
Approximation Algorithms for Finding Low-Degree
Subgraphs

Philip N. Klein
Department of Computer Science, Box 1910, Brown University, Providence, Rhode Island 02912-1910

Radha Krishnan and Balaji Raghavachari
Department of Computer Science, University of Texas at Dallas, Richardson, Texas 75080-0688

R. Ravi
Tepper School of Business, Carnegie Mellon University, Schenley Park,
Pittsburgh, Pennsylvania 15213-3890

We give quasipolynomial-time approximation algorithms
for designing networks with a minimum degree. Using
our methods, one can design networks whose connec-
tivity is specified by “proper” functions, a class of 0–1
functions indicating the number of edges crossing each
cut. We also provide quasipolynomial-time approxima-
tion algorithms for finding two-edge-connected span-
ning subgraphs of approximately minimum degree of a
given two-edge-connected graph, and a spanning tree
(branching) of approximately minimum degree of a di-
rected graph. The degree of the output network in all
cases is guaranteed to be at most (1 � �) times the
optimal degree, plus an additive O(log1��n) for any � > 0.
Our analysis indicates that the degree of an optimal
subgraph for each of the problems above is well esti-
mated by certain polynomially solvable linear programs.
This suggests that the linear programs we describe
could be useful in obtaining optimal solutions via branch
and bound. © 2004 Wiley Periodicals, Inc. NETWORKS, Vol.
44(3), 203–215 2004

Keywords: approximation algorithms; minimum-degree sub-
graphs; graph algorithms; network design; graph connectivity; NP-
hard problems

1. INTRODUCTION

Minimizing the maximum degree is desirable in commu-
nications networks. The advantage of a network with a low
maximum degree is that the failure of a single node does not
result in adverse conditions for a large part of the network.
Keeping the maximum degree small is also essential in
designing switching networks with identical switches in-
stalled at all nodes. In this case, switches for the network
need to be designed to handle as many connections as the
maximum degree of any node. Minimum-degree networks
are also useful in building networks for broadcast where we
wish to minimize the amount of work done at each site, and
also in designing power grids where the cost of a node
increases with the degree of splitting the power [6]. Thus,
the very nature of the network itself gives rise to certain
connectivity requirements in the network. In this article, we
study algorithms for designing such low-degree communi-
cations networks.

The following versions of the basic minimum-degree
subgraph problems are considered.

1. Network design problems where the connectivity re-
quirements can be modeled by a {0, 1}-valued function
f on all the cuts in the graph. This framework is general
enough to capture the Steiner and generalized Steiner
tree problems.

2. Two-edge-connected spanning subgraph of a given
graph.

3. Spanning trees in directed graphs.

In each case, the goal is to find, for the given graph, a
minimum-degree subgraph that satisfies the given connec-
tivity constraints. We provide approximation algorithms
that output networks in each case, whose degrees are guar-

Received November 2002; accepted May 2004
Correspondence to: B. Raghavachari; e-mail: rbk@utdallas.edu
Contract grant sponsor: NSF; contract grant number: CCR-9012357 (to
P.N.K.)
Contract grant sponsor: NSF PYI award; contract grant number: CCR-
9157620 (to P.N.K. and R.R.)
Contract grant sponsor: DARPA; contract grant number: N 0014-91-J-
4052 (ARPA order No. 8225, to P.N.K. and R.R.)
Contract grant sponsor: NSF; contract grant number: CCR-9820902 (to B.R.)
Contract grant sponsor: IBM grant fellowship (to R.R.)
DOI 10.1002/net.20031
Published online in Wiley InterScience (www.interscience.wiley.
com).
© 2004 Wiley Periodicals, Inc.

NETWORKS—2004

anteed to be at most (1 � �) times optimal, plus an additive
term of O(log1��n) for any � � 0. The algorithms run in
quasipolynomial time O(nlog1��n). As a direct consequence,
we obtain polynomial-time approximation algorithms for all
problems above with a performance ratio O(n1/�) for any �
� 0 (by setting � � n�). In addition to the same perfor-
mance guarantees and running times, all the algorithms we
describe here also have in common the technique of local
optimization, wherein we perform local improvements to
the current solution to iteratively decrease the degrees of
high-degree nodes.

In Section 2, we review previously known results for
special cases of the problems we consider in this article. In
Section 3, we describe our results on general minimum-
degree one-connected networks. In Section 4, we address
the minimum-degree two-edge-connected spanning net-
work-design problem. The directed minimum-degree span-
ning tree problem is considered in Section 5.

2. PREVIOUS WORK

2.1. The Basic Minimum-Degree Spanning Tree (MDST)
Problem

Given an undirected graph G, the problem is to find a
spanning tree of G whose maximum degree is minimal. This
problem is a generalization of the Hamiltonian Path prob-
lem, and hence, is NP-hard [9]. Fürer and Raghavachari [5]
gave a polynomial-time approximation algorithm for this
problem with O(log n) performance guarantee. In subse-
quent work [6], they improved their previous results and
provided another polynomial-time algorithm to approximate
the minimum-degree spanning tree to within 1 of the opti-
mal. Clearly, no better approximation algorithms are possi-
ble for this problem.

Lawler [16] showed that matroid methods sufficed to
solve the following variant of the minimum-degree span-
ning tree problem in polynomial time: given a graph G and
an independent set I of nodes of G, find a spanning tree that
minimizes the maximum degree of any node in I. Gavish
[10] formulated the minimum-degree spanning tree problem
as a mixed-integer program and provided an exact solution
using the method of Lagrangian multipliers.

2.2. The Minimum-Degree Steiner Tree Problem

In this extension to the MDST problem, given an input
graph and a distinguished subset of the nodes D, we seek to
find a Steiner tree (spanning at least the set D) whose
maximum degree is minimum. The first polynomial-time
approximation algorithm was provided by Agrawal, Klein,
and Ravi [1]. The performance guarantee is a factor of
O(log k), where k is the size of D. This was improved upon
by Fürer and Raghavachari [6], who provide a polynomial-
time approximation algorithm for the problem. Their per-
formance guarantee is essentially the same as that shown by

us. In fact, our work is a generalization of their algorithm,
and reduces to their algorithm for this special case. Fürer
and Raghavachari [7] later demonstrated a polynomial-time
algorithm that finds a tree whose degree is within 1 from
optimal.

2.3. The Directed Minimum-Degree Spanning Tree
Problem

Given a directed graph G and a root node r � V, the
problem is to find a spanning tree of G rooted at r whose
maximum degree is minimized. For this problem, Fürer and
Raghavachari [5] gave an algorithm with an approximation
ratio of O(log n) for this problem. Our article improves the
multiplicative factor of O(log n) to an additive term of
O(log n). Unfortunately, the “plus one” algorithm [7] does
not generalize to directed graphs.

3. THE MINIMUM-DEGREE CONSTRAINED
FOREST PROBLEM

We begin this section by describing a framework for
formulating general one-connected network problems. We
formulate the minimum degree problem in this framework.

3.1. Formulation

A framework for specifying connectivity requirements
for networks was proposed by Goemans and Williamson
[11]. This framework captures a wide variety of requirement
specifications, including Steiner and generalized Steiner
connectivity, general point-to-point connectivity, and T-
joins. Building on the work of Agrawal, Klein, and Ravi on
the generalized Steiner tree problem [2], Goemans and
Williamson showed a way to find a network satisfying given
connectivity requirements that has nearly minimum total
edge cost. In this article, we show how to find a network
satisfying the requirements that has nearly minimum de-
gree. We use the framework from [11] for specifying con-
nectivity requirements. Our algorithm and analysis are
based on the work of Fürer and Raghavachari [6].

Consider a spanning tree of a graph, and any cut in the
graph. At least one edge of the spanning tree must cross this
cut. Conversely, if a network crosses every cut, it must span
all nodes. More generally, to specify connectivity require-
ments for a network, we designate a subset of the cuts in a
graph as active cuts, and we require that the network being
designed cross every active cut.

A broad class of requirements can be specified using an
approach of Goemans and Williamson [11]. They specify
which cuts are active using a 0–1 function f on the node-
subsets of a graph. For a node-subset S, let �(S) denote the
set of edges each having exactly one endpoint in S. To
specify that the cut �(S) is active, we set f(S) to be 1. One
can now formulate an integer program for a minimum-
degree network crossing all active cuts:

204 NETWORKS—2004

Min d

subject to constraints:

x���S�� � f�S� � S � V

x����v��� � d � v � V (IP)

xe � �0, 1� � e � E

Here, for any subset F of edges, x(F) is defined to be ¥e�F

xe. We call any feasible solution to the above IP, an f-join.
It is easy to verify that minimal f-joins are forests.

Goemans and Williamson [11] focus on a special class of
functions f that can be used to formulate many important
connectivity requirements. They called these functions
proper. A function f : 2V 3 {0, 1} is proper if the
following properties hold.

1. [Null] f(A) � 0;
2. [Symmetry] f(S) � f(V 	 S) for all S � V; and
3. [Disjointness] If A and B are disjoint, then f(A) � f(B)

� 0 implies f(A � B) � 0.

We are interested in solutions to (IP) for the class of proper
functions f. Examples of problems that fit within this frame-
work other than the minimum-degree Steiner trees are min-
imum-degree generalized Steiner forests, minimum-degree
T-joins, and minimum-degree point-to-point connection
problems.

3.2. Preliminaries: Toughness, Weakness and Lower
Bounds

Toughness, first defined by Chvátal in [4], is a measure
of how hard it is to disconnect a graph into many compo-
nents by removing a small number of nodes. The toughness
of a graph is the minimum (over all nontrivial node subsets)
of the ratio of the number of nodes removed (X) to the
number of connected components in the remaining graph.
That is, it is the minimum of all ratios of �X� to the number
of components in G 	 X, where X ranges over all nontrivial
node subsets of G. Computing the toughness of a graph was
shown to be NP-complete by Bauer, Hakimi, and
Schmeichel [3]. Win [20] has shown the following interest-
ing relationship between the toughness of a graph and the
minimum-degree spanning tree problem. He showed that if
the toughness of a graph is at least 1/(k 	 2), then it has a
spanning tree whose degree is at most k (for k � 2).

The definition of toughness we have given differs
slightly from Chvátal’s original definition in [4]. According
to our definition, the minimum toughness ratio is never
more than 1 (for nonsingleton graphs), because even a
singleton X yields a ratio of at most 1. Chvátal defines
toughness to be the same minimum ratio, but the minimum
is taken only over those node subsets X for which G 	 X

has at least two components. According to this definition,
the minimum ratio can be arbitrarily large.

We generalize the above notion to allow active compo-
nents defined by proper functions f. For any X � V, a
connected component Y of G 	 X is active under a proper
function f whenever f(Y) � 1. The f-toughness of a graph
for any given function f is the minimum ratio of the number
of nodes removed to the number of active components
formed. In other words, it is the minimum ratio of �X� to the
number of active components in G 	 X, where X ranges
over all nontrivial node subsets of G. For any subset X of
nodes, this ratio is termed the f-toughness of the set X. Thus,
the f-toughness of the graph is the minimum f-toughness of
any of its nontrivial node subsets. Note that ordinary tough-
ness is a special case of f-toughness as we have defined it,
because it corresponds to a function f where every nontrivial
subset of the nodes of the graph is active. We are interested
in computing the f-toughness of the graph for proper func-
tions f. Call any single node that forms an active set a
terminal. Note that as long as there is at least one terminal,
the f-toughness ratio is at most 1, because this is the ratio
achieved on removing a single terminal.

We shall refer to the reciprocal of the f-toughness of a
graph as its f-weakness. The notion of weakness of a graph
arises as a dual to the problem of constructing minimum-
degree networks. The f-weakness of the graph is an estimate
of the vulnerability of any f-join. A node subset with high
value of f-weakness represents a weak spot in such a net-
work: damage to this subset results in nearly the worst
disconnection among the nodes in the network. To motivate
the relationship between the minimum degree of any f-join
and the f-weakness, we prove the following lemma.

Lemma 3.1. For any function f, the optimum value of (IP)
is at least the f-weakness of the graph.

Proof. Consider the node set X achieving the optimal
f-weakness (see Fig. 1). Let the number of active compo-
nents in G 	 X under f be k. In any f-join, each of the k
active components in G 	 X must have an edge to X. Thus,

FIG. 1. f-weakness is a lower bound on the maximum degree of an f-join.
In a feasible f-join, the degree of nodes in X is at least ratio of number of
active components created on deleting X to the cardinality of X.

NETWORKS—2004 205

the average degree (and, hence, the maximum degree) of a
node of X in an optimal solution to (IP) is at least k/�X�, the
f-weakness of the graph. ■

3.3. The Algorithm and Its Analysis

We now describe the algorithm for providing an approx-
imate solution to (IP) and analyze its performance. As input
we are given an undirected graph G � (V, E), an arbitrary
number � � 0 to determine the performance accuracy, and
a proper function f defined on the cuts of G. We can assume
without loss of generality that the graph G is connected, for
otherwise we can work on each connected component of G
independently. Our algorithm uses iterative local improve-
ments and outputs a forest F that is feasible for the covering
constraints of (IP). Note that we can always assume without
loss of generality that any feasible solution to (IP) is the
incidence vector of a forest [11]. Feasible solutions satisfy
the following lemma.

Lemma 3.2 ([12]). Let F denote a subset of the edge set of
G. F is a feasible solution to (IP) if and only if f(N) � 0 for
each connected component N of F.

3.3.1. Overview
The algorithm starts with a feasible solution to (IP) and

iteratively applies improvement steps aimed at reducing the
degree of high-degree nodes. Intuitively, if we find a cycle
in the graph that contains a node w of high degree, and if all
edges that must be added to the current feasible solution to
form this cycle are incident to low-degree nodes, then we
can improve the current solution by adding in the cycle and
deleting an edge incident to w. This reduces the degree of w
by 1. For minimum-degree spanning trees [6, 7], improve-
ments consisted of simply replacing one edge by another,
and in the case of Steiner trees, they were defined as
replacing an edge by a path whose internal nodes are not in
the tree. Therefore, the degree of nodes in the tree increased
by at most 1. In our case, we are replacing an edge by a
collection of paths that could go through nodes in other
trees. Therefore, the degree of a node may increase by two
after an improvement. We examine this in greater detail
below.

3.3.2. An Improvement Step
Let Sd denote the set of nodes in the current forest whose

degree is at least d. An improvement step with target d tries
to reduce the degree of a node in Sd. We use two types of
improvement steps. The first and simpler type determines
whether the forest F remains feasible on deleting an edge
incident on a node in Sd. If so, we delete this edge from F
to obtain the new forest F
 and proceed to the next im-
provement step. The second type of improvement step is
more involved. Starting from G, we delete all the edges in
E 	 F that are incident to nodes in the forest having degree
at least d 	 2, i.e., edges that are incident to nodes in Sd	2.
In this graph, we examine if any node in Sd lies on a cycle.

If so, we add all the edges in E 	 F in this cycle to the
forest F and delete an edge of F incident to a node in Sd in
this cycle. If any other cycles have been created, remove
some of the added edges to make the solution acyclic. This
gives a new forest F
.

Note that after performing an improvement step with
target d, the degree of a node in Sd reduces by one and the
resulting degree of each of the affected nodes increases by
at most 2 and is at most d 	 1. We note that the resulting
forest F
 is an f-join.

Lemma 3.3. The forest F
 formed at the end of an im-
provement step remains feasible.

Proof. The lemma follows immediately if the improve-
ment step is of the first type. Therefore, suppose the im-
provement is of the second type. Let F be the feasible forest
before the improvement step. Consider the cycle involved in
the improvement. Because F is acyclic, the addition of the
cycle and the deletion of an edge clearly leaves F
 acyclic.
But, we have merged many of the trees in F to form a single
tree containing the edges of the cycle in F
. However,
because F was feasible, Lemma 3.2 guarantees that each of
the trees in the merged tree has f-value 0. Because the
merged component is a disjoint union of these components,
the disjointness property of f implies that the f value of this
new component is also 0. All the remaining components in
F
 were also components of F having f-value 0. Therefore,
Lemma 3.2 implies that F
 is feasible. ■

3.3.3. The Algorithm
The algorithm starts with an initial feasible solution. Any

spanning tree T of the given connected graph can be chosen
as the initial feasible solution. Note that the null and sym-
metry conditions on f imply that f(V) � 0 and so, by
Lemma 3.2, T is feasible. Let the maximum degree of any
node in the current feasible solution be k. Ideally, we would
like to run the algorithm until no further improvements are
possible. Unfortunately, we are unable to bound the running
time of such an algorithm even using a quasipolynomial
term. Therefore, we restrict improvements only when they
apply to high-degree nodes. The algorithm applies improve-
ment steps with target d for d � k 	 2 log1��n until no
such improvements are possible. The resulting forest is
output as a locally optimal approximate solution.

Definition 3.4. Define an edge e of a feasible forest F to
be critical if F 	 e is not feasible.

As a result of performing the first type of improvement
step, note that all the edges incident on nodes of degree at
least k 	 2 log1��n are critical in the locally optimal
solution.

3.3.4. Termination
Each improvement step is polynomial-time implement-

able. We adapt a potential-function argument from [6] to

206 NETWORKS—2004

bound the number of improvement steps. We define the
potential of a node v with degree d in the forest F to be �(v)
� nd where n is the number of nodes in the graph. The
potential of the forest F is defined as �(F) � ¥v �(v).
Initially �(F) � nn. Each improvement step with target d
reduces the potential by at least (n 	 1)nd	3, because the
degree of a node of degree d is reduced by 1 and the degree
of all the other nodes may increase to d 	 1. Because d � k
	 2 log1��n where k is the maximum degree of the
current forest, this reduction in potential is at least a fraction
n	2 log1��n	3 of the current potential of the forest �(F).
From this we can bound the maximum number of iterations
before k decreases, and k can decrease at most n 	 3 times.
It follows that the number of improvement steps is at most
nO(log1��n).

3.3.5. Performance Guarantee
We prove the performance guarantee by identifying a

node separator from the solution subgraph whose f-weak-
ness value is very close to the degree of the solution. Let k
denote the maximum degree of the solution subgraph. A
simple contradiction argument proves the following propo-
sition.

Proposition 3.5. There is some i � [k 	 2 log1��n , k]
with �Si	2� � (1 � �)�Si�.

In the following discussion, let i be an index that satisfies
the above proposition. We prove the following critical
lemma that shows that when Si	2 (the set of nodes of
degree at least i 	 2 in a locally optimal solution) is deleted
from G, a large number of active components are created.
This will then imply that the degree of nodes in Si	2 has to
be large in any solution, because all these active compo-
nents in G 	 Si	2 can be connected together in a feasible
solution only using edges that are incident to some node of
Si	2. The reason why our analysis is more complicated than
the one used for minimum-degree Steiner trees is due to the
fact that our feasible solution may have several trees, and
therefore, there may be edges in the graph that connect
together some of these active components that are not useful
in any improvements. But we show that the number of such
components that may be merged with other components are
small, and we can account for them in our analysis.

Lemma 3.6. Let F be the locally optimal network and let
i be the index in Proposition 3.5. The number of active
components in G 	 Si	2 is at least i�Si� 	 (2 � �)�Si�.

We prove the above lemma in the remainder of this
section. Call a tree in F relevant if it contains a node in Si.
Define an equivalence relation � on the edges of F by the
rule: e1 � e2 if there is a path between an endpoint of e1

and an end point of e2 in F avoiding Si. Intuitively, an
equivalence class under this relation is a set of edges inci-
dent to nodes whose degree is smaller than i, forming a
connected subtree in F. We define a bipartite graph that

captures the way in which these subtrees are connected to
nodes of Si as follows. Define an auxiliary forest Fi whose
nodes are Si together with the equivalence classes of �. Fi

has an edge between a node v � Si and an equivalence class
C under � if there is an edge in C incident on v. Note that
because F is acyclic, there is at most one edge in any
equivalence class C incident to any node v in Si. Thus, if a
node v � Si has degree j in F, it also has degree j in Fi.
Note also that Fi is acyclic and has exactly as many com-
ponents as the number of relevant trees in F. We are
especially interested in the leaves of Fi, i.e., subtrees of F
that have a single edge of F that connects them to some
node in Si. We show a lower bound on the number of such
subtrees.

Claim 3.7. The number of nodes of degree one in Fi

(corresponding to equivalence classes C) is at least (i
	 2)�Si� � 2r where r is the number of relevant trees in F.

Proof. Let t be the number of classes of degree 1 and
let p be the number of other classes. The number of edges
in the forest Fi is the number of nodes in the forest minus
the number of components in it. This is exactly t � p � �Si�
	 r. The sum of the degrees of the nodes of Fi is twice the
number of edges. That sum is at least i � �Si� � 2p � t. The
claim follows. ■

Each class C of degree one defines a set XC of nodes as
follows: a node v is in XC if C contains all the edges of F
that are incident on v. Note that each XC is a component of
F 	 Si and thus represents a subset of nodes of a relevant
tree (see Fig. 2). Consider an edge e in F incident on a node
in Si. Because F is feasible, by Lemma 3.2, the component
of F containing e is inactive. Because e is critical on
account of the first type of improvement step, the two
distinct components formed in F on removing e and con-
taining its endpoints must both be active. Consider an edge
in a degree-1 equivalence class C of � that is incident on a
node in Si. One of the connected components formed on its
removal from F is XC, and so this set is active. This is
summarized in the following proposition.

FIG. 2. Three degree-1 equivalence classes under �, each with an edge
to a node v � Si.

NETWORKS—2004 207

Proposition 3.8. Each set XC defined by a class C of
degree one in Fi is an active set.

We now derive a lower bound on the number of active
components of G 	 Si	2. Most of the node sets represent-
ing degree-1 classes of Fi are useful in forming these active
components. There are two ways in which such a set might
fail to be an active component of G 	 Si	2. When nodes of
Si	2 	 Si are removed, some of these components may
break up. However, the number of such components is at
most �Si	2� 	 �Si�, which is at most ��Si�. We will disregard
these broken-up components. Second, when nonforest edges
are added, some of the remaining components may merge,
resulting in fewer components and inactive components.
We show that, in fact, there remain many active compo-
nents.

Claim 3.9. The total number of sets XC that merge with
others on adding edges of G 	 Si	2 is at most 2(r 	 1).

Proof. Suppose for a contradiction that more than 2(r
	 1) such XCs merge on adding the edges of G 	 Si	2. We
show that this identifies a cycle in F � (G 	 Si	2)
containing a node of Si, and so F permits an improvement
of the second type.

To show this, we consider the auxiliary graph Fi and
augment it with edges representing merging XCs. For every
pair of XCs that merge, we include an edge between the
nodes corresponding to them in Fi. If more than 2(r 	 1)
such XCs merge, then more than r 	 1 edges must be
included in the auxiliary graph in addition to Fi. Because Fi

has exactly r connected components, and more than r 	 1
edges are added to it, the resulting graph must be cyclic. A
cycle in this graph directly corresponds to a cycle in F � (G
	 Si	2) containing a node of Si and so F permits an
improvement of the second type. This contradicts the local
optimality of F. ■

The sets XCs that remain might merge with inactive
components of F on adding the nonforest edges of G
	 Si	2. By the properties of a proper function, the resulting
component in G 	 Si	2 containing XC is also active. By
Claim 3.7, the number of degree-1 equivalence classes is at
least (i 	 2)�Si� � 2r, and by Proposition 3.8 each of these
defines an active set. We discount at most ��Si� of them that
may break up on removing nodes in Si	2 	 Si. The number
of such classes that may merge with one another is at most
2(r 	 1) by Claim 3.9. Thus the number of such active sets
that remain is at least i�Si� 	 (2 � �)�Si�. This completes
the proof of Lemma 3.6.

3.4. An Approximate Min–Max Relation and Applications

How good is the f-weakness of a graph as a lower bound
for the minimum-degree problem for proper functions f? In
the course of proving the performance guarantee for the
solutions we construct for (IP), we demonstrate an approx-

imate min–max equality between the optimum value of (IP)
and the f-weakness of the graph.

Theorem 3.10. Let f be a proper function on the nodes of
an n-node graph. The optimum value of (IP) is at most (1
� �)w* � O(log1��n) for any � � 0 where w* is the
f-weakness of the graph.

Proof. Let i be as in Proposition 3.5. Our proof works
by estimating the f-weakness of Si	2. By Lemma 3.6, the
number of active components in G 	 Si	2 is at least i�Si�
	 (2 � �)�Si�. By choice of i, note that �Si	2� � (1
� �)�Si�. Therefore, the f-weakness of Si	2 and hence of G
is at least [i 	 (2 � �)]/(1 � �). Note that the degree of
the solution F is at most i � 2 log1��n. Combining these
proves Theorem 3.10. ■

Note that the proof of Theorem 3.10 is constructive. We
have provided an algorithm that constructs an f-join whose
degree is close to the f-weakness ratio of a set we identify.
Theorem 3.10 and Lemma 3.1 together prove the perfor-
mance bounds given in Theorem 3.12. In addition, we also
have the following result about approximating the f-weak-
ness of the graph for any proper function f.

Theorem 3.11. Let f be a proper function on the nodes of
an n-node graph. Let w* denote the f-weakness of a graph
and let � be an arbitrary small positive real number. There
is an nO(log1��n)-time algorithm to determine a node subset X
for which the f-weakness is at least (1 	 �)w* 	
O(log1��n).

An important application of the approximate min–max
inequality presented in Theorem 3.10 arises from the fact
that the relaxed version of (IP) is polynomially solvable.
This follows from the observation that separation over (IP)
is equivalent to solving an instance of finding the minimum
cut around any active set. The latter problem can be solved
using the fact that proper functions are uncrossable and can
be inferred from the results in [8, 19]. A 0–1 function f
defined on subsets of nodes is called uncrossable if, when-
ever A and B are active sets with f(A) � f(B) � 1, then
either f(A � B) � f(A � B) � 1 or f(A 	 B) � f(B
	 A) � 1 (see [11] for further details). Using the Ellipsoid
method [12], which provides a polynomial-time reduction
of the optimization problem to the separation problem, we
have that the fractional relaxation of (IP) can be solved in
polynomial time. It follows from Theorem 3.10 that the
value of this linear program is a good estimate of the
minimum degree. While solving the linear program does not
give us a solution network with this degree, just knowing
the value can be useful, such as in a branch-and-bound
search for an optimal solution [17].

Combining the above discussions yields the following
theorem.

208 NETWORKS—2004

Theorem 3.12. Let f be a proper function. Let d* denote
the optimum value of (IP). There is an nO(log1��n)-time algo-
rithm for finding a feasible solution to (IP) whose objective
value is at most (1 � �)d* � O(log1��n) for any � � 0.

4. MINIMUM-DEGREE TWO-EDGE-CONNECTED
SUBGRAPHS

In this section, we consider minimum-degree networks
of a different type. Given a two-edge-connected undirected
graph as input, we consider the problem of finding a two-
edge-connected spanning subgraph of minimum degree.
This problem can be easily seen to be NP-hard by a reduc-
tion from the Hamiltonian cycle problem. Using a local-
improvement algorithm similar to that used in proving The-
orem 3.12, we obtain an approximate solution for this
problem as well.

Theorem 4.1. Let �* be the minimum degree of a two-
edge-connected subgraph of a given graph G and let � be a
positive number. There is an nO(log1��n)-time algorithm for
finding a two-edge-connected subgraph of G having degree
at most (1 � �)�* � O(log1��n).

As in Section 3, it is easy to cast this problem as an
exponential-sized integer program. The first constraint is
modified to x(�(S)) � 2 for all S � V. This captures the
condition that our solution needs to have at least two edges
across each cut, i.e., it is two-edge-connected. The fractional
relaxation of this program is solvable in polynomial time by
using a minimum-cut procedure to solve the corresponding
separation problem. Hence, the above theorem can be ap-
plied to show that this linear program solution value is a
very good estimate of the value of the exact solution to the
minimum-degree problem. As mentioned earlier, such esti-
mates can be used in pruning the search space for exact
solutions to this problem.

4.1. Preliminaries

Let G � (V, E) be an arbitrary k-edge-connected graph.
Consider the problem of computing a k-edge-connected
subgraph N of G, which spans V such that the maximum
degree of N is minimum. The case of k � 1 corresponds to
the minimum-degree spanning tree problem and is NP-hard
[10]. In this section, we consider the case when k � 2
(two-edge-connected graphs are also called bridge-con-
nected). In this article, “connectivity” always stands for
edge connectivity (and not node connectivity). For a graph
G, we use �*(G) to denote the minimum degree of a
two-connected spanning subgraph of G.

We first give some preliminary definitions that show that
the notion of k-connected components is meaningful in the
context of edge connectivity. It allows the partition of V into
k-connected components.

Definition 4.2. A pair of nodes u and v is said to be
k-connected in a graph N if there are k edge-disjoint paths
between u and v in N. This relation is an equivalence
relation. It partitions the nodes into equivalence classes of
nodes. Within each class, each pair of nodes is k-connected.
Such a class is called a k-component.

Definition 4.3. For a graph H, the bridge-connected for-
est (bcf) of H is obtained by contracting each two-compo-
nent of H to a supernode and deleting self-loops. A leaf
two-component of H is a two-component that has degree
one in the bcf of H. An isolated two-component of H is one
of degree zero in the bcf of H.

The following lemma follows from the definition of
two-edge-connected graphs.

Lemma 4.4. Let N be any two-connected spanning sub-
graph of G, and let X be any subset of nodes. Let C be a
two-component of G 	 X. If C is a leaf two-component, then
N has at least one edge between C and X. If C is an isolated
two-component, then N has at least two edges between C
and X.

This lemma motivates the following definition.

Definition 4.5. Let H be a graph with � leaf two-compo-
nents and k isolated two-components. Then the deficiency of
H is defined as � � 2k and is denoted by def(H).

The stage is now set for an easy derivation of a lower
bound on the minimum degree of a two-connected spanning
subgraph. Consider removing a node subset X from an
undirected graph G; the remaining graph has deficiency
def(G 	 X). In any two-connected spanning subgraph of
G, there must be at least def(G 	 X) edges going between
G 	 X and the nodes in X by Lemma 4.4. Thus, the
maximum degree of a node in X is at least [def(G 	 X)]/
�X�. Applying this argument to the minimum-degree two-
connected spanning subgraph, we arrive at the following
corollary.

Corollary 4.6. Let X be a subset of the nodes of a graph
G. Then

�*�G� �
def�G � X�

�X�

4.2. The Algorithm and Its Time Complexity

The local-search algorithm proceeds as follows. We fix �
to be any arbitrary quantity greater than zero. The algorithm
starts with an arbitrary two-connected subgraph of the given
graph G, and iteratively applies local improvement steps to
reduce the degrees of high-degree nodes. When a local

NETWORKS—2004 209

minimum is reached, the algorithm outputs the current sub-
graph.

Now we give definitions pertaining to an improvement
step. Let N denote a two-connected subgraph of G. For an
edge e � N, we define Ne to be the bcf of N 	 e. Because
N is two-connected, it follows that Ne is a simple path.

Definition 4.7. The degree-d candidate graph for an edge
e in N is obtained from G as follows: contract each two-
component of N 	 e, and then delete e and the edges of G
	 N incident to nodes with degree at least d in N (see Fig.
3). A node w of degree d in N is said to admit an improve-
ment if there is an edge e incident to w in N such that the
degree-(d 	 3) candidate graph for e is two-connected.

An improvement step consists of replacing e with edges
from the candidate graph so that the resulting network
remains two-connected. We require that the degree of no
node is increased beyond d 	 1. The following lemma
shows that this can be done. We use degH(v) to denote the
degree of a node v in the subgraph formed by a collection H
of edges.

Lemma 4.8. Let Q be a minimal collection of edges whose
addition two-connects a bcf Ne. Then for every node v of Ne,
degQ(v) � 2.

Proof. Suppose that degQ(v) � 3. Because Ne is a
path, v splits Ne into two subpaths. Then at least two of v’s
three incident edges must be incident on nodes in the same
subpath. Let a be the one whose other endpoint is closer to
v in the subpath. Then Q 	 a also two-connects Ne,
contradicting the minimality of Q. ■

Note that an improvement step for a node w decreases

w’s degree by 1, but does not increase the degree of any
other node to more than w’s new degree.

Definition 4.9. Let N be a two-connected spanning sub-
graph of G, and let � be the degree of N. Then N is called
locally optimal if no node of degree at least � 	 2 log1��n
admits an improvement.

Using a potential function argument as in Section 3, it is
easy to show that nO(log1��n) improvement steps suffice to
yield a locally optimal subgraph. Because each improve-
ment step can be executed in polynomial time, the running
time is as claimed in Theorem 4.1. In the remainder of this
section, we show that the degree of a locally optimal sub-
graph is as claimed in Theorem 4.1.

4.3. Performance Guarantee

Theorem 4.10. The degree of any locally optimal sub-
graph of a graph G with n nodes is at most (1 � �)�*(G)
� 2 log1��n � 4(1 � �).

Let Si denote the set of nodes whose degree in N is at
least i. The proof of Theorem 4.10 consists in showing that
there is an i in the range [� 	 2 log1��n , �] for which G
	 Si has many leaf and isolated two-components. We show
this in Lemma 4.13. Theorem 4.10 then follows from Cor-
ollary 4.6.

Lemma 4.11. Let G be a two-connected graph and let S
be a subset of nodes of G. Then there is a two-connected
subgraph A of G that contains all nodes of S, such that ¥v�S

degA(v) � 4�S�.

Proof. We give a constructive proof by demonstrating
an algorithm to compute A. A graph H is defined to be a
minor of graph G if one can obtain H from G by repeatedly
contracting or deleting edges. For a minor H of G, we say
a node v of H is active if one of the nodes contracted to form
v belongs to S. Consider the following algorithm:

1. Initialize H0 :� G.
2. Let j :� 0 and let A0 be the empty graph.
3. Although S is not two-connected via Aj, do

a. Let Cj�1 be a shortest cycle in Hj containing at least
two active nodes.

b. Let Aj�1 :� Aj � Cj�1.
c. Obtain Hj�1 from Hj by contracting together all

nodes of Cj�1.
d. j :� j � 1.

Let k be the number of iterations. By the termination con-
dition, S is two-connected in Ak. For each j, let xj be the
number of active nodes in Cj. Because the edges of Cj form
a cycle in Hj, the degree increase due to these edges on
active nodes in the cycle is at most twice the number of
active nodes in the cycle:

FIG. 3. An example of a degree-5 candidate graph for an edge e. The
figure on top illustrates the network N with thick edges. The figure in the
bottom is the degree-5 candidate graph for the edge e, formed from G by
contracting each of the three 2-components of N 	 e to single nodes and
deleting edges in G 	 N incident on nodes of degree five or more.

210 NETWORKS—2004

�
v�S

degCj
�v� � 2xj. (1)

It follows that

�
v�S

degA�v� � �
j�1

k �
v�S

degCj
�v� � �

j�1

k

2xj (2)

Next we bound the right-hand side of (2). Because at each
iteration j, we contract xj active nodes of Hj into a single
active node in Hj�1, we have the following claim.

Claim 4.12. (Number of active nodes in Hj�1) � (Number
of active nodes in Hj) 	 (xj 	 1)

Because Hk contains 1 active node and H0 contains �S�
active nodes, it follows by Claim 4.12 that

�
j�1

k

� xj � 1� � �S� � 1 (3)

In each iteration xj 	 1 � 1, so the number of iterations k
is at most �S� 	 1. Hence, ¥ (xj 	 1) � ¥ xj 	 (�S� 	
1). Combining this inequality with (3) yields ¥ xj � 2(�S�
	 1). Combining this with (2) yields ¥v�S degA(v)
� 4(�S� 	 1). This completes the proof of Lemma 4.11.

■

Lemma 4.13. Let N be a locally optimal subgraph with
degree �. Then there is an integer i in the range [�
	 2 log1��n , �] such that the deficiency of G 	 Si	2 is at
least �Si�(i 	 4(1 � �)) and �Si	2� � (1 � �)�Si�.

Proof. As in Proposition 3.5, there is an i in the given
range such that �Si	2� � (1 � �)�Si�. By Lemma 4.11, there
exists a two-connected subgraph A of N such that Si	2 is
contained in A and ¥v�Si	2

degA(v) � 4�Si	2�. By choice
of i, the value 4�Si	2� is at most 4(1 � �)�Si�. To continue
the proof, we show that a large portion of the degree of the
nodes in Si	2 can be used to infer that G 	 Si	2 has high
deficiency.

Definition 4.14. An edge e of a two-connected graph H is
critical in H if H 	 e is not two-connected.

By local optimality, for every edge e of N incident on Si,
the degree-(i 	 3) candidate graph for e is not two-
connected. Note that this also implies that the edge e is
critical in N.

Claim 4.15. Let e be an edge of N not in A such that one
endpoint of e belongs to Si. Then the other endpoint of e
belongs to a leaf two-component or isolated two-component
of the bcf of G 	 Si	2.

Proof. We give a proof by contradiction. Let e � (u,
v), where u belongs to Si. First suppose that v belongs to A;
this includes the case where v belongs to Si	2. Because A is
two-connected and contains u, it follows that e is noncrit-
ical, which is a contradiction. It follows that v belongs to
some two-component C of G 	 Si	2. By the same argu-
ment as above, C contains no nodes of A.

Next suppose that C has degree two or more in bcf(G
	 Si	2). Then C is internal to some path in bcf(G 	 Si	2)
between leaf two-components L1 and L2. For j � 1, 2, let
Pj be the subpath from C to Lj. By Lemma 4.4, there is an
edge ej of N between each Lj and Si	2 for j � 1, 2. We
have constructed edge-disjoint paths P1e1 and P2e2 from C
to A. The edges of these paths are in N � (G 	 Si	2) (see
Fig. 4). Recall that A is two-connected and contains only
edges in N, and that u is in A. It follows that C is two-
connected to u using edges in (N � (G 	 Si	2) 	 {e}).
This contradicts the fact that the degree-(i 	 3) candidate
graph for e is not two-connected. ■

Now we complete the proof of Lemma 4.13. The sum of
the degrees of all the nodes of Si in N is at least i � �Si�. By
choice of the set A, we have ¥v�Si	2

degA(v) � 4(1
� �)�Si�. Hence, there are at least �Si�(i 	 4(1 � �)) edges
incident on Si not in A. By Claim 4.15, each of these edges
goes to a leaf two-component or isolated two-component of
bcf(G 	 Si	2). By the criticality of these edges in N, it also
follows that there is at most one such edge to a leaf-
component and at most two such edges to an isolated-
component in bcf(G 	 Si	2). Hence, each such edge
contributes one to the deficiency of G 	 Si	2. This con-
cludes the proof of Lemma 4.13. ■

5. DIRECTED MINIMUM-DEGREE SPANNING
TREE (DMDST) PROBLEM

5.1. Definitions and Notation

The input in this case is an arbitrary directed graph G
� (V, E), and a root node r � V. Let n be the number of

FIG. 4. The edge (u, v) goes between u � Si	2 and a node v in a
two-component C in the bcf of G 	 Si	2.

NETWORKS—2004 211

nodes in G. It is assumed that r is reachable from all nodes
of G.

A branching rooted at r is a subgraph of G, whose
underlying undirected graph is a spanning tree such that it
has a directed path from any node to r. In a branching, each
node other than r has exactly one outgoing edge; r has no
outgoing edges. Sometimes this is also known as an in-
branching. One can also define the notion of an out-branch-
ing, in which r can reach every node of G through directed
paths. In this article, a branching always refers to an in-
branching. Note that our algorithm can be easily modified to
find out-branchings of small outdegree.

Let T be a branching. For each edge (v, w) in T, we call
w the parent of v, denoted by parent[v]. Because every node
except r has a unique outgoing edge in T, each node has a
unique parent, and r has none. The reflexive and transitive
closure of the parent function yields the ancestor relation. In
other words, v is an ancestor of u if there is a directed path
in the branching from u to v. We call u a descendant of v if
v is its ancestor. We say that two nodes v and w are related
if either v is an ancestor of w, or vice versa. Otherwise we
say that the nodes are unrelated. For any two unrelated
nodes v and w, the least common ancestor is the ancestor
closest to v that is also an ancestor of w. We define Cv to be
the set of all nodes in the subtree rooted at v, i.e., the set of
all nodes including v, for which v is an ancestor.

The degree of a node in a given branching is the number
of edges coming into that node. We may also refer to this as
the indegree. For a branching, let S� be the set of all nodes
whose degree is � or more. The degree of a branching is the
maximum degree of any of its nodes. Let T* be an optimal
DMDST whose maximal degree is �*. Our goal is to find a
branching whose (in)degree is as small as possible.

5.2. MDST Problem: Directed vs. Undirected Graphs

To extend the earlier algorithms to directed graphs, we
have to take note of the following differences.

First, in directed graphs, we face the following problem.
Suppose an edge is removed that splits the current tree into
two trees, namely P and Q (see Fig. 5). Suppose we try to
combine the two trees by adding the edge (x, y), where x
� P and y � Q. In the case of undirected graphs, any such
edge would do, and we get back a spanning tree of G. But
in the case of directed graphs, the node x must be the root

of the tree P. Otherwise the procedure would not yield a
branching of G. To illustrate, as shown in Figure 5(a),
undirected trees P and Q can be merged into a single tree by
adding either the edge (x, y) or the edge (a, b). But in the
case of directed graphs, as shown in Figure 5(b), only the
edge (x, y) yields a branching. If (a, b) is added, then a has
two outgoing edges, and the resultant graph is not a branch-
ing. Therefore, the improvement step needs to be modified.

Second, the notion of witness sets (see [8]) is slightly
different. The earlier definition is not suitable for directed
graphs. We prove a new lemma that can be used to establish
a lower bound on �* for directed graphs. Suppose we have
a set of witness nodes W and a set of blocking nodes B
satisfying the property that paths from different nodes of W
do not intersect before being incident to a node in B (see
Fig. 6). From this we show that there are �W� paths that have
distinct edges into B, thus establishing a lower bound on the
degree of nodes in B in any branching. The following
lemma formally establishes the lower bound.

Lemma 5.1. Let G � (V, E) be a directed graph and r
� V. Suppose there are subsets of nodes W � V and B � V
with B � W � A that satisfy the following properties:

1. Any path from a node v � W to r must have an
incoming edge into a node in B,

2. For any two nodes v, w � W, any path from v to r
can intersect a path from w to r only after it passes
through a node in B. In other words, G has no
branching wherein the path from v to the least
common ancestor of v and w does not contain a
node of B.

Then the degree of an DMDST branching rooted at r of G
satisfies, �* � �W�/�B� .

Proof. Let T* be an optimal branching rooted at r for
the DMDST problem. Because it is a branching, it contains
a path from any node to the root. By Condition 1 of the
lemma, a path from a node v � W to r contains at least one
edge into a node in B. Let fv v be the closest ancestor of
v such that fv � B. Let Pv be this path from v to fv. By

FIG. 5. Merging in directed vs. undirected graphs.

FIG. 6. Paths from W are internally disjoint until reaching B. Therefore,
each of them forces an incoming edge to a node in B in any branching.

212 NETWORKS—2004

Condition 2 of the lemma, the paths {Pv : v � W} are all
internally disjoint. Therefore, we have identified �W� paths
in T*, and each of these paths has an incoming edge to some
node in B. Therefore, the average degree of a node in B is
at least �W�/�B�, implying that there is at least one node in
T* whose degree is �W�/�B� or more. ■

5.3. The Algorithm

Our algorithm starts with an arbitrary branching T of G
and reduces the degree of high-degree nodes iteratively by
applying improvement steps defined below. Consider a
node v whose parent in the tree is p. We can decrease the
indegree of p by 1 (which is an improvement step applied to
p) if we can delete the edge (v, p) and find an alternate path
for v to reach the root r. This new path from v to r initially
goes through some nodes of Cv, comprising the subtree
rooted at v, reaching a node w � Cv (w may be v itself). A
new edge (w, x) is added (replacing the edge from w to its
parent) where x is unrelated to v. Because x is unrelated to
v, it is unrelated to any node in Cv. Therefore, the path from
x to r in T is unaffected. Because v can reach x after the
improvement, v can also reach r. We will perform such an
improvement step only if, after the improvement, the de-
grees of none of those nodes whose degree increased, is
more than the new degree of p.

Figure 7 illustrates an example of an improvement step.
In this example, the tree edges are shown in thick lines and
other edges of G are shown in dashed lines. The indegree of
p is 5, and we see if v can find an alternate path to r so that
the edge (v, p) may be deleted from T, thus decreasing the
degree of p to 4. The edge (c, g) is deleted because the
indegree of g is already 4, and if we chose to add this edge,
its indegree becomes 5. Decreasing the degree of p to 4 by
increasing the degree of g to 5 (old degree of p) does not
make progress. The edge (v, p) is also deleted and the
algorithm tries to find a path from v to r. Such a path (v, a,
b, c, d, w, x, . . .) exists and the algorithm uses this path to
modify the branching; the new branching is shown in Figure
7(b). The indegree of p has been reduced to 4.

We will now describe how to test if such an improve-
ment exists. Let the degree of p be �. We first ensure that
the degree of nodes whose degree is � 	 1 or greater does
not increase. Delete all nontree edges of G that are incident
into nodes of degree � 	 1 or greater, i.e., S�	1. In the
remaining graph, delete the edge (v, p) and test if there is
a path from v to r. If such a path exists, we can select a
shortest such path and use it to make an improvement to p
as follows. Let x be the node closest to v in the path such
that x � Cv. For each edge (y, z) in the path from v to x,
we replace the edge (y, parent[y]) by the edge (y, z). It
can be verified that the above operation results in another
branching since the number of edges is still n 	 1 and all
nodes can still reach r. The algorithm can be summarized as
follows.

Procedure IMPROVEMENT(T, v, p)

1. Delete (v, p) from G.
2. Let � be the degree of p. For each node u � V whose

indegree in T is greater than � 	 1, delete from G edges
going into u that are not in T.

3. Using a breadth-first search from v, test if the root r is
reachable from v.

4. If there is no path from v to r, return False after restoring
all edges of G.

5. Otherwise, BFS finds a path P from v to r. Let w be the
first node on the path with the property that (w, x) � P
and w � Cv and x � Cv.

6. For each edge (a, b) in the subpath of P from v to x,
replace the edge from (a, parent[a]) in T by (a, b).

7. Restore all edges of G and return True.

The DMDST algorithm tries to reduce the degree of
high-degree nodes by finding suitable improvements. The
target nodes are those whose degrees are within O(log n)
from the maximum degree of the current branching. When
no improvements are possible to these nodes, the algorithm
terminates. The DMDST algorithm can be outlined as
shown below.

Algorithm DMDST(G, r)

1. Find a branching T of G rooted at r. Let its (maximum)
degree be k. Fix some constant � � 0.

2. For each edge (v, p) � T, run IMPROVEMENT(T, v, p) if
the degree of p in T is more than k 	 log1��n . If the
degree of T has changed, reset k to be its new degree.

3. Repeat the above step until IMPROVEMENT(T, v, p) re-
turns false for every edge (v, p) � T for which it is
called.

4. Return T.

5.4. Analysis of the Algorithm

The analysis of the running time of the algorithm is
similar to those described earlier. The following lemma
shows the running time of the algorithm in terms of the
number of improvement steps I.

FIG. 7. Example: an improvement applied to node p.

NETWORKS—2004 213

Lemma 5.2. The running time of Algorithm DMDST is
O(n3I), where I is the number of improvement steps.

We now show how to find a witness set W and its
blocking set B for the branching T output by our algorithm.
In fact, we will identify one pair of sets W and B for each
� in the range k to k 	 log1��n .

Lemma 5.3. Let T be a branching whose degree is � or
more. Let S� be the set of nodes whose degree is � or more.
There are at least (� 	 1)�S�� � 1 unrelated nodes such that
the parent of each of these nodes is in S�.

Proof. The proof is by induction on the cardinality of
S�. If �S�� � 1, then the single node in that set has at least
� children, and the children of this node satisfy the lemma.
If �S�� � 1, select a node v � S� such that it has no
descendants in S� (except itself). Remove v and all its
descendants from T. Now the resulting branching has �S��
	 1 nodes of degree � or more, and by the induction
hypothesis, has at least (� 	 1)(�S�� 	 1) � 1 unrelated
nodes that are children of S�. Because all these nodes are
unrelated to each other, at most one of these nodes is an
ancestor of v. Therefore there are (� 	 1)(�S�� 	 1) nodes
left that are not ancestors of v. Now we add the children of
v to this set, its cardinality increases by at least �, and
therefore, the number of nodes is at least (� 	 1)(�S�� 	
1) � � � (� 	 1)�S�� � 1. ■

Lemma 5.4. Let T be the branching output by the DMDST
algorithm. Let its degree be k. Then for any � with k
	 log1��n � � � k,

�* �
�� � 1��S�� 	 1

�S�	1�
.

Proof. Let W be the set of nodes as in Lemma 5.3 that
are children of nodes in S�, but have no descendants in S�.
We know that �W� � (� 	 1)�S�� � 1. Let B be S�	1, the
set of all nodes whose degree is at least � 	 1. For each
node v � W, the algorithm tries to find an improvement that
decreases the degree of p � parent[v]. Because it failed (the
condition under which the algorithm stops), any path from
v to r that does not use (v, p) must go through a node x in
S�	1. By construction, the internal nodes of the path from
v to x are entirely contained in Cv, the set of descendants of
v in T. Because all nodes of W are unrelated to each other,
these subtrees are disjoint. Therefore, the sets W and B that
we have defined satisfy the conditions given in the state-
ment of Lemma 5.1. Therefore,

�* � �W�/�B� �
�� � 1��S�� 	 1

�S�	1�
.

■

Theorem 5.5. The degree of the branching returned by
our algorithm is at most (1 � �)�* � log1��n , where �
� 0 is the constant chosen by the DMDST algorithm in
Step 1.

Proof. Lemma 5.4 establishes a set of lower bounds on
�* for log1��n different values of �. At least for one of
these values of �, �S�	1� � (1 � �)�S��. Using this value
of �, we get k � (1 � �)�* � log1��n . ■

6. CONCLUSIONS

Although we could only show a quasipolynomial bound
on the running times of our algorithms so far, we believe
that our techniques can be used to obtain polynomial-time
approximation algorithms with the same performance guar-
antees. This is the most important open problem resulting
from this work. Recent techniques in multiobjective net-
work-design approximation algorithms [18] give polynomi-
al-time approximation algorithms with a logarithmic perfor-
mance guarantee for the general one-connected network
design problem formulated in (IP). This is better than the
performance guarantee achievable in polynomial time using
our results. However, the techniques used therein are quite
different, and they do not extend to the two edge-connected
and directed graph problems that we addressed in this
article.

Könemann and Ravi [13, 14] have extended the tech-
niques of Fürer and Raghavachari [7] to find approximately
minimum-cost spanning trees of approximately minimum
max-degree. They have also used techniques similar to the
ones in this article to improve the results on finding approx-
imately minimum-cost Steiner trees of approximately min-
imum max-degree in [15].

It may be possible to extend the techniques used in this
article to more general proper functions with values in {0,
1, 2, . . . , k}, with a loss of a factor k in the approximation
ratio for the degree, by employing an iterative method as in
[8]. In another direction, extending the result from two-
edge-connected to two-node-connected graphs may also be
possible by proving the corresponding node-connectivity
analogs of the results in Section 4. An easier approach
losing an additional factor of two would be to first find a
two-edge-connected subgraph of minimum degree and aug-
ment this further in a second stage to be biconnected by
using local search techniques. All of these remain promising
directions for future work.

Acknowledgments

Parts of this paper have appeared in the Proceedings of
the 12th and the 21st Annual Conferences on the Founda-
tions of Software Technology and Theoretical Computer
Science (1992/LNCS 652/pp. 279–290 and 2001/LNCS
2245, pp. 232–243). This research was done while R. Ravi
was at Brown University.

214 NETWORKS—2004

REFERENCES

[1] A. Agrawal, P. Klein, and R. Ravi, How tough is the
minimum-degree Steiner tree? An approximate min–max
equality (complete with algorithms), Tech Rep-CS-91-49,
Brown University, 1991.

[2] A. Agrawal, P. Klein, and R. Ravi, When trees collide: An
approximation algorithm for the generalized Steiner tree
problem on networks, SIAM J Comput 24 (1995), 445–456.

[3] D. Bauer, S.L. Hakimi, and E. Schmeichel, Recognizing
tough graphs is NP-hard, Discrete Appl Math 28 (1990),
191–195.

[4] V. Chvátal, Tough graphs and Hamiltonian circuits, Dis-
crete Math 5 (1973), 215–228.

[5] M. Fürer and B. Raghavachari, An �� approximation al-
gorithm for the minimum-degree spanning tree problem,
Proc 28th Ann Allerton Conference on Communication,
Control and Computing, Monticello, IL, 1990, pp. 274–281.

[6] M. Fürer and B. Raghavachari, Approximating the mini-
mum-degree spanning tree to within one from the optimal
degree, Proc 3rd Ann ACM-SIAM Symp Discrete Algo-
rithms, Orlando, FL, 1992, pp. 317–324.

[7] M. Fürer and B. Raghavachari, Approximating the mini-
mum-degree Steiner tree to within one of optimal, J Algo-
rithms 17 (1994), 409–423.

[8] H.N. Gabow, M.X. Goemans, and D.P. Williamson, An
efficient approximation algorithm for the survivable net-
work design problem, Math Program 82 (1998), 13–40.

[9] M.R. Garey and D.S. Johnson, Computers and intractability:
A guide to the theory of NP-completeness, W.H. Freeman,
San Francisco, 1979.

[10] B. Gavish, Topological design of centralized computer net-
works—Formulations and algorithms, Networks 12 (1982),
355–377.

[11] M.X. Goemans and D.P. Williamson, A general approxi-
mation technique for constrained forest problems, SIAM
J Comput 24 (1995), 296–317.

[12] M. Grötschel, L. Lovász, and A. Schrijver, Geometric al-
gorithms and combinatorial optimization, Springer-Verlag,
Berlin, 1988.

[13] J. Könemann and R. Ravi, A matter of degree: Improved
approximation algorithms for degree-bounded minimum
spanning trees, SIAM J Comput 31 (2002), 1783–1793.

[14] J. Könemann and R. Ravi, Primal-dual meets local search:
Approximating MST’s with nonuniform degree bounds,
Proc 35th Ann Symp Theory Comput ACM, San Diego,
CA, 2003, pp. 389–395.

[15] J. Könemann and R. Ravi, Quasi-polynomial time approx-
imation algorithm for low-degree minimum-cost Steiner
trees, Proc 23rd Conf Foundations of Software Technology
and Theoretical Computer Science, Mumbai, India, Lecture
Notes in Computer Science 2914, Springer 2003, pp. 289–
301.

[16] E.L. Lawler, Combinatorial optimization: Networks and
matroids, Holt, Rinehart and Winston, New York, 1976.

[17] G.L. Nemhauser and L.A. Wolsey, Integer and combinato-
rial optimization, Wiley, New York, 1988.

[18] R. Ravi, M.V. Marathe, S.S. Ravi, D.J. Rosenkrantz, and
H.B. Hunt, III, Approximation algorithms for degree-con-
strained minimum-cost network-design problems, Algorith-
mica 31 (2001), 58–78.

[19] D.P. Williamson, M.X. Goemans, M. Mihail, and V.
Vazirani, A primal-dual approximation algorithm for gen-
eralized Steiner network problems, Combinatorica 15
(1995), 435–454.

[20] S. Win, On a connection between the existence of k-trees
and the toughness of a graph, Graphs Combinatorics 5
(1989), 201–205.

NETWORKS—2004 215

