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Abstract

We present several approximation algorithms for the
problem of embedding metric spaces into a line, and into
the two-dimensional plane. Among other results, we
give an O(

√
n)-approximation algorithm for the prob-

lem of finding a line embedding of a metric induced by a
given unweighted graph, that minimizes the (standard)
multiplicative distortion. We give an improved Õ(n1/3)
approximation for the case of metrics generated by un-
weighted trees. This is the first result of this type.

1 Introduction

Embedding distance matrices into geometric spaces
(most notably, into low-dimensional spaces) is a funda-
mental problem occurring in many applications. In the
context of data visualization, this approach allows the
user to observe the structure of the data set and discover
its interesting properties. In computational chemistry,
this approach is used to recreate the geometric structure
of the data from the distance information. The prob-
lem is of interest in many other areas, see [Wor] for a
discussion.

The methods for computing such embeddings have
their roots in work going back to the first half of the
20th century, and in the more recent work of Shepard
[She62a, She62b], Kruskal [Kru64a, Kru64b], and oth-
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ers. The area is usually called Multi-dimensional Scal-
ing (MDS) and is a subject of extensive research [Wor].
However, despite significant practical interest, few the-
oretical results exist in this area (see Related Work).
The most commonly used algorithms are heuristic (e.g.,
gradient-based method, simulated annealing, etc) and
are often not satisfactory in terms of the running time
and/or quality of the embeddings.

In this paper we present algorithms for the following
fundamental embedding problem: given a graph G =
(V,E) inducing a shortest path metric M = M(G) =
(V,D), find a mapping f of V into a line that is
non-contracting (i.e., |f(u) − f(v)| ≥ D(u, v) for all
u, v ∈ V ) which minimizes the distortion cline(M,f) =
maxu,v∈V

|f(u)−f(v)|
D(u,v) . That is, our goal is to find

cline(M) = minf cline(M,f). For the case when G is
an unweighted graph, we show the following algorithms
for this problem (denote n = |V |):

• A polynomial (in fact, O(n3c)-time) c-
approximation algorithm for metrics M for
which cline(M) ≤ c. This also implies an O(

√
n)-

approximation algorithm for any M (Section 2).

• A polynomial-time Õ(
√

c) approximation algo-
rithm for metrics generated by unweighted trees.
This also implies an Õ(n1/3)-approximation algo-
rithm for these metrics (Section 3).

• An exact algorithm, with running time nO(cline(M))

(Section 4).

For the case when G is a weighted graph, we obtain
the following result. For induced metrics M such that
cline(M) = 1 + ε < 1.5, we give an algorithm that finds
a line embedding f such that cline(M,f) = 1+O(ε). In
other words, the algorithm constructs a good embedding
for metrics that are very well embeddable into a line.
The algorithm proceeds by computing an MST T of
M , and then ordering the nodes according to T . Thus,
its running time is O(n2) in the worst case, and is



even more efficient for metric spaces that support faster
MST computation. We also note that ordering the
metric nodes using MST is a popular heuristic (e.g.,
see [BJDG+03]). To our knowledge, our result provide
the first known provable guarantee for this heuristic.
The details have been omitted from this extended
abstract.

We complement our algorithmic results by showing
that a-approximating the value of cline(M) is NP-hard
for certain a > 1 in Section 5. In particular, this justifies
the exponential dependence on cline(M) in the running
time bound for the exact algorithm.

We also study the problem of embedding metrics
into the plane in 6. In particular, we focus on embedding
metrics M = (X, D) which are induced by a set of
points in a unit sphere S2. Embedding such metrics
is important, e.g., for the purpose of visualizing point-
sets representing places on Earth or other planets, on
a (planar) computer screen.1 In general, we show
that an n-point spherical metric can be embedded with
distortion O(

√
n), and this bound is optimal in the

worst case. (The lower bound is shown by resorting
to the Borsuk-Ulam theorem [Bor33], which roughly
states that any continuous mapping from S2 into the
plane maps two antipodes of S2 into the same point.)
For the algorithmic problem of embedding M into the
plane, we give a 3.512-approximation algorithm, when
D is the Euclidean distance in R3. For the case where
D corresponds to the geodesic distance in S2, our
algorithm can be re-analyzed to give a an approximation
guarantee of 3.

To our knowledge, our results provide the first
non-trivial approximation guarantees for the standard
(multiplicative) notion of distortion for embeddings into
low-dimensional spaces.

1.1 Related work
Combinatorial vs Algorithmic Problem. The

problem of finding low-distortion embeddings of metrics
into geometric spaces has been long a subject of exten-
sive mathematical studies. During the last few years,
such embeddings found multiple and diverse uses in
computer science as well; many such applications have
been surveyed in [Ind01]. However, the problems ad-
dressed in this paper are fundamentally different from
those investigated in the aforementioned literature. In
a nutshell, our problems are algorithmic, as opposed to
combinatorial. More specifically, we are interested in
finding the best distortion embedding of a given met-
ric (which is an algorithmic problem) as opposed to the

1Indeed, the whole field of cartography is devoted to low-
distortion representations of spherical maps in the plane.

best distortion embedding for a class of metrics (which
is a combinatorial problem). Thus, we define the quality
of an embedding algorithm as the worst-case ratio of the
distortion obtained by the algorithm to the best achiev-
able distortion. In contrast, the combinatorial approach
focuses on providing the worst-case upper bounds for
the distortion itself. Thus, the problems are fundamen-
tally different, which raises new interesting issues.

Despite the differences, we mention two combina-
torial results that are relevant in our context. The
first one is the [LLR94] adaptation of Bourgain’s con-
struction [Bou85] that enables embedding of an ar-
bitrary metric into l

O(log2 n)
2 with maximum multi-

plicative distortion O(log n). It should be noted,
however, that for the applications mentioned ear-
lier, the most interesting spaces happen to be low-
dimensional. Similarly, any metric can be embedded
into d-dimensional Euclidean space with multiplicative
distortion O(min[n

2
d log3/2 n, n]) and no better than

Ω(n1/b(d+1)/2c) [Mat96]. However, the worst-case guar-
antees are rather large for small d, especially for the case
d = 1 that we consider here.

Previous Work on the Algorithmic Problem.
To our knowledge there have been few algorithmic em-
bedding results. Hastad et al. gave a 2-approximation
algorithm for embedding an arbitrary metric into a line
<, when the maximum additive two-sided error was con-
sidered; that is, the goal was to optimize the quan-
tity maxu,v ||f(u)− f(v)| −D(u, v)|. They also showed
that the same problem cannot be approximated within
4/3 unless P = NP [HIL98, Iva00]. Bădoiu extended
the algorithm to the 2-dimensional plane with maxi-
mum two-sided additive error when the distances in
the target plane are computed using the l1 norm [B0̆3].
Bădoiu, Indyk and Rabinovich [BIR03] gave a weakly-
quasi-polynomial time algorithm for the same problem
in the l2 norm.

Very recently, Kenyon, Rabani and Sinclair [KRS04]
gave exact algorithms for minimum (multiplicative)
distortion embeddings of metrics onto simpler metrics
(e.g., line metrics). Their algorithms work as long as
the minimum distortion is small, e.g., constant. We
note that constraining the embeddings to be onto (not
into, as in our case) is crucial for the correctness of their
algorithms.

In general, one can choose non-geometric metric
spaces to serve as the host space. For example, in
computational biology, approximating a matrix of dis-
tances between different genetic sequences by an ultra-
metric or a tree metric allows one to retrace the evo-
lution path that led to formation of the genetic se-
quences. Motivated by these applications M. Farach-
Colton and S. Kannan show how to find an ultramet-



ric T with minimum possible maximum additive dis-
tortion [FCKW93]. There is also a 3-approximation
algorithm for the case of embedding arbitrary metrics
into weighted tree metrics to minimize the maximum
additive two-sided error [ABFC+96]. [?] recently gave
an O(log1/p n)-approximation for embedding arbitrary
n-point metrics into the line to minimize the `p norm of
the two-sided error vector | |f(u)− f(v)| − D(u, v)|.

Distortion vs Bandwidth. In the context of
unweighted graphs, the notion of minimum distortion of
an embedding into a line is closely related to the notion
of a graph bandwidth. Specifically, if the non-contraction
constraint |f(u) − f(v)| ≥ D(u, v) is replaced by a
constraint |f(u) − f(v)| ≥ 1 for u 6= v, then c1(M(G))
becomes precisely the same as the bandwidth of the
graph G.

There are several algorithms that approximate the
bandwidth of a graph [?, ?]. Unfortunately, they do
not seem applicable in our setting, since they do not
enforce the non-contraction constraint for all node pairs.
However, in the case of exact algorithms the situation
is quite different. In particular, our exact algorithm
for computing the distortion is based on the analogous
algorithm for the bandwidth problem by Saxe [Sax80].

2 A c-approximation algorithm

We start by stating an algorithmic version of a fact
proved in [Mat90].

Lemma 2.1. Any shortest path metric over an un-
weighted graph G = (V,E) can be embedded into a line
with distortion at most 2n− 1 in time O(|V |+ |E|).

Proof. Let T be a spanning tree of the graph. We
replace every (undirected) edge of T with a pair of
opposite directed edges. Since the resulting graph is
Eulerian, we can consider an Euler tour C in T . Starting
from an arbitrary node, we embed the nodes in T
according to the order that they appear in C, ignoring
multiple appearances of a node, and preserving the
distances in C. Clearly, the resulting embedding is non-
contracting, and since C has length 2n, the distortion
is at most 2n− 1. �

Note that the O(n) bound is tight, e.g. when G is
a star.

Let G = (V,E) be a graph, such that there exists
an embedding of G of distortion c. The algorithm for
computing an embedding of distortion at most O(c2) is
the following:

1. Let fOPT be an optimal embedding of G (note
that we just assume the existence of such an
embedding, without computing it). Guess nodes

t1, t2 ∈ V , such that fOPT (t1) = minv∈V fOPT (v),
and fOPT (t2) = maxv∈V fOPT (v).

2. Compute the shortest path p = v1, v2, . . . , vL from
t1 to t2.

3. Partition V into disjoint sets V1, V2, . . . VL, such
that for each u ∈ Vi, D(u, vi) = min1≤j≤L D(u, vj).
Break ties so that each Vi is connected.

4. For i = 1 . . . L, compute a spanning tree Ti of the
subgraph induced by Vi, rooted at vi. Embed the
nodes of Vi as in the proof of Lemma 2.1, leaving
a space of length |Vi| between the nodes of Vi and
Vi+1.

Lemma 2.2. For every i, 1 ≤ i ≤ L, and for every
x ∈ Vi, we have D(vi, x) ≤ c/2.

Proof. Assume that the assertion is not true. That is,
there exists vi, and x ∈ Vi, such that D(x, vi) > c/2.
Consider the optimal embedding fOPT . By the fact
that v1 and vL are the left-most and right-most em-
bedded nodes in the embedding fOPT , it follows that
there exists j, 1 ≤ j < L, such that fOPT (x) lies be-
tween fOPT (vj), and fOPT (vj+1). W.l.o.g., assume that
fOPT (vj) < fOPT (x) < fOPT (vj+1). Since x ∈ Vi,
we have |fOPT (vj+1) − fOPT (vj)| = fOPT (vj+1) −
fOPT (x) + fOPT (x) − fOPT (vj) ≥ D(vj+1, x) +
D(x, vj) ≥ 2D(x, vi) > c. This is a contradiction, since
the expansion of fOPT is at most c. �

Lemma 2.3. For every i, 1 ≤ i ≤ L − c + 1, we have∑i+c−1
j=i |Vj | ≤ 2c2.

Proof. Assume that there exists i such that∑i+c−1
j=i |Vj | > 2c2. Note that

max
i≤j1<j2≤i+c−1

|fOPT (vj1)− fOPT (vj2)| ≤ c(c− 1).

Moreover, since
∑i+c−1

j=i |Vj | > 2c2, we have
maxu,w∈

Si+c−1
j=i Vj

|fOPT (u)−fOPT (w)| ≥ 2c2. It follows
that there exists u ∈ Vl, for some l, with i ≤ l ≤ i+c−1,
such that |fOPT (vl) − fOPT (u)| ≥ 2c2−c(c−1)

2 > c2/2.
Since the expansion is at most c, we have D(vl, u) > c/2,
contradicting Lemma 2.2. �

Lemma 2.4. The embedding computed by the algorithm
is non-contracting.

Proof. Let x, y ∈ V . If x and y are in the same set Vi,
for some i, then clearly |f(x) − f(y)| ≥ D(x, y), since
the distance between x and y produced by an traversal
of the spanning tree of the graph induced by Vi is at



least the distance of x and y on Ti, which is at least
D(x, y).

Assume now that x ∈ Vi and y ∈ Vj , for some i < j.
We have |f(y)−f(x)| ≥ |Vi|+2

∑j−1
l=i+1 |Vl|+|Vj | ≥ |Vi|+

|Vj |+ j − i > D(x, vi) + D(y, vj) + D(vi, vj) ≥ D(x, y).
�

Lemma 2.5. The distortion of the embedding computed
by the algorithm is at most 4c2.

Proof. It suffices to show that for each {x, y} ∈ E,
|f(x) − f(y)| ≤ 4c2. Let x ∈ Vi, and y ∈ Vj .
If |i − j| ≤ 2c, then by Lemma 2.3 we obtain that
|f(x)− f(y)| ≤ 4c2.

Assume now that there exist nodes x ∈ Vi and
y ∈ Vj , with {x, y} ∈ E, and |i − j| > 2c. By Lemma
2.2, we obtain that D(vi, x) ≤ c/2, and D(y, vj) ≤ c/2,
and thus |i− j| = D(vi, vj) ≤ c + 1, a contradiction. �

Theorem 2.1. The described algorithm computes a
non-contracting embedding of maximum distortion
O(c2), in time O(n3c).

Proof. By Lemmata 2.4 and 2.5, it follows that the com-
puted embedding is non-contracting and has distortion
at most O(c2). In the beginning of the algorithm, we
compute all-pairs shortest paths for the graph. Next,
for each possible pair of nodes t1 and t2, the described
embedding can be computed in linear time. Thus, the
total running time is O(n2|E|) = O(n3c). �

Theorem 2.2. There exists a O(
√

n)-approximation
algorithm for the minimum distortion embedding prob-
lem.

Proof. If the optimal distortion c is at most
√

n, then
the described algorithm computes an embedding of
distortion at most O(c

√
n). Otherwise, the algorithm

described in Lemma 2.1, computes an embedding of
distortion O(n). Thus, by taking the best of the above
two embeddings, we obtain an O(

√
n)-approximation.

�

3 Better embeddings for unweighted trees

For the case of trees, we use a similar framework as for
general graphs: we divide the tree along the path from t1
to t2 and obtain connected components V1, . . . , VL each
with diam(Vi) ≤ c and

∑i+c−1
j=i |Vj | ≤ 2c2. Instead of a

spanning tree on each Vi, we give a more sophisticated
embedding. We consider all the vertices in Xi = ∪i+c

j=iVj

together. Lemma 2.2 gives the following bound on the
diameter of the set Xi.

Lemma 3.1. The diameter of the set Xj (for j =
1, 2, . . .) is at most 2c.

We use the following straightforward lower bound
on the distortion for embedding Xj .

The local density ∆ of G is defined as

∆ = max
v∈V,r∈R>0

{
|B(v, r)| − 1

2r

}
,

where |B(v, r)| = {u ∈ V | d(u, v) ≤ r} denotes the
ball of nodes within distance r from v. Intuitively, a
high local density tells us that there are dense clusters
in the graph, which will cause a large distortion. The
following lemma formalizes this intuition.

Lemma 3.2. [Local Density] Let G denote a graph
with local density ∆. Then any map of G into the line
has distortion at least ∆.

3.1 Prefix Embeddings. We first prove that it suf-
fices to consider embeddings where each prefix of the as-
sociated tour forms a connected component of the tree;
this will allow us to considerably simplify all our later
arguments.

Lemma 3.3. [Prefix Embeddings] Given any graph
G, there exists an embedding of G into the real line with
the following two properties:

1. Walk from left to right on the line, the set of points
encountered up to a certain point forms a connected
component of G.

2. The distortion of this map is at most twice the
optimal distortion.

Proof. Consider the optimal embedding f∗, and let
v1, v2, . . . , vn be the order of the points in this embed-
ding. (We will blur the distinction between a vertex v
and its image f∗(v) on the line.) Without loss of gener-
ality, we can assume that the distance between any two
adjacent points vi and vi+1 in this embedding is their
shortest path distance D(vi, vi+1).

Let i be the smallest index such that {v1, v2, . . . , vi}
does not form a connected subgraph; hence there exists
some vertex on every vi−1-vi path that has not yet been
laid out. We pick a shortest path P , take the vertex
w in P \ {v1, v2, . . . , vi−1} closest to vi−1, and place
it at distance D(vi−1, w) to the right of vi−1 in the
embedding. We repeat this process until Property 1
is satisfied; it remains to bound the distortion we have
introduced.

Note that the above process moves each vertex at
most once, and only moves vertices to the left. We claim
that each vertex is moved by at most distance c, where
c is the optimal distortion. Indeed, consider a vertex w
that is moved when addressing the vi−1-vi path, and let



vk be a neighbor of w among v1, . . . , vi−1. Note that the
distance |f∗(vk)− f∗(w)| between these two vertices is
at most c in the optimal embedding. Since w stays to
the right of vk, the distance by which w is moved is at
most c.

In short, though the above alterations move vertices
to the left, whilst keeping others at their original
locations in f∗, the distance between the endpoints of
an edge increases by at most c. Since the distance
|f∗(v) − f∗(u)| was at most c to begin with, we end
up with an embedding with (multiplicative) distortion
at most 2c, proving the lemma. �

Henceforth, we will only consider embeddings that
satisfy the properties stated in Lemma 3.3. The bound
on the increase in distortion is asymptotically best
possible: for the case of the n-vertex star K1,n−1, the
optimal distortion is ≈ n/2, but any prefix embedding
has distortion at least n− 2.

3.2 The Embedding Algorithm. In this section,
we give an algorithm which embeds trees with distortion
g(c) = 2∆

√
c log c + c, where ∆ is the local density and

c the optimal distortion. The algorithm proceeds in
rounds: in round i, we lay down a set Zi with about
g(c) vertices. To ensure that the neighbors of vertices
are not placed too far away from them, we enforce
the condition that the vertices in Zi include all the
neighbors of vertices in ∪j<iZj that have not already
been laid out.

It is this very tension between needing to lay out
a lot of vertices and needing to ensure their neighbors
can be laid out later on, that leads to the following
algorithm. In fact, we will mentally separate the action
of laying out the neighbors of previously embedded
vertices (which we call the BFS part of the round) from
that of laying out new vertices (which we call the DFS
part).

We assume that we know the left-most vertex r
in the prefix embedding; we can just run over all the
possible values of r to handle this assumption. Let
N(X) denote the set of neighbors of vertices in a set
X ⊆ V .

We define a light path ordering on the vertices of the
tree T . The light path ordering is a DFS ordering which
starts at root r and at each point enters the subtree with
smallest number of vertices in it.

Algorithm Tree-Embed:

1. let C ← {r} denote the set of vertices
already visited. Set i← 1.

2. while C 6= V (T ) do
(Round i BFS)

3. Visit all vertices in N(C) \ C;

let C ← C ∪N(C)
(Round i DFS)

5. set B to be a set of g(c) vertices
of V (T ) \ C in the light path ordering.
Visit all vertices in B; let C ← C ∪B.

6. endwhile

Lemma 3.4. [Number of rounds] The algorithm
Tree-Embed requires at most

√
c log−1 c iterations.

Proof. By the very definition of the algorithm, the set
C grows by at least g(c) in every iteration. Note that
the diameter of the tree is bounded by 2c and its local
density is ∆. Therefore, the number of nodes in the tree
is at most 2∆c. Hence, within (2∆c)/g(c) ≤

√
c log−1 c

iterations, all the vertices of the tree will be visited. �

The heart of the proof is to show that visiting
the vertices in Steps 3 and 5 does not incur too much
distortion; it may be the case that the size of N(C) \C
may be too large, or even that these vertices may be
separated very far from each other.

Lemma 3.5. [Span of boundary] The size of the
induced spanning tree on the boundary N(C) \ C is
bounded by g(c).

Proof. Consider the set Ci of vertices that have been
visited by round i. Consider a vertex x visited in round
j of the DFS for some j ≤ i. Note that the children of
the vertex x will be visited after x. We say that x is a
branching point if not all the children of x were visited
in the same round as x. The branching point x is active
after round i if at least one of the vertices below it has
not been visited by round i; otherwise it is inactive. We
claim that all the active branching points in Ci lie on
some root-leaf path. This follows because the light path
ordering is a DFS ordering. Therefore, if some vertices
below a branching point x have not been visited, then
the DFS part of the algorithm will not visit a different
subtree.

Note that each active branching point (except pos-
sibly the lowest one) has at least two children and the
algorithm visits the child which has a smaller number of
vertices in its subtree. Recall that the size of the tree is
bounded by 2c2 by Lemma 2.3. Therefore, the number
of active branching points on a root to leaf path is at
most 2 log c + 1.

We claim that every node in N(Ci) \ Ci is within
a distance of i + 1 of some active branching point. We
prove this by induction on i. Before the first round,
this property is true, since C0 = {r}. Now assume the
property for i− 1 and consider a vertex v ∈ N(Ci) \Ci.
Let u be the neighbor of v such that u ∈ Ci. If u was



visited in the round i of the DFS, then u is an active
branching point, since its child v has not been visited in
the same round. Otherwise, if u was visited in round i of
the BFS, then u is within distance i of some branching
point x. Since v is below x and has not been visited
after round i, the branching point x must be active.
Therefore, v is within distance i + 1 from some active
branching point.

Consider an active branching point x and let Nx

contain the points from N(Ci) \ Ci that are within
distance i + 1 from x. Then, we can bound the span of
the induced tree on Nx using the local density bound.
The number of vertices in the induced tree on Nx is
bounded by (i + 1)∆. Thus, for each active branching
point, the number of vertices in the induced tree is
bounded by ∆

√
c log−1 c. Since there are 2 log c + 1

branching points overall, the sum of spans over all the
active branching points is at most 2∆

√
c log c. Note

that, all the active branching points are on a single
root-leaf path. Therefore, connecting all the branching
points in N(Ci) \ Ci requires only a path of length c.
Hence, the total span of vertices in N(Ci)\Ci is bounded
by g(c). �

Lemma 3.6. The span of the tree induced on the ver-
tices visited in any iteration is bounded by 2g(c).

Proof. From Lemma 3.5, the span of the vertices visited
in Step 3 of the algorithm is bounded by g(c). The num-
ber of new vertices visited in Step 5 of the algorithm is
bounded by g(c). Since, we visit a set of connected com-
ponents, their span is bounded by g(c)+span(N(C)\C).
Therefore, the span of the vertices visited in each itera-
tion is bounded by 2g(c). �

Lemma 3.7. The distortion of the embedding produced
by Algorithm Tree-Embed is 4g(c).

Proof. For a pair of vertices that are visited during
the same iteration, the distance in the embedding is
bounded by 2g(c) (from Lemma 3.6). Therefore, the
distortion of such a pair is bounded by 4g(c). So,
consider an edge (x, y) such that x and y were visited in
different iterations. Note that, Step 1 of the algorithm
ensures that if x is visited in iteration i, then y is visited
in iteration i+1. Therefore, the distance between x and
y in the embedding is bounded by 4g(c). Hence, the
distortion is bounded by 4g(c). �

Concatenating the embeddings. In order to
concatenate the embeddings of X1, X2, . . ., it is enough
to observe that since the input graph is a tree, there
is only one edge connecting components Xi and Xi+1

for all i. Consider the last vertex in Xi, viz. vic.

To produce an embedding of the component Xi using
Algorithm Tree-Embed, we use a light path ordering
of Xi assuming that the subtree containing vic is the
heaviest subtree. Hence vic is last in the light path
ordering of Xi and is visited in the last iteration of
the Algorithm Tree-Embed. This makes sure that the
distortion of the edge (vic, vic+1) is smaller than 2g(c).
Changing the light path ordering in this way does not
affect the bound on the distortion proved in Lemma 3.7.
Thus we get the following result.

Theorem 3.1. There is a polynomial time algorithm
that finds an embedding of an unweighted tree with
distortion 8∆

√
c log c + 4c.

Corollary 3.1. There is a polynomial time algorithm
that finds an embedding of an unweighted tree with
distortion within a factor O((n log n)1/3) of the optimal
distortion.

4 A dynamic programming algorithm for
graphs of small distortion

Given a connected simple graph G = (V,E) and an
integer c, we consider the problem of deciding whether
there exists a non-contracting embedding of G into the
integer line with maximum distortion at most c.

Note that the maximum distance between any two
points in an optimal embedding can be at most c(n −
1), and there always exists an optimal embedding
with all the nodes embedded into integer coordinates.
W.l.o.g., in the rest of this section, we will only consider
embeddings of the form f : V → {0, 1, . . . , c(n − 1)}.
Furthermore, if G admits an embedding of distortion c,
then the maximum degree of G is at most 2c. Thus, we
may also assume that G has maximum degree 2c.

Definition 1. (Partial Embedding) Let V ′ ⊆ V .
A partial embedding on V ′ is a function g : V ′ →
{0, 1, . . . , c(n− 1)}.

Definition 2. (Feasible Partial Embedding) Let
f be a partial embedding on V ′. f is called feasible
if there exists an embedding g of distortion at most c,
such that for each v ∈ V ′, we have g(v) = f(v), and for
each u /∈ V ′, it is g(u) > maxw∈V ′ f(w).

Definition 3. (Plausible Partial Embedding)
Let f be a partial embedding on V ′. f is called plausible
if

• For each u, v ∈ V ′, we have |f(u)−f(v)| ≥ D(u, v).

• For each u, v ∈ V ′, if {u, v} ∈ E, then |f(u) −
f(v)| ≤ c.



• Let L = maxv∈V ′ f(v). For each u ∈ V ′, if
f(u) ≤ L − c, then for each w ∈ V such that
{u, w} ∈ E, we have w ∈ V ′.

Lemma 4.1. If a partial embedding is feasible, then it
is also plausible.

Proof. Let f be a partial embedding over V ′, such
that f is feasible, but not plausible, and let L =
maxv∈V ′ f(v). It follows that there exists {u, w} ∈ E,
with u ∈ V ′, such that f(u) ≤ L− c, and w /∈ V ′. Since
f is feasible, there exists an embedding g of distortion
at most c, satisfying g(u) = f(u) ≤ L−c, and g(w) > L.
Thus, |g(u)− g(w)| > c, a contradiction. �

Definition 4. (Active Region) Let f be a partial
embedding over V ′. The active region of f is a couple
(X, Y ), where X = {(u1, f(u1)), . . . , (u|X|, f(u|X|))}
is a set of min{2c + 1, |V ′|} couples, where
{u1, . . . , u|X|} is a subset of V ′, such that
f(ui) = maxu∈V ′\{ui+1,...,u|X|} f(u), and Y is the
set of all edges in E having exactly one endpoint in V ′.

Lemma 4.2. Let f1 be a plausible partial embedding
over V1, and f2 be a plausible partial embedding over
V2. If f1 and f2 have the same active region, then

• V1 = V2.

• f1 is feasible if and only if f2 is feasible.

Proof. Let L = maxv∈V ′ f(v). To prove that V1 ⊆ V2,
assume that there exists v ∈ V1 \ V2. Let p be a path
starting at v, and terminating at some node in V1 ∩ V2,
and let v′′ be the first node in V1 ∩ V2 visited by p,
and v′ be the node visited exactly before v′′. Clearly,
v′ ∈ V1 \ V2, and v′ is not in the active region, thus
f1(v′) < L − 2c. Furthermore, by the definition of a
plausible partial embedding, since the edge {v′′, v′} has
exactly one endpoint in V2, it follows that f2(v′′) >
L − c. Thus, |f1(v′) − f1(v′′)| = |f1(v′) − f2(v′′)| > c,
contradicting the fact that f1 is plausible. Similarly we
can show that V2 ⊆ V1, and thus V1 = V2.

Assume now that f1 is feasible, thus there exists an
embedding g1 of distortion at most s, such that for each
v ∈ V1, we have f1(v) = g1(v), and for each v /∈ V1,
we have g1(v) > L. Consider the embedding g2, where
g2(u) = f2(u), if u ∈ V2, and g2(u) = g1(u) otherwise.
It suffices to show that g2 is non-contracting and has
distortion at most c.

If g2 has distortion more than c, then since f2 is
a plausible partial embedding, and g1 has distortion at
most c, it follows that there exists an edge {u, w}, with
u ∈ V2 and w /∈ V2, such that |g2(u) − g2(w)| > c.
Since the edge {u, w} has exactly one endpoint in V2,

it follows that f2(u) > L − c, and thus u is in the
active region, and f2(u) = f1(u). Thus, we obtain that
|g1(u) − g1(w)| = |g2(u) − g2(w)| > c, a contradiction.
Thus, g2 has distortion at most c.

If g2 is a contraction, then there exist nodes u and
w such that |g2(u) − g2(w)| < D(u, w). Since f2 is
plausible, and g2 is non-contracting, we obtain that
exactly one of the nodes u and w is in V2. W.l.o.g.,
assume that u ∈ V2 and w /∈ V2, and thus f2(u) >
L − c. Thus, u must be in the active region, and we
obtain that f2(u) = f1(u), and thus |g1(u) − g1(w)| =
|g2(u) − g2(w)| < D(u, w), a contradiction. We have
shown that g2 is non-contracting and has distortion at
most c, thus f2 is feasible. �

Lemma 4.3. For fixed values of c, the number of all
possible active regions for all the plausible partial em-
beddings is at most O(n4c+2).

Proof. Let f be a plausible partial embedding, with
active region (X, Y ), such that |X| = i. It is easy to
see that every edge in Y has exactly one endpoint in X.
Since the degree of every node is at most 2c, after fixing
X, the number of possible values for Y is at most 22ic.
Also, the number of possible different values for X is
at most

(
n
i

)
(nc)i. Thus, the number of possible active

regions for all plausible partial embeddings is at most∑2c+1
i=1

(
n
i

)
(nc)i22ic = O(n4c+2). �

Definition 5. (Successor of a Partial Embedding)
Let f1 and f2 be plausible partial embeddings on V1 and
V2 respectively. f2 is a successor of f1 if and only if

• V2 = V1 ∪ {u}, for some u /∈ V1.

• For each u ∈ V1 ∩ V2, we have f1(u) = f2(u).

• If u ∈ V2 and u /∈ V1, then f2(u) = maxv∈V2 f2(v).

Let P be the set of all plausible partial embeddings,
and let P̂ be the set of all active regions of the
embeddings in P . Consider a directed graph H with
V (H) = P̂ . For each x̂, ŷ ∈ V (H), (x̂, ŷ) ∈ E(H) if and
only if there exist plausible embeddings x, y, such that
x̂ and ŷ are the active regions of x and y respectively,
and y is a successor of x.

Lemma 4.4. Let x0 be the active region of the empty
partial embedding. G admits a non-contracting embed-
ding of distortion at most c, if and only if there exists
a directed path from x0 to some node x in H, such that
x = (X, Y ), with X 6= ∅ and Y = ∅.

Proof. If there exists a path from x0 to some node
x = (X, Y ), with X 6= ∅ and Y = ∅, then since X 6= ∅,
it follows that x is not the active region of the empty



partial embedding. Furthermore, since G is connected
and Y = ∅, it follows that x is the active region of a
plausible embedding f of all the nodes of G. By the
definition of a plausible embedding, it follows that f
is a non-contracting embedding of G with distortion at
most c.

If there exists a non-contracting embedding f of G,
with distortion at most c, then we can construct a path
in H, visiting nodes y0, y1, . . . , y|V |, as follows: For each
i let fi be the partial embedding obtained from f by
considering only the i leftmost embedded nodes, and
let yi be the active region of fi. Clearly, each fi is a
feasible embedding, and thus by Lemma 4.1, it is also
plausible. Moreover, y0 = x0, and for each 0 < i ≤ |V |,
it is easy to see that fi is a successor of fi−1, and thus
(yi−1, yi) ∈ E(H). Since, f|V | is an embedding of all the
nodes of G, the active region y|V | = (X|V |, Y|V |) satisfies
X|V | 6= ∅, and Y|V | = ∅. �

Using Lemma 4.4, we can decide whether there
exists an embedding of G as follows: We begin at node
x0, and we repeatedly traverse edges of H, without
repeating nodes. Note that we do not compute the
whole H from the beginning, but we instead compute
only the neighbors of the current node. This is done
as follows: At each step i, we maintain a plausible
partial embedding gi, such that each partial embedding
induced by the j leftmost embedded nodes in gi, has
active region equal to the jth node in the path from
x0 to the current node. We consider all the plausible
embeddings obtained by adding a rightmost node in
gi. The key property is that by Lemma 4.2, the active
regions of these embeddings are exactly the neighbors
of the current node. This is because an active region
completely determines the subset of embedded nodes,
as well as the feasibility of such a plausible embedding.
By Lemma 4.3, the above procedure runs in polynomial
time when s is fixed.

Theorem 4.1. For any fixed integer c, we can compute
in polynomial time a non-contracting embedding of G,
with distortion at most c, if one exists.

5 Hardness of approximation

In this section we show that the problem of computing
minimum distortion embedding of unweighted graphs is
NP-hard to a-approximate for certain a > 1. This is
done by a reduction from TSP over (1, 2)-metrics. Re-
call that the latter problem is NP-hard to approximate
up to some constant a > 1.

Recall that a metric M = (V,D) is a (1, 2)-metric,
if for all u, v ∈ V , u 6= v, we have D(u, v) ∈ {1, 2}.
Let G(M) be a graph (V,E) where E contains all edges
{u, v} such that D(u, v) = 1.

The reduction F from the instances of TSP to the
instances of the embedding problem is as follows. For a
(1, 2)-metric M , we first compute G = (V,E) = G(M).
Then we construct a copy G′ = (V ′, E′) of G, where V ′

is disjoint from V . Finally, we add a vertex o with an
edge to all vertices in V ∪V ′. In this way we obtain the
graph F (M).

The properties of the reduction are as follows.

Lemma 5.1. If there is a tour in M of length t, then
F (M) can be embedded into a line with distortion at
most t.

Proof. The embedding f : F (M) → < is constructed
as follows. Let v1, . . . , vn, v1 be the sequence of vertices
visited by a tour T of length t. The embedding f is
obtained by placing the vertices V in the order induced
by T , followed by the vertex o and then the vertices V ′.
Formally:

• f(v1) = 0, f(vi) = f(vi−1) + D(vi−1, vi) for i > 1

• f(o) = f(vn) + 1

• f(v′1) = f(o) + 1, f(v′i) = f(v′i−1) + D(v′i−1, v
′
i) for

i > 1

It is immediate that f is non-contracting. In
addition, the maximum distortion (of at most t) is
achieved by the edges {o, v1} and {o, v′n}. �

Lemma 5.2. If there is an embedding f of F (M) into
a line that has distortion s, then there is a tour in M
of length at most s + 1.

Proof. Let H = F (M). Let U = u1 . . . u2n be the
sequence of the vertices of V ∪ V ′ in the order induced
by f . Partition the range {1 . . . 2n} into maximal
intervals {i0 . . . i1−1}, {i1 . . . i2−1}, . . . , {ik−1 . . . ik−1},
such that for each interval I, the set {ui : i ∈ I} is
either entirely contained in V , or entirely contained
in V ′. Recall that H has diameter 2. Since f has
distortion s, it follows that |f(u1) − f(u2n)| ≤ 2s.
Moreover, from non-contraction of f it follows that
|f(uij−1) − f(uij )| = 2 for all j. It follows that if
we swap any two subsequences of U corresponding to
different intervals I and I ′, then the resulting mapping
of V ∪ V ′ into < is still non-contracting (with respect
to the metric induced by H). Therefore, there exists a
mapping f ′ of V ∪ V ′ into < which is non-contracting,
in which all vertices of V precede all vertices of V ′, and
such that the diameter of the set f ′(V ∪ V ′) is at most
2s. Without loss of generality, assume that the diameter
∆ of f ′(v) is not greater than the diameter of f ′(V ′).
This implies that ∆ ≤ (2s−2)/2 = s−1. Therefore, the
ordering of the vertices in V induced by f ′ corresponds
to a tour in M of length at most ∆ + 2 ≤ s + 1. �



Corollary 5.1. There exists a constant a > 1 such
that a-approximating the minimum distortion embed-
ding of an unweighted graph is NP-hard.

6 Embedding spheres into the plane

Let M = (X, D) be a metric induced by a set X of n
points on a unit sphere S2, under the Euclidean distance
in R3. Let cd

p(M) denote the minimum distortion of any
embedding of M into ldp.

Theorem 6.1. If M = (X, D) is the metric induced
by a set X of n points on a unit sphere S2, under the
Euclidean distance in R3, then c2

2(M) = O(
√

n).

Proof. Since the size of the surface of S2 is constant, it
follows that there exists a cap K in S2, of size Ω(1/n),
such that X ∩K = ∅. Let p0 be the center of K on S2,
and p′0 be its antipode. By rotating S2, we may assume
that p0 = (0, 0, 1), and thus p′0 = (0, 0,−1).

For points p, p′ ∈ S2, let ρS(p, p′) be the geodesic
distance between p and p′ in S2. Consider the
mapping f : X → R2, such that for every point
p ∈ X, with p = (x, y, z), we have f(p) =(

ρS(p, p′0)
x√

x2+y2
, ρS(p, p′0)

y√
x2+y2

)
, if p 6= p′, and

f(p) = (0, 0), if p = p′. It is straightforward to ver-
ify that f is non-contracting.

Claim 1. The expansion of f is maximized for points
p, q, on the perimeter of K, which are antipodals with
respect to K.

Proof. Let p, q ∈ S2. W.l.o.g., we as-
sume that p = (0, sinφp, 1 + cos φp), and
q = (sinφq sin θq, sinφq cos θq, 1 + cos φq), for some
0 ≤ φp, φq ≤ φ, and 0 ≤ θq ≤ π. The images of p and
q are f(p) = (0, φp), and f(q) = (φq sin θq, φq cos θq),
respectively. Let h = ‖f(p)−f(q)‖

‖p−q‖ , be the expansion of f

in the pair p, q. We obtain:

h2 =
φ2

q + φ2
p − 2φqφp cos θq

2− 2 cos φp cos φq − 2 sinφp sinφq cos θq

Observe that since sinφp ≤ φp, and sinφq ≤ φq, it
follows that h2 is maximized when cos θq is minimized.
That is, the expansion is maximized for θq = π.

Thus, we can assume that the expansion of f is
maximized for points p, q ∈ S2, with p = (0, sinφp, 1 +
cos φp), and q = (0,− sinφq, 1 + cos φq). For such
points, the expansion is φp+φq

2 sin
φp+φq

2

. It follows that the

expansion is maximized when φp + φq is maximized,
which happens when p and q are on the perimeter of K.

�

We pick p and q on the perimeter of K, such that p
is the antipode of q w.r.to K. Let φK be the angle of
K, and set rK = φK/2. We have rK = Ω(1/

√
n), and

‖f(p)−f(q)‖ = 2π−2rK , while ‖p−q‖ = 2 sin rK . Thus,
the expansion is at most π−rK

sin rK
. W.l.o.g., we can assume

that rK ≤ π/2, since otherwise we can simply consider
a smaller cap K. Thus, π−rK

sin rK
≤ 2π−rK

πrK
< 2

rK
= O(

√
n).

Since the embedding is non-contracting, it follows that
the expansion is O(

√
n). �

Theorem 6.2. There exists a metric M = (X, D),
induced by a set X of n points on a unit sphere S2,
under the Euclidean distance in R3, such that any
mapping f : X → R2 has distortion Ω(

√
n).

Proof. Let X ⊂ S2 be a set of n points, such that X
is a O(1/

√
n)-net of S2, and let f : X → R2 be a non-

expanding embedding. Since S2 ⊂ R3, by Kirszbraun’s
Theorem ([Kir34], see also [LN]), we obtain that f
can be extended to a non-expanding mapping f ′ :
S2 → R2. Also, by the Borsuk-Ulam Theorem, it
follows that there exist antipodals p, q ∈ S2, such that
f ′(p) = f ′(q). Since X is an O(1/

√
n)-net, there exist

points p′, q′ ∈ X, such that ‖p − p′‖ = O(1/
√

n), and
‖q−q′‖ = O(1/

√
n). Since f is non-expanding, it follows

that ‖f(p′) − f(q′)‖ = O(1/
√

n). On the other hand,
we have ‖p− q‖ = 2, and thus ‖p′ − q′‖ = Ω(1). Thus,
f has distortion Ω(

√
n). �

Theorem 6.3. There exists a polynomial-time, 3.512-
approximation algorithm, for the problem of embedding
a finite sub-metric of S2 into R2.

Proof. [Proof sketch] We apply the embedding of The-
orem 6.1, by choosing K to be the largest empty cap
in S2. Let rK be the radius of K. By using an
analysis similar to the one of Theorem 6.1, we ob-
tain that the distortion of the embedding is at most
π−rK

sinrK
. Moreover, by using the analysis of Theorem 6.2,

we can show that the distortion of an optimal embed-
ding is at least max{1, cos rK

2 sin
rK
2
}. By simple calcula-

tions, we obtain that the distortion is maximized for
rK = 2 tan−1 (

√
3−1)33/4√2

6 ≈ 0.749, for which we obtain
that the approximation ratio is less than 3.512. �

For the case where the metric M = (X, D) cor-
responds to the geodesic distances between the points
of the sphere, we can show using the same techniques
that the algorithm of Theorem 6.3, is in fact a 3-
approximation.
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