Approximating Maximum Leaf Spanning Trees in Almost Linear

Time
Hsueh-I Lu R. Ravi*
hil@cs.ccu.edu.tw raviQcmu.edu
Department. of CSIE Graduate School of Industrial Administration
National Chung-Cheng University Carnegie Mellon University
Taiwan USA

March 4, 1998

Abstract

Given an undirected graph, finding a spanning tree of the graph with maximum number of
leaves is MAX SNP-complete. In this paper we give a new greedy 3-approximation algorithm for
maximum-leaf spanning trees. The running time O((m + n)a(m,n)) required by our algorithm,
where m is the number of edges and n is the number of nodes, is almost linear in the size of
the graph. We also demonstrate that our analysis of the performance of the greedy algorithm
is tight via an example.

*Research supported in part by an NSF CAREER, grant CCR-9625297.

1 Introduction

Given a connected undirected graph G = (V, E), the maximum leaf spanning tree problem is to
find a spanning tree of G with the maximum number of leaves. This problem finds applications in
communication networks and circuit layouts [4, 14]. The maximum leaf spanning tree problem is
NP-complete [7] and MAX SNP-complete [6].

Previous Work

The maximum leaf spanning tree problem has been extensively studied [3, 5, 8, 9, 10, 11, 12].
Most of the previous work has focused on finding spanning trees with many leaves in graphs with
minimum degree at least d for some d > 3. For such graphs, good lower bounds on the number
of leaves achievable in a spanning tree are derived in [8, 9, 11, 12]. There has also been work on
polynomial-time solutions to the problem of determining if a given graph has a spanning tree with
at least k leaves for fixed k. The first such algorithm was due to Fellows and Langston [5]. The
running time of their algorithm was improved by Bodlaender [3].

In [10], we presented a series of approximation algorithms for the problem based on the technique
of local optimization - the algorithm based on k-changes swaps k tree edges for k£ non-tree edges if
this resulted in a spanning tree with a higher number of leaves. The approximation ratios of the
first two algorithms in the series based on 1- and 2-changes were shown to be 5 and 3 respectively.
Let m be the number of edges and n be the number of nodes. The k* algorithm in the series uses
k-changes to achieve local optimality. The time complexity, O(mFn¥+2), is intolerably high even if
k is small.

Results

In this paper we give a new greedy approximation algorithm for the maximum leaf spanning tree
problem with the best currently achievable approximation ratio, three. The running time required
by our algorithm is almost linear in the size of the given graph. We also show via an example that
the analysis of our greedy algorithm is tight

Lower bound

In our earlier work, motivated by the improving performance ratio of the series of algorithms we
presented [10], we raised the question: “Does the series of algorithms based on k-changes form
a polynomial-time approzimation scheme (PTAS)?” However, Galbiati, Maffioli and Morzenti [6]
showed that the maximum leaf spanning tree problem is MAX SNP-complete. Therefore there
exists some constant € > 0 such that there is no (1 + €)-approximation for maximum leaf spanning
tree unless P=NP [1, 2].

2 Preliminaries

Let G be a connected undirected graph. We use V(G) to denote the set of nodes in G. We refer to
an edge uw of G as the edge incident to u and w. For a subset of nodes S C V, let I'(S) denote

the set of edges with exactly one endpoint in S. We sometimes overload notation and use I'(H) to
denote I'(V (H)) for a subgraph H of G. The degree of v in G is the number of edges of G incident
to v. Let V;(G) denote the set of nodes that have degree i in G. Let V;(G) denote the set of nodes
that have degree at least 7 in G. Clearly V4 (G) = V(G). The leaves of G are the nodes in V;(G).
A subtree of G is nonsingleton if it has more than one node. Let T" be a subtree of G. One can
verify that
V()| < VA(T)] — 2. 1)

Let pathp(u, w) be the path in 7" that connects u and w. The following lemma is also straightfor-
ward.

Lemma 1 Let T be a subtree of GG.
1. Let u, v, and w be three distinct nodes of G. If v is in pathy(u,w), then v is not a leaf of T'.

2. Let u, vy, vg, and w be four nodes of G. If w is not in path (v, w) and w is not in path(vy, w),
then w is not in pathp (v, v2).

3 Leafy Subtrees and Leafy Forests

Let T be a subtree of G.

Definition 1 We say T is leafy if V3(T) is not empty, and every node in Vo(T) is adjacent in T
to exactly two nodes in V3(T). A forest F of G is leafy if F' is composed of disjoint leafy subtrees
of G. We say F is maximally leafy if F' is not a subgraph of any other leafy forest of G.

Lower bound

The following lemma ensures that at least one-third of the nodes in a leafy subtree 1" are leaves of
T.

Lemma 2 Let 7" be a leafy subtree of G. Then |V(T')| < 3|Vi(T)| — 5.

Proof Since 7T is leafy, each node in V5(T') must be adjacent in 7" to exactly two nodes in V3(7T').
Consider the induced subtree on V,(T) where each node of degree two is replaced by an edge. The
number of edges in this subtree is one less than the number of nodes. Therefore |Vo(T')| < |V3(T)|—-1.
It follows from (1) that

V(D) = [Vi(D)] + [Va(T)| + |V3(T)]
< V(D) +2|V3(T)] - 1
< 3|Vi(T)] - 5.

Figure 1: An example of a maximally leafy forest represented by dark edges. Gray edges are the
remaining edges in G.

Properties of maximally leafy forests

Let F' be a maximally leafy forest of G. Let T1,...,T} be the disjoint leafy subtrees of F'. One
can verify that F' has the following properties. We use the example in Figure 1 to illustrate each
property. The dark lines in the figure are the edges in the maximally leafy forest F', which is
composed of three leafy subtrees 17, T5, and T3.

1. Let w be a node in V5(7;). Then w cannot be adjacent in G to any node not in 7}. (Nodes
z1 and z9 are two examples of w; e.g., suppose x; were adjacent to a node such as x5, then
F would not be maximal since the edge (x1,x5) could be added to F'.)

2. Let w be a node in T;. Let w; and w9 be two distinct nodes adjacent to w in G. If w; is not
in F, then wy must be in T;. (Nodes x3 is an example of w; If z3 had two neighbors not in
F, both these edges could be added to F' contradicting its maximality.)

3. Let w be a node not in F'. If w is adjacent to two distinct nodes not in £, then the degree of
w in G is two. (Nodes x5 and zg are two examples of w; Note that such nodes are not in F'.
If the degree of say z3 were greater than two, then x5 and its three neighbors not in F' could
be added as an additional star in F' contradicting its maximality again.)

Upper bound

The crux of the proof of the performance guarantee is an upper bound we derive on the maximum
number of leaves in any tree relative the number of leaves in any maximally leafy forest of the

graph.

Theorem 1 Let F' be a maximally leafy forest of G. Let T' be a spanning tree of G such that F'is a
subgraph of 7. Then
Vi(T)| = [Va(T)]/3

for any spanning tree 1" of G.

The following two lemmas are essential to proving the theorem.

Lemma 3 Let F' be a maximally leafy forest of G that is composed of k disjoint leafy subtrees
Tl,...,Tk of G. Then
Vi(T)| < V(F)| =k +1,

for any spanning tree T of G.

Proof The outline of the proof is as follows. First, we identify a representative node of degree
three or higher in each of the trees in F, consider the paths in T between them, and show that
roughly £ distinct leaves in F' occur as internal nodes in these paths. We do this by picking
one of these representatives, say v in T as a “root” node and examining the paths from other
representative nodes towards this root in T. Next, we consider nodes that are leaves in T but not
leaves in F' and show that the path from each such node to vy, in 7' contains a distinct leaf of F as
an internal node. This relates the number of leaves of F and T as desired.

We now commence the formal proof. Let v; be a node in V3(T}) for every i = 1,...,k. For every
i=1,...,k —1, let u; be the node in T; that is farthest from v; in path; (v, vg). Let 1,...,0p be
the dlstlnct nodes in V() \ V(F). Namely each ; is a leaf of T not in F. For every j = 1,...,,
let @; be the node in F' that is closest to ©; in path(9;,vx). We show uy, ..., ug_1,41,..., U are
¢+ k — 1 distinct nodes in V(F) \ V(T'), which implies the lemma.

By definition of u; we know the first edge from u; in path;.(u;,vy) is in T'(T;). (Recall that each
edge in I'(T;) is incident to a node in T; and a node not in 7;.) By Property 1 we know u; € Vi (Tj;).
Therefore u; # v; and u; # vg,. It follows from Lemma 1 that u; & Vi (T'), since u; € path..(vi, vg).
Hence u; € V(F)\ Vi(T). Since T1,...,T} are disjoint and u; € T; for every i = 1,...,k — 1, we
know w1, ...,up_1 are k — 1 distinct nodes in V(F) \ V(7).

Let j be one of 1,...,£. By definition of 9; we know that the first edge from 4; in path;(i;, ;)
is in I'(T}-) for some T* that contains @j. By Property 1 we know a; € Vi(Tj). Therefore
U # 0; and Uj # V. It follows from Lemma 1 that @; ¢ Vi(T), since @; € path (4, vg). Hence
u; € V(F)\ Vi(T). We show that @y, ..., are distinct, and G & {ui,...,up_1}

Assume for a contradiction that @; = 4 for some j' # j. Let P = path;(aj;,0;) and P’ =
pathyz(dj, ;). let w be the node in V(P) N V(P') that is closest to 9; in P. Since 0; ¢ P', there
exists a node wy in path.;(w, ;) such that ww; is an edge of P. Since 0 € P, there exists a node
wy in pathj(w, ;) such that ww; is an edge of P'. Clearly wy # wy and wy,wy ¢ F. It follows
from Property 2 that w # 4;, implying that w € F. Therefore there exists an edge wws in P where
ws # wy and ws 7 we. This contradicts the fact that F' is maximally leafy by Property 3.

Assume for a contradiction that 4; = u; for some i € {1,...,k — 1}. Let P = path;(i;,9;) and
P' = pathj(u;,vg). Let w be the node in V(P) N V(P') that is closest to ©; in P. Since 9; & P,

there exists a node w; in path;(w, ;) such that ww; is an edge of P. Since v, ¢ P, there exists
a node wy in paths(w,vy) such that ww, is an edge of P'. Clearly w; # wy and wy ¢ F. By
definition of u; we know wo & T;. It follows from Property 2 that w ¢ T;. Hence u; & path;(w,vy,)
by definition of u;; and 4; ¢ path; (0, w) by definition of 4;. Since 4; = u; by assumption, it
follows from Lemma 1 that 4; ¢ path;(?;,vy). This contradicts the definition of ;.

[l

Lemma 4 Let F' be a forest of G that has £ disjoint nonsingleton subtrees. Let 7' be a spanning tree
of G such that F'is a subgraph of 7. Then |V (T")| > |Vi(F)| — 2(k — 1).

Proof The intuition behind this proof is that the trees in F' can be connected into a single
spanning tree by iteratively adding a single edge that merge two disconnected trees and in the
process destroying (increasing the degree of) at most two leaves in these trees. More formally, let
F' be the forest of G obtained from F by adding an edge e in T'\ F' to F. Let k' be the number of
disjoint nonsingleton subtrees of F'. We show

Vi(F)| = 2(K' — 1) = [Vi(F)| — 2(k — 1). (2)
The lemma thus follows inductively, since the number of disjoint nonsingleton subtrees in 7" is one.

e [f e is not incident to any nonsingleton subtree of F', then adding e forms a new subtree on
two singletons. Hence k' = k + 1 and |V1(F")| = |[V1(F)| 4+ 2. Therefore (2) holds.

e If e is incident to exactly one nonsingleton subtree of F, then k' = k and |V4(F")| > |Vi(F)|.
Thus (2) holds.

e If ¢ is incident to two nonsingleton subtrees of F, then k' = k — 1. Since we may have
connected two leaves of F' to form F', we know |Vi(F")| > |V1(F)| — 2. Therefore (2) holds.

[

We are now ready to prove the theorem as follows.
Proof for Theorem 1 Suppose F has k disjoint leafy subtrees 11, ...,7T;. By Lemma 2 we know

k
V(F)| = > V(T
=1

3|V (F)| — 5k.

IN

It follows from Lemma 3, the above inequality, and Lemma 4 that

Vi(T)] V()| -k +1
3[Vi(F)| — 6k + 1
3(|Vi(T)| + 2(k — 1)) — 6k + 1

3IVi(D)]- [

IN N N TN

MAXIMALLYLEAFYFOREST(G)

1 Let F be an empty set.

2 For every node v in G do

3 S(v) :={v}.

4 d(v) := 0.

5 For every node v in G do

6 S = 10.

7 d :=0.

8 For every node w that is adjacent to v in G do
9 If u g S(v) and S(u) ¢ S’ then

10 d:=d+1.

11 Insert S(u) into S'.

12 If d(v) +d' > 3 then

13 For every S(u) in S’ do

14 Add edge uv to F.

15 Union S(v) and S(u).

16 Update d(u) := d(u) + 1 and d(v) := d(v) + 1.
17 Output F as a maximally leafy forest of G.

Figure 2: The procedure for finding a maximally leafy forest F' of G.

4 The Algorithm

We give an approximation algorithm for MAXIMUM LEAF SPANNING TREE in this section. Given
a graph G, our algorithm computes a spanning tree T' for G by the following two steps.

1. Obtain a maximally leafy forest F' for G.
2. Add edges to F' to make it a spanning tree T for G.

It follows from Theorem 1 that the approximation ratio of the above algorithm is 3, which is the
same as that of the algorithm in [10]. We show that our algorithm can be implemented to run in
time O((m + n)a(m,n)).

We implement the first step of our algorithm in Figure 2. We use S(w) to denote the subtree of
F that contains node w. The degree of node w in F' is kept in d(w). The variable d’ is the maximal
number of edges adjacent to v that could be added to F' without creating cycles. If uv is one of
those d' edges, then S(u) is stored in the set S’. If d’ + d(v) is greater than or equal to three, then
we add those d edges to F' and union S(v) with those d subtrees S(u).

Using the Union-Find data structure in [13] for set operations, the first step runs in time
O((m + n)a(m,n)). In particular, the first condition in Step 9 can be implemented using a Find
operation on the structure S(v). For the second condition, we first observe that for any set S(u),
we may use the representative label in the set structure (root of the Union-Find structure) to
denote this set. Also, we observe that for a given node v, if S’ contains three or more distinct sets,

Figure 3: A maximally leafy spanning tree that has approximation ratio three

we proceed to merge these sets into one subsequently (since the condition in Step 12 is satisfied).
Hence, it suffices to check in the loop in Step 8 that for a given node v, the set S’ contains at least
three distinct sets S(u) and subsequently we can combine the check for such candidate edges (v, u)
with merging the corresponding sets S(u) and S(v) if the edge passes the test (does not form a
cycle). Thus we can assume that the set S’ never has more than two elements when we wish to
test S(u) ¢ S'. Consequently, the number of set operations performed is of the order of the degree
of v when processing v, giving a total time bound of O(ma(m,n)) for this step.

The second step of extending F' to a spanning tree can be done by shrinking each leafy subtree
in F into a single node, and then finding a spanning tree for the corresponding shrunk graph.
This can be done in time O(m + n). It follows that the time complexity of our algorithm is
O((m 4+ n)a(m,n)), which is almost linear in the size of the graph.

4.1 Tightness of the Performance Ratio

The example in Figure 3 shows that the analysis for the performance ratio of our algorithm
is tight. The spanning tree 7" in dark lines is leafy, since every node in V5(T') is adjacent in T" to
exactly two nodes in V3(T). Let the gray lines be the edges of G that are not in 7. The maximum-
leaf spanning tree of G is composed of all the edges incident to x in G. The approximate ratio of
T for the example is g. Generalizing the example in a natural way yields examples in which the

performance ratio of the algorithm asymptotically tends to 3.

5 Remarks

As suggested by the example shown in Figure 3, the approximation ratio of our algorithm might
be improved by growing the maximally leafy forest by the descending order of the degree of nodes
in G. To be more specific, we first sort the nodes by their degrees in G. This takes time O(m +n),
since the degree of every node is no more than n. We then try the for-loop in Step 5 from high-
degree nodes to low-degree nodes. It would be interesting to determine the performance ratio of
this modified approximation algorithm.

Acknowledgements

We thank an anonymous referee for careful comments that improved the presentation considerably.

References

[1]

[9]

[10]

[11]

[12]

[13]

[14]

S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy, “Proof verification and the hard-
ness of approximation problems,” Proceedings of the Thirty-third Annual IEEE Symposium on
Foundations of Computer Science, (1992), pp. 14-23.

S. Arora, and S. Safra, “Probabilistic checking of proofs: A new characterization of NP,”
Proceedings of the Thirty-third Annual IEEE Symposium on Foundations of Computer Science,
(1992), pp. 2-13.

H. L. Bodlaender, “On linear time minor tests and depth first search,” Proceedings of Workshop
on Algorithms and Data Structures, (1989), pp. 577-590.

E. W. Dijkstra, “Self-stabilizing systems in spite of distributed control,” Communications of
ACM 17, (Nov. 1974), pp. 643-644.

M. R. Fellows and M. A. Langston, “On well-partial-order theory and its applications to
combinatorial problems of VLSI design,” Technical Report CS-88-188, Dept. of Computer
Science, Washington State University, 1988.

G. Galbiati, F. Maffioli and A. Morzenti, “A short note on the approximability of the maximum
leaves spanning tree problem,” Information Processing Letters 52, (1994), pp. 45-49.

M. R. Garey and D. S. Johnson, Computers and Intractability: A guide to the theory of NP-
completeness, W. H. Freeman, San Francisco (1979).

J. R. Griggs, D. J. Kleitman, and A. Shastri, “Spanning trees with many leaves in cubic
graphs,” Journal of Graph Theory 13, (1989), pp. 669-695.

D. J. Kleitman and D. B. West, “Spanning trees with many leaves,” SIAM Journal on Discrete
Mathematics 4, (Feb. 1991), pp. 99-106.

H.-I. Lu and R. Ravi, “The power of local optimization: approximation algorithms for
maximum-leaf spanning tree,” Proceedings of the Thirtieth Annual Allerton Conference on
Communication, Control and Computing, (Oct. 1992), pp. 533-542.

C. Payan, M. Tchuente, and N. H. Xuong, “Arbres avec un nombres maximum de sommets
pendants,” Discrete Mathematics 49, (1984), pp. 267-273.

J. A. Storer, “Constructing full spanning trees for cubic graphs,” Information Processing Let-
ters 13, (1981), pp. 8-11.

R. E. Tarjan, Data Structures and Network Algorithms, SIAM, Philadelphia, Pennsylvania,
(1983).

M. Tchuente, “Sur 'auto-stabilisation dans un réseau d’odinateurs,” R. A. I. R. O. Informa-
tique Théorique 15, (1981), pp. 47-66.

