
The p-Neighbor k-Center ProblemShiva Chaudhuri� Naveen Garg� R. RaviyAbstractThe k-center problem with triangle inequality is that of placing k center nodes in a weightedundirected graph in which the edge weights obey the triangle inequality, so that the maximumdistance of any node to its nearest center is minimized. In this paper, we consider a generalizationof this problem where, given a number p, we wish to place k centers so as to minimize themaximum distance of any non-center node to its pth closest center. We derive a best possibleapproximation algorithm for this problem.1 IntroductionThe k-center problem is a classical problem in facility location: given n cities and the distancesbetween them, we wish to select k of these cities as centers so that the maximum distance of acity from its closest center is minimized. The problem is NP-hard and Hochbaum and Shmoyspresent a 2-approximation algorithm1 for graphs with edge weights obeying triangle inequality [4].Further they also show that no polynomial time algorithm for this problem can have a performanceguarantee of (2� �) for any � > 0, unless P=NP. In this paper we consider a generalization of thek-center problem with triangle inequality in which we require that each city has some number (sayp) of centers `close' to it. We extend the techniques of Hochbaum and Shmoys and provide a bestpossible approximation algorithm.Suppose that we wish to locate facilities at k out of n cities such that the maximum distance ofa city to its pth-closest facility is minimized. Considering `pth closest' (as against closest in thek-center problem) is important when the facilities concerned are subject to failure and we wish toensure that even if up to p � 1 facilities fail, every city has a functioning facility close to it. Werefer to this generalization as the p-neighbor k-center problem. Formally, the problem is to �nd asubset S of at most k vertices which minimizesmaxv2V �S dp(v; S)Note that setting p = 1 reduces it to the k-center problem. We present a polynomial-time algorithmachieving an approximation ratio of 2 for the p-neighbor k-center problem. Since this problem is ageneralization of the k-center problem, this approximation ratio is the best possible.�Max-Planck-Institut f�ur Informatik, Im Stadtwald, 66123 Saarbr�ucken, Germany. Work supported by the EUESPRIT LTR Project No. 20244 (ALCOM-IT). Email: shiva,naveen@mpi-sb.mpg.deyGSIA, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh PA 15213. Email: ravi@cmu.edu. Work donewhile this author was visiting the Max-Planck-Institut. Supported in part by an NSF CAREER grant CCR-9625297.1An �-approximation algorithm for a minimization problem runs in polynomial time and always outputs a solutionof value no more than � times the optimal. 1



1.1 Related workLocation problems including several versions of the k-center problem are surveyed in [3]. Kariv andHakimi [6] describe exact solution methods for the k-center problem.Turning to approximation algorithms, other than the work of Hochbaum and Shmoys mentionedabove, Gonzalez [2] as well as Feder and Greene [1] also describe 2-approximation algorithms for thek-center problem. A generalization with vertex weights is addressed by Hochbaum and Shmoys in[5] which also describes a general paradigm for approximating bottleneck problems. In [9], Plesnikconsidered a generalization of the k-center problem where the distance to the center is multipliedby a vertex priority in the objective; He developed a 2-approximation algorithm. The paper byWang and Cheng [10] also shows the same result.The p-neighbor k-center problem was considered previously by Krumke [8] where he provided a4-approximation algorithm. We use ideas from his work for deriving a lower bound for this problembut provide a di�erent algorithm to achieve an approximation ratio of 2. Our techniques are graph-theoretic; we relate the size of a certain type of dominating set in a graph to the size of a certain typeof independent sets. Khuller, Pless and Sussmann [7] have also considered this problem (amongother variants) and provided an approximation with the same performance ratio of two using anentirely di�erent approach.2 The Basic ParadigmThe problem mentioned in the introduction falls into a general class of problems known in theliterature as bottleneck problems. Roughly speaking a bottleneck problem is one in which we aretrying to optimize a bottleneck, i.e. minimizing the maximum or maximizing the minimum valueof some quantity. Thus for the k-center problem we wish to �nd from among all dominating setsof size k, the one in which the longest covering edge (we always use a shortest edge from a node toa neighbor in the dominating set as the covering edge for the node) is the shortest.Hochbaum and Shmoys [5] developed a general paradigm for approximating NP-hard bottleneckproblems; we illustrate this paradigm with the k-center problem. Let w1; w2; w3 : : : be the edgeweights in increasing order and let Gi be the subgraph induced by edges of weight at most wi. Firstobserve that the optimum value for the k-center problem is equal to one of the edge weights; inparticular it is the minimum edge weight wi such that Gi has a dominating set of size at most k.While it is easy to generate the subgraphs G1; G2; G3 : : :, the problem of checking if these subgraphshave a dominating set of size at most k is NP-complete. However, suppose that in the subgraphGi we can �nd an independent set I of size more than k such that no vertex in Gi is adjacent totwo vertices of I. Then any dominating set in Gi has a unique vertex dominating each vertex of Iand therefore cannot be of size k or less.Given a graph G = (V;E) the xth power of G, denoted by Gx = (V;Ex) is a graph with the samevertex set as G and an edge between two vertices if they are connected by a path of at most x edgesin G. Then I is an independent set of vertices in G2i . Thus to argue that Gi has no dominatingset of size at most k, it su�ces to �nd an independent set in G2i of size larger than k. What if thelargest independent set we can �nd in G2i is of size no more than k? While we cannot say anythingfor sure about the size of a dominating set in Gi, we claim that G2i has a dominating set of size at2



most k.To prove this claim we only need to assume that the independent set in G2i that we �nd (say I) ismaximal, i.e. the addition of any other vertex to I yields a set which is not independent. But thisimplies that every vertex not in I has a neighbor in I which means that I is a dominating set inG2i .Let Gj be the �rst subgraph in the sequence G1; G2; G3; : : : such that the maximal independent setfound in G2j is of size no more than k. Since G2j�1 has an independent set of size larger than k,every dominating set in Gj�1 is of size more than k and hence the optimum value is at least wj .Further, G2j has a dominating set (the maximal independent set found) of size at most k. Sincethe edge weights satisfy triangle inequality, the longest edge in G2j has weight at most 2wj . Thuswe have a k-center in which the distance of any vertex to its closest center is at most twice theoptimum.Summarizing, we have the following two key ingredients in this 2-approximation for the k-centerproblem.1. If G2 has an independent set of size more than k, G has no dominating set of size k or less.2. A maximal independent set is also a dominating set.The �rst observation is useful in establishing a lower bound on the optimum value while the secondgives a solution of value at most twice the lower bound.3 The p-neighbor k-center problemWe �rst generalize the notion of independent and dominating sets following Krumke [8] and sketchhis proof of a lower bound relating these sets. However, to obtain the upper bound we describe adi�erent algorithm motivated by proving a stronger graph-theoretic lemma about these sets.De�nition 3.1 A set of vertices S � V is p-dominating if every vertex not in the set has at least pneighbors in it, i.e. 8v 2 V �S : degS(v) � p. Thus, a 1-dominating set is the same as a dominatingset.De�nition 3.2 A set of vertices S � V is p-independent if every vertex in the set has at mostp � 1 neighbors in it, i.e. 8v 2 S : degS(v) � p � 1. Thus, a 1-independent set is the same as anindependent set.The following lemmas relate the size of a p-dominating set in a graphG to the size of a p-independentset in G and G2. These can be viewed as extending the relationship between dominating sets andmaximal independent sets. The �rst lemma appears in [8] as Proposition 5. We sketch the proofhere for completeness.Lemma 3.1 [8] If G has a p-dominating set of size k then no p-independent set in G2 has sizemore than k. 3



Proof: Let D be a p-dominating set in G (jDj = k) and I a p-independent set in G2 and let vbe a vertex in I � D. Let S1 be the vertices in D that are neighbors of v and S2 the vertices inV �D that are neighbors of the vertices in S1. Further, let S = S1 [ S2. Since each vertex in S isa neighbor of v in G2, the set I contains at most p vertices from S. The set D on the other handcontains at least p vertices from S (the subset S1). In fact, D � S is a p-dominating set in theresidual graph G[V � S] and I � S is a p-independent set in the graph G2[V � S]. Continuing inthis manner we will eventually reach a situation when there is no vertex in the residual graph thatbelongs to the p-independent set but not to the p-dominating set. Since at each step the numberof vertices deleted from I was at most the number deleted from D, we have that jIj � jDj = k.While Krumke showed that a maximal p-independent set in G is p-dominating in G2, we showbelow that there is a p-independent set in G that is also a p-dominating set in G (rather than G2).This reduces the performance ratio of the resulting algorithm from 4 to 2.Lemma 3.2 Given a graph G = (V;E) and 1 � p � n, there exists a p-independent set S � Vthat is also p-dominating.Proof: Let S be a p-independent set that is not p-dominating. In particular let v 2 V � S be suchthat degS(v) = q < p. Let U be the neighbors of v in S that have exactly p� 1 neighbors in S andlet G[U ] be the subgraph induced by U in G. Let I be a maximal independent set (and hence alsoa dominating set) in G[U ]. Therefore the set S � I [ fvg is also p-independent.The idea of the proof then is to de�ne a potential function for a p-independent set in such a waythat the above swap causes the new p-independent set S � I [ fvg to have strictly more potentialthan the original set S. This would then imply that the p-independent set with maximum potentialmust also be p-dominating.With this motivation, de�ne the potential of a p-independent set, S, as  (S) = p � jSj � jE(G[S])j,where E(G[S]) denotes the edge set of the subgraph induced by S in G. SincejSj � jS � I [ fvgj = jIj � 1jE(G[S])j � jE(G[S � I [ fvg])j = (p� 1)jIj � (q � jIj)we have  (S) �  (S � I [ fvg) = q � p < 0As mentioned earlier, given any p-independent set that is not p-dominating we can obtain anotherp-independent set that has strictly larger potential. Therefore the p-independent set with maximumpotential is also p-dominating.The proof of the above lemma also yields a polynomial time procedure for computing a p-independentset that is also p-dominating. We start with some p-independent set and if this is not p-dominatingwe �nd a vertex that has less than p neighbors in the set. Then as in the proof we delete andadd vertices to the set to obtain another p-independent set with strictly larger potential. Since thepotential of a p-independent set is at least zero and at most pjV j, we will obtain a p-independentset that is also p-dominating in at most pjV j steps.Let Gi be the �rst subgraph in the sequence G1; G2; G3 : : : for which the p-independent set foundin G2i by using the above procedure is of cardinality at most k. By triangle inequality it follows4



that the longest edge in G2i is of length at most 2wi and hence we have a p-neighbor k-center ofvalue 2wi. Since in G2i�1 we found a p-independent set of cardinality more than k, Gi�1 does nothave a p-dominating set of size k or less by Lemma 3.1. Hence the optimum value is strictly largerthan wi�1 (i.e. at least wi) and this gives a 2-approximation algorithm for this problem.References[1] T. Feder and D. H. Greene, \Optimal algorithms for approximate clusters," ACM Symp. onTheory of Comp. 434-444 (1988).[2] T. F. Gonz�alez, \Clustering to minimize the maximum intercluster distance," TheoreticalComputer Science 38 293-306 (1985).[3] G. Y. Handler and P. B. Mirchandani, Location on Networks: Theory and Algorithms, MITPress, Cambridge MA, (1979).[4] D. S. Hochbaum and D. B. Shmoys, \A best possible heuristic for the k-center problem,"Math. of Oper. res., Vol. 10, No. 2, 180-184 (1985).[5] D. S. Hochbaum and D. B. Shmoys, \A uni�ed approach to approximation algorithms forbottleneck problems," Journal of the ACM 33 533-550 (1986).[6] O. Kariv and S. L. Hakimi, \An algorithmic approach to network location problems. Part I:The p-centers problem," SIAM J. of Appl. Math. 37 513-538 (1979).[7] S. Khuller, R. Pless and Y. Sussmann, \Fault-tolerant K-center problems," to appear in 3rdItalian Conference on Algorithms and Complexity (March 1997). Also appears as TechnicalReport UMIACS-TR-96-40.[8] S. O. Krumke, \On a generalization of the p-center problem," Inf. Proc. Lett., 56, 67-71 (1995).[9] J. Plesnik, "A heuristic for the p-center problem in graphs", Disc. Appl. Math., 17 263-268(1987).[10] Q. Wang and K. H. Cheng, \A heuristic algorithm for the k-center problem with vertex weight,"Proc. SIGAL '90, LNCS 450, 388-396 (1990).
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