
Approximating Maximum Leaf Spanning Trees in Almost LinearTimeHsueh-I Luhil@cs.ccu.edu.twDepartment. of CSIENational Chung-Cheng UniversityTaiwan R. Ravi�ravi@cmu.eduGraduate School of Industrial AdministrationCarnegie Mellon UniversityUSAMarch 4, 1998AbstractGiven an undirected graph, �nding a spanning tree of the graph with maximum number ofleaves is MAX SNP-complete. In this paper we give a new greedy 3-approximation algorithm formaximum-leaf spanning trees. The running time O((m+n)�(m;n)) required by our algorithm,where m is the number of edges and n is the number of nodes, is almost linear in the size ofthe graph. We also demonstrate that our analysis of the performance of the greedy algorithmis tight via an example.

�Research supported in part by an NSF CAREER grant CCR-9625297.1



1 IntroductionGiven a connected undirected graph G = (V;E), the maximum leaf spanning tree problem is to�nd a spanning tree of G with the maximum number of leaves. This problem �nds applications incommunication networks and circuit layouts [4, 14]. The maximum leaf spanning tree problem isNP-complete [7] and MAX SNP-complete [6].Previous WorkThe maximum leaf spanning tree problem has been extensively studied [3, 5, 8, 9, 10, 11, 12].Most of the previous work has focused on �nding spanning trees with many leaves in graphs withminimum degree at least d for some d � 3. For such graphs, good lower bounds on the numberof leaves achievable in a spanning tree are derived in [8, 9, 11, 12]. There has also been work onpolynomial-time solutions to the problem of determining if a given graph has a spanning tree withat least k leaves for �xed k. The �rst such algorithm was due to Fellows and Langston [5]. Therunning time of their algorithm was improved by Bodlaender [3].In [10], we presented a series of approximation algorithms for the problem based on the techniqueof local optimization - the algorithm based on k-changes swaps k tree edges for k non-tree edges ifthis resulted in a spanning tree with a higher number of leaves. The approximation ratios of the�rst two algorithms in the series based on 1- and 2-changes were shown to be 5 and 3 respectively.Let m be the number of edges and n be the number of nodes. The kth algorithm in the series usesk-changes to achieve local optimality. The time complexity, O(mknk+2), is intolerably high even ifk is small.ResultsIn this paper we give a new greedy approximation algorithm for the maximum leaf spanning treeproblem with the best currently achievable approximation ratio, three. The running time requiredby our algorithm is almost linear in the size of the given graph. We also show via an example thatthe analysis of our greedy algorithm is tightLower boundIn our earlier work, motivated by the improving performance ratio of the series of algorithms wepresented [10], we raised the question: \Does the series of algorithms based on k-changes forma polynomial-time approximation scheme (PTAS)?" However, Galbiati, Ma�oli and Morzenti [6]showed that the maximum leaf spanning tree problem is MAX SNP-complete. Therefore thereexists some constant � > 0 such that there is no (1 + �)-approximation for maximum leaf spanningtree unless P=NP [1, 2].2 PreliminariesLet G be a connected undirected graph. We use V(G) to denote the set of nodes in G. We refer toan edge uw of G as the edge incident to u and w. For a subset of nodes S � V , let �(S) denote2



the set of edges with exactly one endpoint in S. We sometimes overload notation and use �(H) todenote �(V (H)) for a subgraph H of G. The degree of v in G is the number of edges of G incidentto v. Let Vi(G) denote the set of nodes that have degree i in G. Let �Vi(G) denote the set of nodesthat have degree at least i in G. Clearly �V0(G) = V(G). The leaves of G are the nodes in V1(G).A subtree of G is nonsingleton if it has more than one node. Let T be a subtree of G. One canverify that j �V3(T )j � jV1(T )j � 2: (1)Let pathT (u;w) be the path in T that connects u and w. The following lemma is also straightfor-ward.Lemma 1 Let T be a subtree of G.1. Let u, v, and w be three distinct nodes of G. If v is in pathT (u;w), then v is not a leaf of T .2. Let u, v1, v2, and w be four nodes of G. If u is not in pathT (v1; w) and u is not in pathT (v2; w),then u is not in pathT (v1; v2).3 Leafy Subtrees and Leafy ForestsLet T be a subtree of G.De�nition 1 We say T is leafy if �V3(T ) is not empty, and every node in V2(T ) is adjacent in Tto exactly two nodes in �V3(T ). A forest F of G is leafy if F is composed of disjoint leafy subtreesof G. We say F is maximally leafy if F is not a subgraph of any other leafy forest of G.Lower boundThe following lemma ensures that at least one-third of the nodes in a leafy subtree T are leaves ofT .Lemma 2 Let T be a leafy subtree of G. Then jV(T )j � 3jV1(T )j � 5.Proof Since T is leafy, each node in V2(T ) must be adjacent in T to exactly two nodes in �V3(T ).Consider the induced subtree on �V2(T ) where each node of degree two is replaced by an edge. Thenumber of edges in this subtree is one less than the number of nodes. Therefore jV2(T )j � j �V3(T )j�1.It follows from (1) that jV(T )j = jV1(T )j+ jV2(T )j+ j �V3(T )j� jV1(T )j+ 2j �V3(T )j � 1� 3jV1(T )j � 5:
3



x5 x6x3
x1 x4 x2
T1 T2 T3

Figure 1: An example of a maximally leafy forest represented by dark edges. Gray edges are theremaining edges in G.Properties of maximally leafy forestsLet F be a maximally leafy forest of G. Let T1; : : : ; Tk be the disjoint leafy subtrees of F . Onecan verify that F has the following properties. We use the example in Figure 1 to illustrate eachproperty. The dark lines in the �gure are the edges in the maximally leafy forest F , which iscomposed of three leafy subtrees T1, T2, and T3.1. Let w be a node in �V2(Ti). Then w cannot be adjacent in G to any node not in Ti. (Nodesx1 and x2 are two examples of w; e.g., suppose x1 were adjacent to a node such as x5, thenF would not be maximal since the edge (x1; x5) could be added to F .)2. Let w be a node in Ti. Let w1 and w2 be two distinct nodes adjacent to w in G. If w1 is notin F , then w2 must be in Ti. (Nodes x3 is an example of w; If x3 had two neighbors not inF , both these edges could be added to F contradicting its maximality.)3. Let w be a node not in F . If w is adjacent to two distinct nodes not in F , then the degree ofw in G is two. (Nodes x5 and x6 are two examples of w; Note that such nodes are not in F .If the degree of say x3 were greater than two, then x3 and its three neighbors not in F couldbe added as an additional star in F contradicting its maximality again.)Upper boundThe crux of the proof of the performance guarantee is an upper bound we derive on the maximumnumber of leaves in any tree relative the number of leaves in any maximally leafy forest of the4



graph.Theorem 1 Let F be a maximally leafy forest of G. Let T be a spanning tree of G such that F is asubgraph of T . Then jV1(T )j � jV1(T̂ )j=3for any spanning tree T̂ of G.The following two lemmas are essential to proving the theorem.Lemma 3 Let F be a maximally leafy forest of G that is composed of k disjoint leafy subtreesT1; : : : ; Tk of G. Then jV1(T̂ )j � jV(F )j � k + 1;for any spanning tree T̂ of G.Proof The outline of the proof is as follows. First, we identify a representative node of degreethree or higher in each of the trees in F , consider the paths in T̂ between them, and show thatroughly k distinct leaves in F occur as internal nodes in these paths. We do this by pickingone of these representatives, say vk in Tk as a \root" node and examining the paths from otherrepresentative nodes towards this root in T̂ . Next, we consider nodes that are leaves in T̂ but notleaves in F and show that the path from each such node to vk in T̂ contains a distinct leaf of F asan internal node. This relates the number of leaves of F and T̂ as desired.We now commence the formal proof. Let vi be a node in �V3(Ti) for every i = 1; : : : ; k. For everyi = 1; : : : ; k � 1, let ui be the node in Ti that is farthest from vi in pathT̂ (vi; vk). Let v̂1; : : : ; v̂` bethe distinct nodes in V1(T̂ ) n V(F ). Namely each v̂j is a leaf of T̂ not in F . For every j = 1; : : : ; `,let ûj be the node in F that is closest to v̂j in pathT̂ (v̂j ; vk). We show u1; : : : ; uk�1; û1; : : : ; û` are`+ k � 1 distinct nodes in V(F ) n V1(T̂ ), which implies the lemma.By de�nition of ui we know the �rst edge from ui in pathT̂ (ui; vk) is in �(Ti). (Recall that eachedge in �(Ti) is incident to a node in Ti and a node not in Ti.) By Property 1 we know ui 2 V1(Ti).Therefore ui 6= vi and ui 6= vk. It follows from Lemma 1 that ui 62 V1(T̂ ), since ui 2 pathT̂ (vi; vk).Hence ui 2 V(F ) n V1(T̂ ). Since T1; : : : ; Tk are disjoint and ui 2 Ti for every i = 1; : : : ; k � 1, weknow u1; : : : ; uk�1 are k � 1 distinct nodes in V(F ) n V1(T̂ ).Let j be one of 1; : : : ; `. By de�nition of v̂j we know that the �rst edge from ûj in pathT̂ (ûj ; v̂j)is in �(Tj�) for some Tj� that contains ûj. By Property 1 we know ûj 2 V1(Tj�). Thereforeûj 6= v̂j and ûj 6= vk. It follows from Lemma 1 that ûj 62 V1(T̂ ), since ûj 2 pathT̂ (ûj ; vk). Henceûj 2 V(F ) n V1(T̂ ). We show that û1; : : : ; û` are distinct, and ûj 62 fu1; : : : ; uk�1g.Assume for a contradiction that ûj = ûj0 for some j0 6= j. Let P = pathT̂ (ûj; v̂j) and P 0 =pathT̂ (ûj0 ; v̂j0). let w be the node in V(P ) \ V(P 0) that is closest to v̂j in P . Since v̂j 62 P 0, thereexists a node w1 in pathT̂ (w; v̂j) such that ww1 is an edge of P . Since v̂j0 62 P , there exists a nodew2 in pathT̂ (w; v̂j0) such that ww2 is an edge of P 0. Clearly w1 6= w2 and w1; w2 62 F . It followsfrom Property 2 that w 6= ûj, implying that w 62 F . Therefore there exists an edge ww3 in P wherew3 6= w1 and w3 6= w2. This contradicts the fact that F is maximally leafy by Property 3.Assume for a contradiction that ûj = ui for some i 2 f1; : : : ; k � 1g. Let P = pathT̂ (ûj ; v̂j) andP 0 = pathT̂ (ui; vk). Let w be the node in V(P ) \ V(P 0) that is closest to v̂j in P . Since v̂j 62 P 0,5



there exists a node w1 in pathT̂ (w; v̂j) such that ww1 is an edge of P . Since vk 62 P , there existsa node w2 in pathT̂ (w; vk) such that ww2 is an edge of P 0. Clearly w1 6= w2 and w1 62 F . Byde�nition of ui we know w2 62 Ti. It follows from Property 2 that w 62 Ti. Hence ui 62 pathT̂ (w; vk)by de�nition of ui; and ûj 62 pathT̂ (v̂j ; w) by de�nition of ûj. Since ûj = ui by assumption, itfollows from Lemma 1 that ûj 62 pathT̂ (v̂j ; vk). This contradicts the de�nition of ûj.Lemma 4 Let F be a forest of G that has k disjoint nonsingleton subtrees. Let T be a spanning treeof G such that F is a subgraph of T . Then jV1(T )j � jV1(F )j � 2(k � 1).Proof The intuition behind this proof is that the trees in F can be connected into a singlespanning tree by iteratively adding a single edge that merge two disconnected trees and in theprocess destroying (increasing the degree of) at most two leaves in these trees. More formally, letF 0 be the forest of G obtained from F by adding an edge e in T nF to F . Let k0 be the number ofdisjoint nonsingleton subtrees of F 0. We showjV1(F 0)j � 2(k0 � 1) � jV1(F )j � 2(k � 1): (2)The lemma thus follows inductively, since the number of disjoint nonsingleton subtrees in T is one.� If e is not incident to any nonsingleton subtree of F , then adding e forms a new subtree ontwo singletons. Hence k0 = k + 1 and jV1(F 0)j = jV1(F )j+ 2. Therefore (2) holds.� If e is incident to exactly one nonsingleton subtree of F , then k0 = k and jV1(F 0)j � jV1(F )j.Thus (2) holds.� If e is incident to two nonsingleton subtrees of F , then k0 = k � 1. Since we may haveconnected two leaves of F to form F 0, we know jV1(F 0)j � jV1(F )j � 2. Therefore (2) holds.We are now ready to prove the theorem as follows.Proof for Theorem 1 Suppose F has k disjoint leafy subtrees T1; : : : ; Tk. By Lemma 2 we knowjV(F )j = kXi=1 jV(Ti)j� 3jV1(F )j � 5k:It follows from Lemma 3, the above inequality, and Lemma 4 thatjV1(T̂ )j � jV(F )j � k + 1� 3jV1(F )j � 6k + 1� 3(jV1(T )j+ 2(k � 1))� 6k + 1� 3jV1(T )j:6



MaximallyLeafyForest(G)1 Let F be an empty set.2 For every node v in G do3 S(v) := fvg.4 d(v) := 0.5 For every node v in G do6 S0 := ;.7 d0 := 0.8 For every node u that is adjacent to v in G do9 If u 62 S(v) and S(u) 62 S0 then10 d0 := d0 + 1.11 Insert S(u) into S0.12 If d(v) + d0 � 3 then13 For every S(u) in S0 do14 Add edge uv to F .15 Union S(v) and S(u).16 Update d(u) := d(u) + 1 and d(v) := d(v) + 1.17 Output F as a maximally leafy forest of G.Figure 2: The procedure for �nding a maximally leafy forest F of G.4 The AlgorithmWe give an approximation algorithm for Maximum Leaf Spanning Tree in this section. Givena graph G, our algorithm computes a spanning tree T for G by the following two steps.1. Obtain a maximally leafy forest F for G.2. Add edges to F to make it a spanning tree T for G.It follows from Theorem 1 that the approximation ratio of the above algorithm is 3, which is thesame as that of the algorithm in [10]. We show that our algorithm can be implemented to run intime O((m+ n)�(m;n)).We implement the �rst step of our algorithm in Figure 2. We use S(w) to denote the subtree ofF that contains node w. The degree of node w in F is kept in d(w). The variable d0 is the maximalnumber of edges adjacent to v that could be added to F without creating cycles. If uv is one ofthose d0 edges, then S(u) is stored in the set S0. If d0 + d(v) is greater than or equal to three, thenwe add those d edges to F and union S(v) with those d subtrees S(u).Using the Union-Find data structure in [13] for set operations, the �rst step runs in timeO((m + n)�(m;n)). In particular, the �rst condition in Step 9 can be implemented using a Findoperation on the structure S(v). For the second condition, we �rst observe that for any set S(u),we may use the representative label in the set structure (root of the Union-Find structure) todenote this set. Also, we observe that for a given node v, if S0 contains three or more distinct sets,7



x
Figure 3: A maximally leafy spanning tree that has approximation ratio threewe proceed to merge these sets into one subsequently (since the condition in Step 12 is satis�ed).Hence, it su�ces to check in the loop in Step 8 that for a given node v, the set S0 contains at leastthree distinct sets S(u) and subsequently we can combine the check for such candidate edges (v; u)with merging the corresponding sets S(u) and S(v) if the edge passes the test (does not form acycle). Thus we can assume that the set S0 never has more than two elements when we wish totest S(u) 62 S0. Consequently, the number of set operations performed is of the order of the degreeof v when processing v, giving a total time bound of O(m�(m;n)) for this step.The second step of extending F to a spanning tree can be done by shrinking each leafy subtreein F into a single node, and then �nding a spanning tree for the corresponding shrunk graph.This can be done in time O(m + n). It follows that the time complexity of our algorithm isO((m+ n)�(m;n)), which is almost linear in the size of the graph.4.1 Tightness of the Performance RatioThe example in Figure 3 shows that the analysis for the performance ratio of our algorithmis tight. The spanning tree T in dark lines is leafy, since every node in V2(T ) is adjacent in T toexactly two nodes in �V3(T ). Let the gray lines be the edges of G that are not in T . The maximum-leaf spanning tree of G is composed of all the edges incident to x in G. The approximate ratio ofT for the example is 95 . Generalizing the example in a natural way yields examples in which theperformance ratio of the algorithm asymptotically tends to 3.5 RemarksAs suggested by the example shown in Figure 3, the approximation ratio of our algorithm mightbe improved by growing the maximally leafy forest by the descending order of the degree of nodesin G. To be more speci�c, we �rst sort the nodes by their degrees in G. This takes time O(m+n),since the degree of every node is no more than n. We then try the for-loop in Step 5 from high-degree nodes to low-degree nodes. It would be interesting to determine the performance ratio ofthis modi�ed approximation algorithm.AcknowledgementsWe thank an anonymous referee for careful comments that improved the presentation considerably.8



References[1] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy, \Proof veri�cation and the hard-ness of approximation problems," Proceedings of the Thirty-third Annual IEEE Symposium onFoundations of Computer Science, (1992), pp. 14{23.[2] S. Arora, and S. Safra, \Probabilistic checking of proofs: A new characterization of NP,"Proceedings of the Thirty-third Annual IEEE Symposium on Foundations of Computer Science,(1992), pp. 2{13.[3] H. L. Bodlaender, \On linear time minor tests and depth �rst search," Proceedings of Workshopon Algorithms and Data Structures, (1989), pp. 577{590.[4] E. W. Dijkstra, \Self-stabilizing systems in spite of distributed control," Communications ofACM 17, (Nov. 1974), pp. 643{644.[5] M. R. Fellows and M. A. Langston, \On well-partial-order theory and its applications tocombinatorial problems of VLSI design," Technical Report CS-88-188, Dept. of ComputerScience, Washington State University, 1988.[6] G. Galbiati, F. Ma�oli and A. Morzenti, \A short note on the approximability of the maximumleaves spanning tree problem," Information Processing Letters 52, (1994), pp. 45{49.[7] M. R. Garey and D. S. Johnson, Computers and Intractability: A guide to the theory of NP-completeness, W. H. Freeman, San Francisco (1979).[8] J. R. Griggs, D. J. Kleitman, and A. Shastri, \Spanning trees with many leaves in cubicgraphs," Journal of Graph Theory 13, (1989), pp. 669{695.[9] D. J. Kleitman and D. B. West, \Spanning trees with many leaves," SIAM Journal on DiscreteMathematics 4, (Feb. 1991), pp. 99{106.[10] H.-I. Lu and R. Ravi, \The power of local optimization: approximation algorithms formaximum-leaf spanning tree," Proceedings of the Thirtieth Annual Allerton Conference onCommunication, Control and Computing, (Oct. 1992), pp. 533{542.[11] C. Payan, M. Tchuente, and N. H. Xuong, \Arbres avec un nombres maximum de sommetspendants," Discrete Mathematics 49, (1984), pp. 267{273.[12] J. A. Storer, \Constructing full spanning trees for cubic graphs," Information Processing Let-ters 13, (1981), pp. 8{11.[13] R. E. Tarjan, Data Structures and Network Algorithms, SIAM, Philadelphia, Pennsylvania,(1983).[14] M. Tchuente, \Sur l'auto-stabilisation dans un r�eseau d'odinateurs," R. A. I. R. O. Informa-tique Th�eorique 15, (1981), pp. 47{66. 9


