
Min-Max Tree Covers of Graphs∗

G. Even† N. Garg‡ J. Könemann§ R. Ravi¶ A. Sinha‖

November 19, 2003

Abstract

We provide constant factor approximation algorithms for covering the nodes of a graph

using trees (rooted or unrooted), under the objective function of minimizing the weight of the

maximum weight tree, subject to an upper bound on the number of trees used. These problems

are related to location routing and traveling salesperson problems.

Keywords: Approximation Algorithms; Graphs; Location Routing; Clustering.

∗A preliminary version of this paper appears in the proceedings of the Seventh International Conference on Ap-
proximation Algorithms for Combinatorial Optimization (APPROX), 2003, with the title “Covering Graphs Using
Trees and Stars”. The authors would also like to thank Asaf Levin for sending us a copy of [1].

†Tel-Aviv University, Tel-Aviv, Israel. guy@eng.tau.ac.il
‡Indian Institute of Technology, Delhi, India. naveen@cse.iitd.ernet.in
§GSIA, Carnegie Mellon University, Pittsburgh, USA. jkonemann@acm.org Supported by the National Science

Foundation under grant No. 0105548 and the ALADDIN Center under NSF grant No. CCR-0122581.
¶GSIA, Carnegie Mellon University, Pittsburgh, USA. ravi@cmu.edu Supported by the National Science Foundation

under grant No. 0105548 and the ALADDIN Center under NSF grant No. CCR-0122581.
‖GSIA, Carnegie Mellon University, Pittsburgh, USA. asinha@andrew.cmu.edu Supported by the National Science

Foundation under grant No. 0105548, the ALADDIN Center under NSF grant No. CCR-0122581 and a Carnegie
Bosch Institute Fellowship. Corresponding author.

1

1 Introduction

This paper was motivated by the following “Nurse station location” problem. A hospital wanted to

locate k nurses in its coverage area. Each nurse would be assigned a certain set of patients, who she

would visit in her morning rounds. The objective is to figure out where to locate the nurse stations

and how to assign patients to nurses so that the latest completion time is minimized.

This problem is equivalent to covering a the nodes of a metric graph with no more than k tours,

so that the maximum length of a tour is minimized. Since minimum spanning trees are constant

factor approximations to traveling salesperson tours, we look at covering the nodes of a graph with k

trees, so that the maximum weight of a tree is minimized. If the hospital has already built its nursing

stations and only wants to assign patients to nurses, we get the rooted version of this problem. The

problems are defined formally in the next section.

Previous and related work. The problems studied in this paper are closely related to those

studied by Arkin, Hassin, and Levin [1]. The problems they deal with include covering the nodes of

a graph or a subset of the edges of a graph by paths, walks, or stars. Most of their approximation

algorithms deal with minimizing the number of covering objects (e.g. paths) subject to a constraint

on the cost of each covering object. They also consider unrooted versions of k-path covers and

k-walk covers. The algorithms in [1] do not seem to extend to rooted versions.

Guttmann-Beck and Hassin [6] considered the unrooted version with the additional constraint

that the trees have equal weights. They presented an approximation algorithm for this version with

an approximation ratio of 2k − 1.

These problems fall in the general class of “location routing” problems (see [8] for a recent

survey). In the k-traveling salesperson problem, a feasible solution consists of k tours that cover the

nodes, where the tours share the same depot (i.e. starting and ending point). The objective is to

minimize the total length of tours. The k-traveling salesperson problem was first approximated to a

constant by Frederickson, Hecht and Kim [4] (see also [7]). Recently, Fakcharoenphol, Harrelson and

Rao [3] provided a constant-factor approximation algorithm for the k-traveling repairman problem,

where the objective is to minimize the average waiting time of the customers.

Our results and techniques. For both the rooted and un-rooted versions of k-tree cover, we

get polynomial time approximation algorithms with performance ratio 4. Both algorithms can be

made strongly polynomial with a slight loss in the approximation guarantee, which becomes 4 + ε.

2

The algorithms are combinatorial, and rely on a matching construct to prove the approximation

guarantee. These approximation algorithms algorithm imply approximation algorithms for the nurse

location routing problem with an approximation ratio of 8 + ε.

Organization. We define the two versions of the problem in the next section. In Section 3, we

prove that both problems are NP-hard. We provide constant factor approximation algorithms for the

rooted and un-rooted versions of k-tree cover in Section 4. We conclude with some open questions

in Section 5.

2 Problem definition

k-tree cover. Let G = (V, E) denote an undirected graph with positive integral edge weights

w : E → IN+. A tree cover of a graph G = (V,E) is a set T of trees {Ti}i such that V =
⋃k

i=1 V (Ti).

The weight of a tree T is defined by w(T) =
∑

e∈T w(e). The cost of a tree cover T is maxTi∈T w(Ti).

Note that trees in a tree cover may share nodes and even edges. The goal in the min-max k-tree

cover problem is to find a minimum cost tree cover consisting of at most k trees.

R-Rooted tree cover. Let R ⊂ V denote a set of roots. An R-rooted tree cover of a graph

G = (V,E) is a tree cover T , where each tree Ti ∈ T has a distinct root in R.

As before, trees in an R-rooted tree cover may share nodes and edges. In particular, the root of

Ti may be in Tj , but the roots of Tj and Ti must be distinct. Given an edge weighted graph G and

a set R of roots, the min-max R-rooted tree cover problem is to find a minimum cost R-rooted tree

cover of G.

3 Hardness

In this section, we show that both problems are NP-complete. We begin by showing the NP-

completeness of R-rooted tree cover, by reducing BIN-PACK to it. An instance of BIN-PACK

consists of (i) a set U of elements, where the size of an element u ∈ U is su, (ii) k bins, and

(iii) a positive bin capacity B. The problem is to determine if there is a partition of U into k parts

U1, . . . , Uk such that for every i = 1, . . . , k, we have
∑

u∈Ui
su ≤ B. This was shown to be NP-hard

in [5].

Theorem 1 The min-max R-rooted tree cover problem is NP-complete.

3

Proof Given an instance Π = 〈U, {su}u, k, B〉 of BIN-PACK, we transform it to an instance of

R-rooted tree cover as follows. We create a complete bi-partite graph G(Π) with a vertex set R∪U ,

where R is a set of k new nodes R = {r1, . . . , rk}. For every ri and every u ∈ U , the weight of an

edge e = (ri, u) is set to w(e) = su. We complete G(Π) into a metric space (i.e. complete graph)

K(Π) by taking the metric completion of the edge weighted graph G(Π). We designate R to be the

set of roots, and ask if there is an R-rooted tree cover of K(Π) of cost no more than B.

It is immediate that every bin packing induces an R-rooted tree cover of the same cost. Con-

versely, every R-rooted tree cover can be transformed in polynomial time into a solution of the same

cost for BIN-PACK, as follows. For every tree Ti rooted at ri, replace all edges of the form (uj , rk)

(where rk 6= ri) by an edge (uj , ri). Each such exchange is between edges of equal cost, and therefore

the solution cost does not change. At the end of this procedure, each element in U is assigned to

a unique root in R, which specifies a BIN-PACK solution of the same cost. Since an R-rooted tree

cover of cost B gives a solution of cost B for BIN-PACK, the theorem follows. 2

Theorem 1 can be easily extended to deal with k-tree covers. One can simply replace a tree T

in K(π) with a star S rooted at any node r ∈ R that covers the same set of nodes in U . Moreover,

w(T) ≥ w(S). Hence the restriction that trees are rooted at nodes of R can be met without increasing

the cost of the tree cover. We therefore also have the following theorem.

Theorem 2 The min-max k-tree cover problem is NP-complete.

4 Clustering into trees

4.1 R-rooted tree cover

4.1.1 Algorithm.

In this section we present a 4-approximation algorithm for the min-max R-rooted tree cover problem.

A strongly polynomial version of this algorithm has an approximation ratio of (4 + ε).

The approximation algorithm is based on Algorithm Rooted-Tree-Cover, which is given (i) a

graph G = (V,E) with edge weights w(e), (ii) a set R = {r1, . . . , rk} of k roots, and (iii) a bound B

on the weight of each tree. Algorithm Rooted-Tree-Cover either returns a proof that B is too small

(i.e., B < B∗, the minimum cost of a tree cover) or finds an R-rooted tree cover of cost at most 4B.

By applying binary search, a 4-approximation algorithm is obtained. In Section 4.1.3 we discuss

how to derive a strongly polynomial algorithm.

4

Algorithm 1 Rooted-Tree-Cover(G,R, B) - Compute an R-rooted tree cover of G with cost at most
4B.
1: Remove all edges of weight greater than B.
2: M ← MST of graph obtained from G by contracting roots in R to a single node.
3: {Ti}i ← forest obtained from M by un-contracting roots in R.
4: Edge-decompose each tree Ti into trees {Si

j}j + Li such that w(Sj
i) ∈ [B, 2B), for every j, and

w(Li) < B.
5: Try to match the trees {Si

j}i,j to roots, subject to the constraint that a tree Sj
i may be matched

only to roots of distance at most B from it.
6: If not all trees are matched, then return fail: “B is too low”.
7: If every tree is matched, then return success: set of trees where each tree consists of Si

j , its
matched root r, and the leftover tree L (if any) that contains the root r.

A listing outlining Algorithm Rooted-Tree-Cover appears in Algorithm 1. We now explain each

step in detail (see Fig. 4.1.1 for an example).

Figure 1: Example of an execution of Algorithm 1 (read from left to right): (1) The input; roots
are denoted by filled nodes. (2) Contraction of the roots. (3) MST of the contracted graph. (4) Un-
contracting the graph. (5) Edge decomposition of each tree; leftover subtrees {Li}i are denoted by
dark thick edges. (6) The non-leftover subtrees {Si

j}i,j . (7) matching of the non-leftover subtrees to
roots. (8) The final trees consisting of a leftover tree, a matcher tree, and a matching edge.

The algorithm begins by removing all edges of weight greater than B, since they obviously cannot

be used. If as a result of deleting heavy edges (i.e., w(e) > B) there exists a node that is no longer

connected to R, then obviously B ≤ B∗. To keep the description simple, we assume that the graph

remains connected even after the heavy edges are deleted. In Line 2, the roots in R are contracted

to a single node. Namely, (i) a new node uR is introduced and the roots in R are removed, (ii) for

5

every root ri ∈ R, an edge (v, ri) induces an edge (v, uR), and (iii) w(v, uR) = mini w(v, ri). The

algorithm computes a minimum spanning tree (MST) in the contracted graph. In Line 3, the MST

is broken into a set {Ti}i of k disjoint trees by un-contracting the nodes in R. This un-contraction

means that an edge (v, uR) is mapped to an edge (v, ri), where w(v, UR) = w(v, ri). Note that, by

construction, every tree Ti is rooted at ri. In Line 4, the edge set of every tree Ti is decomposed

into subtrees {Si
j}j +Li. The subtrees may share nodes but not edges. The weight of every sub-tree

Si
j is in the range [B, 2B) and there is perhaps a leftover tree Li whose weight is less than B. We

elaborate below how this edge decomposition is performed. Note that if Li exists, then it contains

the root ri. However, the root may belong to other subtrees as well (since subtrees are edge disjoint

but not necessarily vertex disjoint). In Line 5, a bi-partite graph is constructed as follows. One

side of the vertex set is R and the other side consists of nodes representing the trees {Si
j}i,j . An

edge connects a root r and a tree Si
j if the distance between Si

j and r is at most B. A maximum

matching is then computed in this bi-partite graph. The algorithm considers now two cases: If

the maximum matching does not match all the sub-trees, then in Line 6, the algorithm reports a

failure by returning the statement that B is too small. If the maximum matching matches all the

sub-trees, then the algorithm returns the set of trees where each tree consists of a subtree Si
j , the

root r matched to the subtree Si
j , a shortest path from the root r to Si

j , and the leftover tree L (if

any) that contains the root r.

We now elaborate on how the edge set of every tree is decomposed in Line 4. Consider a tree Ti

rooted at r. For a node v ∈ V (Ti) let Tv denote the rooted subtree hanging from v. Consider an

edge e = (u, v) where u is the parent of v. The subtree Te is the subtree that contains three parts

u, Tv, and the edge (u, v). The weight w(Te) of a subtree Te is the sum of the edge weights in Te.

Given the threshold value B, depending on w(Te), a subtree Te is defined as light, medium or heavy

as follows. If w(Te) ≥ 2B, then Te is heavy. If w(Te) < B, then Te is light. If w(Te) ∈ [B, 2B),

then Te is medium. The decomposition algorithm proceeds by splitting away subtrees. Recall that

subtrees may share nodes, hence the definition of splitting T ′ away from Ti means: (i) designate T ′

as a new part, (ii) remove the edges of T ′ from Ti, and (iii) let Ti now contain only nodes and edges

that are still connected to the root of Ti. Note that, when T(u,v) is split away from Ti, the node u

remains a node in Ti so T(u,v) and the remaining tree share the node u.

One can always split away medium subtrees from the (remaining) tree. Since such medium

weight subtrees are split away whenever possible, we now focus on the case that subtrees are either

light or heavy. We refer to a node v as heavy (resp., light) if Tv is heavy (resp., light). If every

6

subtree is either heavy or light, let v denote a a heavy node, all the children of which are light. We

bunch edges e1, e2, . . . emanating from v to children of v until the first time the cumulative weight

of the trees hanging from these edges exceeds B. We then split away the subtree
⋃

i Tei
(note that

this tree is a medium subtree since w(Tei) < B, for every i). The decomposition stops as soon as

the weight of the remaining tree is less than B. If upon termination the edge set of Ti is not empty,

then Ti is declared as a leftover tree Li. Note that in this case the root of the leftover tree Li is r

(where r ∈ R is the root of the tree Ti) .

4.1.2 Correctness and approximation ratio.

In this section we prove two lemmas: Lemma 1 proves the correctness of the algorithm and Lemma 2

proves its approximation ratio. Let B∗ be the minimum cost of a tree cover of G.

Lemma 1 If Algorithm Rooted-Tree-Cover returns “B is too low”, then B∗ > B.

Proof We prove the contrapositive, namely, if B ≥ B∗ then there exists a matching in the bi-partite

graph that matches every subtree in {Si
j}i,j to a root in R. The existence of such a matching is

equivalent by Hall’s Marriage Theorem [2] to the condition that, for every subset S of trees from

{Si
j}i,j , the neighbor set N(S) of S satisfies |N(S)| ≥ |S|.
Consider a subset S of trees from {Si

j}i,j . Every tree S ∈ S satisfies w(S) ∈ [B, 2B). Hence,

w(S) ≥ B · |S|.
Consider an optimal R-rooted tree cover T ∗ = {T ∗1 , . . . , T ∗k }. Let T ∗(S) denote the subset of

trees of T ∗ that have a non empty intersection with a tree from S. Namely, T ∗i ∈ T ∗(S) iff there

exists a tree S ∈ S such that S ∩ T ∗i is non-empty. Since B ≥ B∗, there is an edge in the bi-

partite graph between a tree Si
j and r if the tree T ∗` rooted at r intersects the tree Si

j . Hence

|N(S)| ≥ |T ∗(S)| and it suffices to prove that |T ∗(S)| ≥ |S|. Note that the weight of T ∗(S) satisfies

w(T ∗(S)) ≤ B∗ · |T ∗(S)|.
Every node in

⋃S is connected by edges in
⋃ T ∗(S) to a root. Recall that every edge in Si

j is also

an edge in the MST M (from Line 2). Let M ′ denote the subgraph obtained from the MST M by

deleting edges in
⋃S and then adding edges in

⋃ T ∗(S). Every vertex is connected in M ′ to a root,

hence, the subgraph M ′ is connected if the roots are contracted. It follows that w(M ′) ≥ w(M),

and hence, w(T ∗(S)) ≥ w(S). We conclude that B∗ · |T ∗(S)| ≥ w(T ∗(S)) ≥ w(S) ≥ B · |S|. Since

B∗ ≤ B, it follows that |T ∗(S)| ≥ |S|. Hence, Hall’s condition holds, and the lemma follows. 2

The following lemma proves that the approximation ratio is 4.

7

Lemma 2 When successful, Algorithm Rooted-Tree-Cover finds an R-rooted tree cover of cost at

most 4B.

Proof By construction, each tree returned by the algorithm has a distinct root from R and every

node belongs to at least one tree. The weight of each tree equals the weight of the tree Si
j (which is

bounded by 2B), the weight of the path from the root r to a node in Si
j (which is bounded by B),

and the weight of the leftover tree (which is bounded by B). It follows that the weight of every tree

is less than 4B, and the lemma follows. 2

Note that a path from a root r to a subtree Si
j may contain edges and nodes that also belong to

other trees. Hence, when successful, Algorithm Rooted-Tree-Cover covers the graph with trees, but

these trees are not disjoint.

4.1.3 Strongly polynomial algorithm.

Let n = |V | and consider an ε > 0. Our goal is to find a (4 + ε)-approximation algorithm that is

polynomial in n and in log 1
ε . Sort the edge weights, let w1 < w2 < · · · < wm denote the sorted

edge weights. Obviously B∗ < n · wm. If Algorithm Rooted-Tree-Cover reports that B < B∗ for

B = wm, then the weight of all edges of weight at most wm/(n2/ε) is less than ε · B∗. Hence, we

may contract all these edges, and consider only the remaining edges of weight at least ε · wm/n2.

Now binary search within the range [ε · wm/n2, n · wm] is strongly polynomial.

If Algorithm Rooted-Tree-Cover does not fail with B = wm we do the following. Let i denote an

index such that (i) Algorithm Rooted-Tree-Cover reports B < B∗ for B = wi, and (ii) Algorithm

Rooted-Tree-Cover finds an R-rooted tree cover of cost at most 4 · wi+1. Hence B∗ ∈ (wi, 4 · wi+1].

If wi+1/wi ≤ n2

ε , binary search within the range [wi, wi+1] is strongly polynomial. Otherwise, let

w′ = n2

ε · wi. Run Algorithm Rooted-Tree-Cover with B = w′. If the algorithm finds an R-rooted

tree cover of cost 4w′, binary search within the range [wi, w
′] is strongly polynomial. If the algorithm

reports that w′ < B∗, the weight of all edges of weight at most wi is bounded by n2 · wi ≤ ε · B∗.

Hence, we may contract all these edges, and consider only the remaining edges of weight at most

4 · wi+1. Now binary search within the range [wi+1, 4 · wi+1] is strongly polynomial.

By combining Lemmas 1, 2, and the above discussion we conclude with the following theorem.

Note that if edge weights are bounded by a polynomial in n, then a 4-approximation algorithm

follows.

Theorem 3 For every ε, there is a (4 + ε)-approximation algorithm for min-max rooted tree cover

8

Algorithm 2 Tree-Cover(G, k, B) - Compute an k-tree cover of G with cost at most 4B.
1: Remove all edges of weight greater than B. Let {Gi}i denote the connected components after

deleting heavy edges.
2: MSTi ← MST of Gi.
3: ki ← bw(MSTi)

2B c.
4: If

∑
i(ki + 1) > k then Return fail: “B is too low”.

5: Edge-decompose each tree MSTi into at most (ki+1) trees {Si
j}j+Li such that w(Sj

i) ∈ [2B, 4B),
for every j, and w(Li) < 2B.

6: Return success: set of trees {Si
j}i,j ∪ {Li}i.

that runs in time polynomial in the size of G and log(1
ε).

4.2 k-tree cover

In this section we present a 4-approximation algorithm for the k-tree cover problem. A strongly

polynomial version of this algorithm has an approximation ratio of (4 + ε).

4.2.1 Algorithm.

A listing of Algorithm Tree-Cover appears as Algorithm 2. The input consists of (i) a graph

G = (V, E) with positive integral edge weights w(e), (ii) a bound k on the number of trees allowed

in the cover, and (iii) a bound B on the weight of each tree in the cover. The algorithm returns either

“fail” (meaning that B is too small), or “success” with a tree cover the cost of which is bounded by

4B.

As in Algorithm Rooted-Tree-Cover, Algorithm Tree-Cover begins by removing edges of weight

bigger than B. The removal of heavy edges may render G unconnected; we denote the connected

components by {Gi}i. In Line 2, a minimum spanning tree MSTi is computed for each component

Gi. In Line 3, an estimate ki of the number of trees needed to cover Gi is computed. In Line 4, the

algorithm returns with “fail” if the estimates are too small. This means that the algorithm has a

proof that the cost of an optimal k-tree cover of G is greater than B. In Line 5, each tree MSTi is edge

decomposed to at most (ki+1) subtrees. Each subtree is of cost at most 4B. The edge-decomposition

procedure is the same procedure that is used in Line 4 in Algorithm Rooted-Tree-Cover (with the

threshold 2B instead of B). In Line 6, a tree cover consisting of at most k trees is returned. The

cost of the returned tree cover is at most 4B.

Note that the edge-decomposition procedure decomposes MSTi into at most ki + 1 trees. By

setting a threshold of 2B it follows that the weight of each tree Si
j is at least 2B and at most 4B. It

9

follows that the number of trees {Si
j}j obtained when decomposing MSTi is at most ki. Together

with the the leftover tree Li (if it exists) we obtain at most ki + 1 trees.

4.2.2 Correctness and approximation ratio.

Let B∗ denote the cost of a min-max k-tree cover of G. Let T ∗ = {T ∗1 , . . . , T ∗k } denote an optimal

k-tree cover. If B∗ ≤ B, then T ∗ uses edges of weight no greater than B. Let k∗i denote the number

of trees in T ∗ that contain nodes of Gi.

Lemma 3 If B∗ ≤ B then ki + 1 ≤ k∗i , for every i.

Proof For simplicity, let T ∗1 , . . . T ∗k∗i denote the trees that cover Gi. By adding at most k∗i − 1 edges,

one can connect these k∗i trees to obtain a tree that spans Gi. Since the cost of each such edge

is at most B, we obtain:
∑k∗i

j=1 w(T ∗i) + (k∗i − 1) · B ≥ w(MSTi). Since w(T ∗i) ≤ B, we obtain

k∗i ≥ w(MSTi)
2B + 1

2 . The lemma follows because ki ≤ w(MSTi)
2B . 2

Lemma 3 immediately implies the following lemma.

Lemma 4 If Algorithm Tree-Cover returns “B is too low”, then B∗ > B.

We conclude with the following theorem. Note that a 4-approximation algorithm is obtained if the

edge weights are polynomial.

Theorem 4 For every ε, there is a (4 + ε)-approximation algorithm for min-max tree cover that

runs in time polynomial in the size of the graph and in log(1
ε).

Proof When B ≥ B∗, Lemma 4 implies that Algorithm 2 is successful and a k-tree cover of cost at

most 4B is computed. A strongly-polynomial binary search along the lines of Section 4.1.3 completes

the proof. 2

5 Open questions

By doubling edges in each tree, we can transform each tree into a tour, the weight of which is at

most twice the weight of the tree. Hence, our algorithms for k-tree cover immediately yield constant

factor approximation algorithms for the “Nurse station location” problem (which one might call the

k-tour cover problem) that motivated this research. However, it may be possible to obtain improved

approximation factors by attacking the k-tour cover problem directly, instead of going via k-tree

cover.

10

References

[1] E. Arkin, R. Hassin and A. Levin. Approximations for minimum and min-max vehicle routing

problems. Manuscript, 2003.

[2] R. Diestel. Graph Theory, Springer-Verlag, Berlin, 2000.

[3] J. Fakcharoenphol, C. Harrelson and S. Rao. The k-traveling repairman problem. In Proceedings

of the 10th Annual ACM-SIAM Symposium on Discrete Algorithms, 655-664, 2003.

[4] G.N. Frederickson, M.S. Hecht and C.E. Kim. Approximation algorithms for some routing prob-

lems. SIAM J. Computing 7:178-193, 1978.

[5] M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory of NP-

Completeness, W.H. Freeman, San Francisco, 1979.

[6] N. Guttmann-Beck, R. Hassin. Approximations Algorithms for Min-Max Tree Partition, Journal

of Algorithms 24: 266-286, 1997.

[7] M. Haimovich, A. Rinnooy Kan and L. Stougie. Analysis of heuristics for vehicle routing prob-

lems. In B.L. Golden and A.A. Assad (editors), Vehicle Routing: Methods and Studies, North-

Holland, 1988.

[8] P. Toth and D. Vigo (editors). The Vehicle Routing Problem, SIAM monographs on discrete

mathematics and applications, 2002.

11

