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ABSTRACT

Collaborative filtering is a broad and powerful framework
for building recommendation systems that has seen wide-
spread adoption. Over the past decade, the propensity of
such systems for favoring popular products and thus creating
echo chambers have been observed. This has given rise to an
active area of research that seeks to diversify recommenda-
tions generated by such algorithms.[2, 11, 37].

We address the problem of increasing diversity in recom-
mendation systems that are based on collaborative filtering
that use past ratings to predict a rating quality for poten-
tial recommendations. Following our earlier work, [7], we
formulate recommendation system design as a subgraph se-
lection problem from a candidate super-graph of potential
recommendations where both diversity and rating quality
are explicitly optimized: (1) On the modeling side, we de-
fine a new flexible notion of diversity that allows a system
designer to prescribe the number of recommendations each
item should receive, and smoothly penalizes deviations from
this distribution. (2) On the algorithmic side, we show that
minimum-cost network flow methods yield fast algorithms in
theory and practice for designing recommendation subgraphs
that optimize this notion of diversity. (3) On the empirical
side, we show the effectiveness of our new model and method
to increase diversity while maintaining high rating quality in
standard rating data sets from Netflix and MovieLens.
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1 MOTIVATION

Collaborative filtering has long been a favored approach in
recommender systems since its recommendations are derived
mainly from the record of interactions between users and
items. However, a key concern of CF systems is the filter
bubble, the idea that recommendation systems that focus
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solely on accuracy lead to echo chambers that amplify “rich-
get-richer” effects among the recommended items [10, 14,
28, 40]. This problem stems from the way these systems are
designed since they can only make confident recommendations
on items that have had a lot of engagement, and hence
increase their importance. This is the main motivation to
diversify the recommendations of such CF systems.

Recent ethical concerns about algorithms have focused
on similar issues about algorithmic results inherently being
biased [24, 26]. One approach to counter the status quo,
also advocated by Karger [24] is to explicitly design algo-
rithms that do not discriminate by designing an appropriate
objective function that will increase diversity in CF recom-
mendations.

The importance of diversifying recommendations for the
sake of the user arises from their intrinsic appreciation for nov-
elty and serendipity, a view that is supported by psychological
studies [34]. Conversely, research in recommendation sys-
tems [25] has shown that focusing solely on ratings hurts user
satisfaction. This has led to a subfield of recommendation
systems that focuses on improving diversity for the benefit
of the user [37, 39]. A third motivation is the business need
for diversifying recommendations: long-tail catalogs that are
frequent in the internet [8, 9] as well as media distributors
with all-you-can-play business models [18] require that the
recommendations influence users to consume diverse content
by driving more traffic to different portions of the site.
Roadmap: In this paper , we address the non-diverse nature
of CF recommendations, the needs of a long-tail business
to shape traffic on its own site, and diversifying recommen-
dations for the benefit of the users. We define a notion of
diversity conducive to all these needs based on the degree-
properties of the graph defined by the recommendations
(Section 2). After reviewing related work (Section 3), we
show that the design problem for this notion can be solved
efficiently both in theory and practice using network flow
techniques (Section 4). We validate our method by showing
how to adapt standard collaborative filtering algorithms with
an efficient post-processing step to optimize for our measure
of diversity by sacrificing very little on the recommendation
quality on standard data sets (Section 5).

2 A NEW GRAPH OPTIMIZATION
PROBLEM

We model all the user-item recommendations provided
by a CF system as a bipartite graph, and the choice of
recommendations actually given to the users as a subgraph
selection problem in this graph. The constraints on the
number of items that can be recommended to a user put
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bounds on the out-degree of the user nodes. Following our
earlier work [7], we model the problem of achieving diversity
among the items as specifying target in-degree values for
each item and then finding a subgraph that satisfies these
constraints as closely as possible. We develop the resulting
graph optimization problem next.

We start our discussion by reviewing the well known b-
matching problem on bipartite graphs [30]. In the b-matching
problem, an underlying bipartite graph G = (L,R) with edge
set E is given, along with a nonnegative weight g on the edges,
and two vectors of non-negative integers (c1, . . . , cl) and

(a1, . . . , ar) (degree bounds) such that
∑l

i=1 ci =
∑r

i=1 ai.
The goal is to find a maximum g-weight (or minimum g-cost)
subgraph H where the degree of vertex ui ∈ L in H is ci for
every 1 ≤ i ≤ l and the degree of vertex vj ∈ R in H is aj for
every 1 ≤ j ≤ r. This problem generalizes the well-known
maximum weight perfect matching problem, which can be
obtained as a special case if we set all target degrees to 1.
Like the perfect matching problem in bipartite graphs, the b-
matching problem can be solved by a reduction to a network
flow model by adding a source with arcs to L, a sink with
arcs from R and using the degree constraints as capacities
on these respective arcs.

Assume that the degree bounds are given. The vector
(c1, . . . , cl) will be taken as a vector of hard constraints that
must be met exactly, based on display constraints for the
users. In other words, we consider a subgraph H to be a
feasible solution if and only if deg+

H(ui) = ci for all uj ∈ L.
The vector (a1, . . . , ar) will be specified by the recommen-
dation system designer to reflect the motivations described
above (increase the coverage of items in CF results, increase
the novelty to users on average, or shape traffic to some
items). However, this target degree bounds may be unattain-
able (i.e. there is no feasible b-matching for these degree
bounds). To handle this potential infeasibility, we incorpo-
rate them in the objective. We call the vector (a1, . . . , ar),
the target degree distribution. We now define the objective
for a given feasible solution H,

D(H) =
∑
vj∈R

|deg−H(vj)− aj |

which is simply the sum of the violations (in both direc-
tions) of the degree constraints for R. We call this objec-
tive the discrepancy between H and the degree distribution

(a1, . . . , ar), and we name the problem of meeting the hard
constraints (c1, . . . , cl) while minimizing this objective the
MIN-DISCREPANCY problem.

The MIN-DISCREPANCY problem defined above gen-
eralizes the b-matching problem, and has objective value
zero iff there is a feasible b-matching for the given degree
bounds. Like the weighted b-matching problem mentioned
above, we can adapt our problem to the weighted setting
where each edge has a real-valued weight. In this setting, the
objective to maximize the total weight of the chosen edges,
among graphs that have the minimal discrepancy possible
from the given targets. We call this variant of the problem

the MAX-WEIGHT-MIN-DISCREPANCY problem. Post-
processing a CF Recommender We now show how we
can apply the graph optimization problem defined above to
post-processing the results of a CF recommendation system.
As input to a CF system, we have a set of items I, a set
of users U , and list of known ratings given by each user to
different subsets of the items. The CF system outputs a rele-
vance function rel : U × I → [a, b] that takes pairs of users
and items to a predicted recommendation quality in some
interval on the real line. Without any extra information on
the problem domain, CF systems employ user-based filtering,
item-based filtering, matrix factorization, or other methods
to arrive at these predicted rating qualities. For the rest
of this paper, this rating function will be considered to be
given as a black-box since its implementation details have no
consequence on our model, even though we will experiment
with various options in our empirical tests.

2.1 Summary of Contributions

(1) Following our earlier work [7], we model the problem of
post-processing recommendations from a CF system to
increase diversity as a maximum-weight degree-constrained
subgraph selection problem to minimize the discrepancy
from a target distribution.

(2) We demonstrate that the problem of finding maximum-
weight min-discrepancy subgraph can be reduced to the
problem of finding minimum cost flows. In particular, this
shows that the discrepancy between a recommendation
system and any desired indegree distribution can be mini-
mized in polynomial time. The abundance of fast solvers
[23] for this problem makes our model not just theoreti-
cally interesting, but also practically feasible. Moreover,
we prove that aggregate diversity maximization can be
implemented special case of the discrepancy minimization
problem. This generalizes the work of Adomavicius and
Kwon on maximizing aggregate diversity [2] while simulta-
neously maximizing recommendation quality and matching
the same asymptotic runtimes.

(3) We conduct experiments on standard datasets such as
MovieLens-1m, and Netflix Prize data. By feeding our
discrepancy minimizer as a post-processing step on the un-
diversified recommendation networks created by standard
collaborative filtering algorithms, we measure the trade-off
our algorithm makes between discrepancy and recommen-
dation quality under a variety of parameter settings. We
compare against baselines and other diversification ap-
proaches, and find that our diversifier makes more relevant
recommendations despite achieving higher diversity gains,
as measured not only by our discrepancy measure, but also
by standard sales diversity metrics such as the Gini index
or aggregate diversity.

3 RELATED WORK

First we review related work on various collaborative fil-
tering approaches, and then discuss various extant notions
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of diversity already considered in the recommender system
literature.

3.1 Collaborative Filtering

Collaborative filtering is the most versatile and widely
accepted way of building recommender systems. The main
idea behind collaborative filtering is to exploit the similarities
between different users or between different items using user
feedback. While there are many different methods for doing
this, we constrain our evaluation to three representative
approaches.

Matrix factorization approaches assume the existence of D
latent features which describe both users and items, and seeks
to find two rank D matrices whose product approximates
the matrix of all known rankings. The advantage is that D
is typically much smaller than the number of users or items.
In our work, we experiment with a version of this approach
due to Hu [22].

Another popular approach is neighborhood based recom-
menders, which can either be user-based or item-based. These
approaches define a distance between pairs of users and pairs
of items respectively, using measures like cosine similarity
or Pearson correlation [13]. The user-based approach then
predicts the unknown rating from user u to item i by taking a
distance weighted linear combination of the ratings of similar
users on item i. The item-based approach operates similarly,
but instead takes a weighted combination of the ratings of
user u on items similar to item i. We use the implementations
of these methods in RankSys [36] in our experiments.

Finally, we consider a graph based recommender strategy
due to Cooper et. al. [12]. This method considers a bipartite
graph of known user and item interactions, ignoring all rating
information. In this graph, a random walk of length 2 from
a user u corresponds to the selection of a user similar to u,
and a random walk of length 3 corresponds to sampling an
item liked by a similar user. Recommendations for a user u
are ranked according to how many random walks of length
3 starting at that user terminate at a given item. Since
this method is both simple to state and implement on small
to medium sized datasets, we use our own implementation
of this method in our empirical comparisons. While less
commonly used than the first two types of recommenders
we discussed, this approach is still representative of a large
class of recommendation strategies such as UserRank [16] or
ItemRank [19].

3.2 Sales Diversity

The Need for Sales Diversity: As mentioned above,
the need for system-level diversification in recommenders
is a business related one. Since the internet enables busi-
nesses with low inventory costs, focusing on making more
recommendations in the long tail can be an effective retail
strategy. This view is most clearly expressed by Anderson,
who advocates selling “selling less of more” [5]. Interestingly,
recommender systems rarely capitalize on this opportunity,
and often compound the problems observed with popularity

bias. Indeed, Zhou et. al. find that YouTube’s recommen-
dation module leads to an increase in popularity for the
most popular items [40]. Similarly, Celma et. al. report
similar findings for music recommendations on Last.fm [10].
Hosanagar and Fleder show that this popularity bias can
lead to subpar pairings between users and items, potentially
hurting customer satisfaction [14], and McNee reports that
a focus on accuracy alone has hurt the user experience of
recommender systems [25]. Since recommendations have an
outsized impact on customer behavior [2, 31], businesses have
a need to control the distribution of recommendations that
they surface in their recommenders.

Metrics for Sales Diversity: There are several well-
established metrics for measuring sales diversity, and we
focus our attention on three. The most popular among these
is the aggregate diversity, which is the total number of objects
that have been recommended to at least one user. Under this
name, this measure has been used notably by Adomavicius
and Kwon [2, 3] and by Castells and Vargas [35]. It has
also been used as a measure of system-wide diversity under
the name of coverage [1, 17]. While easy to understand and
measure, the aggregate diversity leaves a lot be desired as a
measure of distributional equality. In particular, aggregate
diversity treats an item which was recommended once as
well-covered as an item which was recommended thousands
of times. For example, imagine a system that recommends
each item in a set of n items twice. This network will have
the same aggregate diversity as a network which recommends
one of the items n times, and every other item only once,
even though this system is much more biased than the first.

An example of a more nuanced metric is provided by the
Gini index. This measure is most popularly used in econom-
ics, as a quantization of wealth or income inequality. The
Gini Index can be adapted for the recommendation setting
by considering the number of recommendations an item gets
as its “wealth” in the system. The Gini index defines the
most equitable distribution to be the one where every item is
recommended an equal number of times. Given the actually
realized distribution of recommendations, it aggregates the
difference between the number of recommendations the bot-
tom nth percentile gets in the system and the number of rec-
ommendations they would have obtained under the uniform
distribution where n ranges from 0 to 100%. The measure we
propose is a particularly good proxy for the Gini index, since
both measure a notion of distance from the uniform distribu-
tion. Since recommender systems produce distributions even
more unequal than the typical wealth distributions within a
country, this metric has found widespread acceptance in the
recommendation community [17, 21, 29, 32].

Finally, we consider the entropy of the distribution of
recommendations. Entropy has its roots in physics and
information theory, where it is used to measure the amount
of information contained in a stochastic process. For every
item, we can define a probability of being surfaced by the
recommender by counting what fraction of recommendations
(made to any user) point to this item. As with the Gini index,
optimal entropy is achieved if and only if the recommendation
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distribution is uniform. While less common than either
aggregate diversity or the Gini index, the entropy of the
recommender system has also been used by many researchers
[32, 33].

We measure the diversification performance of our methods
and the baselines we test in our experimental section by all
three of these metrics - aggregate diversity, Gini index and
entropy.

Approaches for Increasing Sales Diversity: Attempts
at increasing sales diversity fall into two approaches: opti-
mization and reranking. The optimization approach has
been taken up most notably by Adomavicius and Kwon [2],
who consider heuristic and exact algorithms for improving
aggregate diversity. Their flow based solution is approximate,
while their exact solution to this problem relies on integer
programming and has exponential complexity. Our work in
this chapter subsumes these approaches by giving an exact
polynomial algorithm for aggregate diversity maximization.
To the best of our knowledge, neither the Gini index nor the
entropy of the degree distribution can be optimized in an
exact sense.

The reranking based approaches are by far the more pop-
ular choice in increasing sales diversity. Here, we consider
three different approaches by Castells and Vargas, spread
across two different papers. The first two approaches model
popularity complement (PC) and free discovery (FD) as a
function of the probability of an item being known to a user
under a probabilistic discovery model [37]. The third ap-
proach, using the Bayes Rule (AB), adjusts the prediction
function using a Bayesian approach [38].

4 ALGORITHMS

In this section, we prove that discrepancy from a target
distribution can be minimized efficiently by reducing this
problem to one invocation of a minimum cost flow problem.
This result holds regardless of the target in-degree distribu-
tion and the required out-degree distribution.

4.1 Construction of the Flow Network

Let G = (L,R,E) be the input bipartite graph which
contains candidate recommendations. We construct a flow
network out of G such that the min-cost feasible flow will
have cost equal to the min-discrepancy. Our network will
have |V | + 2 nodes: two special sink nodes t1 and t2, as
well as a copy of each node in G (See Figure 1). We set the
supply of each node ui to ci (its specified out-degree), and

the demand of the sink t2 to
∑r

j=1 aj =
∑l

i=1 ci. Next, for

each arc (ui, vj) ∈ G, we create an arc (ui, vj) in the flow
network, with unit capacity and zero cost. For each node
vj , we create an arc to each sink. We add the arc (vj , t1)
of capacity aj (its target out-degree) and zero cost, and the
arc (vj , t2) of infinite capacity and cost 2. We finally add
to our network an arc (t1, t2) between the two sinks, with
infinite capacity and zero cost. Our assumptions ensure that
total supply,

∑l
i=1 ci meets total demand

∑r
j=1 aj , and that

a feasible flow exists since each node ui in L can send as

Figure 1: The network flow model for the
MIN-DISCREPANCY problem with nodes labelled
with their supply and arcs labeled with their
cost/capacity. Unlabelled nodes have zero supply.
much as deg+G(ui) ≥ ci flow to the sink t2 via any ci different
neighbors. Note that there are |E|+ 2|R|+ 1 arcs in total
in our flow network. The complete flow network constructed
this way is shown in Figure 1.

Our main theorem shows that the minimum cost of a flow
in this network is the same as the minimum discrepancy a
subgraph of G has from our target in-degree distribution.

Theorem 4.1. Suppose G = (V,E) satisfies deg+G(ui) ≥ ci
for all ui ∈ L and the degree distributions satisfy

∑l
i=1 ci =∑r

i=1 ai. Then the minimum cost flow in the network con-
structed above has the same cost as the value of the MIN-
DISCREPANCY problem and can be computed in
O(|E||V |2 log(|V |)) time.

Proof. Consider a minimum cost flow in this network.
Since the network’s capacities and supplies are all integral,
we may assume that this minimum cost flow is integral as
well [4]. This means each edge crossing from L to R is either
fully used or unused because it is unit capacity.

We let H be a subgraph of G defined by taking the edges
of the form (ui, vj) where (ui, vj) is used in the flow. Since
each such edge is either used or unused, and the supply of
node ui is ci, we will satisfy the constraints of the form
deg+

H(ui) = ci. To see that the cost of this flow is the same
as the cost of our objective, note that we can partition the
vertices inR into two halves: P for the vertices satisfying their
degree requirement deg−H(vj) ≥ aj , and N for the vertices
not satisfying their degree requirement. We can now write
our objective as follows.

∑
vj∈R

| deg−H(vj)− aj | =
∑
vj∈P

(
deg−H(vj)− aj

)
+

∑
vj∈N

(
aj − deg−H(vj)

)
However, note that our flow is feasible. Therefore, the total

number of edges recommended is
∑l

i=1 ci. It now follows
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that
∑

vj∈R(deg−H(vj)−aj) =
∑

vj∈R deg−H(vj)−
∑l

i=1 ci = 0

from our assumption that
∑l

i=1 ci =
∑r

j=1 aj . Adding this
to the expression above gives the following.

∑
vj∈R

| deg−H(vj)− aj | = 2
∑
vj∈P

(
deg−H(vj)− aj

)
In our formulation, we only pay for the flow going through

a node vj if the flow is in excess of aj . Since we pay 2 units
of cost for each unit of this type of flow, and don’t pay for
anything else, our objective matches that of the flow problem.

By reversing our reduction, we can show that every sub-
graph H with the desired properties induces a flow with the
same cost as well. Therefore, the minimum discrepancy prob-
lem can be solved by a single invocation of a minimum cost
flow algorithm, on a network with |L|+ |R|+ 2 nodes and
2|R|+ |E|+ 1 edges with capacity bounded by |V |. This can
be solved in O(|E||V |2 log(|V |)) time, using capacity scaling
or other competitive methods [27]. �

Aggregate Diversity. Recall that aggregate diversity is
the total number of items recommended by a recommender
system. Aggregate diversity does not correspond to dis-
crepancy from any target distribution, however it can be
maximized by our model as well.

Theorem 4.2. Suppose
∑l

i=1 ci ≥ r = |R|. Aggregate
diversity is maximized by the minimum cost flow solution in
the network constructed for the
MIN-DISCREPANCY(G, {ci}li=1, {1}rj=1) problem.

Proof. The sufficiency of our condition is obvious as it is
needed to make sure that the supply of the nodes in L can be
absorbed by the sink node. Now suppose that a recommender
system achieves aggregate diversity r. A total of

∑l
i=1 ci

units of flow make it to the sink, and each has to travel
through an arc of cost 0 or 1. Since there are r different
items in R, and each can send 1 unit of flow without cost,

this solution has cost
(∑l

i=1 ci
)
− r. Conversely, suppose

some solution obtains cost
(∑l

i=1 ci
)
− r. The only way the

cost can be reduced below
(∑l

i=1 ci
)

is achievable is through

the use of 0 cost arcs. Since each such arc has capacity 1, at
least r such arcs must be used in the solution. This implies
that a solution of aggregate diversity r exists. �

4.2 Incorporating Recommendation
Relevance

4.2.1 Cumulative Gain. Note that we have had to assign
zero costs to all the edges crossing between the two sides
of our bipartition in order for our reduction to work. Rec-
ommendation strengths can be taken into account by our
flow based methods, and we can find the graph that has
the highest total recommendation quality given a discrep-
ancy value using an extra pass with a flow solver. This can
be accomplished as follows: first, we solve the regular dis-
crepancy problem, and finding the lowest discrepancy value

OPT attainable by the underlying G. Knowing this value,
we can now fix the flow between t1 and t2 in the original
flow network to lc−OPT , where lc is the total out-degree
of the subgraph from L. This constrains the flow solver to
choose subgraphs where exactly OPT of the recommenda-
tions go over the charged edges. We then keep all the other
capacities the same and add new nonzero weights reflecting
recommendation quality while removing all other costs. In
a second pass, we find the highest weight flow in this net-
work, which corresponds to the recommender graph with
OPT discrepancy with the highest total recommendation
quality. Therefore, we can solve the MAX-WEIGHT-MIN-
DISCREPANCY problem with only two calls to a minimum
cost flow solver. We call this approach the two-pass method1.
Maximizing average recommendation quality in this fashion
corresponds to the finding the recommendation subgraph
with the highest cumulative gain.

4.2.2 Bicriteria Optimization. In the construction above,
we needed to make an extra pass with a flow solver in order
to find a solution with a high level of relevance. If we used
these cost settings along with the cost settings we used in
4.1, we would no longer be optimizing only for ratings, or
only for discrepancy. Instead, this results in a bicriteria
objective of the form discrepancy(H)− µ · rel(H), where µ
can be any real number, and where relevance of a solution
graph denotes the average relevance of the recommendations
in H as predicted by the underlying CF recommender. We
call this approach the weighted method, and demonstrate
that while it is strictly worse than the two-pass method in
theory, it yields acceptable results in practice while saving an
extra pass of flow minimization. We discuss the performance
differences in our experimental section.

4.3 Greedy Algorithm

In this section we describe an alternative approach to
solving the discrepancy minimization problem that does not
require the use minimum cost flow solvers, which can be effi-
cient in practice, but do not guarantee linear runtimes. Our
greedy algorithm constructs the solution subgraph iteratively,
making a discrepancy reducing recommendation whenever
possible. If such an edge is not available, then we choose from
all available recommendations. Our choice of recommenda-
tion is conditioned on the quality of this recommendation, as
measured by our black-box relevance function rel.

Since the greedy algorithm considers all discrepancy re-
ducing recommendations for a user at the same time, a large
number of candidate recommendations may lead to the greedy
algorithm making subpar selections, since almost every rec-
ommendation we consider early on will likely be a discrepancy
reducing edge. In order to moderate this effect, we include a
parameter q > 1 which we use to reweigh the relevance scores.
The larger the q is, the more our greedy algorithm prefers
making relevant recommendations. On the other hand, if we

1This follows the goal-programming methodology for two-objective
functions, popular in Operations Research.

KDD 2017 Research Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

711



pick a q which is too large, then we overprioritize high rele-
vance values, and the greedy algorithm effectively turns into
the standard recommendation approach. To balance these
concerns, we run the greedy algorithm with different settings
of q, and select the solution with the highest predicted rating
quality which has discrepancy at most 10% higher than the
best solution we generate.

5 EXPERIMENTS

In this section, we put our model to the test. Our findings
are summarized below, and we discuss each point further in
the following subsections.

(1) Our fast models perform well at optimizing for pre-existing
notions of diversity such as aggregate diversity and the Gini
index despite these measures not being explicitly referenced
in our model. Conversely, we show that optimizing directly
only for aggregate diversity (either by using heuristics or
solving to optimality) does not yield results that are diverse
by the other measures (See Table 1)

(2) Normalized discrepancy can often be reduced by more
than 50%, at the cost of only a 15-30% change in average
recommendation quality. Both the two-pass method, and
the weighted method performed well in producing a smooth
trade-off between recommendation quality and discrepancy
reduction, with large gains in discrepancy being made
for minimal recommendation quality loss (See Figure 3).
The two-pass method is optimal, but the weighted-model
provides a good approximation of the two-pass method’s
output with less computational overhead.

(3) Sales diversity maximization problems become easier as
the display constraints are relaxed since there are more
opportunities for the system to make unconventional recom-
mendations. We show that the advantage our optimization
based approach has over competing approaches gets bigger
as display constraints are tightened, which is desirable for
applications on mobile platforms where screen real estate
is scarce (see Figure 2).

(4) Using the uniform target distribution can lead the op-
timizer to pick subgraphs where degree constraints are
violated by large margins at certain nodes. To remedy this,
we advocate the use of target distributions that move to-
wards resembling the underlying degree distribution rather
than the uniform distribution.

Experimental Setup and Datasets. All of our experi-
ments were conducted on a desktop computer with an Intel
i5 processor clocked at 2.7GHz, and with 16GB of memory.
We used three rating datasets to generate the graphs we fed
to our flow solvers: MovieLens-1m, MovieLens-10m [20] and
the Netflix Prize dataset.

We pre-process the datasets to ensure that every user and
every item has an adequate amount of data on which to base
predictions. This pre-processing leaves the MovieLens-1m
data with 5800 users and 3600 items, the MovieLens-10m
dataset with 67000 users and 9000 items, and the Netflix
dataset with 8000 users and 5000 items. The use of these
datasets is standard in the recommender systems literature.

In this work, we consider the rating data to be triples of the
form (user, item, rating), and discard any extra information.

We will henceforth report results only using the MovieLens
data due to space constraints since the results from the Net-
flix data are similar. We used version 0.4.4 of the RankSys
project to generate recommendations using standard collabo-
rative filtering approaches [36]. The resulting network flow
problems were optimized using a modified version of the
MCFSimplex solver due to Bertolini and Frangioni [15]. Our
choice of MCFSimplex was motivated by its open-source sta-
tus and efficiency, but any other minimum cost flow solver
such as CPLEX or Gurobi which accepts flow problems in the
standard DIMACS format can also be used by our algorithms.
Our discrepancy minimization code is available at Github.

Quality Evaluation. To evaluate the quality of our
method, we employ a modified version of k-fold cross-validation.
In particular, for each user in our datasets who has an high
enough number of observed ratings, we divide the rating set
into 10 equal sized subsets, and place each subset in one of
10 test sets. When creating the test sets, we filter out the
items which received a rating of 1 or 2 and keep the items
which received a rating of 3 or higher in order to ensure the
relevance of our selections. We then define the precision of
our recommendation list to be the number of items we rec-
ommend among all of our top-c recommendations which are
also included in the test set. This provides an underestimate
of the relevance of our recommendations, as there might be
items which are relevant, but for which we have no record of
the user liking. A simpler version of our hold-out method is
utilized in other works [12, 38] where only a single random
split is made. Using a 10-fold split of the test data enables us
to run a signed rank test, and test whether the improvements
made by our algorithms are statistically significant.

Our methodology stands in contrast with the methodology
used by Adomavicius and Kwon to evaluate the effectiveness
of their aggregate diversity maximization framework [2]. They
use a metric called prediction-in-top-c, which measures the
average predicted relevance of the c recommended items
for each user. We believe that using predicted ratings for
relevance evaluation purposes is flawed since these predictions
are approximate in the first place. Furthermore, using the
relevance values used by the recommender make comparisons
across different recommenders difficult, as each recommender
has its own scale.

Supergraph Generation. All of our optimization prob-
lems require that a supergraph of candidate recommendations
be given. For each dataset we used, we generated 240 super-
graphs in total. This is the result of using 10 training sets,
4 different recommender approaches, and 6 different quality
thresholds enforced by picking the top 50, 100, 200, 300, 400
and 500 recommendations for each user. We use k to denote
the number of candidate recommendations in the supergraph.
The matrix factorization model we utilize [22] comes with
three parameter settings: a regularization parameter λ, a
confidence parameter α and the number of latent factors [22].

While the authors report an α value of 40 is suitable for
most applications, we set a lower value of α = 30 in order
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to obtain more diverse candidate recommendation lists. The
regularization parameter λ was tuned with cross-validation as
recommended by the authors, and the model was trained with
50 latent factors. For the neighborhood based methods, we
consider neighborhoods of size 100 in both the item-based and
user-based cases. For these recommenders we opted to use the
inverted neighborhood policy approach described in [38] in
order to obtain more diverse candidate recommendation lists.
Instead of using the top 100 most similar items to an item
i as the neighborhood, this approach uses the items which
have item i in their top 100 neighborhoods. We also used
Jaccard similarity in order to measure similarity between
pairs of users and items in the neighborhood based methods.

The authors of the random walk recommender we imple-
mented consider a parameter setting α which raises every
element of the transition matrix to the power α and find that
predictive accuracy is maximized for α = 1.5 [12]. Since they
conduct their experimental validation on the same datasets
as ours, we also use this parameter in our tests. In our ta-
bles, we shorten the names of these recommenders as MF
for the matrix factorization model, IB and UB for the (item-
and user-) neighborhood based approaches, and RW for the
random walk approach.

5.1 Comparison To Other Methods and
Metrics

In this section we compare our discrepancy minimization
framework to other similar approaches. In particular, we test
6 different approaches to diversifying the recommendation
lists.

•Top (TOP): The standard method considers the unmod-
ified output of the underlying recommender, and makes
the top-k recommendations for each user. This is the un-
diversified solution but provides the highest rating quality.
•Two pass (GOL): The two-pass method first finds the

lowest discrepancy value achievable with the given graph for
the current target degrees, and then in a second pass, finds
the highest rating solution which achieves this minimum.
•Aggregate Diversity (AGG): The aggregate diversity

maximizing method is also optimized using our own flow-
based framework, by running our min-cost flow algorithms
with the setting of ai = 1 as described in Theorem 4.2.
•PC Reranking (PC), FD Reranking (FD) and Bayes

Rule Reranking (AB): These diversifiers are due Vargas
and Castells [37, 38], and were mentioned in our related
work section.
•Greedy (GRD): This is an implementation of the greedy

heuristic described in Section 4.3.

We evaluate these different approaches on the following
metrics, all measured for the top-n recommendation task on
both the MovieLens and Netflix data.

•D@n: Discrepancy from the uniform distribution, normal-
ized to fit in the [0, 1] range by dividing by the maximum

discrepancy achievable, i.e. 2
∑l

i=1 ci.
•A@n: The fraction of items which received a recommen-

dation.
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Figure 2: The change in the Gini index and the pre-
cision of the diversified solutions when the recom-
mendation list length is varied. Values to the right
and towards the top are better.

•G@n: The Gini index of the degree distribution of items.
•E@n: The entropy of the probability distribution formed

by normalizing this degree distribution.
•P@n: Precision, measured as the fraction of items in the

recommendation list which are part of the test set.

Table 1 summarizes our results for the MovieLens-1m
dataset. The results from the other datasets can be found in
the full version of this paper [6].

The first thing to notice in this table is that the undiversi-
fied recommendation lists perform very poorly with respect
to all distributional measures. This is true with respect to
even the simplest measure, aggregate diversity. The Random
Walk Recommender in particular surfaces only 7% of the
items in the MovieLens catalog. Other recommenders do not
do particularly better, and only surface 15-20% of items to
the users via top-10 recommendation lists.

5.2 Effect of Recommendation List Length

With more computer usage shifting from devices with
larger displays like desktops and laptops to mobile devices
like phones and tablets, display constraints that govern the
number of recommendations we can make to user have gotten
tighter. Therefore, it has become increasingly important for
diversification approaches to be effective even when there is
space for only a few recommendations to be made. In Figure
2, we fix the underlying subgraph to be the graph generated
by our MF recommender with 200 candidate recommenda-
tions for each user, and measure the change in Gini index
against the precision loss of the different diversifiers with
display constraints set to c = 5, 10 and 20. We note that
our diversifier performs better as the display constraints get
tighter.

For the top-5 recommendation task, our method effectively
outperformed all other diversifiers. Considering all of these
factors, we conclude that an optimization based framework
works better in applications where display constraints are
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k=50 k=250 k=500
P@10 A@10 G@10 E@10 D@10 P@10 A@10 G@10 E@10 D@10 P@10 A@10 G@10 E@10 D@10

MF

TOP 0.433 0.263 0.924 5.974 0.823 0.433 0.263 0.924 5.974 0.823 0.433 0.263 0.924 5.974 0.823
AGG 0.433 0.429 0.919 6.024 0.816 0.432 0.651 0.906 6.094 0.804 0.432 0.758 0.896 6.146 0.796

FD 0.340 0.385 0.826 6.819 0.712 0.316 0.478 0.792 7.000 0.658 0.330 0.528 0.802 6.952 0.659
PC 0.362 0.331 0.858 6.619 0.754 0.335 0.347 0.843 6.715 0.736 0.321 0.356 0.836 6.756 0.728
AB 0.257 0.429 0.767 7.081 0.661 0.167 0.649 0.648 7.504 0.503 0.204 0.735 0.660 7.472 0.507

GOL 0.414 0.423 0.855 6.451 0.658 0.358 0.639 0.646 7.189 0.414 0.331 0.754 0.483 7.581 0.282
GRD 0.269 0.418 0.815 6.863 0.670 0.125 0.620 0.603 7.583 0.449 0.083 0.734 0.455 7.852 0.324

IB

TOP 0.410 0.257 0.953 5.450 0.861 0.410 0.257 0.953 5.450 0.861 0.410 0.257 0.953 5.450 0.861
AGG 0.409 0.431 0.947 5.496 0.855 0.409 0.653 0.933 5.573 0.843 0.409 0.813 0.918 5.640 0.833

FD 0.366 0.352 0.906 6.202 0.795 0.321 0.465 0.842 6.730 0.708 0.296 0.633 0.781 7.035 0.622
PC 0.368 0.317 0.921 6.028 0.819 0.338 0.332 0.902 6.261 0.796 0.323 0.348 0.889 6.383 0.779
AB 0.282 0.429 0.861 6.610 0.742 0.196 0.641 0.735 7.231 0.591 0.214 0.782 0.695 7.299 0.528

GOL 0.404 0.380 0.911 5.834 0.735 0.380 0.573 0.763 6.611 0.524 0.358 0.733 0.605 7.160 0.375
GRD 0.258 0.383 0.898 6.215 0.753 0.135 0.556 0.747 7.163 0.568 0.090 0.695 0.610 7.577 0.437

UB

TOP 0.412 0.146 0.971 5.002 0.903 0.412 0.146 0.971 5.002 0.903 0.412 0.146 0.971 5.002 0.903
AGG 0.412 0.308 0.967 5.062 0.895 0.412 0.585 0.952 5.176 0.878 0.412 0.777 0.936 5.262 0.866

FD 0.380 0.282 0.902 6.242 0.797 0.335 0.498 0.840 6.674 0.686 0.333 0.619 0.833 6.630 0.665
PC 0.391 0.240 0.922 6.029 0.833 0.360 0.275 0.903 6.252 0.809 0.350 0.279 0.898 6.300 0.802
AB 0.291 0.307 0.861 6.592 0.761 0.195 0.566 0.747 7.158 0.593 0.210 0.696 0.703 7.240 0.528

GOL 0.412 0.306 0.928 5.530 0.760 0.382 0.582 0.732 6.618 0.486 0.342 0.772 0.507 7.358 0.297
GRD 0.265 0.303 0.900 6.210 0.766 0.136 0.566 0.703 7.302 0.519 0.091 0.746 0.519 7.757 0.353

RW

TOP 0.303 0.072 0.992 3.710 0.970 0.303 0.072 0.992 3.710 0.970 0.303 0.072 0.992 3.710 0.970
AGG 0.304 0.262 0.989 3.786 0.960 0.302 0.515 0.976 3.909 0.943 0.297 0.670 0.967 3.965 0.936

FD 0.343 0.232 0.964 5.203 0.898 0.289 0.466 0.911 5.968 0.780 0.284 0.523 0.908 5.792 0.761
PC 0.351 0.205 0.967 5.147 0.905 0.339 0.364 0.933 5.819 0.829 0.348 0.404 0.929 5.842 0.819
AB 0.287 0.261 0.957 5.409 0.889 0.209 0.488 0.881 6.429 0.766 0.183 0.550 0.846 6.625 0.705

GOL 0.319 0.228 0.980 4.122 0.887 0.302 0.489 0.896 5.177 0.689 0.248 0.633 0.780 5.980 0.536
GRD 0.213 0.238 0.966 5.129 0.889 0.130 0.478 0.856 6.627 0.708 0.094 0.613 0.743 7.206 0.574

Table 1: Comparison of different diversifiers systems on various diversification metrics for the 10 item recom-
mendation task. The underlying dataset is the MovieLens-1m dataset and the candidate recommendations
were generated using Matrix Factorization (MF), Item-Based (IB), User-Based (UB), and Random Walk Rec-
ommenders (RW). The bolded entries show the best values in each metric (ignoring the greedy algorithm),
and italicized values show a statistically insignificant change from the baseline with p < 0.01.

particularly tight. The reranking approaches make recommen-
dations for each user independently, whereas our optimization
framework makes all of these recommendations at once, while
optimizing explicitly for a diversity metric. Therefore, our
two-pass method is better able to coordinate a small number
of recommendations to make large gains in diversity while
also keeping precision high.

5.3 Trading Off Discrepancy and Precision

In this section we explore the discrepancy/precision trade-
offs made by our different models. Throughout the section, we
consider the discrepancy from the uniform target distribution.
This target indegree distribution sets aj = c · l/r for each
vj ∈ R for a fixed c which represents the display constraints.
The discrepancy from this target can be thought of as an
extreme measure of diversity, since we are measuring distance
from the most equitable distribution.

For the graph in Figure 3, we increase the number of can-
didate recommendations for each user from 100 to 500 in
increments of 100, and show how this affects the recommenda-
tion quality of our solution as well as the lowest discrepancy
achievable. We plot the normalized discrepancy to the uni-
form target on the x-axis against precision in the y-axis.
Discrepancy improves towards the left, and recommendation
quality improves towards the top. The trajectory of the

curves we plot in in this figure Figure 3 is representative of
the trajectories found using different datasets and different
recommenders, and our full results can be found in [6].

We consider 4 different approaches to reducing discrepancy.
The first is our two-pass method, which optimizes for discrep-
ancy first, then for average predicted relevance across the sys-
tem. We also consider the weighted method with the settings
µ = 1, and µ = 1/2 and µ = 0.01. Recall that the weighted
method optimizes the objective discrepancy(H)− µ · rel(H),
where rel(H) denotes the average recommendation quality in
the solution graph H we produce. Therefore, the weighted
method does not optimize for discrepancy. Instead, it find a
solution where the cost of reducing discrepancy by µ units
is the same as reducing aggregate predicted relevance by 1
unit. When run on the same input graph, the predicted
relevance of the two-pass method is always lower than the
predicted relevance of the µ = 1 model, and the predicted
relevance of the weighted method with µ is always lower than
the predicted relevance of the weighted method with µ′ > µ.
The discrepancies produced by these algorithms on the same
graph are also ordered in the same way.

From this figure, we can immediately notice certain fea-
tures. First, all three algorithms produce highly clustered
data with initial normalized discrepancy from the uniform
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Figure 3: Precision discrepancy trade-off in the
MovieLens-1m dataset using the MF recommender.
In each series, the number of edges in the input
graph increases towards the left.

distribution always being over 0.8. Second, the fall-off in dis-
crepancy happens first quickly, then slowly as more edges are
included. Therefore, significant gains are possible even while
including a small number of candidate recommendations.

One notable difference between the weighted methods and
the two-pass method is that in the weighted method, the
discrepancy improvements start slowing down as more and
more candidate edges are included in the supergraph. As
mentioned above, the bicriteria objectives improve when dis-
crepancy gains can be made which offset the fall in predicted
relevance. As we enlarge the candidate set of recommenda-
tions, we enable discrepancy increases with edges that are
less and less able to make up for the corresponding relevance
losses. Therefore, the solution graph stops changing though
lower discrepancies are possible. Where this limiting point
lies depends on the structure of the graph and the distribution
of relevance values assigned by the underlying recommender
and is not easy to predict. However, for suitably low values
of µ, the weighted method can adequately approximate the
output of the two-pass method, achieving essentially the same
trade-off curves.

5.4 Resource Use

Since our methods are based on minimum cost flow, the
problems that result from our reduction can be solved effi-
ciently. The graph in Figure 4 shows the cost of optimizing
for uniform discrepancy with the two-pass method and the
weighted method in the MovieLens-1m graphs. We increase
the number of candidate recommendations from 100 to 500,
and report the average runtime across the different recom-
menders. The labels for this plot are identical to the labels
we have been using so far, with the exception of WGT, which
denotes a run of the weighted method. We did not find
significant runtime differences between different settings of µ
for this model, and present the results for a representative
run with the setting µ = 1. While our methods do not run as
efficiently as reranking methods, they provide much better
diversification, and even instances with tens of millions of
candidate recommendations can be run on a desktop.
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Figure 4: Time to optimize the top-10 recommenda-
tion task in MovieLens-1m based graphs in seconds
(|L|=5800,|R|=3600)

6 CONCLUSIONS

We have proposed a new way of measuring how equitably a
recommender system distributes its recommendations called
discrepancy, and showed that it can be optimized for in poly-
nomial time using network flow techniques. We validated the
effectiveness and the efficiency of our method by conduct-
ing extensive tests on MovieLens and Netflix datasets, and
showed it to improve diversity across a variety of measures.
Our work demonstrates that distributional diversity measures
like discrepancy can be efficiently optimized to allow informa-
tion designers to have more control over their recommender
systems.
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