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Abstract

The k-center problem with triangle inequality is that of placing k center nodes in a weighted
undirected graph in which the edge weights obey the triangle inequality, so that the maximum
distance of any node to its nearest center is minimized. In this paper, we consider a generalization
of this problem where, given a number p, we wish to place k centers so as to minimize the
maximum distance of any non-center node to its p" closest center. We derive a best possible
approximation algorithm for this problem.

1 Introduction

The k-center problem is a classical problem in facility location: given n cities and the distances
between them, we wish to select k of these cities as centers so that the maximum distance of a
city from its closest center is minimized. The problem is NP-hard and Hochbaum and Shmoys
present a 2-approximation algorithm! for graphs with edge weights obeying triangle inequality [4].
Further they also show that no polynomial time algorithm for this problem can have a performance
guarantee of (2 —¢) for any € > 0, unless P=NP. In this paper we consider a generalization of the
k-center problem with triangle inequality in which we require that each city has some number (say
p) of centers ‘close’ to it. We extend the techniques of Hochbaum and Shmoys and provide a best
possible approximation algorithm.

Suppose that we wish to locate facilities at k£ out of n cities such that the maximum distance of
a city to its p'™-closest facility is minimized. Considering ‘p'™" closest’ (as against closest in the
k-center problem) is important when the facilities concerned are subject to failure and we wish to
ensure that even if up to p — 1 facilities fail, every city has a functioning facility close to it. We
refer to this generalization as the p-neighbor k-center problem. Formally, the problem is to find a
subset S of at most k vertices which minimizes

vg%?fs dp (U7 S)

Note that setting p = 1 reduces it to the k-center problem. We present a polynomial-time algorithm
achieving an approximation ratio of 2 for the p-neighbor k-center problem. Since this problem is a
generalization of the k-center problem, this approximation ratio is the best possible.
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! An a-approximation algorithm for a minimization problem runs in polynomial time and always outputs a solution
of value no more than « times the optimal.



1.1 Related work

Location problems including several versions of the k-center problem are surveyed in [3]. Kariv and
Hakimi [6] describe exact solution methods for the k-center problem.

Turning to approximation algorithms, other than the work of Hochbaum and Shmoys mentioned
above, Gonzalez [2] as well as Feder and Greene [1] also describe 2-approximation algorithms for the
k-center problem. A generalization with vertex weights is addressed by Hochbaum and Shmoys in
[5] which also describes a general paradigm for approximating bottleneck problems. In [9], Plesnik
considered a generalization of the k-center problem where the distance to the center is multiplied
by a vertex priority in the objective; He developed a 2-approximation algorithm. The paper by
Wang and Cheng [10] also shows the same result.

The p-neighbor k-center problem was considered previously by Krumke [8] where he provided a
4-approximation algorithm. We use ideas from his work for deriving a lower bound for this problem
but provide a different algorithm to achieve an approximation ratio of 2. Our techniques are graph-
theoretic; we relate the size of a certain type of dominating set in a graph to the size of a certain type
of independent sets. Khuller, Pless and Sussmann [7] have also considered this problem (among
other variants) and provided an approximation with the same performance ratio of two using an
entirely different approach.

2 The Basic Paradigm

The problem mentioned in the introduction falls into a general class of problems known in the
literature as bottleneck problems. Roughly speaking a bottleneck problem is one in which we are
trying to optimize a bottleneck, i.e. minimizing the maximum or maximizing the minimum value
of some quantity. Thus for the k-center problem we wish to find from among all dominating sets
of size k, the one in which the longest covering edge (we always use a shortest edge from a node to
a neighbor in the dominating set as the covering edge for the node) is the shortest.

Hochbaum and Shmoys [5] developed a general paradigm for approximating NP-hard bottleneck
problems; we illustrate this paradigm with the k-center problem. Let wi,ws,ws... be the edge
weights in increasing order and let G; be the subgraph induced by edges of weight at most w;. First
observe that the optimum value for the k-center problem is equal to one of the edge weights; in
particular it is the minimum edge weight w; such that G; has a dominating set of size at most &.
While it is easy to generate the subgraphs G, G2, G35 . . ., the problem of checking if these subgraphs
have a dominating set of size at most k& is NP-complete. However, suppose that in the subgraph
G; we can find an independent set I of size more than &k such that no vertex in G; is adjacent to
two vertices of I. Then any dominating set in G; has a unique vertex dominating each vertex of I
and therefore cannot be of size k or less.

Given a graph G = (V, E) the z'" power of G, denoted by G* = (V, E®) is a graph with the same
vertex set as G and an edge between two vertices if they are connected by a path of at most = edges
in G. Then I is an independent set of vertices in G7. Thus to argue that G; has no dominating
set of size at most k, it suffices to find an independent set in G? of size larger than k. What if the
largest independent set we can find in G? is of size no more than k? While we cannot say anything
for sure about the size of a dominating set in G;, we claim that G? has a dominating set of size at



most k.

To prove this claim we only need to assume that the independent set in G? that we find (say I) is
maximal, i.e. the addition of any other vertex to I yields a set which is not independent. But this

implies that every vertex not in I has a neighbor in I which means that I is a dominating set in
G2.

Let G be the first subgraph in the sequence G1, G2, G3, . .. such that the maximal independent set
found in G? is of size no more than k. Since G?_l has an independent set of size larger than k,
every dominating set in GG;_1 is of size more than £ and hence the optimum value is at least w;.
Further, G? has a dominating set (the maximal independent set found) of size at most k. Since
the edge weights satisfy triangle inequality, the longest edge in G? has weight at most 2w;. Thus
we have a k-center in which the distance of any vertex to its closest center is at most twice the
optimum.

Summarizing, we have the following two key ingredients in this 2-approximation for the k-center
problem.

1. If G? has an independent set of size more than k, G has no dominating set of size k or less.

2. A maximal independent set is also a dominating set.

The first observation is useful in establishing a lower bound on the optimum value while the second
gives a solution of value at most twice the lower bound.

3 The p-neighbor k-center problem

We first generalize the notion of independent and dominating sets following Krumke [8] and sketch
his proof of a lower bound relating these sets. However, to obtain the upper bound we describe a
different algorithm motivated by proving a stronger graph-theoretic lemma about these sets.

Definition 3.1 A set of vertices S C V is p-dominating if every vertex not in the set has at least p
neighbors in it, i.e. Vo € V=S : degg(v) > p. Thus, a 1-dominating set is the same as a dominating
set.

Definition 3.2 A set of vertices S C V is p-independent if every vertex in the set has at most
p — 1 neighbors in it, i.e. Vv € S : degg(v) < p — 1. Thus, a 1-independent set is the same as an
independent set.

The following lemmas relate the size of a p-dominating set in a graph G to the size of a p-independent
set in G and G?. These can be viewed as extending the relationship between dominating sets and
maximal independent sets. The first lemma appears in [8] as Proposition 5. We sketch the proof
here for completeness.

Lemma 3.1 [8] If G has a p-dominating set of size k then no p-independent set in G* has size
more than k.



Proof: Let D be a p-dominating set in G (|D| = k) and I a p-independent set in G? and let v
be a vertex in I — D. Let S; be the vertices in D that are neighbors of v and Sy the vertices in
V — D that are neighbors of the vertices in S;. Further, let S = 57 U .S,. Since each vertex in S is
a neighbor of v in G?, the set I contains at most p vertices from S. The set D on the other hand
contains at least p vertices from S (the subset Si). In fact, D — S is a p-dominating set in the
residual graph G[V — S] and I — S is a p-independent set in the graph G?[V — S]. Continuing in
this manner we will eventually reach a situation when there is no vertex in the residual graph that
belongs to the p-independent set but not to the p-dominating set. Since at each step the number
of vertices deleted from I was at most the number deleted from D, we have that [I| < |D| =k. m

While Krumke showed that a maximal p-independent set in G is p-dominating in G2, we show
below that there is a p-independent set in G that is also a p-dominating set in G (rather than G2).
This reduces the performance ratio of the resulting algorithm from 4 to 2.

Lemma 3.2 Given a graph G = (V,E) and 1 < p < n, there ezists a p-independent set S C V
that is also p-dominating.

Proof: Let S be a p-independent set that is not p-dominating. In particular let v € V — S be such
that degs(v) = ¢ < p. Let U be the neighbors of v in S that have exactly p — 1 neighbors in S and
let G[U] be the subgraph induced by U in G. Let I be a maximal independent set (and hence also
a dominating set) in G[U]. Therefore the set S — I U {v} is also p-independent.

The idea of the proof then is to define a potential function for a p-independent set in such a way
that the above swap causes the new p-independent set S — I U {v} to have strictly more potential
than the original set S. This would then imply that the p-independent set with maximum potential
must also be p-dominating.

With this motivation, define the potential of a p-independent set, S, as ¥(S) =p - |S| — |E(G[S])|,
where E(G[S]) denotes the edge set of the subgraph induced by S in G. Since

S| =[S =TU{v}| = [[-1
[E(GISD = [B(G[S = TU{u}])] = (p=DH[=(g—])

we have
P(S) —p(S—TU{v}) =q—p<0

As mentioned earlier, given any p-independent set that is not p-dominating we can obtain another
p-independent set that has strictly larger potential. Therefore the p-independent set with maximum
potential is also p-dominating. m

The proof of the above lemma also yields a polynomial time procedure for computing a p-independent
set that is also p-dominating. We start with some p-independent set and if this is not p-dominating
we find a vertex that has less than p neighbors in the set. Then as in the proof we delete and
add vertices to the set to obtain another p-independent set with strictly larger potential. Since the
potential of a p-independent set is at least zero and at most p|V|, we will obtain a p-independent
set that is also p-dominating in at most p|V| steps.

Let G; be the first subgraph in the sequence G1, G2, G5 . .. for which the p-independent set found
in G? by using the above procedure is of cardinality at most k. By triangle inequality it follows



that the longest edge in G? is of length at most 2w; and hence we have a p-neighbor k-center of
value 2w;. Since in G? ; we found a p-independent set of cardinality more than k, G; 1 does not
have a p-dominating set of size k or less by Lemma 3.1. Hence the optimum value is strictly larger
than w;_1 (i.e. at least w;) and this gives a 2-approximation algorithm for this problem.
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