T;, where S(a) #
S(b). If the (¢ + 1)st iteration puts a and b in supernodes more than one edge away, we do not
worry about enforcing the inductive claim for the pair.

Otherwise, irrespective of whether the cut computation in step ¢ + 1 involves node S(a) or
S(b), the edge separating the supernodes S’(a) and S’(b) in T;41 containing a and b represents
the same cut as the edge between S(a) and S(b) in T;. This is a cut of type (%7).

Notice that all pairs a,b obeying the condition of the lemma in 7;,; must have obeyed this
condition even in T; and hence the proof is complete. |

For an alternate version of the algorithm that allows for easy integration with existing code
for finding minimum cuts, see [14]. This version does not require contractions and the necessary
operations that go with it in finding the cut-equivalent tree. Other interesting properties of cut
and flow-equivalent trees appear in [1, 16].

10.4 Multicuts

In this section, we examine an approximation algorithm for the problem of breaking up an undi-
rected graph into k connected components for a pre-specified k using edges of minimum total
capacity.

10.4.1 Introduction

Let G = (V, E) be a connected undirected graph, and let every edge ij € E be assigned a non-
negative capacity c(¢j). For a given positive integer k, the minimum k-cut problem is to find a
set of edges of minimum total capacity whose removal from G leaves at least k& connected compo-
nents. Note that since the capacities are nonnegative, a minimal solution will result in exactly k
components upon its removal (if there are more, we can “put back” some edges from the solution
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into the graph until we have exactly k components). Notice that a k-cut has more than two shores
(connected component) for k£ > 2 and hence cannot be specified by a single subset of edges; Rather,
we now need a partition of the vertices into multiple blocks to specify such a cut. Hence, such cuts
also also termed multicuts.

The minimum k-cut problem is solvable in time O(nk2) on an n-node graph [11], while on a
planar graph, the running time can be reduced to O(n*) [5]. However for arbitrary k& (when k is
part of the input specification), this problem is NP-hard [11]. We will look at an approximation
algorithm for this problem due to Saran and Vazirani [26] that achieves performance ratio 2(1— 7).
The algorithm they propose in fact gives an approximate solution for a minimum é-cut for every
value of 7 from 2 to k due to a extendible property of the approximate solution — a near-optimal
minimum ¢-cut can be extended to a near optimal ¢ + 1-cut.

10.4.2 Two simple algorithms

First we examine two simple heuristics - GREEDY and SPLIT. We then show how they are both
dominated in performance and running time by a better heuristic EFFICIENT. Then, in the next
section, we prove the performance of EFFICIENT. We shall use lower-case letters with subscripts
(such as b;, ¢;, gi, and s; to denote subsets of edges in the sequel.

A greedy method

A simple greedy way to create more components is to pick the lightest (minimum capacity) cut
that creates more components in the current graph. A naive method to implement this idea will
look at a list of all cuts in G sorted by nondecreasing capacity ¢y, ¢s, 3, . . ., and iteratively picking
the first one in the sequence that creates more components. Notice the resemblance to Kruskal’s
algorithm for finding minimum spanning trees.

It is however impractical to create such a list, but we can still implement this method by looking
at a much more restricted list of cuts: for every edge e, we find a minimum cut s, separating the
endpoints of e, and sort this list of cuts by capacity. We run our algorithm on this smaller list.
This gives us the first algorithm.

Algorithm GREEDY
input: Graph G = (V, F'), nonnegative edge capacities c.
output: A k-cut of capacity at most 2(1 — %) of the minimum.
STEP 1: Initialize the multicut s < 0, and ¢ <+ 1;
for each edge e
STEP 2: pick a minimum cut s, separating the endpoints of e;
STEP 3: Sort these cuts in the order of nondecreasing capacity to get the list
51,82, ...y 8m, where m = |E|;
while (V, E — s) has fewer than k connected components do
STEP 3: if s;, Z s, then s + s U s;;
STEP 4: i1+ 1;
output s;
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Note that E C s;UssU. . .Us,, and hence the algorithm will be able to find a k-cut for any value
of £ < n. A simplistic implementation of this algorithm may require up to m pairwise minimum

cut computations. However, we can use a cut-equivalent tree to determine all the relevant cuts,
leading to the algorithm EFFICIENT which is the subject of the next section.

A simple splitting method

Another simple idea to generate more components is to work in each of the current components in
the graph and find the lightest cut that splits one of them. If this is repeated k& — 1 times, we get
a k-cut, giving the following algorithm.

Algorithm SPLIT
input: Graph G = (V, F'), nonnegative edge capacities c.
output: A k-cut of capacity at most 2(1 — %) of the minimum.
STEP 1: Initialize the multicut s < 0, and ¢ <+ 1;
for i from 1 to k — 1 do
for each connected component G; of the graph (V, E — s)

STEP 2: pick a minimum cut s; of G;;
STEP 3: Let s’ be a cut with minimum capacity among the cuts s;; Update s < s U s/,
output s;

Again, a simple implementation of the algorithm uses ¢ — 1 minimum cut computations at
iteration i giving a total of k? minimum cut computations. The cut-equivalent tree may be used
to find all the cuts s; at each iteration leading to the algorithm EFFICIENT that we present next.

10.4.3 An efficient algorithm and analysis

Both the algorithms GREEDY and SPLIT when implemented using a cut-equivalent tree essentially
boil down to picking the lightest ¥ — 1 cuts represented in this tree. This is due to the fact that
every cut represented by the cut-equivalent tree leaves exactly two components on its removal from
the graph. Thus we have the following algorithm.

Algorithm EFFICIENT
input: Graph G = (V, F'), nonnegative edge capacities c.
output: A k-cut of capacity at most 2(1 — %) of the minimum.
sTEP 1: Construct a cut-equivalent tree T' for G where every edge e € T
is labeled with the capacity of the corresponding cut in G|
STEP 2: Sort the cuts represented by the tree in nondecreasing order of capacity to get the list

91,92, -y 9n-1;
output g1 UgaU ... Ugr_1;




10.5. MULTIWAY CUTS 161

Performance guarantee

The performance ratio of the above algorithm is proved by comparing it with the optimal solution,
say a C E. Let Vq,Vs, ...V, denote that connected components of (V, E — a). Let a; = §(V}).
Recall that c(a) denotes the total capacity of the set of edges a. Then, we have c(a) = 2%, ¢(a;).
Assume without loss of generality that ¢(a;) < c(az) < ...c(ar). The performance ratio is shown
by arguing that
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To show this, consider the partition of the node set V into blocks Vi, Vs, ...V}, by the optimal
k-cut a. The number of distinct edges of the tree T' that crosses this partition is at least k£ — 1 since
T spans V. Let these edges of T' be e; = u1v1, €3 = uavs,...e, = u,v, where p > k — 1. Consider
an auxiliary graph G(a) whose vertices are vy, vs,...v representing the contracted versions of
the node sets V1, Vs, ...V}, respectively and whose edges are eq,...,e,. Note that G(a) may have
parallel edges and is connected. Let T'(a) be a directed spanning tree of G(a) rooted at the node
vy, with all edges directed towards the root.

Suppose the edge e = uw is directed from the node v; to v; in T'(a). Then, u € V; and v € V;
in G. Moreover c(e) represents the minimum capacity of any cut separating v and v in G. But
a; = 0(V;) is one such cut and so ¢(e) < ¢(a;). This charging argument charges the k — 1 different
edges e in the tree T'(a) to the cuts ai,...ar_;. Note that v is the root and therefore a is not
charged. Thus the capacity of the cuts ay,...a;_; is at least as much as the k — 1 edges from the
cut-equivalent tree that appear in T'(a). This in turn is at least as much as the k — 1 lightest edges
in the cut-equivalent tree g1, ...gr_1 that was picked by the algorithm EFFICIENT completing the
proof.

10.5 Multiway Cuts

The multiway cut problem is to find a minimum capacity set of edges or nodes whose removal puts
a given set of terminals sq, $2,..., 8, in an undirected graph in different connected components.
We will examine an approximation algorithm for this problem based on a relaxation of an integer
programming formulation of the problem.

10.5.1 Introduction

Let G = (V, E') be a connected undirected graph, and let every edge ij € E be assigned a nonnega-
tive capacity c(ij). Assume also that every node v is assigned a capacity c,, and a set of k terminal
nodes t,ts, . ..t are specified. The multiway edge/node cut problem is to find a minimum capacity
set of edges/nodes such that after the removal of these edges/nodes, no pair of terminals are in the
same connected component.

A minimal solution to a multiway edge cut problem with k terminals is a k-cut, namely, a set of
edges that leaves at least k¥ components, one for each terminal. While the minimum k-cut problem
is polynomial-time solvable for fixed k, the multiway edge cut problem is NP-hard even for k = 3

[5].
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Note that the multiway node cut problem is more general than the edge version, since the edge
version can be transformed to an instance of the node version as follows: subdivide every edge to
introduce a new node whose capacity equals the capacity of the edge it represents. All the resulting
half-edges may be assumed to have capacity zero. In fact, this shows that if we solve the node
version of the problem we can even model the version where both nodes and edges have capacities
and we are allowed to find a mixed cut containing both nodes and edges to disconnect the terminals.
In what follows, we will therefore focus only on the node-capacitated version and refer to this as
the multiway cut problem.

We will examine an approximation algorithm with performance ratio 2(1 — %), same as for the
k-cut problem, for the multiway node cut problem with k terminals. This algorithm, due to Garg,
Vazirani and Yannakakis [8], uses an integer programming (IP) formulation of the problem and
shows that the linear programming (LP) relaxation of the formulation has an optimum solution
all of whose components are half-integers. Their proof also gives a method to find an approximate
multiway cut from any optimal linear programming solution. In the next section, we present the IP
formulation and derive it’s LP dual. In the following section we show that the LP has a half-integral
solution and derive the approximation algorithm.

10.5.2 IP formulation of multiway cuts

A direct formulation uses a 0-1 choice variable z,, to indicate if node v is chosen in the cut. How can
we enforce that the set of nodes chosen separate a pair of terminals? A simple (but costly) method
is to simply insist that every path between this pair of terminals contains at least one chosen node.
This gives the following formulation. We use T' to denote the set of terminal nodes.

(IP)  minimize Z Co iy
veV\T
subject to Z z, > 1 V t; — t; paths Pi‘cj
UEPZ

z, € {0,1}, Vv e VAT

In the formulation, pfj represents the k** distinct path between the pair of terminals ¢; and t;.
The number of constraints in this formulation is enormous on account of this. Furthermore, since
IP is NP-hard as well, we shall only be interested in solving the LP relaxation of this IP.

(LP)  minimize Z Co iy
veV\T
subject to Z z, > 1 V't; —t; paths Pi‘cj
UEPZ
z, > 0, Vv e VAT

Compact reformulation

Due to the enormous number of constraints in this LP, it is not clear at first sight if this LP can
be solved in polynomial time. However, it is not hard to show that the ellipsoid method can be
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used to accomplish this. To do this, the key requirement is a polynomial-time separation oracle
(for more details on why the separation oracle is sufficient for optimization, see [13]). Given a
candidate solution to the LP, namely, a set of values @, for v € V\T, the oracle must determine
if all the constraints of (LP) are satisfied by this solution, and if not, find a constraint that is
violated (not satisfied) by the solution. This is not hard for the given set of constraints — let us
design a separation oracle for enforcing the constraints involving a specific pair of terminals ¢; and
t;. Suppose the candidate solution violates some constraint for this pair. Then there is a path
between them with total z-value less than one. This implies also that the smallest node-weighted
path between this pair using the z-values as node-weights is less than one. Since the z-values are
nonnegative, we can determine the value of such a smallest node-weighted path by a straightforward
modification of a shortest path algorithm such as Dijkstra’s method. This gives us the separation
oracle.

The idea for the separation oracle also allows us to come up with a more compact reformulation
of (LP). We will sketch how to reformulate the set of inequalities enforcing the requirement or a
pair of terminals ¢; and ¢; using shortest paths. To model the smallest node-weight path between
t; and t;, we use a distance label d;;(v) at each node v. We set d;;(t;) to be zero and d;;(t) for
k # 4,7 to be co. The intent is to enforce that d;;(¢;) represents the weight of the smallest node
weight of path from ¢; to t;. So we enforce that for every node v € V\T, the label d;;(v) represents
the smallest weight of a path from ¢; to the node v. This we model as for every node v € V\T,
dij(v) < d;ij(u) + 2, for every neighbor u of v. This alone is not sufficient to enforce that d;;
denote node-distances, since for instance, setting all of these variables to zero is still legitimate. To
complete the implement of our separation idea, we also add the inequality that d;;(¢;) > 1. This
“tests” if the d;; values can be adjusted to denote weights of the smallest paths from ¢; such that
this value is at least 1 for ¢;. Note that we have only added about as many inequalities as the
number of edges of G and as many new variables as the number of nodes in G. We can repeat this
for every pair of terminals to get a full compact formulation. It is easy to see that this compact
formulation is equivalent to (LP) and therefore has the same solutions. We will continue to work
with (LP) due to its simplicity, but remember that we can either use the ellipsoid algorithm or this
compact formulation to find a solution in polynomial time.

A dual linear program

Next we consider the dual linear program of (LP). Recall that we have one variable in the dual
for every constraint of (LP), thus a variable i];' corresponding to constraint for the path pfj. The
coefficients of these variables in the objective is the right-hand side of (LP), namely, all ones.
Finally, we have one constraint in the dual program for every variable in the primal, thus we have

a constrain corresponding to every node v € V\T. The dual program is given below.

.. k
(DP) maximize Z i
2.5,k
subject to iI;' < ¢ V nodes v € V\T
gk vepk,
i]; > 0, V t; —t; paths pfj
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We can interpret the nonnegative value fZ; associated with the path pfj as a flow along this
path from t; to t; (the direction is immaterial). The constraint corresponding too a node v € V\T
then specifies that the total of all such flows going through v must not exceed its capacity ¢,. The
objective of (DP) is to maximize the total such flow that can be routed. In short, the LP-dual of
the minimum multiway cut problem is to maximize the total flow that can sent between all the
pairs of terminals simultaneously (sometimes also called concurrent flow) under node capacities c,.

As a quick check, let us consider the case when |T'| = 2. This corresponds to finding a minimum
capacity set of nodes that separate a pair of given nodes, namely, a minimum node cut between the
pair. The dual of this problem, as in the max-flow min-cut theorem, is to maximize the total flow
that can be sent between the pair under the node capacities in the graph. This is exactly what our
dual interpretation boils down to in this case.

Complementary slackness

We can use our linear formulations to get a solution to the relaxation of the multiway cut problem.
In fact, we can use linear programming to derive have a pair of optimal solutions for the pair of
programs (LP) and (DP). The theory of linear programming (see, e.g., [4]) specifies that the pair of
solutions obey two complementary slackness conditions; In general, for a pair of optimal solutions
to two dual linear programs, this condition states that if a variable is non-zero in one program, then
the constrain corresponding to this variable in the dual program must be satisfied with equality
(must be tight). Applying this condition to the variables in (LP) and (DP) gives the following.

1. Any node v € V\T with a non-zero value of 2, in (LP) is saturated, i.e., the total flow through
this vertex in (DP) is exactly its capacity c,.

2. Any flow path fl’; that carries non-zero flow must have node-distance (sum of z-values from
(LP)) exactly one.

These conditions will be useful later.

Conditions for optimality

Before we investigate further structure of the solution to (LP), we recall another useful fact from
linear programming - a pair of solutions to two dual linear programs are both optimal if both are
feasible for their respective programs and both have the same objective value. This is a simple
consequence of weak duality. In our case, weak duality implies that any primal solution to (LP)
has objective value at least as much as that of any solution (DP) as shown below. Here let  and
[ denote feasible solutions to (LP) and (DP) respectively.

Sewm oz Yoa Y fh

veV\T veV\T i7j7k;vepfj

DL

i7j7k ’Uepfj

> Y f1

0,5,k

Thus if the pair # and f achieve the same objective value, then each has achieved its extreme value.
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10.5.3 A half-integrality property

In this section, we will show that for any specification of terminals and for any capacity values on
the nodes, there is always an optimal solution to (LP) that is half-integral. Assume that z and f
represent a pair of dual optimal solutions in the following.

Other half-integral LPs

An immediate application of half-integrality will be to round up all the variables of (LP) that are
non-zero. Since the constraint matrix has no negative co-efficient, it is easy to check that this
maintains feasibility of the solution. Furthermore, since any variable whose value increases to one
must have been set to a half to start with, we scale the linear solution by a factor of at most two
to convert it to a rounded integer solution.

A similar simple rounding method of rounding is also well known for the vertex cover problem,
and the half-integrality of the corresponding linear program is also known [24]. The most general
case currently know for which the linear program has half-integral solutions is one where the
constraint matrix has at most two non-zero entries in each column that are +1 or -1 [17].

A decomposition

Given an optimal solution z to (LP), we think of these as node-lengths as in the formulation. For
each terminal ¢;, we can then identify a subset of nodes Tj, all of distance zero from t; under this
length. In other words, T; defines a region of the graph containing all nodes that can be reached
via paths involving only zero-length nodes from ¢;. We must address the issue of the node-length of
any terminal for this definition. We can assume that this is zero for every terminal, and check that
this is consistent with our definition of the length of a path in the formulation, even if we include
the either or both endpoints of the path in computing the length of the path. Note that by the
feasibility of (LP), the regions T' — ¢ corresponding to different terminals ¢; are disjoint.

Next we define the boundary of T; denoted C; as the set of nodes in V\T; that are neighbors
of some node in T;. If a node v belongs to two different boundaries C; and C};, then z, = 1 due to
the distance constraint between ¢; and ¢; — there is a path between these nodes in which only v has
non-zero node-length. Define C = U C; and C' C C as the set of nodes in at least two different
boundaries, and therefore set to node-length one. Let C' = C\C".

Lemma 10.16 Let fZ; be set to a non-zero value in (DP). Then the path pfj contains eractly one
node from C' or ezactly two nodes from C'.

Proof: Let the first and last nodes along pfj in C; and C; be v; and v; respectively.

(i) vi = v;.
In this case, this node is in C! and we have exactly this node from C! and no other node of
C' in the path.

(i) v; # vj.
Suppose that either v; or v; is in C'. Then the total length of pfj is greater than one,
contradicting the second complementary slackness condition. Thus, both these nodes are in

.
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Next suppose that there is another node v € C’ distinct from v; and v; in the path, and let
v € C}. In this case, we can find a path between ¢;, and either of ¢; or ¢; with node length
less than one contradicting the feasibility of . To see this, consider the prefix of the path
pfj from t; to node v, and extend this to a path ending in ¢; via nodes in Cj. then length
of this path is strictly less than that of pfj since we do not have node v; that has non-zero
length and the extension has zero length. Finally, the length of path pfj is exactly one from
the second complementary slackness condition, giving that the new path has length less than
one, a contradiction.

Half-integrality
Theorem 10.17 There is an optimal solution to (LP) that is half-integral.

Proof: The half-integral solution we propose can be constructed from any given optimal solution

z. Using these as node-distances, we compute C! and C’. Next we consider a different solution z*
to (LP) as follows.

1 Yve(Ct
z, = % Yv ¢ ¢’
0 otherwise

We show next that z* is feasible and optimal for (LP).

Any path from ¢; and ¢; must use nodes from both C; and C}, not necessarily distinct. Let v;
and v; the corresponding nodes. If these are the same, then this node must be in ! and the length
of this path is one. Otherwise, the path uses at least two distinct nodes from C’ and hence the
length is at least one again. This shows that z* is feasible.

To show optimality, we show that its value is equal to that of the dual objective associated with
2. The value of the dual is the total concurrent flow between the terminals. From lemma 10.16,
every flow path carrying non-zero flow crosses either one node in C' exactly once or exactly two
distinct nodes in C’. Thus the total value of all the flow can be accounted as 3, cc1 ¢y + % > wec Co-

This is exactly the value of the solution #*. hence z* is optimal.

An approximation algorithm

We present an algorithm that exploits the half-integrality property to find a rounded solution.

Algorithm MULTIWAY CUT

input: Graph G = (V, F'), nonnegative node capacities c,

and a node subset T of terminals with |T'| = k.

output: A multiway cut for T’ of capacity at most 2(1 — %) of the minimum.
STEP 1: compute an optimal solution z to (LP);

STEP 2: for every terminal t; € T, compute the set of nodes T}

reachable from ¢; via paths with zero z-value, and C}, the node neighbors of T5;
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Set C + U;C5;
sTEP 3: for every ¢, compute C/, the set of nodes
in C; that are not in any other C; for j # ¢;
SsTEP 3: find C’ the set of maximum node capacity among the C’s;

max)

output C — C/

max)

It is clear that the algorithm can be implemented in polynomial time by using a node-weighted
version of Dijkstra’s algorithm. It is not hard to show feasibility of the output solution as well.
Any path between two terminals has to either contain one node in C! or at least two nodes in Cls.
Since we only exclude one such set C! in forming the final solution, every path must cross at least
one node from the output set showing feasibility.

Performance guarantee

The performance ratio of the algorithm follows almost directly from Theorem 10.17. Define C’ =
C —C* where C and C! are computed by the algorithm. By a simple averaging argument, it follows
that ¢(C},q,) > £¢(C’) where ¢ denotes the capacity of the set.

(C C1lnam) = C(C)_C(C;nam)

= —I_ Z - C C1lnam)

IA
o
—~~
Q
=
e
+
—
—t
|
el
e
=
o
—~~
sQ
e

1 k
< 2(1- )(e(C + 5 2 e(C)

=1

By the theorem, the right hand side of the last inequality is at most 2(1 — %) times the value of an
optimal solution to (LP). This is a value of a relaxation of the multiway cut problem and hence is
a lower bound on the capacity of the minimum multiway cut, completing the proof.

Approximate min-max relation

Note that our proof generalizes the classical max-flow min-cut theorem for the node-capacitated
case in a nice way. When k& = 2, the performance ratio is one giving us that the cut we find
by the rounding algorithm is a minimum cut and our results show that the value of a maximum
node-capacitated flow is equal to the value of the minimum cut; this is the max-flow min-cut
theorem.

For larger k, we continue to have an exact relation between the flow and cut values, if we allow
both of them to be fractional. This is what linear programming duality implies for the pair of
programs (LP) and (DP). However, if we strengthen our notion of a multiway cut to mean an
integral solution to (LP), the theorem guarantees that we can achieve a total (fractional) flow of
value at least a fraction half of the minimum such integral cut.
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Recent Improvement

For the edge-capacitated case of the multiway cut problem described above, Calinescu et al. [2] have
recently devised a %—approximation algorithm via a novel randomized rounding of a strengthened
linear programming relaxation for the problem.

10.6 Exercises

1. A legal ordering of the nodes of G identifies a pair of vertices, v,,_; and v, such that the cut
around the singleton set {v,} is a minimum cut separating v,,_; and v,. Show that if G has
at least three vertices, there is a second pair of vertices with this property.

2. Does the framework of the node identification algorithm work for finding minimum node-cuts
in an undirected graph? Why or why not? Answer the same question for finding a node-cut
separating some pair of vertices using legal orderings.

3. Does the upper bound of @ on the number of min cuts of an n-node graph that we proved
for undirected graphs also hold for directed graphs? Why or why not? Also, is this bound
tight for undirected graphs? (read as, are there capacitated undirected graphs which have as

n(n—1)

many as ——— min cuts?)

4. For any constant positive half-integer & > 1, show that the number of a-minimum cuts in an
undirected graph on n nodes is at most O(n?*). (An o-min cut is one whose capacity is at
most o times that of a minimum cut).

5. Is there a compact representation of all the n(n — 1) minimum cuts in a directed graph? (The
capacity of a cut separating nodes z and y is defined the sum of the capacities of all the edges
coming out of the component containing #.) For instance, could you hope to represent all
of the by a tree with only n — 1 values. What is the maximum number of distinct values of
minimum cuts you can find in a directed graph?

6. We saw in class that a cut-equivalent tree is also a flow-equivalent tree. Show that the reverse
implication does not always hold.

7. Cheng and Hu showed that flow-equivalent trees exist even when the capacity of a cut is defined
by an arbitrary general function, i.e., a function f: S = RT that assigns a nonnegative value
to every subset S C V of vertices of the given undirected graph. Prove the Cheng-Hu result
that a flow-equivalent tree ezists in this case.

Extra credit: Assume that you have an oracle for determining a minimum cut separating a
pair of nodes. Devise a method to construct such a flow-equivalent tree using at most n — 1
calls to the oracle.

8. Show that every graph has a flow-equivalent tree that is a (Hamiltonian) path.

9. Give an example to show that the integrality gap of 2 is tight for the node-multiway cut
problem. Do the same for the edge-multiway cut case.

10. Is the analysis of the performance guarantee for the k-cut problem tight? Show an example
to illustrate this.
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11. Does the hereditary property of approximate solutions for the k-cut problem carry over to
optimal solutions? In other words, note that the first ¥’ — 1 cuts among the k£ — 1 chosen as
a 2-approximate solution to the kOcut problem, form a 2-approximate solution to the &’ cut
problem (for ¥ < k). Is it true that any optimal solution for such a k’-cut problem can be
extended to an optimum solution for the k-cut problem?

12. The Optimal Tree Arrangement problem (OTA) is defined on an unweighted undirected graph
G as follows. The goal is to find a spanning tree 7' on the vertices of the graph minimizing
the sum over all the edges of GG, of the distance in 7" between the endpoints of the edge. Give
a polynomial time algorithm for the OTA problem.

13. The Multicommodity Flow Tree problem (MFT) is defined on an undirected graph G with
nonnegative capacities ¢ on the edges as follows. The goal is to find a spanning tree T' with
nonnegative capacities assigned to its edges such that for every pair of vertices s,t in the
graph, the flow between s and ¢ in the tree T is at least the maximum s — ¢ flow in the graph
G. In this way, the tree T supports all the flows that G does. The objective is to minimize
the the maximum capacity of any edge in T'. Give a polynomial time solution to the MFT
problem.

14. If all cuts in a cut-equivalent tree of a connected undirected graph are even, is the graph
Eulerian (i.e., have even degree at all the nodes)?

15. (Extra credit) In showing a 2-approximation algorithm for node-multiway cuts, we showed
half-integrality of optimal solutions for a certain linear relaxation of the problem. The dual
to this relaxation is a linear program whose objective is to maximize the total concurrent flow
between terminals specified in the problem. Prove or disprove: for any specification of integral
capacities, there is a maximum flow solution that is also half-integral.
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Chapter 11

Graph Separators

The focus of this note is on the sparsest cut in a capacitated, undirected graph. It turns out that
the problem of finding a sparsest cut is NP-hard, yet the problem is interesting and important. The
problem has applications to divide-and-conquer algorithms for approximately solving many hard
combinatorial problems, such as balanced cuts, feedback arc set, minimum fill-in ordering, VLSI
layout, minimum crossing-number layout, etc.

First, we will motivate and prove a key theorem due to Leighton & Rao showing that the
objective value of a sparsest cut is within a logarithmic factor of the optimal value of an LP
(linear programming) relaxation of the sparsest cut problem, and moreover, there is an efficient
algorithm for finding such an approximately sparsest cut, i.e., a cut whose objective value is within
a logarithmic factor of the objective value of the sparsest cut.

After that, we introduce the notions of metric spaces and {;-embeddings, discuss some of the
connections to sparsest cuts and multicommodity flows, and prove a generalization of the Leighton-
Rao theorem and algorithm, based on results of Bourgain and others. For completeness, we include
a proof of Bourgain’s theorem: by allowing a logarithmic distortion, any metric space has an
£;-embedding.

Finally, we discuss a paradigm for approximately solving hard combinatorial problems by using
a subroutine for finding approximately sparsest cuts. This paradigm easily gives a log-squared
approximation guarantee.

11.1 The sparsest cut problem and an LP relaxation

Let G = (V, E) be an undirected graph, and let n denote |V|. Let u : E — R assign a nonnegative
capacity to each edge. Throughout this chapter, for a cut 6(S) of G, the ratio means the quantity
u(8(5))
S| - [VASI

but we also associate the node set S with it.)

and a sparsest cut is one whose ratio is minimum. (Note that 6(S) is a set of edges,

Let us write down an LP formulation of the sparsest cut problem. For motivation, let us quickly
recapitulate the LP for the minimum s-f cut problem. The goal is to assign a nonnegative weight d,
to each edge e € E such that ) . g ucd. is minimized, while the weight of a shortest path between
s and t (w.r.t. edge weights d) is at least one. It is easily checked that the 0-1 incidence vector of

172
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every s-t cut is a feasible solution to this LP, i.e., taking d. = 1 iff e is in the s-f cut satisfies all
constraints of the LP. Moreover, by the max-flow min-cut theorem, one optimal solution to the LP
is given by the 0-1 incidence vector of a minimum s-¢ cut.

Here is our first attempt at formulating the sparsest cut problem as a “fractional LP”, i.e., as
an LP where the objective function is rational rather than linear. For two nodes v and w, we use
Pyw to denote the set of all v-w paths in the graph; the cardinality of P, ,, may be exponential in

n.
ede
(F1) z = minimize ecep Uede
Zv,wEV }‘Uﬂl}
subject to Y(de | e€ P) > Ay Vpaths Pe Py,
de > 0 Veec E
Avw > 0 Yo,w € V.

Above, the edge weights d, are supposed to represent incidence vectors of cuts, and the variables
Ay,w are supposed to represent the weight of a shortest path (w.r.t. d) between nodes v and w. To
obtain an LP formulation, we remove the denominator from the objective function and add an
extra constraint that the denominator be at least one.

(F2) z = minimize Y g ucde

subject to Y eV Avaw > 1
Y(de | e€ P) > Ay Vpaths Pe Py,
de > 0 Veec E
Avw > 0 Vo, we V.

)

At this point, the reader may like to prove that the formulations (F1) and (F2) are equivalent
in the following sense: for every optimal solution d, A of (F1) there exists a feasible solution of (F2)
with the same objective value, and vice versa. Here is another LP formulation (F3) that we claim
is equivalent to (F2). The reason for studying (F3) is that it has only O(n®) constraints and O(n?)
variables, i.e., it is a compact LP, in contrast with (F2) (and (F1)) whose number of constraints
may be exponential in n. Again, we will leave it to the reader to prove that (F2) and (F3) are
equivalent. In the LP (F3), the goal is to find a metric d on V such that the “total weighted
capacity” is minimum and the sum over all entries of the metric is at least one.

(F3) z = minimize Y cpucd.

subject to Yvwev ww > 1
dy < dyy+dey Vr,v,weV
dyr < dywtdy, Vr,v,weV
dy < dyp+dy, Vr,v,weV
dy > 0 Yo,we V.

First, focus on the formulation (F1). Consider the 0-1 incidence vector x of an arbitrary cut,
say, 6(5) such that both shores (G[S] and G[V'\S]) are connected. If we take d = x and A, =1
or 0 depending on whether or not v and w are separated by §(S) (i.e., Ay = 0 if either v,w € S
or v,w ¢ S, otherwise A, ,, = 1), then it is easily seen that d, A forms a feasible solution whose
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(a) Cube Qs (b) Wheel W
a=1/4, z2=1/4, d.=1/48, Ve. a=2/3, 2=2/3, d.=1/12, Ve.

(c) K1 + Py (d) Complete bip. graph K 3
a=1/2, z=1/2. a=1/2, 2=3/7, d.=1/14, Ve.

d.’s are indicated above.

Figure 11.1: Sparsest cuts and optimal solutions to the LP (F2) for four graphs (a) the cube Q3
(b) the wheel W5, (c) K1+ P4, and (d) K3 3. For each graph a sparsest cut is indicated by a dashed
line. The ratio of the sparsest cut is given as a, the optimal value of LP (F2) is given as z, and the
optimal solution of (F2) is given as d.,Ve € E.
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objective value equals the ratio of the cut §(S). Hence, the optimal value of (F1) is a lower bound
on the ratio of a sparsest cut.

The big question is: does the optimal value of (F1) equal the ratio of a sparsest cut, and if not,
then how much can these values differ? Let us look at a few examples. It is convenient to work
with the formulation (F2) or (F3) rather than (F1). Figure 11.1 shows four graphs, the cube Qs
on 8 nodes, the wheel W5 on 5 nodes, the graph K; + P, (5-cycle with two adjacent diagonals),
and the complete bipartite graph K5 3. We take each edge to have unit capacity. The cube Q3 has
sparsest-cut ratio 1/4 and (F2) optimal value z = 1/4. The wheel Wy has sparsest-cut ratio 2/3
and (F2) optimal value z = 2/3. The graph K; + P, has sparsest-cut ratio 1/2 and (F2) optimal
value z = 1/2. The graph K3 3 has sparsest-cut ratio 1/2 and (F2) optimal value z = 3/7. (For the
three graphs Qs, W5 and K3 3, the optimal solution has d. = z/|E| for each edge e, and has A, ,,
equal to the weight of a shortest v-w path w.r.t. edge weights d.) As a side remark, we mention
that K5 3 is the smallest graph such that the sparsest-cut ratio differs from the (F2) optimal value.
(Q: 1S THIS ASSUMING UNIT CAPACITIES ONLY?)

Let us look at another example (due to Leighton & Rao) where the sparsest-cut ratio is Q(logn)
times the optimal value of (F2). A bounded-degree expander G is a k-regular graph with £ = O(1)
(i.e., every node has degree £ = O(1)) such that for every set of nodes S with |S| < n/2,

w(8(5)) = ¢-[S],

where ¢ is an absolute constant (note that every edge has unit capacity). Clearly, the sparsest-cut
ratio is > ¢/n. Now, consider z, the optimal value of (F2). We claim that there are n?/4 pairs
of nodes v, w such that X, > log,(n/2) = (logn/2)/(logk) > c'logn, where A, ,, denotes the
number of edges in a shortest v-w path of G, and ¢’ < 1 is an absolute constant. To see this,
just note that for a fixed node w the number of nodes within a radius 1,2,...,7 of w is at most
(14+k), (14+k2),..., ke, [{v ]| Ay <3} < k*, for i > 3. Now consider the feasible solution to (F2)
given by d. = (/(logn)n?/4)~! = 4/(c'n*logn) for each edge e, and A, ., equal to the weight of a
shortest v-w path of G w.r.t. edge weights d. The constraint Z Avw > 1 holds by our claim, and
vweV
so d, A is indeed a feasible solution. Since each edge has unit capacity and |E| = kn/2, the objective
value of this feasible solution is Z ucd, = 4|E|/(c'n*logn) = 2k/(c'nlogn) = Q(1)/(nlogn). Since
ecE
z, the optimal value of (F2), iseat most this value, we are done: the sparsest-cut ratio is at least

Q(logn) times z.

The main result in the next section is that the expander example is the worst possible (up
to constant factors), because there always exists a cut whose ratio is at most O(logn) times the
optimal value of (F2).

11.2 The sparsest cut problem: A region-growing algorithm

The strategy is to start with an optimal solution d : F — R to the LP, and then to run a “region-
growing procedure” on the graph with edge weights d to find a cut whose ratio is at most O(logn)z,
where z is the optimal value of the LP. The intuition behind the region-growing procedure is to
imitate Dijkstra’s shortest paths algorithm to construct a moat packing {ys | S C V'}. Throughout
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this section a region means a set of nodes. The procedure keeps growing the current region as long
as there is sufficient expansion, and as a result, when the procedure stops, the region is shallow,
i.e., it has small radius.

The inputs to the region-growing procedure are the edge weights d, the optimal LP value
zZ =Y .cq Uede, a set of candidate root nodes V' C V, and a parameter ¢ (whose role will be clear
later). For our application to sparsest cuts, V' = V, but other choices of V' are needed in other
applications. We start by choosing a root node r € V'. The region-growing procedure maintains
a set of nodes A, called the active set, and for each such set there is a variable y4. Initially, the
active set is the singleton given by the root, {r}. One important constraint holds throughout.
The y-variables must form a packing w.r.t. the edge weights d, i.e., Z ys < d.,Ve € E. The

Sle€s(S)

weight of r is defined to be wit(r) = |;/| = i, and the weight of an active set A is defined to be
n

wt(A) = wt(r)+ Z ysu(d(S)). The algorithm increases the variable y4 till the packing constraint

SCA
becomes tight, i.e., till some edge e = pg with p € A, ¢ ¢ A, has d. = Y 54, c€s(s) Ys- Then we

make A’ = AU {q} the active set and check whether
u(6(A')) > e - wi(A4"). (11.1)

If yes, then we start increasing y4/, and continue as above. For a set A, define the radius to be

rad(A) =Y 5ca¥Ys-

Lemma 11.1 Let A* denote the active set at the termination of the region-growing procedure, and
w.l.0.¢. assume that ya+ is positive. Then

In(1+ |V’ In(1+n
rad(A4) < (1] |)§ (1+ )
€ €
Proof: Let the active sets with positive y-variables be S1,Ss,...,5; where the sets became
active in this sequence. For notational convenience, let y1,ys,...,yr denote the y-variables of

S1,82,...,54, and let Uy, Us, ..., Uy denote the capacities of the cuts §(S1),d(S2), . ..,8(S;). Focus
on wt(Sy) = wt(r) + Yt_, 4:Ui. Since the y-variables form a packing, we have

£ £
ZyzUzzzyS,( Z ue) :Zue( Z yS,) Szuedezz-
=1 =1 e€d(S;) e€l S;le€d(S;) e€E
Hence, wt(S;) < (2/n) + .
We can derive a lower bound on wt(S;) too. The weight of S; can be written as

wt(Sl) = wt(Si_l) + 3 U; > wt(Si_l) +e€- yiwt(Si), (11.2)

where we used the fact that U; > € - wt(S;), for i = 1,2,...,£ — 1, because the algorithm did not
terminate with S;, whereas the last active set Sy = A* has U, = ¢ - wt(S;). This gives a useful
inequality,

) wt(Si_l)
wt(S;) > (1— ev) )
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where €ey; < 1, as can be seen from inequality (11.2), since wt(.S;_1) is positive. Hence,

’wt(So)
(1—eyr)...(1—eyp)

Combining this inequality and the upper-bound on wt(S;) obtained in the previous paragraph, we
have

wt(Se) >

1

Znt1) >

<(1 —ey1). .- (1— eye)> '

Taking natural logarithms on both sides,

£ £
n(n+1) 22 n(l — ey; 1>62y1,
=1 =1
since In(1/(1—y)) > y, for all y with 0 < y < 1.
The proof is done since rad(A*) = 3¢, v < e ln(n +1). I

Corollary 11.2 For all pairs of nodes p,q € A*, d(r,p) < rad(A*) and d(p,q) < 2rad(A*). Here,
d(p, q) is the weight of a shortest path between nodes p and q in the graph G w.r.t. the edge weights
d.

Lemma 11.3 Let A}, A5, ..., A; (h < |V'| < n) be the regions obtained by iterating the region-
growing procedure on the graphs G1 = G,Ga = G1 — Al,...,G; =Gj_1 — A5 _4,...,Gr = Gp1 —
Ay . That is, A7 (1 < i < h) is the active set at the termination of the ith iteration, where the

graph is taken to be G; = G — A} — ... — A ;. Then (i) the total capacity of the union of the
coboundaries in G, p = u(6(A7)U...US(A4})) is < 2ez. Also, (it) Z A7) < 4dez.
=1

Proof: Let §;(S) denote the set of edges of G; that have exactly one end in S C V. Note

that 6(A7),8(435),...,6(A;) may have edges in common since these are coboundaries in G, but

01(A7),82(A3),...,0n(A}) have no edges in common by definition of G1,Gs,...,Gp. Also, every

edge of 6(A7)U...U8(A;) is present in 61 (A7) U...Ud,(A;). By termination of the region-growing

procedure, u(d;(A;)) < e- wt(A}), foreach i = 1,2,..., h, where wt(A]) = wt(r;)+ Z ysu(6(S)),
SCA?

and r; is the root at the i¢th iteration. Hence, l

h h
=D ulbi(4) <€) wt(4]) =
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In the second last inequality, Z ysu(8;(9)) < Z ted. holds by the packing constraints.
SCA; e
The last part of the lemma follows from the first part because an edge in two coboundaries
u(6(A7)) and u(6(43)), 1 < i < j < h, contributes once to the first part but two times to the

second part. |

The next theorem is essentially due to Leighton & Rao, but we give a tighter version due to
Garg, Vazirani & Yannakakis. The proof due to Garg, Vazirani & Yannakakis is based on the
original proof of Leighton & Rao, but is cleaner and simpler than the original proof.

u(8(5))

For a cut 6(S) of G, recall that the ratio means the quantity m

Theorem 11.4 (Leighton & Rao (1988)) Let d : E — R, be the optimal solution to the LP, and
let z =) cp ucd. be the optimal value of the LP. Also, let a be the ratio of the sparsest cut of G,
. _u(8(5))
= ——22r_  Th
TSV IS\
2 <i<a
8In(n+1)+2 —  —
Moreover, there is an efficient algorithm that given the optimal edge weights d finds a cut whose
ratio is < (81n(n + 1) 4+ 2)z = O(zlogn).

Proof: The goal of the proof is to construct a cut with small ratio, by using d and z (which are
assumed to be known). We use the region-growing procedure (as in the above lemmas) and choose
the parameter ¢ such that one of regions A7, ..., A} either has cardinality > n/2, or gives a cut
with small ratio. If one of the regions A} has cardinality > n/2, then we “erase” the other regions,
and keep growing A} node by node till we find a cut with small ratio.

Let & = (2481n(n+1))z. We apply the region-growing procedure iteratively, with the parameter
€ fixed at &n?/(8z2).

Let the regions be Ajf, ..., A}. If one of the regions A7 = A gives a cut with ratio u(6(A4))/|A4|-
|[V\A| < &, then we stop and output this cut. Clearly, such a cut has ratio at most (2+81In(n+1)) =
O(log n) times the ratio of a sparsest cut. If we do not find such a cut, then we claim that one of the
regions Aj,..., A; has cardinality > n/2. The claim is proved by contradiction. By assumption,
each of the regions A} has u(§(AY)) > &|A}| - |[V\A!| > (&n/2)|A}|. Hence,

h h
> u(6(457)) > (dn/Q)Z: |AZ| = an?/2.

=1

On the other hand, by Lemma 11.3 part (ii), and by our choice of ¢,

u(8(A7)) < dez = an?/2.

h
=1

2

This contradiction proves our claim: one of the regions has cardinality > n/2.
Let us denote this region by A, so |A*| > n/2. We continue to grow A* further, attempting
to include all nodes in this set. All y-variables corresponding to sets S, S ¢ A*, are reset to zero.
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In this last stage, we use a modified version of the region-growing procedure that does not check
for the expansion condition (i.e., the condition in inequality (11.1)), but continues until either the
currently active set A gives a cut with small ratio (i.e., u(6(4))/|A| - |[V\A| < &) or all nodes are
included in A. We claim that the algorithm will find a cut with small ratio. Again, the proof is by
contradiction.

Let r be the root of the region A*. Let the sets With positive y-variables be {r} = S; C ... C

S¢=A* C...C V. For every node v, recall that d(r, v) Z ys, where v € S;11\S;. Focus on
SCS;
> d(r,v)= Zysn—lSl > ystn— SN+ > ys(n—|S)).
veV SCA* SO A

The first term satisfies

Z ys(n—|S]) <n Z ys =n-rad(A") <nln(n+1)/e < 8In(n + 1)z/(an).
SCA* SCA*

Consider the second term. By our assumption, each superset S of A* satisfies u(6(S5))/|S|-|V\S]| >
&, and since |S| > n/2, we have |V\S| < 2u(8(S))/(én). Hence,

Y. ys(n—[8]) < (2/an) Y ysu(8(S)) < (2/an)z,

SDA* SDA*

where the last inequality follows from the packing constraints on the y-variables. Consequently,

Y ey d(r,v) < (22/dm)(4ln(n + 1) + 1),
Finally, we apply the inequality

> dlp,g) < (n—1)) d(r,v),

p,geV vEV

where the summation on the left is over unordered pairs p,q of nodes; note that there are (g‘)
such pairs. This inequality easily follows from the triangle inequality for triples p, ¢, r, namely,

d(p, q) < d(p,r)+ d(r,q).

Going back to our proof, we see that
Z d(p, q) <n2dr v) < (2z/&)(4In(n+1)+1) <
p7q€V 'UGV

where the last inequality follows from our choice of & This is a contradiction, since the edge
weights d form a feasible solution to the LP and so satisfy the LP constraint, > , v d(p,q) > 1.
Our claim follows: one of the sets found by the last stage of the region-growing procedure gives a
cut of ratio < &. |

11.3 Metrics, /; embeddings and a logarithmic guarantee for the
generalized sparsest cut problem

Our goal in this section is to give another proof of the Leighton-Rao theorem. In fact, the result
here is more general since it applies to the version of the sparsest cut problem where an arbitrary
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nonnegative demand dem, ,, is given for each (unordered) node pair v, w; note that the sparsest
cut problem is the special case where dem, ., = 1,Vv,w € V. Let k be the number of node pairs
that have positive demands. Following Aumann & Rabani, and Linial, London & Rabinovich, we
will prove that there exists a cut whose ratio is at most O(log k) times the optimal value of an LP
relaxation (F4). The proof is an easy consequence of a theorem of Bourgain on “near isometric
embeddings” of metric spaces into {;.

We start with some definitions and preliminary results. Most readers may prefer to skip the
next subsection, and to refer back to the definitions when needed.

11.3.1 Definitions and preliminaries

Let V be a finite set of points, and let n denote |V|. A metric d on V associates a nonnegative real
number d, ,, with each pair v,w € V' and satisfies

dyw < dyy +dyy, for all ordered triples v,w,r € V X V X V.
We also use d(v, w) to denote d,,,. The metric d may be viewed as a vector in §R_(|_2), i.e., dis an
(g‘)—dimensional vector with one entry per pair v,w € V. We allow d,,, = 0 for distinct points
v,w € V , hence, d is a semimetric rather than a metric. A familiar example is the shortest paths
metric of a graph, i.e., d, ,, is taken to be the minimum number of edges in a v-w path of G.

A norm associates a real number ||v|| with every point v € ®" (the h-dimensional real space)
and satisfies

e ||v|| > 0, with equality only if v =0,
e ||rv|| = |r| - ||v]|, for every real number r, and
o [[v+wl| < ||| + [|w||, for every v,w € R".

A norm || - || has an associated metric, namely,
dyw = ||v — ||, Vv, w € R".

For a point (or vector) v € ®" we denote the coordinates (or entries) of v by vy, ..., v;. For our
purposes, three familiar norms (and their associated metrics) are of interest:
h
e the {; norm, ||v||; = Z |v;|, and the associated Manhattan metric,

=1

h
Z(vi)"’, and the associated Fuclidean metric, and

=1

e the {5 norm, ||v||, =

e the { norm, ||v||_ = m}élx|vi|, and the associated f-infinity metric.
1=

We use £, €8, or £ to denote ®" equipped with the £; norm, the ¢, norm or the £,, norm,
respectively.

An isometric embedding (or isometry) is a mapping ¢ from a metric space (V,d) to a metric
space (X, d’) that preserves all “distances”, i.e., ¢ : V — X is an isometry if

d (¢(v), p(w)) = d(v,w), Yv,weV.
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Also, V is said to isometrically embed into X.

Proposition 11.5 Every metric space (V,d) has an isometric embedding into (7., i.e., into "
equipped with the ., norm, where n denotes |V|.

Proof: Let V = {v) ..., 0™}, We map each v¥) to the vector ¢(v(?) € R", where

In other words, v(*) is mapped to the ith column of the nx n “distance” matrix [dyw | v,we VXV].
Then observe that

16+ = D). = mlax (v, o) — (o), 03] > (o, 0).

=1 -

On the other hand, the triangle inequality gives

Proposition 11.6 Let (V,d;) be the metric space £ for some integer h > 0, i.e., dy is the metric
induced by {1 for the set of points V in R". Then dy is the sum of h metrics di1,...,d1n, where
dy ; is a metric induced by £1 in one dimension.

Proof: For each ¢, ¢ =1,...,h, define d; ; = |v; — w;|, i.e., dy; gives the “distances” in the ith
coordinate. The result is obvious, since for each pair v,w € V,

h
di(v,w) = |lv—wl||; = Z lvi —w;i| =dy1(v,w)+ dia(v,w)+ ...+ di p(v, w).
=1

11.3.2 /; embeddings and generalized sparsest cuts

Recall that the sparsest cut problem on a graph G = (V, E) with edge capacities u : E — R, is
to find a cut 6(S) whose ratio u(8(S5))/|S|- |V \S| is minimum. We will also use u to denote the
(g‘)—dimensional vector indexed by node pairs v, w € V such that u, ., equals either the capacity of
the edge vw (if it exists) or zero (if there is no edge vw). Let 1 denote the (%)-dimensional vector
of all ones.

Based on Proposition 11.5, we may view the LP formulation (F3) of the sparsest cut problem
as follows: the optimal solution finds an embedding ¢ : V' — £ (i.e., the nodes are embedded into

R" equipped with the £, norm) such that (i) the sum of the () “distances” in £, is at least one

(i.e., Z llo(v) — dp(w)||, > 1), and (ii) the sum of the capacities of the edges weighted by the
vweV
edge “lengths” is minimum. What (if any) is the relation of such an embedding to the sparsest cut
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in the graph? There seems to be no direct relation, but there is a relation via an embedding into
£7. To see this, suppose that we can somehow find an embedding ¢’ : V' — £} such that (i) and
(ii) hold w.r.t. “distances” and edge “lengths” in £7, i.e., such that Z l¢'(v) — ¢'(w)||; > 1 and
vweV
2= Z Uy - || (v) — ¢'(w)||; is minimum. There is something remarkable about such an ¢;
e=vwEE
embeddinz because it turns out that z’ equals the ratio of a sparsest cut. The proof is given below,

in a few easy steps. (Since computing the ratio of a sparsest cut is NP-hard, there is no hope of
computing ¢’ efficiently, modulo P # NP. Nevertheless, it will be useful to study ¢'.)
For a subset S of a point set V, the cut metric dg is defined to be the metric on V given by

) 1 ifeitherveSwgSorvgSwes
ds(v,w) = { 0 otherwise.

In other words, the cut metric is the 0-1 incidence vector of the point pairs separated by the cut.
Observe two things. For a cut §(S) of the graph G, the capacity u(6(S)) may be written as the
inner product of two (g)—dimensional vectors, u - dg, and secondly, the ratio of the cut may be
written as u - dg/(1 - dg).

Proposition 11.7 Let (V,d;) be a metric space such that dy is induced by £y, i.e., di(v,w) =
lv — w||;,Yv,w € V. Then d; is in the cone generated by the cut metrics {dg | S C V}, i.e., dy
can be written as a linear combination of cut metrics

di = Z{ajdsi | Sj C V}
J

such that each coefficient a; is nonnegative. Moreover, the number of cut metrics required 1s at
most h - |V|, where h is the dimension of (V,d).

Proof: Since d; is the sum of A “one-dimensional £; metrics” (by Proposition 11.6), it will
suffice to prove that a “one-dimensional £; metric” d; can be written as a conical combination
(i.e., a linear combination with nonnegative coefficients) of at most |V'| cut metrics. Observe that
(V,d;) is an embedding of V into the real line %!, because d; is one-dimensional. Let the points

in V occur in the order ¥V, ..., v(® ... (™ in the real line. Define n cut metrics ds; by taking
n—1

Sy = {oMW},.. .8 =W, ..., v}, S, = V. Clearly, d; = Z ajds;, where a; = dy (v, o),
7=1

Our claim (2’ equals the ratio of a sparsest cut) follows from Proposition 11.7 and a simple fact
about ratios.

Fact 11.8 Let @4, ...,z be nonnegative numbers and let y1, ..., yr be positive numbers. Then
min — < 1t @2t + b < max .

=1y~ Y1+yYs+...+y — =1 Yy
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In the next proposition, rather than using the linear objective function of the LP (F3) we use
the rational objective function of (F1).

Proposition 11.9 Let §(S™) be a sparsest cut of the (capacitated) graph G = (V, E),u, and let o
be the ratio of this cut. Let h be a positive integer. Then
* ! : Ze:vwEE Uy - H(tb(v) — ¢(w)H1 ]

& = zZ = min

Vvt Y, ey [19(v) — g(w);

Proof: Let (¢(V),d;) be the metric space that minimizes z’. First, note that 2z’ < a* since we
can take d; to be the cut metric dg« of the sparsest cut (i.e., we take ¢(v) = 1 if v € S* and

P
¢(v) = 0 otherwise). To see that z/ > o, use Proposition 11.7 to write d; as Z a;ds;, where each
i=1

S; corresponds to a cut 6(S;), and p < hn. Then

P u-(ads. P (a;ds. P 8(S.

Z/ _ Zz_l ( J S]) 2 mlnu (a] S]) — mln u( (S])) 2 ax,

i=1 1-(ajds;) = i=1 1-(a;jds;) =1 [S;| - [V\S;

where the first inequality follows from the previous fact. The proof is done. |

The optimal solution of (F1) (or of the LP (F3)) is an {-induced metric minimizing our
objective function, whereas a sparsest cut corresponds to an £;-induced metric minimizing our
objective function. To efficiently find an approximately sparsest cut via the optimal solution to the
LP, we can try to embed the optimal £, -induced metric into £; such that all pairwise “distances”
are preserved as much as possible. This motivates the next definition. Note that both z (the
optimal value of (F1)) and 2’ (in Proposition 11.9) remain unchanged if all the pairwise “distances”
are scaled by the same quantity.

Let (V,d) be a metric space and let ¢ be an embedding of (V,d) into (V’,d’) such that
d'(¢(v), p(w)) < d(v, w), Vv, w € V. The distortion of ¢ is defined to be

)
vweV d/(¢(v)a ¢(w))

Another proof of the Leighton-Rao theorem follows from an important theorem of Bourgain
and Proposition 11.9. (A proof of Bourgain’s theorem is given in the next section.)

Theorem 11.10 (Bourgain (1986)) Let (V, d) be a metric space, and let n denote |V'|. There exists
an embedding ¢ from (V,d) into £}, where h = O(log®n), such that the distortion is O(logn).
Moreover, ¢ can be computed in polynomial time by a randomized algorithm.

Theorem 11.11 (Leighton & Rao (1988)) Let d be the optimal solution to the LP (F3), and let z
be the optimal value of the LP (F3). Let a be the ratio of a sparsest cut of G,u. Then

O(logn) — e

Moreover, there is an efficient (deterministic) algorithm that finds a cut whose ratio is O(zlogn).
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Proof: After computing an optimal solution d for the LP (F3), we use Bourgain’s theorem to
compute an embedding ¢ of (V,d) into £, where h = O(log® n), such that the distortion A is
O(logn). Let d; denote the £;-induced metric. Then,

,  u-d; u-d

— < .
Z=14 S2 13

= Az,

where the inequality follows because d(v,w)/A < di(v,w) < d(v,w),Yv,w € V. By Proposi-
tion 11.9, we can find a cut §(S) whose ratio is < 2z’ by examining the ratios of at most h - |V|
cuts. This completes the proof. A randomized algorithm is easily obtained because the construc-
tion in the proof of Bourgain’s theorem is randomized. Linial, London & Rabinovich (1995) (and
independently Garg (1995)) have given a method for derandomizing the Bourgain construction.

In fact, a generalization of the Leighton-Rao theorem can be proved by the method of £; embed-
dings. For each pair of nodes v, w € V of the (capacitated) graph G, u, let there be a nonnegative
real-valued demand dem, ,,. Also, let demn denote the corresponding (;)-dimensional vector indexed
by node pairs v, w € V. Define the demand of a cut 6(S) to be

dem(S) = Z {dem,, |vE S, wg Sorvg S,we S} =dem-ds.
vweV

Now, redefine the ratio of a cut 6(S) to mean
u(8(S))/dem(S) = u-ds/(dem - dg),

and define a generalized sparsest cut to be a cut whose ratio is minimum. By changing one constraint
in the LP (F3), we get the following LP relaxation of the generalized sparsest cut problem.

(F4) z = minimize ) cpucde
subject to meev demy ydy > 1
d is a metric.

Theorem 11.12 (Aumann & Rabani (1994), Linial, London & Rabinovich (1995))
Let z = 3" cg uede be the optimal value of the LP (F4). Let a be the ratio of a generalized sparsest
cut of G,u,dem, and let k denote the number of pairs v,w € V with positive demands. Then

a
— < z<a.

O(logk)
Moreover, there is an efficient algorithm that finds a cut whose ratio is O(zlogk).

We leave the proof to the reader, since it is similar to the proof of Theorem 11.11 given above. To
obtain an approximation guarantee of O(log k) rather than O(logn) we need a small generalization
of Bourgain’s theorem.

Proposition 11.13 Let (V,d) be a metric space, and let T' be a subset of V.. There exists an em-
bedding ¢ from (V, d) into £}, where h = O(log? |T|), such that for each v,w € V, ||¢p(v) — ¢p(w)||; <
d(v,w), and for each v,w € T, d(v,w)/A < ||¢p(v) — ¢(w)||;, where A = O(log|T|). Moreover, ¢

can be computed in polynomial time by a randomized algorithm.
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11.4 Bourgain’s theorem

We give a proof of Bourgain’s theorem, omitting some computational details. The reader may either
fill in the details (by solving Exercise 8), or refer to Linial, London & Rabinovich (Combinatorica
1995) or to the survey paper by Shmoys (1996).

Theorem 11.10 Let (V, d) be a metric space, and let n denote |V|. There exists an embedding
¢ from (V,d) into £}, where h = O(log? n), such that the distortion is O(logn). Moreover, ¢ can
be computed in polynomial time by a randomized algorithm.

Proof: The mapping ¢ : V — R" is constructed using randomization. For a point v € V and a
subset S C V, let d(v,S) = glelg d(v,w). Let p = |log, n], so that 27 < n < 2PT1 and let ¢ = 10p;

in fact, we will have h = pq. For each j = 0,1,2,...,p— 1, we randomly and independently choose

q subsets of V, each of cardinality n/27, A;1,A59,...,4A;,, ie., each of the ( 723') subsets of
n

V of cardinality n/27 is equally likely to be chosen as a set A; 1, and the choices are mutually

independent. Next, each point v € V is mapped to a vector

¢/(v) = [d(va AO,l)a d(’l), A0,2)a cey d(’l), AO,q)a d(’l), Al,l)a d(’l), A1,2)a cey d(’l), Al,q)a
oy d(’l), Ap_171), d(’l), Ap_172), ey d(’l), Ap—l,q)]a

i.e., v is mapped to a vector of dimension pq whose ¢th coordinate is the “d-distance” between v
and the ith random set in the list Ag1,...,404,...,4p—11,...,Ap_1,4. Let the ith coordinate of
the vector ¢'(v) be denoted by ¢.(v). We obtain the final mapping ¢ by scaling each vector ¢'(v)
by 1/(pa), e, $(v) = §'(v)/(pa), Vo € V.

To see that ||¢p(v) — ¢(w)||; < d(v, w), focus on an arbitrary coordinate 7 = ]q—l—k (0<j<p—1,
1 <k < gq) and let A be the corresponding random set A;j;. We have |¢}(v) — ¢}(w)| = |d(v, 4) —
d(w, A)| < d(v,w), because w.l.o.g. there exist a € A and b € A such that |d(v, 4) — d(w, 4)| =
d(v,a) — d(w,b) < d(v b) d(w, b) < d(v w) where the last step follows by the triangle inequality

on d. Hence, |[¢(v) — ¢p(w)||; = Z | (v (w)] < d(v, w).

The ingenious part of the proof is to show that for all pairs v,w € V, the other inequality
(llo(v) — ¢(w)||; > d(v,w)/A) holds with high probability. Con51der an arbitrary pair v,w € V.
Here is an informal argument that skips a few details; these details are handled either in the next
paragraph or in the exercises. We will partition the “line segment” joining v and w into O(logn)
segments such that the sum of the “d-lengths” of the first p segments is at least d(v, w)/3. See Fig-
ure 11.2. Let p; be the “d-length” of the jth segment. Consider an arbitrary coordinate : = jg+ k
(0<j<p-1,1<k<gq)of ¢(v) and ¢(w). We need a key claim:

there exists a constant ¢ < 1 such that with probability > ¢, |¢.(v) — ¢ (w)| > p;.
If we fix j and sum over all coordinates i = j¢ + k, for k = 1,2, ..., g, then by applying Chernoff
q

bounds it can be seen that with high probability, Z |¢;~q+k(v) - ¢;~q+k(w)| > qcp;/2 (see Exer-
k=1
cise 8 for details). Finally, summing over all coordinates ¢ = 1,2, ..., (pg), we see that with high
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random set A intersects B(w) but not B(v)

open ball has < 2/*! points

closed ball has > 2/ points

Figure 11.2: An illustration of the proof of Bourgain’s theorem.

probability,

2 65 (v) — ¢(w)| = z_: (Z | @ gin(v) — ¢;~q+k(w)l) > % ipj > %d(v?:w).

7=0 \k=1 7=0
Pq c
This proves the theorem, since Z |pi(v) — pi(w)| > 6—d(v, w), and so the distortion is A = 6p/c =
— '
=1
O(logn).
The claim above needs to be proved in detail. For j = 0,1,...,p — 1, let o; be the minimum

of d(v,w)/3 and the minimum real number o such that both |[{a € V | d(v,a) < o}| > 27 and
{6 € V | d(w,b) < a}| > 27, i.e., we compute the minimum radius o such that each of the balls
of d-radius o centered at v and w, respectively, contains at least 2/ points of V', and further, if
o < d(v,w)/3, then we take o; = o, otherwise we take o; = d(v,w)/3. Note that oy = 0. See
Figure 11.2. Consider j (0 < j < p—2) such that ¢; < d(v,w)/3. (The other case o; = d(v, w)/3 is
trivial.) W.lL.o.g. the set of points of V' in the open ball of d-radius ¢4, centered at v, B°(v, 0,41),
has cardinality < 2711, Moreover, the set of points of V in the closed ball of d-radius o; centered at
w, B(w, 0;), has cardinality > 2. Now, the random set A = A;}, (for some k, 1 < k < ¢) has n/2’
points of V. It is an exercise in elementary probability to show that there exists a constant ¢ < 1
such that with probability > ¢, AN B°(v,0;11) is empty and A N B(w, 0;) is nonempty. Hence,
with probability > ¢, d(v, A) > ¢;+1 and d(w, A) < o;. Consequently, with probability > e,

|@g ik (v) = Brprr(w)| = d(v, Ajx) — d(w, Aj k)| > 011 — 0.
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Note that this analysis applies also to the largest j such that o; < d(v,w)/3. Also, note that
in terms of the previous paragraph, the jth segment (in the “line segment” joining v and w) has
“d-length” p; = 0541 — 0j. I

11.5 From sparsest cuts to balanced separators

In this section, we sketch how the result on approximating the sparsest cut can be applied to find
balanced separators in graphs. An a-balanced separator (for o > %) is defined as a set of edges
whose removal breaks up the graph into two components each of size at least a-n. A %—balanced
separator is also sometimes called a bisector. By a balanced separator, we mean any a-balanced
separator for some fixed constant . This is because in many applications, what is important is
that separator is balanced rather than the exact quality of the balance.
u(8(5))
min(|S], [V\S])

Define the fluz of a cut §(.S) of G to mean the quantity LA manimum fluz cut

is one whose flux is minimum.
Flux and sparsity are very closely related quantities. Suppose that the sparsest cut has ratio s
and the minimum flux cut has flux f, then

n
—S8

< <
5 < f<mns

since the bigger half of any cut has size between 3 and n. Thus the approximation algorithm from
the previous section also gives an O(logn) approximation for finding a minimum flux cut in a given

graph. We can use this result to derive an approximation result of the following type.

Theorem 11.14 Suppose that we are given an p-approzimation algorithm for finding a minimum
fluz cut in a graph, and suppose that B denotes the minimum capacity of any bisector (i.e., %-
balanced separator) in the graph. Then we can find a %-balanced separator of the graph of capacity
at most 8p - B.

Proof: We prove the theorem by using a simple greedy algorithm to construct the %—balanced
cut. The algorithm is simple. We iterate finding the minimum flux cut in a graph and deleting the
vertices in the smaller side of the cut, until the number of vertices that remain is at most 2?" The
set of all the deleted vertices form one shore of the cut while the remaining vertices form the other.

Let us denote by u; and z;, the capacity and the size of the smaller side of the flux cut found
in iteration number 7. Say the greedy procedure ran for t iterations; we wish to bound Y>%_; u; in
terms of B.

The key step is to observe that while we are still running the greedy procedure, the minimum
bisector induced in the remaining graph gives a cut of small flux. In particular, since we have
deleted at most 3 nodes, in the worst case, all these nodes may be deleted from the same side of
the minimum bisector, and this cut in the remaining graph has flux at most %. This is because

o3|ty

! The flux has also been called the edge expansion or the quotient cost of a cut.
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the smaller side of this cut has at least 7 — T nodes in it. Using a p-approximation algorithm at
every iteration guarantees that
Uu; 6B
~<p— (11.3)
z; n

Next we write down a recurrence for the number of nodes we “need” to delete to achieve our
goal. Namely, let n; represent the number of nodes before iteration 7 that we need to delete so that
the remaining graph has at most 2?” nodes. Thus, e.g., n; = 3, and n; > 1. We get the following
simple recurrence.

Nip1 = N — &

y equation 11.3, we have z; > 24 > 2% SQubstituting and simplifying, we ge
B tion 11.3 h >g;‘B>gp% Substituting and lifying get
Uu; ]
ni+1§ni(1—2pB)§nie 208

Expanding out the recurrence, we get

t—1 wu;

[ < nle_ Zi:l 2pB

Taking natural logarithm and simplifying, we finally get

t—1
Zui < 2pBlog i < 2pBlogn (11.4)
yz

=1

To bound the capacity of the last cut u;, we use equation 11.3 again to get
6pB
u < p-z-t— < 3pB
n

since z; < § (we always choose the smaller side of a cut). The two equations above imply that

the cost of the %—balanced separator found is O(Blogn) where B is the capacity of a minimum

bisector. |

11.6 Applications of separators

Finding balanced separators has several applications in the design of good approximation algorithms
for other problems whose objective can be realted to the value of a bisector — these approaches
typically employ divide-and-conquer using the separator approximation in the divide part of the
procedure. This approach was pioneered in the work of Bhatt and Leighton [4] and applied to a
variety of problems by Leighton and Rao [9]. Examples include finding minimum area layout of a
graph, finding layouts that minimize the total number of edge crossings, and finding a minimum
feedback arc set (arcs whose removal leaves the remaining digraph acyclic). Other more involved
applications are in graph completion problems to find the minimum-size supergraph of a given
graph that has certain nice properties, e.g., is an interval graph[12] or a chordal graph[2]; The
latter problem models finding good orderings for sparse Gaussian elimination.
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Two overall features are useful in identifying problems that may be amenable to the divide-and-
conquer approximation approach using separators. Firstly, the objective of the problem must be
related to the size of the separator, and secondly, an optimal solution for the overall problem should
be “decomposable” into solutions to the subproblems that are obtained in the dividing stage. We
illustrate these two features by looking at two simple linear arrangement problems.

Linear arrangements

A linear arrangement of an undirected graph G = (V, E') ( where |V| = n) is a linear ordering of
its nodes, or more formally, a bijection A of the vertices to the set {1,2,...,n}. Pictorially, we can
think of a linear arrangement as a drawing of the nodes of a graph in a line in the order specified
by the bijection A.

A linear arrangement defines n — 1 sequential cuts formed by the sets
{A71(1),A71(2),..., A7 (5)} = S, for each i. Furthermore, every edge uv with A(v) > A(u) say,
is “stretched” in the arrangement to an extent stretch(uv) = A(v) — A(u). Four problems arise by
minimizing the maximum or the sum of each of the two quantities: the stretch of edges and the
size of each of the sequential cuts.

Finding a linear arrangement to minimize the maximum size of any of the sequential cuts
corresponds to solving the minimum cut linear arrangement (MCLA) problem. Minimizing the
maximum stretch of any edge in the arrangement corresponds to finding a minimum bandwidth
ordering. A moment of though reveals that the two objectives involving minimizing the sum of the
stretches and the cuts are really the same (by switching the summation between the edges and the
sequential cuts). This ordering problem is to find an optimal linear arrangement (OLA). We will
use our separator-based method for the minimum cut and optimal linear arrangement problems. No
nontrivial approximation algorithm is known for the bandwidth minimization problem on general
graphs.

11.6.1 Minimum cut linear arrangement

To discover the relation of the size of a balanced separator to the value of a cut in a linear arrange-
ment, consider an optimal MCLA. Let O PT denote the maximum size of a cut in this arrangement.
Since the cut corresponding to the set .S n is also a candidate for computing this maximum value,
and this cut is a bisector, we have that OPT > B where B is the size of a minimum bisector. On the
other hand, we have a separator approximation that finds a balanced separator of size O(logn - B).

This motivates the following simple divide and conquer algorithm: use the approximation al-
gorithm for finding an %—balanced separator to break the graph into two parts, say L and R.
Recursively compute an arrangement of the nodes of L and the nodes of R and concatenate them
to form the final arrangement. The basis is when the graph has only one node in which case the
ordering is trivial. Alternatively, the divide steps of this algorithm can be represented by a “sepa-
rator tree” whose internal nodes represent a divide step that finds a balanced separator, and the
leaves are the original nodes of G. The arrangement output is the preorder traversal of these nodes,
or simply the left to right ordering of the leaves.

It is not hard to bound the performance ratio of this algorithm. First we notice that the depth
of recursion, or alternatively, the depth of the separator tree, is O(logn) since we use a banaced
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separator in each divide step. The maximum value of any of the cuts in the output arrangement
is the maximum over the sum of the values of O(logn) different separators found by following
some recursive step in the algorithm. We already argued that the top-level separator has size
O(logn - B) = O(logn - OPT). If we can argue that each of the separators found in any recursive
step is also of size O(logn - OPT), a performance ratio of O(log? n) would follow.

The decomposition property is useful in showing that for any recursive subproblem, the size
of the separator found is O(logn - OPT). Consider a fixed depth of recursion corresponding to a
particular level of the separator tree. Let the subgraphs corresponding to the different portions of
the original graph on which we are finding separators be GGy, ...G. Note that the nodes of these
subgraphs partition those of G. Consider the ordering induced on the nodes of G; by the MCLA.
The crucial observation is that the maximum cut in this induced arrangement has at most OPT
edges. Moreover by looking at the central cut in this arrangement that splits G; into two equal
pieces, we see that the minimum size of a bisector of G; is at most the size of the central cut. This
in turn is at most OPT. The separator we find for GG; has size at most a logarithmic factor larger
than the size of a minimum bisector for G;, and hence at most O(logn - OPT'). This completes the
proof that the divide-and-conquer approach gives an O(log2 n) approximation algorithm.

11.6.2 Optimal linear arrangement

Before we present an algorithm for this problem we first state a simple extension of the previous
result on finding balanced separators. Earlier, we argued that we can find a %—balanced separator by
applying a greedy algorithm and using a minimum bisector to bound the quality of the solution. We
can instead attempt to find say a %—balanced separator by using a minimum %—balanced separator
in the analysis. This gives the following result.

Theorem 11.15 Suppose that we are given an p-approzimation algorithm for finding a minimum

fluz cut in a graph, and suppose that Bz denotes the minimum capacity of any %-balanced separator
3

i the graph. Then we can find a %-balanced separator of the graph of capacity at most O(p- B 2 ).

We can proceed as before by first trying to relate the value O PT of the optimal linear arrange-
ment to the size of a separator. To do this, note that OPT is a sum of n — 1 terms corresponding
to the sizes of the sequential cuts in the linear order. If we consider the middle third of these cuts
(6(8;) for i from % to Z*), each of these cuts define a 2-balanced cut of the graph and must have
size at that of a minimum such separator, say B%‘ Thus we have

n-B:2
OPT > 33.

As before, we use a simple divide and conquer algorithm: apply the approximation algorithm
for finding an %—balanced separator in the above theorem to break the graph into two parts, say L
and R. Recursively compute an arrangement of the nodes of L and the nodes of R and concatenate
them to form the final arrangement. Again, the ordering can be represented by the left to right
ordering of the leaves of the corresponding separator tree.

We use a slightly different argument to show a performance ratio of O(log?n) in this case. At
the top level of recursion, we split the graph by using edges of a %—balanced separator of size at



11.7. EXERCISES 191

most O(logn - Bz). The contribution of these edges to the value of this arrangement is the sum of
their stretches W?ilich is trivially at most n — 1. Thus the overall contribution of this separator to
the objective is O(nlogn - Bg) = O(logn - OPT).

To employ a similar strategy at every level of recursion, we must show that for all the different
disjoint graphs formed at any depth in the recursion, the contributions of all the separator edges
found in this level is O(logn - OPT). Note that these subgraphs represent a partition of the nodes
of G and there are at most (%) of them at depth i of recursion.

We use a decomposition property to prove the claim for a general level of the recursion: con-
sider the linear arrangement induced on each of the subgraphs in this level by the optimal global
arrangement. Since the stretch of any edge in an induced arrangement is at most that in the global

arrangement, the sum of the values of the induced arrangements, say O PT, +OPT5+-.. 4-OPT} is at
n;-BY

most OPT. By our previous argument applied to each of the subgraphs, we see that OPT; > —=

where n; is the number of nodes in the subgraph and B"2 is the value of a %—balanced separator in
3

that subgraph G;. The number of edges in the separator found for this graph is O(logn; - B%)
and each has a stretch of at most n; — 1 trivially. Thus the contribution by these edges s
O(n; -logn; - BY) = O(logn; -OPT;) = O(logn-OPT;). Thus the total contribution of all the edges
in a level is O(fogn- (OPT,+OPT5;+...+OPT})) = O(logn - OPT) as required. This shows that
the overall method has performance ratio O(log® n) since there are O(logn) levels of recursion.

For several of the problems described in [12], the log-squared approximation guarantees were
slightly improved to O(lognloglogn) by Even et al. [6]. More recently, Rao and Richa [11] further
improve some of these results to O(log n)-approximations, including the optimal linear arrangement
problem described above.

11.7 Exercises

1. Given a graph G = (V, E') with edge capacities u : E — R, the densest cut problem is to find
a cut 6(5) such that the ratio u(6(S))/(|S]- |[V\S]) is maximum.

(a) Prove that a densest cut can be computed efficiently if and only if a sparsest cut can be
computed efficiently.

(b) Prove that the problem of finding the densest cut is NP-hard. Does this mean that the
sparsest cut problem is NP-hard?

(HINT: Give a reduction from the maxcut problem (find a cut of maximum capacity)
on a graph G’; the maxcut problem is known to be NP-hard. Construct the prism G of
G’ by taking two copies of G’ and adding an edge between the two copies of each G'-node.)

(c) Give a 2-approximation algorithm for the densest cut problem, i.e., give an efficient algo-
rithm for finding a cut whose ratio is at least half the ratio of a densest cut. Does this
mean that there exists an O(1)-approximation algorithm for the sparsest cut problem?

(HiNT: Focus on the star cuts, §(v),Vv € V)
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. Prove that the relaxation (F1) of the sparsest cut problem is equivalent to the LP relaxation
(F2), in the sense that for every optimal solution d, A of (F1) there exists a feasible solution of
(F2) with the same objective value, and vice versa. Prove that the LP relaxations (F2) and
(F3) are equivalent.

In Theorem 11.11, improve the integrality gap (and approximation guarantee) of 8 In(n+1)+2
by a factor of 2, by improving the analysis in the proof.

(HINT: The fluz of a cut §(.5) is defined to be w(6(S))/ min(|S|, |V\S]). Let 8 be the minimum
flux of a cut. Note that an/2 < 8 < an, where « is the ratio of a sparsest cut. Modify the
analysis at appropriate places by using the flux of a cut instead of the ratio of a cut.)

The minimum multicut problem is defined as follows. The input consists of a graph G = (V, E)
with edge capacities v : E — %, together with a set of demand pairs (or demand edges)
s1t1, Sata, . . ., Skt (each demand pair is an unordered pair of nodes; demand pairs have no
relation to the edges in F, i.e., an edge s;f; may or may not be present in E). The problem
is to find an edge set C' C E such that the capacity u(C) = > .o e is minimum and such
that G\C has no s;-t; path for each ¢ = 1,...,k; in other words, an optimal solution for
the problem is a minimum-capacity edge set whose removal disconnects (or separates) all k
demand pairs.

(a) Write down an LP relaxation (FM) for the minimum multicut problem, based on the LP
relaxation (F2) for the sparsest cut problem.

(HinT: Replace the constraint 37, ey Avw > 1 by the k constraints A, ;; > 1, 7 =
1,...,k)

(b) Prove that the minimum capacity of a multicut is at most O(logk) times the optimal
value of (FC). Give an efficient algorithm for finding a multicut whose capacity is at most
O(log k) times the minimum capacity of a multicut.

(HiNT: Apply the region-growing procedure with the parameter ¢ chosen to guarantee
that each region contains at most one node of a demand pair.)

(¢) (N.Kahale 1993) Use the algorithm in part (b) to design an O((log D)(log k))-approximation
algorithm for the generalized sparsest cut problem (see Section 11.3), where D denotes
the total demand 3 v demy,,. W.lo.g. assume that each demand dem, , is a (non-
negative) integer.

vWE

(HiNT: First, find the optimal solution d of the LP relaxation (F4) of the generalized
sparsest cut problem. Next, find a set Q@ = {s;,¢;} of demand pairs such that

1
4Q) 2 Gom(Q) H(dem (@)’

where d(Q) = minQ ds; t;, dem(Q) = E demy, +;, and H (Z) is the ith harmonic number
$iti€
si,ti€Q

14+1/2+...41/i. To find Q, order the pairs {s;,¢;} with positive demands according
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to decreasing values of d,, ;;, and renumber these pairs such that dy, ;, > dsy s, > ... >

i 1
dys; > ..., and let D; = ;demsi,m- If for each i, d,; 4, < Di-H(Dy)

a contradiction by showing that sti’tidemsmi < 1. Having found @, deduce that

, then obtain

d/d(Q) is a feasible solution to the LP relaxation (FM) of the minimum multicut problem
specified by G,u and Q (i.e., the demand pairs for (FM) are precisely the pairs in Q).
Finally, prove that the multicut found by the approximation algorithm in part (b) has
ratio at most O((log D)(logk)) times the ratio of a generalized sparsest cut.)

5. Suppose that the graph G = (V, E) is a tree, and let u : E — R assign capacities to the
edges.

(a) Can a sparsest cut be computed efficiently?

(HINT: One way is to use the method of ¢; embeddings: for any weight function on the
edges d: E — R, prove that the resulting shortest-paths metric space of G isometrically
embeds into £7.)

(b) Can a minimum multicut be computed efficiently? Note that the demand pairs may be
arbitrary.

(HINT: Attempt a reduction from the minimum node cover problem.)

6. The r-dimensional cube @), is defined recursively in terms of the cartesian product of @, _;
and the complete graph on two nodes, K, as follows:

Q1 = K
Qr = K2><Qr—1-

Alternatively, ), may be defined as a graph whose node set consists of 2" r-dimensional
boolean vectors, where two nodes are adjacent whenever they differ in exactly one coordinate.
Note that @, has 2" nodes and »2" /2 edges.

(a) Find a sparsest cut for Q, and determine its ratio. True or false: the integrality gap for
the LP relaxation (F2) on Q, is one, i.e., the optimal value of (F2) equals the ratio of a
sparsest cut.

(b) Consider the LP relaxation (FM) of the minimum multicut problem on Q,. Give a tight
estimate (up to constant factors) for the integrality gap, i.e., find a function g(r) such that
the minimum capacity of a multicut on @, is at most O(g(r)) times the optimal value
of (FM), and such that the integrality gap is Q(g(r)) on some example. Note that the
demand pairs may be arbitrary.

7. (T. C. Hu’s theorem) Consider the generalized sparsest cut problem such that exactly two
pairs s1,%; and Ss,t; have positive demands. Prove that the ratio of a generalized sparsest
cut equals the optimal value of the LP relaxation (F4).

(HINT: One way is to use the method of ¢; embeddings. Construct an isometric embedding
from £2 to £3.)
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The goal here is to fill in the details for the proof of Bourgain’s theorem (Theorem 11.10).

(a) Let V be a set of n points, and let B® and B° be disjoint subsets of V such that |B°| < 29+!
and |B°| > 27, where 0 < j < |log, 7] is an integer. Let A be a random subset of V of
cardinality n/27. Prove that there exists a constant ¢ < 1 such that with probability > c,
AN B° is empty and A N B¢ is nonempty.

(HINT: Argue that the events “AN B° is empty” and “AN B¢ is nonempty” are not nega-
tively correlated, i.e., Pr(ANB° =0 and ANB® #0) > Pr(ANB°=0)-Pr(ANB° #0).
Then show that there exist constants ¢; and ¢y such that Pr(A N B° = 0) > ¢; and
Pr(ANB°=0) < c,.)

v

g

(b) Use Chernoff bounds to show that with high probability, Z |¢;~q+k(v) - ¢;~q+k(w)|
k=1

gcp;/2, assuming that with probability > c foreach k =1,...,4¢, |¢;'q-|-k (v) — ¢;'q-|-k (w)| >

pi-
Generalize the proof of Bourgain’s theorem to embed into fz for an arbitary p, p > 1, instead
of embedding into £}. The dimension A stays O(log” n) and the distortion stays O(logn).

(HiNT: Use the following monotonicity property of pth moment averages: For positive numbers

P p\ 1/p
L1yeeoyLh, :Bl—l_k—l_mkg(ml—l_k—l_mk) )

Construct an example to show that the estimate of the distortion in Bourgain’s theorem is

tight up to constant factors, i.e., construct a metric space (V, d) such that every embedding
into £ has distortion Q(logn), where the dimension A is arbitrary and n = |V|.

(HiNT: Consider the example of the sparsest cut problem on the expander graph G in Sec-
tion 11.1, and focus on the metric space (V(G), d), where d is the shortest-paths metric of
G.)
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Chapter 12

Bicriteria Network Design problems

12.1 Introduction

A generic bicriteria network design problem, (A, B, S), is defined by identifying two minimization
objectives, A and B, from a set of possible objectives, and specifying a membership requirement in
a class of subgraphs, S. The problem specifies a budget value on the first objective, A, under one
cost function, and seeks to find a network having minimum possible value for the second objective,
B, under another cost function, such that this network is within the budget on the first objective.
The solution network must belong to the subgraph-class S.

As an example, consider the problem of designing networks capable of accommodating mul-
timedia (both audio and video) traffic in a multicast (simultaneous transmission of data to mul-
tiple destinations) environment [Ch91, FW+85, KJ83, KP4+92A, KP+92B, KP+493]. As argued
in [KP+92A], one of the popular solutions to multicast routing involves tree construction. Two
optimization criteria — (1) the minimum worst-case transmission delay and (2) the minimum total
cost — are typically sought to be minimized in the construction of these trees. As pointed out in
[KP+492A], in the problem of finding good multicast trees, each edge has associated with it two
edge costs: the construction cost and the delay cost. The construction cost is typically a measure
of the amount of buffer space or channel bandwidth used and the delay cost is a combination of
the propagation, transmission and queuing delays.

In our terminology, the problem of finding low-cost and low-transmission-delay multimedia
networks [KP492A, KP+93] can be modeled as the (Diameter, Total cost, Spanning tree)-bicriteria
problem: given an undirected graph G = (V, E) with two different weight functions ¢, (modeling
the construction cost) and d. (modeling the delay cost) for each edge e € E, and a bound D (on
the total delay), find a minimum c-cost spanning tree such that the diameter of the tree under the
d-costs is at most D.

Such multi-criteria network design problems, with separate cost functions for each optimization
criterion, also occur naturally in VLSI designs (see [ZP+494] and the references therein). With the
advent of deep micron VLSI designs, the feature size has shrunk to sizes of 0.5 microns and less.
As a result, the interconnect resistance, being proportional to the square of the scaling factor, has
increased significantly. An increase in interconnect resistance has led to an increase in interconnect
delays thus making them a dominant factor in the timing analysis of VLSI circuits. Therefore

196
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VLSI circuit designers aim at finding minimum cost (spanning or Steiner) trees given delay bound
constraints on source-sink connections.

Network design problems where even one cost measure must be minimized, are often NP-hard
[GJ79]. But, in several applications, it is often the case that the network to be built is required
to minimize multiple cost measures simultaneously, with different cost functions for each measure.
In the past, the problem of minimizing two cost measures was often dealt with by attempting
to minimize some combination of the two, thus converting it into a uni-criterion problem. This
approach often fails, especially when the two criteria are very disparate. We have chosen, instead, to
model bicriteria problems as that of minimizing one criterion subject to a budget on the other. We
argue that this approach is both general as well as robust. It is more general because it subsumes
the case where one wishes to minimize some functional combination of the two criteria. It is more
robust because the quality of approximation is independent of which of the two criteria we impose
the budget on. We elaborate on this more in Sections 12.3.1 and 12.3.2.

12.1.1 Objective functions

In this class, we study the complexity and approximability of a number of bicriteria network design
problems. The three objectives we consider are: (i) total cost, (ii) diameter and (iii) degree of
the network. These reflect the price of synthesizing the network, the maximum delay between two
points in the network and the reliability of the network, respectively. The Total cost objective is
the sum of the costs of all the edges in the subgraph. The Diameter objective is the maximum
distance between any pair of nodes in the subgraph. The Degree objective denotes the maximum
over all nodes in the subgraph, of the degree of the node. We may generalize the degree objective
to the case of Weighted Degree given costs on the edges as follows: the weighted degree of a node in
a subgraph is the sum of the costs of the edges incident on the node in the subgraph. The weighted
degree objective is the maximum over all nodes in the subgraph, of the weighted degree of the node.
When all the edges have unit costs, the weighted degree objective reduces to the regular degree
objective.

The class of subgraphs we consider in are mainly one-connected networks such as Spanning
trees. However, most of the results we discuss also extend to more general one-connected networks
such as Steiner trees and generalized Steiner forests| AK+95, GW92].

12.1.2 Performance guarantees

As we mentioned earlier, most of the problems considered in this paper, are NP-hard for arbitrary
instances even when we wish to find optimum solutions with respect to a single criterion. Given the
hardness of finding optimal solutions, we concentrate on devising approximation algorithms with
worst case performance guarantees. Recall that an approximation algorithm for a minimization
problem II provides a performance guarantee of p if for every instance I of II, the solution
value returned by the approximation algorithm is within a factor p of the optimal value for I.
Here, we extend this notion to apply to bicriteria optimization problems. An (a, §)-approximation
algorithm for an (A, B, S)-bicriteria problem is defined as a polynomial-time algorithm that
produces a solution in which the first objective (A) value, is at most a times the budget, and the
second objective (B) value, is at most § times the minimum for any solution that is within the
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budget on A. The solution produced must belong to the subgraph-class S. Analogous definitions
can be given when A and/or B are maximization objectives.
The main results we discuss in this note are as follows.

1. Very often, bicriteria problems are harder than uni-criterion problems even to approximate.
We demonstrate this by showing an approximation-preserving reduction from the Set Cover
problem to the (Diameter, Total cost, Spanning tree) problem that proves that obtaining a
(< %, < Inn) approximation for the latter problem is NP-hard. Such “double” hardness results
also justify the definition of bicriteria approximations in the way we did.

2. We justify the claim that the formulation of bicriteria problem by using a budget for one
objective and minimizing the other is more robust than alternative formulations, and remains
consistent irrespective of which of the two objectives we choose to budget.

3. For bicriteria problems where both the objectives are similar, i.e., represent the same objec-
tive function but computed under two distinct cost functions (e.g. (Total cost, Total cost,
Spanning tree)), we show a simple method based on parametric search to convert uni-criterion
approximation results for this objective to a bicriteria result.

4. We present a general framework for approximating bicriteria one-connected network problems
that is applicable to all pairwise combinations of the three objective functions we mentioned
earlier (total cost, diameter and degree) to give performance ratio (logn,logn) on an n-node
graph. Given the framework, it remains to reason and fill in the appropriate polynomial time
subroutine that is applicable for the corresponding pair of objectives.

Table 1 contains the performance guarantees of our approximation algorithms for finding span-
ning trees, S, under different pairs of minimization objectives, A and B. For each problem cataloged
in the table, two different costs are specified on the edges of the undirected graph: the first objective
is computed using the first cost function and the second objective, using the second cost function.
The rows are indexed by the budgeted objective. For example the entry in row A, column B,
denotes the performance guarantee for the problem of minimizing objective B with a budget on
the objective A. All the results in Table 1 extend to finding Steiner trees with at most a constant
factor worsening in the performance ratios. All the results in the table extend to finding Steiner
trees with at most a constant factor worsening in the performance ratios (Exercise!).

Cost Measures Degree Diameter Total Cost
Degree (O(log n), O(log n))* (O(log® n), O(log n))[Ra94] | (O(logn), O(log »))[RM4-93]
Diameter (O(log n), O(log® n))[Ra94] (L+~,14 %)* (O(log n), O(log n))*
Total Cost (O(log n), O(log n))[RM+93] (O(log n), O(log n))* (I+v,1+ %)*

Table 1. Performance Guarantees for finding spanning trees in an arbitrary graph on n nodes.
Asterisks indicate results obtained in this paper. v > 0 is a fixed accuracy parameter.

The diagonal entries in the table follow as a corollary of a general result (Theorem 12.8) which is
proved using a parametric search algorithm. The entry for (Degree, Degree, Spanning tree) follows
by combining Theorem 12.8 with the O(logn)-approximation algorithm for the degree problem in
[RM+93]. In [RM+93] they actually provide an O(logn)-approximation algorithm for the weighted
degree problem. (The weighted degree of a subgraph is defined as the maximum over all nodes of
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the sum of the costs of the edges incident on the node in the subgraph). Hence we actually get an
(O(logn), O(logn))-approximation algorithm for the (Weighted degree, Weighted degree, Spanning
tree)-bicriteria problem. Similarly, the entry for (Diameter, Diameter, Spanning tree) follows by
combining Theorem 12.8 with the known exact algorithms for minimum diameter spanning trees
[CG82, RS+94]; while the result for (Total cost, Total cost, Spanning tree) follows by combining
Theorem 12.8 with an exact algorithm to compute a minimum spanning tree [Kr56, Pr57].

We also describe a different cluster-based approximation algorithm and a solution based de-
composition technique for devising approximation algorithms for problems when the two objec-
tives are different. In this note, we describe this technique techniques yield (O(logn), O(logn))-
approximation algorithms for the (Diameter, Total cost, Steiner tree) and the (Degree, Total cost,
Steiner tree) problems.

12.1.3 Previous Work

The area of uni-criterion optimization problems for network design is vast and well-explored (See
[Ho95, CK95] and the references therein.). Ravi et al. [RM+93] studied the degree-bounded
minimum cost spanning tree problem and provided an approximation algorithm with performance
guarantee (O(logn),O(logn)). Though they were doing bicriteria optimization they did not state
it as such in their paper.

The (Degree, Diameter, Spanning tree) problem was studied in [Ra94] in the context of min-
imizing broadcast time in arbitrary networks. There he provides an approximation algorithm for
the (Degree, Diameter, Spanning tree) problem with performance guarantee (O(log? n), O(logn)).

The (Diameter, Total cost, Spanning tree) entry in Table 1 corresponds to the diameter-
constrained minimum spanning tree problem introduced earlier. It is known that this problem
is NP-hard even in the special case where the two cost functions are identical [HL+89]. Awer-
buch, Baratz and Peleg [AB+90] gave an approximation algorithm with (O(1),O(1)) performance
guarantee for this problem - i.e. the problem of finding a spanning tree that has simultaneously
small diameter (i.e., shallow) and small total cost (i.e., light), both under the same cost function.
Khuller, Raghavachari and Young [KR+93] studied an extension called Light, approzimate Shortest-
path Trees (LAST)and gave an approximation algorithm with (O(1), O(1)) performance guarantee.
Kadaba and Jaffe [KJ83], Kompella et al. [KP+92A], and Zhu et al. [ZP+94] considered the (Di-
ameter, Total cost, Steiner tree) problem with two edge costs and presented heuristics without any
guarantees. It is easy to construct examples to show that the solutions produced by these heuristics
in [ZP+494, KP+92A], can be arbitrarily bad with respect to an optimal solution. A closely related
problem is that of finding a diameter-constrained shortest path between two pre-specified vertices s
and ¢, or (Diameter, Total cost, s-t path). This problem, termed the multi-objective shortest path
problem (MOSP) in the literature, is NP-complete and Warburton [Wa87] presented the first fully
polynomial approximation scheme (FPAS) for it. Hassin [Ha92] provided a strongly polynomial
FPAS for the problem which improved the running time of Warburton [Wa87]. This result was
further improved by Philips [Ph+93].

The (Total cost, Total cost, Spanning tree)-bicriteria problem has been recently studied by
Ganley et al. [GG495]. They consider a more general problem with more than two weight functions.

! The result in [Ra94] is actually somewhat stronger - given a budget, D, on the degree he finds a tree whose total
cost is at most O(logn) times the optimal and whose degree is at most O(Dlogn + log® n).
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They also gave approximation algorithms for the restricted case when each weight function obeys
triangle inequality. However, their algorithm does not have a bounded performance guarantee with
respect to each objective.

12.2 Hardness results

The problem of finding a minimum degree spanning tree is strongly NP-hard [GJ79]. This implies
that all spanning tree bicriteria problems, where one of the criteria is degree, are also strongly
NP-hard. In contrast, it is well known that the minimum diameter spanning tree problem and
the minimum cost spanning tree problems have polynomial time algorithms [CG82, HL+89, Kr56,
Pr57, RS+94].

The (Diameter, Total Cost, Spanning tree)-bicriteria problem is strongly NP-hard even in the
case where both cost functions are identical [HL+89]. We now show that the (Diameter, Total-cost,
Steiner tree) problem is hard to approximate within a logarithmic factor. This is in contrast to the
approximation algorithm provided in Section 12.5. There is however a gap between the results of
Theorems 12.2 and 12.15.

Our non-approximability result is obtained by an approximation preserving reduction from the
MIN SET COVER. An instance (T, X) of the MIN SET COVER problem consists of a
universe T' = {t1,ts,...,t} and a collection of subsets X = {X;, X5, ..., X,,}, X; C T, each set
X; having an associated cost ¢;. The problem is to find a minimum cost collection of the subsets
whose union is T'. Recently Feige [Fe95] has shown the following non-approximability result:

Theorem 12.1 Unless NP C DTIME(n'°8!°8"), the MIN SET COVER. problem, with a uni-
verse of size k, cannot be approzimated to better than a Ink factor.

Theorem 12.2 Unless NP C DTIM E(n!°8°8™), given an instance of the (Diameter, Total Cost,
Steiner tree) problem with k sites, there is no polynomial-time approzimation algorithm that outputs
a Steiner tree of diameter at most the bound D, and cost at most R times that of the minimum
cost diameter-D Steiner tree, for R < Ink.

Proof:  Approximation preserving reduction from the MIN SET COVER problem to the
(Diameter, Total Cost, Steiner tree) problem. Given an instance (T, X) of the MIN SET COVER
problem where T' = {t;,t5,...,tx} and X = {X;,X,,..., X}, X; C T, where the cost of the
set X; is ¢;, we construct an instance G of the (Diameter, Total Cost, Steiner tree) problem as
follows. The graph G has a node ¢; for each element t; of T2, a node z; for each set X;, and an
extra “enforcer-node” n. For each set X;, we attach an edge between nodes n and z; of c-cost ¢;,
and d-cost 1. For each element ¢; and set X; such that ¢, € X; we attach an edge (¢;, ;) of c-cost,
0, and d-cost, 1. In addition to these edges, we add a path P made of two edges of c-cost, 0, and
d-cost, 1, to the enforcer node n All other edges in the graph are assigned infinite ¢ and d-costs.
The nodes t; along with n and the two nodes of P are specified to be the terminals for the Steiner
tree problem instance. We claim that G has a c-cost Steiner tree of diameter at most 4 and cost C
if and only if the original instance (7', X) has a solution of cost C.

2There is a mild abuse of notation here but it should not lead to any confusion.
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It is easy to see that any Steiner tree of diameter at most 4 must contain a path from ¢; to n, for
all 7, that uses an edge (z;, n) for some X; such that ¢; € X;. Hence any Steiner tree of diameter
at most 4 provides a feasible solution of equivalent c-cost to the original Set cover instance. The
proof now follows from Theorem 12.1. ,

Exercise Show that a construction similar to the one above can be used to strengthen the condition
of the output Steiner tree having diameter at most D in the above Theorem to having diameter

less than %.

12.3 Bicriteria Formulations: Simple Properties

12.3.1 Equivalence of Bicriteria Formulations: Robustness

There are two natural alternative ways of formulating general bicriteria problems: (i) where we
impose the budget on the first objective and seek to minimize the second and (ii) where we impose
the budget on the second objective and seek to minimize the first. We show that an (a,f)-
approximation algorithm for one of these formulations naturally leads to a (8, a)-approximation
algorithm for the other. Thus our definition of a bicriteria approximation is independent of the
choice of the criterion that is budgeted in the formulation. This makes it a robust definition and
allows us to fill in the entries for the problems (B, A, S) by transforming the results for the
corresponding problems (A, B, S).

Let G be a graph with two (integral)® cost functions, ¢ and d. ¢ and d are typically edge costs
or node costs. Let A (B) be a minimization objective computed using cost function ¢ (d). Let the
budget bound on the c-cost* (d-cost) of a solution subgraph be denoted by C (D).

There are two natural ways to formulate a bicriteria problem: (i) (A, B, S) - find a subgraph
in S whose A-objective value (under the c-cost) is at most C and which has minimum B-objective
value (under the d-cost), (ii) (B, A, S) - find a subgraph in S whose B-objective value (under the
d-cost) is at most D and which has minimum A-objective value (under the c-cost).

Note that bicriteria problems are meaningful only when the two criteria are hostile with respect
to each other - the minimization of one criterion conflicts with the minimization of the other. A
good example of hostile objectives are the degree and the total edge cost of a spanning tree in an
unweighted graph [RM+93]. Two minimization criteria are formally defined to be hostile whenever
the minimum value of one objective is monotonically nondecreasing as the budget (bound) on the
value of the other objective is decreased.

Let XYZ(G,C) be any (o, 8)-approximation algorithm for (A, B, S) on graph G with bud-
get C under the c-cost. We now show that there is a transformation which produces a (8, a)-
approximation algorithm for (B, A, S). The transformation uses binary search on the range of
values of the c-cost with an application of the given approximation algorithm, XYZ, at each step of
this search. Let the minimum c-cost of a D-bounded subgraph in S be OPT.. Let Cp; be an upper

3In case of rational cost functions, our algorithms can be easily extended with a small additive loss in the perfor-
mance guarantee.

*We use the term “cost under ¢” or “c-cost” in this section to mean the value of the objective function computed
using ¢, and not to mean the total of all the ¢ costs in the network.



202 CHAPTER 12. BICRITERIA NETWORK DESIGN PROBLEMS

bound on the c-cost of any D-bounded subgraph in S. Note that Cp; is at most some polynomial
in n times the maximum c-cost (of an edge or a node). Hence log(Cp;) is at most a polynomial
in terms of the input specification. Let Heu. (Heuy) denote the c-cost (d-cost) of the subgraph
output by ALGORITHM BICRITERIA-EQUIVALENCE given below.

ALGORITHM BICRITERIA-EQUIVALENCE:

e Input: G - graph, D - budget on criterion B under the d-cost, XYZ - an (a, §)-
approximation algorithm for (A, B, S).
e 1. Let Cp; be an upper bound on the c-cost of any D-bounded subgraph in S.
2. Do binary search and find a C’ in [0, Cp;] such that

(a) XYZ(G,C') returns a subgraph with d-cost greater than D, and
(b) XYZ(G,C' 4 1) returns a subgraph with d-cost at most 5D.

3. If the binary search in Step 2 fails to find a valid C’ then output "NO SOLU-
TION” else output XYZ(G,C' +1).

o Qutput: A subgraph from S such that its c-cost is at most a times that of the

minimum c-cost D-bounded subgraph and its d-cost is at most 3D.

Claim 12.3 IfG contains a D-bounded subgraph in S then ALGORITHM BICRITERIA-EQUIVALENCE
outputs a subgraph from S whose c-cost is at most a times that of the minimum c-cost D-bounded
subgraph and whose d-cost is at most BD.

Proof: Since A and B are hostile criteria it follows that the binary search in Step 2 is well
defined. Assume that S contains a D-bounded subgraph. Then, since XYZ(G,Cp;) returns a
subgraph with d-cost at most 8D, it is clear that ALGORITHM BICRITERIA-EQUIVALENCE outputs
a subgraph in this case. As a consequence of Step 2a and the performance guarantee of the
approximation algorithm XYZ, we get that C’ +1 < OPT,.. By Step 2b we have that Heuy < 8D
and Heu, < a(C’+1) < aOPT,.. Thus ALGORITHM BICRITERIA-EQUIVALENCE outputs a subgraph
from S whose c-cost is at most « times that of the minimum c-cost D-bounded subgraph and whose
d-cost is at most GD. I

Note however that in general the resulting (8, a)-approximation algorithm is, not strongly poly-
nomial since it depends on the range of the c-costs. But it is a polynomial-time algorithm since its
running time is linearly dependent on logCy; the largest c-cost. The above discussion leads to the
following theorem.

Theorem 12.4 Any (a, B)-approzimation algorithm for (A, B, S) can be transformed in polyno-
mial time into a (B, o)-approzimation algorithm for (B, A, S).
12.3.2 Comparing with other functional combinations: Generality

Our formulation is more general because it subsumes the case where one wishes to minimize some
functional combination of the two criteria. We briefly comment on this next. For the purposes of
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illustration let A and B be two objective functions and let us say that we wish to minimize the
sum of the two objectives A and B. Call this an (A 4+ B, S) problem. Let XYZ(G,C) be any
(o, B)-approximation algorithm for (A, B, S) on graph G with budget C under the c-cost. We show
that there is a polynomial time max{c, 8}-approximation algorithm for the (A + B, S) problem.
The transformation uses binary search on the range of values of the c-cost with an application of
the given approximation algorithm, XYZ, at each step of this search. Let the optimum value for
the (A + B, S) problem on a graph G be OPT, .4 = (V.+Vy), where V, and V; denote respectively
the contribution of the two costs ¢ and d for A and B. Let Heu.(C) (Heugy(C)) denote the c-cost
(d-cost) of the subgraph output by XYZ(G,C). Finally, let Heu.14(C) denote the value computed
by ALGORITHM CONVERT.

ALGORITHM CONVERT:
e Input: G - graph, XYZ - an (o, )-approximation algorithm for (A, B, S).

e 1. Let Cp; be an upper bound on the c-cost of any subgraph in S.
2. Employ binary search to find a C’ in [0, Cp;] such that
(a) XYZ(G,C') returns a subgraph with the minimum value of Heu.(C') +
Heug(C').

e Qutput: A subgraph from S such that the sum of its c-cost and its d-costs is at most

max{ca, BHOPT.14).

Theorem 12.5 Let XYZ(G,C) be any (a, B)-approzimation algorithm for (A, B, S) on graph
G with budget C under the c-cost. Then, there is a polynomial time max{a, 3}-approzimation
algorithm for the (A 4+ B, S) problem.

Proof Sketch: Consider the iteration of the binary search in which the bound on the c-cost is V..
Then as a consequence of the performance guarantee of the approximation algorithm XYZ, we get
that Heu.(V.) < aV.. By Step 2a and the performance guarantee of the algorithm XYZ, we have
that Heuyq(V,) < V4. Thus Heu.yq4(Ve) < aV. + V4 < max{e, B} (V. + V4). Since ALGORITHM
CONVERT outputs a subgraph from S the sum of whose ¢c-cost and d-cost is minimized, we have
that
min (Heu.(C') + Heug(C')) < max{e, BHOPT.14).
C’'e[0,Cnil
A similar argument shows that an (o, 8)-approximation algorithm XYZ(G,C), for a (A, B, S)
problem can be used to find devise a polynomial time o approximation algorithm for the (A X
B, S) problem. A similar argument can also be given for other basic functional combinations. We
make two additional remarks.

1. The use of approximation algorithms for (A, B, S)-bicriteria problems, to solve (f(A, B),
S) problems (f denotes a function combination of the objectives) does not always yield the
best possible solutions. For example problems such as (Total Cost + Total Cost , Spanning
Tree) and (Total Cost/Total Cost , Spanning Tree) [Ch77, Me83] can be solved exactly in
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polynomial time by direct methods but can only be solved approximately using any algorithm
for the (Total Cost, Total Cost , Spanning Tree)-bicriteria problem.?

2. Algorithms for solving (f(A, B), S) problems can not in general guarantee any bounded
performance ratios for solving the (A, B, S) problem. For example, a solution for the (Total
Cost + Total Cost , Spanning Tree) problem or the (Total Cost/Total Cost , Spanning Tree)
problem can not be directly used to find a good («, 8)-approximation algorithm for the (Total
Cost, Total Cost, Spanning Tree)-bicriteria problem.

The above discussion points out that while a good solution to the (A, B, S)-bicriteria problem
yields a “good” solution to any uni-criterion version, the converse is not true. It is in this sense
that we say our formulation of bicriteria network design problems is general and subsumes other
functional combinations.

12.4 Parametric Search

In this section, we present approximation algorithms for a broad class of bicriteria problems where
both the objectives in the problem are of the same type (e.g., both are total edge costs of some
network computed using two different costs on edges, or both are diameters of some network
calculated using two different costs etc.).

As before, let G be a graph with two (integral) cost functions, ¢ and d. Let C denote the budget
on criteria A. We assume that the ¢ and d cost functions are of the same kind, i.e. they are both
costs on edges or, costs on nodes. Let UVW(G, f) be any p-approximation algorithm that on
input G produces a solution subgraph in S minimizing criterion A, under the single cost function
f- In a mild abuse of notation, we also let UVW (G, f) denote the (f-)cost of the subgraph output
by UVW/(G, f) when running on input G under cost function f. We use the following additional
notation in the description of the algorithm and the proof of its performance guarantee. Given
constants a and b and two cost functions f and g, defined on edges (nodes) of a graph, af + bg
denotes the composite function that assigns a cost af(e) + bg(e) to each edge (node) in the graph.

Let h(D) denote the cost of the subgraph, returned by UVW(G, (2)c+ d) (under the ((£)c+ d)-
cost function). Let the minimum d-cost of a C-bounded subgraph in S be OPTy. Let Heu, (Heug)
denote the c-cost (d-cost) of the subgraph output by ALGORITEM PARAMETRIC-SEARCH given
below.

Let v > 0 be a fixed accuracy parameter. In what follows, we devise a ((1 + 7v),(1+ %))—

approximation algorithm for (A, A, S), under the two cost functions ¢ and d. The algorithm
consists of performing a binary search with an application of the given approximation algorithm,

UVW, at each step of this search.

®This is true since the (Total Cost, Total Cost, Spanning Tree)-bicriteria problem is NP-complete and therefore
unless P = NP can not be solved in polynomial time.



124. PARAMETRIC SEARCH 205

ALGORITHM PARAMETRIC-SEARCH:

e Input: G - graph, C - budget on criteria A under the c-cost, UVW - a p-
approximation algorithm that produces a solution subgraph in S minimizing criterion
A, under a single cost function, ¥ - an accuracy parameter.

e 1. Let Dp; be an upper bound on the d-cost of any C-bounded subgraph in S.
2. Do binary search and find a D’ in [0, DW’”'] such that

(a) UVW(G, (%)c—l— d) returns a subgraph such that h(DD,/) > (14 v)p, and

(b) UVW (G, (D/C"'l)c + d) returns a subgraph such that %DD//T—T)Z < (14 7)p.

3. If the binary search in Step 2 fails to find a valid C’ then output "NO SOLU-
TION” else output UVW(G, (%)c +d).

e Output: A subgraph from S such that its d-cost is at most (1 + %)p times that of
the minimum d-cost C-bounded subgraph and its c-cost is at most (1 + v)pC.

Claim 12.6 The binary search, in Step 2 of ALGORITHM PARAMETRIC-SEARCH is well-defined.

Proof: Since (5UVW(G, f)) is the same as UVW (G, %), we get that % = % UVW(G, (Z)e+

d) = UVW(G, (§)c+ %d), Hence % is a monotone non-increasing function of D. Thus the binary
search in Step 2 of ALGORITHM PARAMETRIC-SEARCH is well-defined.
|

Claim 12.7 If G contains a C-bounded subgraph in S then ALGORITHM PARAMETRIC-SEARCH
outputs a subgraph from S whose d-cost is at most (1 + %)p times that of the minimum d-cost
C-bounded subgraph and whose c-cost is at most (14 v)pC.

Proof: By claim 12.6 we have that the binary search in Step 2 of ALGORITHM PARAMETRIC-
SEARCH is well-defined.

Assume that S contains a C-bounded subgraph. Then, since UVW(G, (%)c + d) returns

a subgraph with cost at most (1 + v)pDpi, under the ((ggl)c + d)-cost function, it is clear that

ALGORITHM PARAMETRIC-SEARCH outputs a subgraph in this case.
As a consequence of Step 2a and the performance guarantee of the approximation algorithm
UVW, we get that

OPT,
D' 11< d
Y
By Step 2b we have that the subgraph output by ALGORITHM PARAMETRIC-SEARCH has the

following bounds on the c-costs and the d-costs.

1
Heug <h(D'+1)<p(l+7)(D'+1) < (1+ ;)pOPTd

Heu, < ( )A(D' +1) < (

C , B
D1 D,_I_l)(l‘l"Y)P(D +1) = (14 7)pC.
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Thus ALGORITHM PARAMETRIC-SEARCH outputs a subgraph from S whose d-cost is at most
(1+ %)p times that of the minimum d-cost C-bounded subgraph and whose c-cost is at most

(L+7)eC. :

Note however that the resulting ((147)p, (1 —I—%)p)—approximation algorithm for (A, A, S) may
not be strongly polynomial since it depends on the range of the d-costs. But it is a polynomial-time
algorithm since its running time is linearly dependent on log Dy;. Note that Dy, is at most some
polynomial in n times the maximum d-cost (of an edge or a node). Hence log(Dy;) is at most a
polynomial in terms of the input specification.

The above discussion leads to the following theorem.

Theorem 12.8 Any p-approzimation algorithm that produces a solution subgraph in S minimizing
criterion A can be transformed into a ((1 4 v)p, (1 + %) p)-approzimation algorithm for (A A,S).

12.5 Diameter-Constrained Trees

In this section, we describe ALGORITHM DCST, our (O(logn), O(logn))-approximation algorithm
for (Diameter, Total cost, Steiner tree) or the diameter-bounded minimum Steiner tree problem.
Note that (Diameter, Total cost, Steiner tree) includes (Diameter, Total cost, Spanning tree) as a
special case. We first state the problem formally: given an undirected graph G = (V, E), with two
cost functions ¢ and d defined on the set of edges, diameter bound D and terminal set K C V, the
(Diameter, Total cost, Steiner tree) problem is to find a tree of minimum c-cost connecting the set
of terminals in K with diameter at most D under the d-cost.

The technique underlying ALGORITHM DCST is very general and has wide applicability. Hence,
we first give a brief synopsis of it. The basic algorithm works in (log n) phases. Initially the solution
consists of the empty set. During each phase of the algorithm we execute a subroutine 2 to choose
a subgraph to add to the solution. The subgraph chosen in each iteration is required to possess
two desirable properties. First, it must not increase the budget value of the solution by more
than D; second, the solution cost with respect to B must be no more than OPT,, where OPT,
denotes the minimum c-cost of a D bounded subgraph in S. Since the number of iterations of
the algorithm is O(logn) we get a (logn,logn)-approximation algorithm. The basic technique is
fairly straightforward. The non-trivial part is to devise the right subroutine {2 to be executed in
each phase. 2 must be chosen so as to be able to prove the required performance guarantee of the
solution. We use the solution based decomposition technique [KR93, Ra94, RM+93] in the analysis
of our algorithm. The basic idea (behind the solution based decomposition technique) is to use the
existence of an optimal solution to prove that the subroutine 2 finds the desired subgraph in each
phase.

We now present the specifics of ALGORITHM DCST. The algorithm maintains a set of connected
subgraphs or clusters each with its own distinguished vertex or center. Initially each terminal is in a
cluster by itself. In each phase, clusters are merged in pairs by adding paths between their centers.
Since the number of clusters comes down by a factor of 2 each phase, the algorithm terminates in
[log, |K || phases with one cluster. It outputs a spanning tree of the final cluster as the solution.
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ALGORITHM DIAMETER-CONSTRAINED-STEINER-TREE (DCST):

e Input: G = (V, E) - graph with two edge cost functions, ¢ and d, D - a bound on
the diameter under the d-cost, K C V - set of terminals, ¢ - an accuracy parameter.

e 1. Initialize the set of clusters C; to contain | K| singleton sets, one for each terminal
in K. For each cluster in C, define the single node in the cluster to be the center
for the cluster. Initialize the phase count ¢ := 1.

2. Repeat until there remains a single cluster in C;

(a) Let the set of clusters C; = {C1...,Ck,} at the beginning of the i’th phase
(observe that ky = |K]).

(b) Construct a complete graph G; as follows: The node set V; of G; is {v :
v is the center of a cluster in C}. Let path P, be a (14 ¢)-approximation
to the minimum c-cost diameter D-bounded path between centers v, and
vy in G. Between every pair of nodes v, and v, in V;, include an edge
(ve, vy) in G; of weight equal to the c-cost of P,,,.

(¢) Find a minimum-weight matching of largest cardinality in G;.

(d) For each edge e = (v, v,) in the matching, merge clusters C, and C, for
which v, and v, were centers respectively, by adding path P, to form a
new cluster C,,. The node (edge) set of the cluster C,, is defined to be
the union of the node (edge) sets of C,C, and the nodes (edges) in P,,.
One of v, and v, is (arbitrarily) chosen to be the center v, of cluster Cy,,.
Cyy is added to the cluster set C;y; for the next phase.

(e) i:=441.
3. Let C’, with center v’ be the single cluster left after Step 2. Output a shortest
path tree of C’ rooted at v’ using the d-cost.

e Qutput: A Steiner tree connecting the set of terminals in K with diameter at most
2[log, n]D under the d-cost and of total c-cost at most (14 €)[log, n| times that of
the minimum c-cost diameter D-bounded Steiner tree.

We make a few points about ALcoriTaM DCST:
1. The clusters formed in Step 2d need not be disjoint.

2. All steps, except Step 2b, in algorithm DCST can be easily seen to have running times
independent of the weights. We employ Hassin’s strongly polynomial FPAS for Step 2b
[Ha92]. Hassin’s approximation algorithm for the D-bounded minimum c-cost path runs in
time O(|E|(”?2 log 2)). Thus ALgoriTHM DCST is a strongly polynomial time algorithm.

3. Instead of finding an exact minimum cost matching in Step 2c¢, we could find an approximate
minimum cost matching [GW92]. This would reduce the running time of the algorithm at the
cost of adding a factor of 2 to the performance guarantee.

We now state some observations that lead to a proof of the performance guarantee of ALgo-
RITHM DCST. Assume, in what follows, that G contains a diameter D-bounded Steiner tree.
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Claim 12.9 Algorithm DCST terminates in [log, |K|| phases.

Proof: Let k; denote the number of clusters in phase 7. Note that k;1;, = [%} since we pair up
the clusters (using a matching in Step 2d). Hence we are left with one cluster after phase [log, | K|]

and algorithm DCST terminates.
|

Claim 12.10 Let C € C; be any cluster in phase i of algorithm DCST. Let v be the center of C.
Then any node u in C is reachable from v by a diameter-iD path in C' under the d-cost.

Proof: Note that the existence of a diameter D-bounded Steiner tree implies that all paths added
in Step 2d have diameter at most D under d-cost. The proof now follows in straightforward fashion
by induction on z.

I

Lemma 12.11 Algorithm DCST outputs a Steiner tree with diameter at most 2[log, |K||-D under
the d-cost.

Proof: The proof follows from Claims 12.9 and 12.10.

This completes the proof of performance guarantee with respect to the d-cost. We now proceed
to prove the performance guarantee with respect to the c-costs. We first recall the following pairing
lemma.

Claim 12.12 [KR93, RM+93] Let T be an edge-weighted tree with an even number of marked
nodes. Then there is a pairing (vi,w1), ..., (Vk, wi) of the marked nodes such that the v; — w; paths
m T are edge-disjoint.

Proof: A pairing of the marked nodes that minimizes the sum of the lengths of the tree-paths
between the nodes paired up can be seen to obey the property in the claim above.
I

Claim 12.13 Let OPT be any minimum c-cost diameter-D bounded Steiner tree and let OPT,
denote its c-cost. The weight of the largest cardinality minimum-weight matching found in Step 2d
in each phase i of algorithm DCST is at most (1 + ¢€) - OPT..

Proof: Consider the phase ¢ of algorithm DCST. Note that since the centers at stage ¢ are a subset
of the nodes in the first iteration, the centers v; are terminal nodes. Thus they belong to O PT. Mark
those vertices in O PT that correspond to the matched vertices, vy, vs, . . SCAEAE of G; in Step 2c.
2
Then by Claim 12.12 there exists a pairing of the marked vertices, say (v1, v2),. . ., (vﬂﬂJ—l’ Uy ki) ),
2 2
and a set of edge-disjoint paths in OPT between these pairs. Since these paths are edge-disjoint
their total c-cost is at most O PT.. Further these paths have diameter at most D under the d-cost.

Hence the sum of the weights of the edges (v, vs), .. ., (vﬂﬂJ—l’ v2LﬂJ) in G; , which forms a perfect
2 2
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matching on the set of matched vertices, is at most (1 + €) - OPT,. But in Step 2c of ALGORITHM
DCST, a minimum weight perfect matching in the graph G; was found. Hence the weight of the
matching found in Step 2d in phase ¢ of ALGORITEM DCST is at most (1 +¢) - OPT..

|

Lemma 12.14 Let OPT be any minimum c-cost diameter-D bounded Steiner tree and let O PT, de-
note itsc-cost. ALGORITHM DCST outputs a Steiner tree with total c-cost at most (1+¢€)[log, | K|]-
OPT..

Proof: From Claim 12.13 we have that the c-cost of the set of paths added in Step 2d of any
phase is at most (1+¢€) - OPT,. By Claim 12.9 there are a total of [log, |K || phases and hence the
Steiner tree output by ALGORITHM DCST has total c-cost at most (1 + €)[log, |K|] - Cp.

From Lemmas 12.11 and 12.14 we have the following theorem.

Theorem 12.15 There is a strongly polynomial-time algorithm that, given an undirected graph
G = (V, E), with two cost functions ¢ and d defined on the set of edges, diameter bound D, terminal
set K CV and a fized € > 0, constructs a Steiner tree of G of diameter at most 2[log, | K||D under
the d-costs and of total c-cost at most (1 + €)[log, |K|| times that of the minimum-c-cost of any
Steiner tree with diameter at most D under d.

12.6 Exercises

1. Given an undirected graph with nonnegative costs on the edges, the routing cost of any of its
spanning trees is the sum over all pairs of nodes, of the cost of the path between the pair in
the tree. Give a 2-approximation algorithm for finding a spanning tree of minimum routing
cost. (Hint: Consider all the different shortest-path trees).

2. Consider the bicriteria problem (Total edge cost, Routing cost, spanning tree) on an undirected
graph where both the total cost and routing costs are computed using the same cost function
¢. on the edges. Give a (O(1),0(1)) approximation for the problem. (Hint: Reduce the
routing cost problem to a shortest path problem, and look in the literature for an appropriate
bicriteria result).

3. The buy-at-bulk network design problem [SC497] is one where the capacities on the edges
must be bought in pre-specified bundles for a fixed cost per unit length. In the single-sink
single-cable-type version of the problem, we are given an undirected complete graph with a
length metric on the nodes, and a specification of the (dollar) cost of buying one unit length of
cable with a bandwidth (capacity) of one unit. Moreover, we are given demand amounts at the
non-sink nodes that must be routed to the sink node. The problem is to lay down appropriate
number of copies of the cable on the edges that supports a routing of all the demands to the
sink at minimum total cable cost.

Two natural lower bounds for the problem arise from connectivity, i.e., having to connect all
the positive demand nodes to the sink in a Steiner tree with at least one copy of the cable on
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each edge, and from routing, i.e., having to route the demands, each at least along a shortest
path to the sink fractionally. Identify the appropriate bicriteria problem that is relevant to the
design of an approximation algorithm for the above buy-at-bulk problem; Search the literature
for a method that results in an O(1)-approximate solution. (Hint: The result of the literature
search in the previous problem may be useful for this one as well.)

Consider the general strategy for obtaining (O(logn), O(logn)) approximation algorithms for
bicriteria spanning trees on an n-node graph. Suppose the two objectives are (weighted degree,
total cost), and these are computed under two distinct cost function (The weighted degree
of a node in an edge-weighted spanning tree is the sum of the weights of the edges incident
on the node in the tree). What is the subroutine that you need at each stage to get the
(O(logn),O(logn)) result? Do a literature survey to find such a result. What if the objectives
are (unweighted degree, total cost), i.e., the case when all edges in the graph have unit weight?
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