
J Comb Optim (2017) 34:931–955
DOI 10.1007/s10878-017-0121-5

Multiple facility location on a network with linear
reliability order of edges

Refael Hassin1 · R. Ravi2 · F. Sibel Salman3

Published online: 14 March 2017
© Springer Science+Business Media New York 2017

Abstract We study the problem of locating facilities on the nodes of a network to
maximize the expected demand serviced. The edges of the input graph are subject
to random failure due to a disruptive event. We consider a special type of failure
correlation. The edge dependency model assumes that the failure of a more reliable
edge implies the failure of all less reliable ones. Under this dependency model called
Linear Reliability Order (LRO) we give two polynomial time exact algorithms. When
two distinct LRO’s exist, we prove the total unimodularity of a linear programming
formulation. In addition, we show that minimizing the sum of facility opening costs
and expected cost of unserviced demand under two orderings reduces to a matching
problem.We prove NP-hardness of the three orderings case and show that the problem
with an arbitrary number of orderings generalizes the deterministicmaximumcoverage
problem.When a demand point can be covered only if a facility exists within a distance
limit, we show that the problem is NP-hard even for a single ordering.

Keywords Facility location · Random edge failures · Dependency

This research is supported by a NATO Collaborative Linkage Grant.

B F. Sibel Salman
ssalman@ku.edu.tr

Refael Hassin
hassin@post.tau.ac.il

R. Ravi
ravi@cmu.edu

1 Department of Statistics and Operations Research, Tel Aviv University, Tel Aviv, Israel

2 Tepper School of Business, Carnegie Mellon University, Pittsburgh, PA, USA

3 College of Engineering, Koç University, Sariyer, Istanbul, Turkey

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10878-017-0121-5&domain=pdf

932 J Comb Optim (2017) 34:931–955

1 Introduction

The problem we study aims to locate facilities on a network whose edges are subject
to random failure due to a disruptive event such as a natural disaster. Specifically, k
facilities should be located at the nodes of an undirected graph whose edges may fail
with given probabilities to maximize the expected demand serviced. The expectation
is over the possible network realizations and a demand point is serviced/covered in a
network realization, if a facility can be reached from it.

Previous work on locating facilities on a network subject to edge failures has
remained limited to either single edge failure, or a single facility location on a tree net-
work whose edges may fail independently. Eiselt et al. (1992) have considered a single
edge failure while locating p facilities with the objective of minimizing total expected
demand disconnected from the facilities, and later the same authors Eiselt et al. (1996)
considered the case with an unreliable node or edge. Melachrinoudis and Helander
(1996) studied a single facility location problem on a tree with edges that fail indepen-
dently with given probabilities. The objective was to maximize the expected number
of demand nodes reachable by operational paths. A follow-up paper by Xue (1997)
gave an improved linear-time algorithm. Colbourn and Xue (1998) gave a linear-time
algorithm for this problem on series-parallel graphs. Wolle (2002) addressed the basic
problem of calculating the probability of serving all demand points via facilities with
given locations, under node and edge failures. In a recent study, Salman and Yucel
(2015) studied a multiple facility location problem where edges of the network fail
with respect to dependency that takes into account spatial proximity, similar to our
study here. In Salman and Yucel (2015), the resulting large number of network real-
isations are sampled to estimate the objective function in a tabu search heuristic. A
case study of Istanbul is analyzed under a likely earthquake scenario, where the edge
reliabilities are estimated according to this disaster scenario. This work examplifies
an application of the problems studied in the current article.

While independent failures is a common assumption, when edge failures occur
due to an exogenous cause such as a disaster, it is often necessary to treat the edge
failures as dependent events. We consider the edge failure model defined by Gunnec
and Salman (2007) that takes into account both the vulnerability levels of the edge
components and the risk of the area in which they reside. For each edge, given the
probability that it survives (i.e. its reliability), the edges are ordered linearly starting
with the strongest (i.e. themost reliable). Then, it is assumed that given that a particular
edge fails, all the edges that are weaker will fail with probability 1. Here, we refer to
this dependency structure as Linear Reliability Order (LRO). The reliability of an edge
is defined under a particular disaster/disruption scenario; hence an LRO is associated
with the scenario.Whenmultiple scenarios are under consideration, a reliability vector
and a corresponding LRO are associated with each scenario. Then, the facility location
problem maximizes the expected demand coverage over all scenarios considering the
probability of occurrence of each scenario, and the expected demand serviced in each
scenario.

We refer to the problem with d number of distinct LROs as the d-LRO case. We
first investigate the case of d = 1, i.e. the 1-LRO case. For the 1-LRO case, we pro-
vide a transformation to a problem defined on a tree and two exact solution algorithms

123

J Comb Optim (2017) 34:931–955 933

to the k-facility location problem as well as its generalization with uniform capacities
at the facilities. We also provide an exact solution algorithm to the cost minimiza-
tion version with facility opening costs at the nodes and costs for unmet demand in
each network realization. For the 2-LRO case, we prove the total unimodularity of
a polynomially-sized Linear Programming (LP) formulation; which implies that the
problem is solvable in polynomial time. We show that minimizing the sum of facility
opening costs and the expected cost of unserviced demand under 2-LRO reduces to a
bipartite matching problem.We prove NP-hardness for the 3-LRO case even when all
reliabilities are 0 or 1 (a deterministic problem). We then consider the general d-LRO
case and show that the problem is equivalent to a maximum coverage problem with d
elements to be covered.

We also investigate the k-facility maximum expected coverage problem with dis-
tance limits. When a demand point can be covered only if a facility exists within a
specified distance limit, we prove that the problem is NP-hard even for the 1-LRO
case since it is equivalent to the well-studied maximum k-facility location problem
Cornuejols et al. (1977).

Our results provide tractable problemswith edge failures for several facility location
problems considering a dependency model based on ordering the edges with respect
to their reliabilities. The paper is organized as follows. We introduce the notation and
define the k-facility maximum expected coverage problem in Sect. 2. In the case of a
single LRO (the 1-LRO case), we present two polynomial time exact algorithms in
Sect. 3. In Sect. 4, we give our results for the 2-LRO case. Section 5 presents hardness
results on some extensions of the facility location problem. We conclude in Sect. 6.

2 Problem definition

The facility location problem is defined on an undirected input graph G = (V, E),
consisting of node set V = {v1, . . . , vn} and edge set E = {e1, . . . , em}. Each node
vi is a demand point with a given demand value (weight) wi ≥ 0, where

∑
i wi > 0.

Each edge may exist in either operational or non-operational state after the disaster,
which we refer to as the survival or failure of the edge. Let ξi = 1, if ei survives and
0, otherwise. The random variable ξi takes the value 1 with probability pi . That is,
pi represents the reliability of edge ei . We assume that each node will survive and a
facility can be located at any node. The problem is to find the locations of at most k
facilities that maximize the expected demand covered by the facilities over all network
realizations. In a network realization, a demand point is covered if there exists a path
from it to one of the open facilities.

After a disruption, the set of edges that have not failed define the surviving net-
work, represented by the vector ξ = (ξi). In general, the vector ξ has 2m realizations
where each one corresponds to a different surviving network consisting of a number
of connected components. If a facility is established at a node, it covers the demand
of all nodes that can be reached from it via a path in the surviving network, assuming
that a sufficient amount of supply will be available at the facilities. If the locations of
the facilities are fixed, in each possible surviving network realization, total demand
covered can be evaluated by applying a breadth-first-search starting from each facility

123

934 J Comb Optim (2017) 34:931–955

node. Note that finding the total expected demand covered requires O(2m) such calcu-
lations. The MAX-EXP-COVER problem is to place at most k facilities to maximize
the expected total demand covered.

Let the probability that a particular realization, ξq , occurs be P(q) for q =
0, 1, . . . , R. Suppose F ⊆ V represents the selected facility locations. We define
an indicator variable to represent the coverage of a demand node in a network real-
ization: Iv(F, q) takes the value 1, if demand of node v can be covered in network
realization ξq with facilities in F; and 0, otherwise. Note that Iv(F, q) will be 1, if
there is a path from v to one of the facilities in F in the subgraph of G induced by the
surviving edges of ξq . Then, MAX-EXP-COVER can be formulated as follows.

MAX-EXP-COVER: Find F ⊆ V, |F | ≤ k to
maximize

∑R
q=0

∑
vi∈V P(q) wi Ivi (F, q).

MAX-EXP-COVER problem is NP-hard Feige (1998). Note that it is easy to prove
that the objective of MAX-EXP-COVER is a monotone submodular function of the
set F, and the problemMAX-EXP-COVERmaximizes a submodular function subject
to a cardinality constraint.

2.1 Dependent failures with linear reliability order

Under statistical dependency of edge failures, the number of realizations with pos-
itive probabilities reduces. We use a concept from the dependency model proposed
by Gunnec and Salman (2007). This model first partitions the set of edges such that
edges in different sets fail independently. On the other hand, edges in the same set
fail according to their order of survival probabilities; this is named VB-dependency in
Gunnec and Salman (2007). In the case of failure of road network components under
a disaster event, VB-dependency tries to factor in the vulnerability of the components
in an edge, such as the strength of a bridge and the soil type on which the edge stands.
It is reasonable to assume that edges in close geographic proximity will be prone
to a similar disaster magnitude and are expected to show similar behaviour, creating
spatial correlation; whereas at the same time their inherent vulnerabilities will create
differences in the outcomes.

Definition 2.1 Given two edges i and j with survival probabilities pi and p j , edges
i and j have Vulnerability-based dependency (VB-dependency), if pi ≤ p j implies
probability that i fails given that j fails is 1.

Definition 2.2 If the VB-dependency holds for every pair of edges in E, then E has a
Linear Reliability Order (LRO) with respect to the reliability vector p = (pi).

By the above definitions, the failure of a particular edge implies failure of all edges as
weak as, orweaker than that one. It was shown inGunnec and Salman (2007) that under
an LRO failure model, only at mostm+1 surviving network realizations have positive
probability. When the edges are re-indexed such that pi−1 ≥ pi , for i = 2, · · · ,m,
index 1 represents the strongest edge and m the weakest. Then, the realizations with
positive probability are in the form ξq = (1, 1, 1, · · · , 1, 0, 0, · · · , 0), where the first

123

J Comb Optim (2017) 34:931–955 935

strongest q edges survive and the remaining fail, for q = 0, 1, · · · ,m. Note that
here index q indicates the number of edges that have survived in the corresponding
realization. We use this ordering of the edges when we refer to an LRO throughout
this article.

If we define p0 = 1 and pm+1 = 0, then for q = 0, 1, · · · ,m the probability that
realization ξq occurs is pq − pq+1 (as given in Gunnec and Salman (2007)). Although
this failure model is rather restrictive in the number of scenarios when a single set
exists, at the same time it enables tractability.

When multiple disruption scenarios exist, a set of LROs, S, is given, where Pr(s) is
the probability that scenario s occurs for s ∈ S, with

∑
s∈S Pr(s) = 1. Each scenario s

defines an LROwith respect to a given edge reliability vector ps = (ps1, · · · , psm). Let
P(q, s) be the probability that ξq occurs in s. We can verify that

∑m
q=0 P(q, s) = 1,

since P(q, s) = psq − psq+1 and ps0 = 1, psm+1 = 0 by definition. Then, the main
problem addressed in this paper, MAX-EXP-COVER-LRO, can be formulated as
follows.

MAX-EXP-COVER-LRO: Find F ⊆ V, |F | ≤ k to
maximize

∑
s∈S Pr(s)

∑m
q=0

∑
vi∈V P(q, s) wi Ivi (F, q).

We show the NP-hardness of this problem in Sect. 5. We next investigate the single
and two LRO cases due to the complexity of the general case.

3 Algorithms for a single linear reliability order

In this section we assume a single LRO exists with respect to a reliability vector p
and omit the scenario index s in the notation. We first show that under 1-LRO, the
MAX-EXP-COVER-LRO problem can be reformulated as a facility location problem
on a rooted tree network.

3.1 Graph disconnectors and the component tree

Without loss of generality we may assume that the input graph G is connected. The
possible network realizations are ξq , q = 0, 1, · · · ,m, where ξm corresponds to G.
As we go from ξm (all ones) to ξ0 (all zeros) one by one, each time one more edge
fails. Along the way, the number of components in each realization will increase until
eventually we get to ξ0 that consists of n components. We can detect the edges whose
failure causes the number of components to go up by 1. Start with the weakest edge.
Suppose it fails. Check if the graph is connected. Repeat until the graph has two com-
ponents. At that point, the last edge that failed is named e[1]. Continue in this way.
The next edge that increases the number of connected components is named e[2], and
so on. By this procedure, we obtain the edges e[1], . . . , e[n−1], and call them the dis-
connectors of G. Note that e[1] is the weakest and e[n−1] is the strongest disconnector.
Hence, [1], . . . , [n−1] defines a new ordering on n−1 edges, such that p[i] ≤ p[i+1].

The disconnectors form a spanning tree T of G. We can see this by the following
reasoning. Suppose the disconnectors form a cycle. Then by removing one of the edges

123

936 J Comb Optim (2017) 34:931–955

in this cycle, we can still have the same number of components. Hence, the removed
edge cannot be a disconnector. Since the disconnectors separate all nodes eventually,
T must be a spanning tree of G. In fact, T is a Minimum Spanning Tree (MST) of G
when weight of each edge ei is set to 1 − pi , since for any edge not in the tree, its
failure probability is at least as much as those in the path between its endpoints in T.

Next, we define a rooted tree that represents how G is disconnected into its compo-
nents as the disconnectors e[1], . . . , e[n−1] fail in order, starting with the weakest one.
We call this tree the Component Tree of G, and denote it by CT. The leaves of CT are
the nodes of G. The intermediate nodes of CT represent the disconnector edges, and
the root node of CT is the first disconnector, e[1]. Each disconnector has two children
in CT, representing both the subtrees of T and the components of G formed with its
failure. CT is constructed as follows. Let e[1] be the root node. When e[1] fails, it
creates two components in T. If any one of the components is a singleton, then that
child is given the name of the singleton node and becomes a leaf node. Otherwise, the
child is given the name of the next disconnector to fail in that component (i.e. the one
with the minimum index). For each non-leaf node e[k], two children are created by
removing e[k] from T in the same way. CT is completed when n leaves are formed. In
total, constructing the component tree takes O(m log n + T (n)) time, where T (n) is
the time to compute the MST on the input graphG. Sorting the edges ofG is followed
by an MST algorithm and finally by the removal of each edge of T in order, to obtain
the binary structure of CT. The procedure is illustrated by an example in Fig. 1, where
the numbers on the edges of the input graph indicate the edge indices after the edges
have been sorted according to their reliabilities.

Interestingly, the Component Tree contains the connectivity information for nodes
over all network realizations. Each node of CT indicates a set of nodes that are in
the same component of G in one or more network realizations. For each node v of
CT , let us denote the subtree of CT rooted at v by Tv . Let Lv ⊂ V be the set of leaf
nodes in Tv . If v is a leaf of CT , then it represents the singleton component. Else, v
is a disconnector that represents all realizations in which Lv forms one component.
Thus, if we pick two leaves, the path between them in CT shows when these nodes
will be connected. Namely, when the disconnector with the smallest index on this path
survives, these nodes are connected. For example, in Fig. 1, nodes 2 and 6 become
connected when [4], i.e. edge 4, survives and continue to be connected if the weaker
edges survive.

3.2 Reformulation of MAX-EXP-COVER-LRO

We associate two quantities with each node v of the Component Tree CT : a weight
W (v) = ∑

vi∈Lv
wi and a probability rel(v). We set the rel(v) values such that if

there is a facility located at a leaf node of Tv , a partial expected demand/weight of
rel(v)W (v) accrues in the objective function. We denote this Partial Expected Weight
as PEW (v) = rel(v)W (v). Next we define the rel(v) values.

Consider a leaf node v of CT that corresponds to some node v j in V . Let f (v)

denote the father of v in CT ; f (v) = e[i] for some i . The node v j is left as a singleton
component in G when the disconnector e[i] fails. If e[i] has the original edge index q,
then we set rel(v) = 1 − pq .

123

J Comb Optim (2017) 34:931–955 937

Fig. 1 An example to illustrate
the construction of the
component tree. a Input graph
G. Edges are indexed such that
p1 > p2 > . . . > p10. b Tree T
consisting of disconnector edges
e[1], . . . , e[7]. c Component
Tree CT

At any non-leaf node v of CT corresponding to a disconnector edge e[i], we have
two children, say L and R. The probability rel(e[i]) is set to the sumof the probabilities
of all realizations in which all the leaves in subtrees TL and TR are exactly the nodes of
a single connected component. This connected component is formed when the father
of e[i], f (e[i]), fails for the first time and it remains to be a single component until e[i]
fails. Suppose e[i] = eq and f (e[i]) = et . By notation, q < t , i.e. eq is stronger. Then,
rel(e[i]) is set to P(q) + P(q + 1) + · · · + P(t − 1) = pq − pt .

Finally at the root of the tree, we set rel(e[1]), namely the probability of the real-
izations in which all nodes are in a single component as follows. Let e[1] = eq . Then,
rel(e[1]) = P(q) + P(q + 1) + · · · + P(m) = pq .

In the above reformulation, the probabilities are assigned such that in any path
from a leaf node to the root, if we sum the rel(v) values, we get 1. For instance in
the example given in Fig. 1, rel([1]) = p9, rel([2]) = p7 − p9, rel(1) = 1 − p9,
rel(5) = 1 − p7, rel([3]) = p6 − p7, rel(3) = 1 − p6, rel([4]) = p4 − p6,
rel([5]) = p3 − p4, rel([6]) = p2 − p4, rel(6) = 1 − p3, rel(8) = 1 − p3,
rel(2) = 1 − p2, rel([7]) = p1 − p2, rel(4) = 1 − p1, and rel(7) = 1 − p1.

123

938 J Comb Optim (2017) 34:931–955

With the above reformulation, we can view the problem of locating k facilities at
nodes as a simple location problem on a rooted tree T = (VT , ET) with nonnegative
weights PEW (v) at all nodes: the goal is to choose k leaves such that the sum of the
PEW values of all nodes in the union of paths from the chosen leaves to the root is
maximum. We call this the MAX-WT-k-LEAF-SUBTREE problem. Suppose a set F
consisting of k leaf nodes of T have been selected. For a given internal node v of the
tree, let Iv(F) be 1, if v is contained in the path from l to the root node, for at least one
of the leaf nodes l in F; and 0, otherwise. Then, the MAX-WT-k-LEAF-SUBTREE
problem is formulated as follows.

MAX-WT-k-LEAF-SUBTREE: Given a rooted tree T = (VT , ET) with nonnega-
tive weights PEW (v) for v ∈ VT , find a subset F of leaf nodes in T such that |F | = k
and

∑
v∈VT PEW (v)Iv(F) is maximum.

As a result of this reformulation we have the following proposition.

Proposition 3.1 Given an undirected graph G = (V, E) whose edges fail according
to a single LRO, the MAX-EXP-COVER-LRO problem can be solved by solving a
MAX-WT-k-LEAF-SUBTREE problem on the component tree CT of G with weights
PEW (v), for v in CT defined as above.

Proof Suppose F, a subset of k leaf nodes in CT are chosen as the facility locations.
Let GF be the subtree ofCT that consists of the union of paths from the chosen leaves
F to the root.We will show that

∑
v∈GF

PEW (v) is the total expected weight covered
by the solution F . Recall that a node v of CT represents all realizations where Lv

forms a component and the probability of these realizations is rel(v). Let us call these
realizations Rv for now. If v ∈ GF , then Lv must contain a facility node. Since Lv is
connected in Rv , all of the demand of Lv , i.e.W (v), is covered with probability rel(v).
Hence, PEW (v) should be added to the objective function. On the other hand, if v

is not in GF , then Lv cannot contain a facility. Since nodes in Lv are not connected
to any node outside Lv in Rv , their demand cannot be covered in these realizations.
Thus, summing PEW (v) over v ∈ GF is sufficient to get the total expected weight
covered by F . ��

Next, we provide a polynomial time exact solution method for the MAX-WT-k-
LEAF-SUBTREE problem via a greedy algorithm. By Proposition 3.1, the algorithm
is also a polynomial time exact solution method for the MAX-EXP-COVER-LRO
problem for the 1-LRO case.

3.3 A greedy algorithm

The greedy algorithm for choosing k leaves to maximize total expected weight of the
paths to the root is natural: For k steps, we pick the leaf such that the incremental
addition to the total expected weight by adding this node to the solution is as large as
possible.

Proposition 3.2 The greedy algorithm outputs an optimal set of k leaves that maxi-
mizes the total node weight of the union of paths from the chosen leaves to the root.

123

J Comb Optim (2017) 34:931–955 939

Proof The proof is by an interchange argument. Suppose that the greedy algorithm
results in a solutionGREEDY that is sub-optimal and has lowerweight than the optimal
solution OPT. Let v be the first leaf chosen by GREEDYwhich is not part of OPT. Let
Pv be the path that was first covered by v at the time it was added to GREEDY. If no
part of Pv is covered by OPT, then clearly by the greedy choice exchanging v with any
leaf in OPT\GREEDY gives a solution at least as good as OPT. Suppose otherwise
that some part of Pv is covered by OPT. Let P ′

v be the subpath of Pv covered by v but
not OPT. Let u be the lowest node of Pv covered by some leaf, say l of OPT. Let Pl
be the l − u path covered by l. Then by the greedy choice, the weight of P ′

v is at least
as large as the weight of Pl . Thus, exchanging v and l gives a solution not worse than
OPT. By repeating this exchange step, we see that GREEDY is optimal. ��

The above proof generalizes the results of Pardi and Goldman (2005) and Steel
(2005) known for a similar unrooted version of the problem (which can be reduced to
our rooted version by trying all choices of the root). These results in turn follow also
from the Greedoid framework Korte et al. (1991).

We note that the objective function is a submodular function of the set of facilities.
Therefore, it follows easily that the greedy algorithm solves the problem optimally in
the 1-LRO case.

However, the component tree structure provides insight on the problem structure.
The greedy algorithm is O(kn) after the construction of the component tree, as in each
step the nodes are traversed at most once. We also note that there exists an alternative
algorithm by a dynamic programming formulation. It is presented in “Appendix 1”.

4 Algorithms for two LROs

We now consider the case where two disruption scenarios are possible with S = {1, 2}
and given probabilities Pr(1) and Pr(2) that add up to 1. We have two probability
vectors p1 and p2 such that each one induces a distinct LRO. The problem is MAX-
EXP-COVER-LRO as defined in Sect. 2 except that here | S |= 2.

By a transformation as in the previous section, this problem can be reduced to
choosing k nodes among n nodes such that these n nodes are the leaves of two trees
T1 and T2, namely the Component Trees for S = {1, 2}. Here, Ts has at its nodes v a
weight PEWs(v), defined as in Sect. 3, with respect to the reliability vector ps , for
s = 1, 2. Let V1 and V2 denote the internal (non-leaf) nodes of the two trees T1 and
T2, respectively. Then, T1 ∪ T2 has the common set of leaves L = V . An illustrative
example is given in Fig. 2. The objective is to choose k common leaves so that the total
weight of the subtrees induced in both trees by these k leaves is as large as possible.
We denote this problem MAX-WT-k-LEAF-2-SUBTREES.

4.1 Polynomial-time solution by total unimodularity of an LP formulation

We next show that MAX-WT-k-LEAF-2-SUBTREES can be formulated as a Linear
Program (LP) which can then be shown to have an integral optimal solution.

123

940 J Comb Optim (2017) 34:931–955

Fig. 2 An example to the 2-LRO case

We use an indicator variable xl for each leaf node l ∈ L to denote if it is chosen in
the set of k leaves. For every internal node v ∈ V1∪V2, we have a variable xv denoting
if this node is covered by a facility (i.e. it is on a path from a selected leaf to the root)
and thus its weight needs to be counted in the objective function. Let Tv denote the
subtree of the tree in which v is an internal node and let Cv denote the children of
v in Tv . In addition, the weight of each node v ∈ Vs is set to wv = PEWs(v) for
s = 1, 2 and for each leaf l ∈ L , wl = PEW 1(l)+ PEW 2(l). We have the following
LP relaxation of the 0–1 formulation for the problem.

(LP1) Maximize
∑

v∈V1∪V2
wv xv +

∑

l∈L
wl xl (1)

s.t. xv −
∑

j∈Cv

x j ≤ 0 ∀ v ∈ V1 ∪ V2 (2)

∑

l∈L
xl = k (3)

0 ≤ xv ≤ 1 ∀ v ∈ V1 ∪ V2 ∪ L (4)

123

J Comb Optim (2017) 34:931–955 941

Let A be the constraint coefficient matrix of LP1 (excluding the upper bound con-
straints). We use the Ghouila–Houri Condition for total unimodularity of a constraint
matrix A [as given in page 542 of Nemhauser and Wolsey (1988)].

Definition 4.1 (Ghouila - Houri Condition) A matrix A with entries ai j ∈ {0, 1,−1}
for i = 1, . . . ,m and j = 1, . . . , n is totally unimodular if and only if for every
J ⊂ N = {1, . . . , n}, there exists a partition J1, J2 of J such that |∑ j∈J1 ai j −∑

j∈J2 ai j | ≤ 1, for i = 1, . . . ,m.

Proposition 4.1 The LP formulation LP1 for the MAX-WT-k-LEAF-2-SUBTREES
problem has a totally unimodular constraint coefficient matrix.

Proof We show that the Ghouila - Houri Condition holds for AT , where A is the
constraint coefficient matrix of LP1. That is, we show that given any subset I of
constraints, there exists a partition I1, I2 of I such that |∑i∈I1 ai j − ∑

i∈I2 ai j | ≤ 1,
for j = 1, . . . , n, i.e. for each variable. We have two cases depending on whether
constraint (3), i.e. the cardinality constraint, is included in I or not.
Case 1 Constraint (3) is included in I . In this case, let I1 = I and let I2 be empty.

For a leaf node variable xl , I may contain at most two of constraints (2) where the
coefficient of xl is non-zero. Once, for a node v in V1 for which l is a child and another
for a node w in V2 for which l is a child. In both cases the coefficient of xl is -1, but
xl also appears in constraint (3) with a +1 coefficient. Hence, the summation of its
coefficients across the rows in I is -1, 0 or 1.

A non-leaf node v is either in V1 or V2. Suppose without loss of generality, it is
in V1. Consider the constraints where the coefficient of xv is non-zero. These are
constraints (2) where v is a child node with coefficient −1 (except for the root node),
and a father node with coefficient +1. Then, I may contain at most two of these
constraints so that the summation will be again −1, 0 or 1.
Case 2Constraint (3) is not included in I . In this case, let I1 ⊆ I contain constraints (2)
if v ∈ V1 and I2 ⊆ I contain constraints (2) if v ∈ V2.

Any variable xl , l ∈ L may appear in constraints (2) as a child of a node in V1 or
V2. Then, sum of the coefficients of xl in I1 is 0 or −1, and the same holds for I2.
Thus the total value of such coefficients of xl is either −1, 0 or +1.

For a non-leaf node v, xv appears in constraints (2), which may be in either I1 or I2,
but not both. Recall that these constraints are where v is a child node with coefficient
−1 (except for the root node), and a father node with coefficient +1. Then, I1 or I2
may contain at most two of these constraints so that the summation will be again −1,
0 or 1. ��

As a result of Proposition 4.1, an integer optimal solution is obtained by solving
LP1.

We note that an iterative approach exists to show that an integer solution can be
obtained from an alternative LP formulation in polynomial time. The approach is
presented in “Appendix 3”.

123

942 J Comb Optim (2017) 34:931–955

4.2 Solving the problem with facility opening costs via matching

We next define a version of theMAX-EXP-COVER-LRO problemwhen fixed facility
opening costs exist instead of the requirement that at most k facilities can be open.
In this problem, there is no limitation on the number of facilities, and the goal is
to maximize the expected total net value of the solution, in terms of a weighted
combination of the expected demand covered and minus the facility costs. We call
this problem MAX-EXP-VALUE. Let fv be the cost of opening a facility at node v,
for v ∈ V . Then the formulation is as follows.

MAX-EXP-VALUE: Find F ⊆ V, to

maximize
∑

s∈S Pr(s)
(∑m

q=0
∑

vi∈V P(q, s) wi Ivi (F, q)
)

− ∑
vi∈F fvi .

We give a polynomial time solution method to solve the case with two LROs, i.e.
|S|=2 (2-LRO), by constructing a bipartite matching problem.

Proposition 4.2 MAX-EXP-VALUEwith two LROs can be transformed to amaximum
weight perfect matching problem in a bipartite graph in polynomial time.

Proof Given an instance of MAX-EXP-VALUE with input graph G = (V, E), we
first transform it into a subtrees problem instance with weights PEW (v) at the nodes
of the trees defined as before (except that we are not restricted to select k leaves
and the objective function is different now). Let T1 and T2 be the component trees
corresponding to the two LROs, with node sets V1∪ L and V2∪ L . We form a bipartite
graph H by modifying T1 ∪ T2 and assigning weights to its edges as follows: Replace
each leaf node l ∈ L by two nodes l1 and l2 inH, and add a new edge connecting these
nodes with weight − fl . Call these edges connecting edges.

For i = 1, 2: Replace each edge (v, f (v)) in Ti , where f (v) is the father of v, by a
two-edge path f (v)− g(v)− v where g(v) is a new node. Give the edge (f (v), g(v))

the weight PEWi (f (v)) originally attached to f (v) in Ti . Call these edges upper
edges. The other edge, (g(v), v) obtains zero weight. These are called lower edges.
Let Ni denote the set of new nodes added to Ti , for i = 1, 2. Now Ti contains the
2n − 1 nodes consisting of leaves Li and non-leaves Vi , plus the 2n − 2 new nodes
Ni , for both i = 1 and i = 2. The graph H has the bipartition V1 ∪ L1 ∪ N2 and
V2 ∪ L2 ∪ N1, where both node sets have the same cardinality. Figure 3 illustrates the
bipartite graph H constructed from T1 ∪ T2.

Now with this setting, we have the following properties in a matching M of H:

1. A leaf node l1 ∈ L1 can be matched only to either l2 ∈ L2 with weight − fl , or a
new node g(l1) ∈ N1 with weight zero. This is symmetric for leaves in L2.

2. A node v in V1, which is not the root node, that is a father of two nodes u1 and u2
can be matched either to g(u1) or g(u2) by an upper edge with weight PEW 1(v),
or to g(v) by a lower edge with weight zero. A symmetric property holds for any
node in V2.

3. The root node r of T1 can be matched to one of its two children in H by an upper
edge with weight PEW 1(r). This is symmetric for T2.

We would like to compute in H a maximum weight matching M such that old
nodes arematched exactly once, and newnodes arematched atmost once. The problem

123

J Comb Optim (2017) 34:931–955 943

Fig. 3 The bipartite graph construction

having these restrictions can be transformed to an equivalent perfect matching problem
on an augmented graph H ′ by adding auxiliary nodes and edges in a routine way as
follows. We add 2n−2 dummy nodes on each side, di1 and di2 for i = 1, . . . , 2n−2.
Furthermore, we add the following zero weight edges for each i : (di1, di2), (di1, g(v))

for all g(v) ∈ N2 and (g(v), di2) for all g(v) ∈ N1.
Let M be a perfect matching in H ′ with total weightW. Let F be the set of leaves l

such that (l1, l2) is inM. By thefirst property, for every leaf node inF, the corresponding
opening cost is deducted inW. By the second and third properties, if aweight PEWi (v)

is included inW since some upper edge is included in M , then this means that at least
one child of v is also incident to an upper edge in M. This argument follows all the
way till a leaf node is reached so that at least one of the leaves that belong to the
component defined by v is matched, as required. In other words, a path between a leaf
node l ∈ F and the root node contains node v, as required. Note that all other edges
in the matching have zero weight. Hence, we obtain a feasible solution to the subtrees
problem with weight exactly equal to W .

Next we show that every feasible solution to the subtrees problem with value W
gives a perfect matching in H ′ with weight W . Let F be the set of leaves that are
selected in the subtrees problem and let Q be the set of internal nodes whose weight
is included in W . Construct a matching M in H ′ such that:

1. For any leaf l ∈ F , (l1, l2) is in M .
2. For any v ∈ Q, include the upper edge (f (u), g(u)) in M for a child u of v such

that its subtree contains a leaf in F (as opposed to the lower edge (v, g(v))).

123

944 J Comb Optim (2017) 34:931–955

3. For a leaf l not in F , include the lower edge (g(v), l) in M , where v is the father
of l.

4. For any new node g(v) not matched to an old node so far, include an edge con-
necting it to a dummy node. That is, add (di1, g(v)) to M if g(v) is in N2 and add
(g(v), di2) to M if g(v) is in N1.

5. For any dummy node di1 not matched so far, match it with another unmatched
dummy node di2 by including (di1, di2) in M .

Note that the number of new nodes that are matched to original nodes are equal in
both trees. Therefore, the unmatched new nodes are the same in number in both sides,
and equal to k − 1, if k facilities are opened at the leaves. Hence, they match with
an equal number of dummy nodes leaving an equal number of unmatched dummy
nodes on either side. These can be finally matched via a zero-weight matching. By
this construction M is a perfect matching with weight W . ��

5 Extensions and hardness results

In this section, we first show that maximizing expected coverage under three LROs
is NP-hard even in the special case when all reliability values are 0 or 1. Then, we
investigate the general case with an arbitrary number of scenarios (d-LRO) and show
that the problem is as hard as the well-studied maximum coverage problem, even with
0–1 reliability vectors. We also remark that the greedy approach we presented for
the 1-LRO case extends to the general d-LRO case but it only gives an (1 − 1/e)-
approximation for coverage.

5.1 NP-hardness of the case with three LROs

Let us consider MAX-EXP-COVER-LRO with three LROs.

Proposition 5.1 MAX-EXP-COVER-LRO is strongly NP-Hard for the case of three
scenarios each with an LRO, even with 0–1 reliability vectors.

Proof The proof is by reduction from the three dimensional matching problem (3-
DM) which is known to be strongly NP-hard Ausiello et al. (1999). In 3-DM, three
disjoint sets A, B,C s.t. |A| = |B| = |C | = n, and a set of triples T, T ⊆ A× B ×C
with |T | = t , are given. The problem is to find n triples M ⊆ T such that their union
is A ∪ B ∪ C and they form a matching (no elements in M agree in any coordinate).

Given an instance of 3-DM,wedefine an instance ofMAX-EXP-COVER-LROwith
three scenarios and hence three LROs; the probability that each scenario occurs is 1/3.
Let the input graph G be a complete undirected graph on t nodes, each representing
a triple in T. A 0–1 reliability vector ps = (ps1, . . . , p

s
m) is defined for each scenario

s = A, B,C as follows. For scenario A, for each element ai of A, we consider all
triples in T that contain ai . We set the reliability of all edges between such triple nodes
to 1, so that a complete graph called the i th block of A, is formed by the edges with
probability 1. For the rest of the edges in G, the reliability is set to zero in pA. Thus,
n connected components (blocks) exist for scenario A. Furthermore, the weight of

123

J Comb Optim (2017) 34:931–955 945

each node is such that a total weight of 1 is distributed evenly among the nodes of
each block so that the total weight in scenario A is n. This construct is repeated for
scenarios B and C . In this instance, we need to locate n facilities, i.e. k = n.

Now suppose there is a 3-DM solution with n triples t1, . . . , tn . In G, we select
the n nodes corresponding to these triples as the facility locations. Since the triples
in the 3-DM solution match every element of A, B,C , the total weight collected (i.e.
the expected coverage) in the facility location problem should be n. Note that this is
the maximum coverage possible since each scenario has probability 1/3 and the total
weight of each scenario is n.

If MAX-EXP-COVER-LRO has a solution with expected demand value n, then we
can construct a 3-DM solution. In each of the three scenarios, the facility locations F
in this solution should cover every block in G to get coverage value n as each block
has a weight of 1. This implies that a facility exists in each block of each scenario and
that facility covers all the triples in each block. Note that a block consists of all triples
that contain the same element from A, or B or C . Hence every element in A ∪ B ∪C
is covered in the 3-DM solution. ��

5.2 The case with an arbitrary number of LROs

We had defined the MAX-EXP-COVER-LRO problem in Sect. 2. In this problem
we have d-LRO for an arbitrary number d. Note that each LRO is associated with
a disruption scenario s ∈ S (hence, |S| = d). We first discuss how this problem is
reformulated in terms of component trees.

For each scenario s ∈ S, its LRO defines a component tree Ts whose leaves are
common in all the trees. Let N denote the common leaf node set and Vs denote the
non-leaf nodes in Ts , for s ∈ S. By assigning weights to the nodes of the trees as in
Sect. 3, that is by defining EW (v, s), v ∈ Vs , we can reformulate the MAX-EXP-
COVER-LRO problem as a subtrees problem.

MAX-WT-k-LEAF-s-SUBTREES: Given rooted trees Ts , with weights EW (v, s)
for each node of v of Ts for s ∈ S, with a common leaf node set N , find a sub-
set L of N such that |L| ≤ k and

∑
v∈Vs EW (v, s)Iv(L , s) is maximum, where

Iv(L , s) equals 1 if the subtree of Ts rooted at v contains a leaf node in L; and 0,
otherwise.

This problem is NP-hard since we provedNP-hardness for the 3-LRO case.We next
show that the MAX-EXP-COVER-LRO problem is equivalent to the maximum cov-
erage problem (MAX-COVERAGE) (Hochbaum 1982), which is defined as follows.
Given a set U of n elements, subsets S1, S2, . . . , Sm of U , and integer k, 1 ≤ k ≤ m,
choose k subsets to maximize the number of elements of U that are covered (i.e.
contained in the selected subsets).

Proposition 5.2 MAX-COVERAGE reduces to MAX-EXP-COVER-LRO with a 0–1
reliability vector for each LRO.

Proof Given an instance of MAX-COVERAGE with m sets and n elements, we con-
struct an instance of MAX-EXP-COVER-LRO with a complete input graph G on m
nodes such that each node vi represents the set Si , for i = 1, . . . ,m. We define n sce-

123

946 J Comb Optim (2017) 34:931–955

narios such that each scenario s corresponds to an element us in U , for s = 1, . . . , n
and the probability of each scenario is 1/n. A 0–1 reliability vector ps is defined for
each scenario s by selecting the edges with reliability 1 as follows. For element us ,
consider the sets among S1, S2, . . . , Sm that contain this element. All the nodes in G
corresponding to these sets are connected to each other with edges having reliability
1. All of the remaining edges have zero reliability. That is, in scenario s the graph G
reduces to one completely connected component corresponding to element s, called
block Bs , and the remaining nodes are just singletons. The weights of the nodes in Bs

are all equally distributed to sum up to 1, whereas the weights of the singleton nodes
are zero. As a result, in each scenario the total weight is 1 and the expected total weight
over all scenarios is also 1. In this instance, we select k nodes to locate facilities.

Suppose the MAX-COVERAGE solution covers w elements with k sets. Then,
we select the k nodes in G corresponding to these sets as the facility locations. Let
F represent these nodes. In each scenario s corresponding to a covered element, the
block Bs must contain a node in F (in other words, the element us is covered by at
least one of the sets represented in Bs). Thus, a total weight of 1 is covered in each
such scenario, leading to total expected coverage of w/n.

Now, suppose MAX-EXP-COVER-LRO has a solution with expected demand
value w with k facilities located at the nodes F . We will show that w/n elements
are covered inMAX-COVERAGE by selecting the k sets corresponding to the facility
nodes in F . The given facility location solution should cover w blocks in G to get the
coverage value w/n as each block has a weight of 1 and occurs in a scenario with
probability 1/n. This implies that a facility exists in each such block. Since a block
consists of nodes representing the sets that cover a specific element, the element is
covered by the sets we selected (each one corresponding to a node in F), for a total of
at least w elements. ��

The greedy algorithm presented in Sect. 3 for the single scenario case generalizes
to the multiple scenario case and has a (1− 1/e)-approximation ratio for MAX-EXP-
COVER-LRO, as the proof in Hochbaum (1982) is also valid here.

Proposition 5.3 A (1−1/e)-approximation algorithm exists for MAX-EXP-COVER-
LRO with an arbitrary number of LROs.

5.3 Maximizing expected demand served within a distance limit in the d-LRO
case

In a more general version of the facility location problem MAX-EXP-COVER-LRO,
we define distances or travel times on the edges. In case of a disaster, delivering
relief aid from the facilities to the demand points in shortest time is of high priority.
Considering such a setting, we aim to satisfy as much demand as possible within a
specified time/distance limit. The time/distance limit can be incorporated into MAX-
EXP-COVER-LRO by defining edge lengths in the input graph and allowing a demand
node to be covered only if a facility exists within distance R to itself, where R is a
specified parameter. Assuming that a sufficient amount of supply will be available at
the facilities, if a facility is established at a node, it covers the demand of all nodes that

123

J Comb Optim (2017) 34:931–955 947

can be reached from it via a path of length R in the surviving network. If the locations
of the facilities are fixed, in each possible surviving network realization, total demand
covered can be evaluated by applying a shortest-path algorithm starting from each
facility node. The location problem is to place at most k facilities to maximize the
expected total demand covered within distance R. We denote this problem by MAX-
EXP-COVER-LRO-R.

Definition 5.1 Let dqi j denote the length of a shortest path between nodes i and j in
the graph defined by the network realization ξq . For a set F ⊆ V of selected facility
locations, let Iv(R, F, q) be an indicator variable that takes the value 1, if there exists
j in F such that dqv j ≤ R; and 0, otherwise.

Let P(q, s) be the probability that ξq occurs in scenario s, as before. Then, MAX-
EXP-COVER-LRO-R is formulated as given below.

MAX-EXP-COVER-LRO-R: Find F ⊆ V, |F | ≤ k to
maximize

∑
s∈S Pr(s)

∑m
q=0

∑
vi∈V P(q, s) wi Ivi (R, F, q).

Proposition 5.4 MAX-EXP-COVER-LRO-R is strongly NP-Hard even for the case of
a single scenario with a linear reliability order of edge failures (1-LRO).

Proof The proof is by reduction from the maximum k-facility location problem
(defined in Cornuejols et al. (1977)), which is known to be strongly NP-hard. In the
maximum k-facility location problem, a set of clients I and a set of potential facility
locations J are given with profits ci j ≥ 0 for each pair i ∈ I, j ∈ J . At most k facili-
ties are located at a subset F of J to maximize

∑
i∈I max j∈F ci j . Given an instance

of this problem, let cmax be maximum ci j value over all pairs i ∈ I, j ∈ J . Define an
instance of MAX-EXP-COVER-LRO-R by taking the complete bipartite graph I × J
as the input graph G. For each edge (vi , v j), let us set its reliability to ci j/cmax (so
that it is between zero and one) and its length to 1. Set R = 1 and wi = 1, ∀vi ∈ I ,
w j = 0, ∀v j ∈ J . Then, any solution that maximizes expected total demand covered
locates the facilities at a subset of J due to the distance limit R = 1. Furthermore,
facilities will be selected to maximize the total reliability of the edges connecting each
node vi , i ∈ I to a facility node v j , j ∈ F with maximum ci j/cmax . Hence, this
solution also maximizes the profits in the k-facility location problem. ��

We next show that MAX-EXP-COVER-LRO-R reduces to the maximum k-facility
location problem; hence, any solution algorithm developed for the latter can be used
to solve the former by means of the transformation in the proof.

Proposition 5.5 MAX-EXP-COVER-LRO-R under 1-LRO for edge failures can be
reduced to the maximum k-facility location problem in polynomial time.

Proof Suppose we are given an instance of MAX-EXP-COVER-LRO-R with a single
LRO defined by a reliability vector p for the input graph G = (V, E). We define
a complete bipartite graph V × V ′ by duplicating the node set V as V ′. The set V
corresponds to the set of clients and V ′ to the set of potential facility locations. For
edges (v j , v

′
j), we set cv j ,v

′
j
= w j , for v j ∈ V . We next define the profit of the pair

(vi , v
′
j) for i �= j . For a pair of nodes vi and v j in V , let dqi j be the distance between

123

948 J Comb Optim (2017) 34:931–955

the two nodes in a given network realization ξq . Note that if the distance dqi j exceeds

R, then it will remain so in all of ξq−1, ..., ξ1, ξ0. Therefore, if dmi j > R (the limit
is exceeded even when all edges survive), then we set the profit cvi ,v

′
j
to 0, since a

facility in v j cannot serve vi in any realization. Otherwise, let s be the smallest index
such that dqi j ≤ R for all q ≤ s. Then, we set cvi ,v

′
j
= w j

∑m
q=s P(q) since a facility

in v j can serve vi in realizations s to m. Recall from Sect. 2 that
∑m

q=s P(q) = ps , as
the probability that realization ξq occurs is pq − pq+1. Thus, cvi ,v

′
j
= w j ps .

Suppose F ⊂ V ′, |F | ≤ k, is an optimal solution to this instance of themaximum k-
facility location problem. Then, F gives the maximum value of

∑
vi∈V maxv′

j∈F cvi ,v
′
j

by definition. As the problem is uncapacitated, each client is serviced by one facility.
If a facility is located at v′

j , it services v j with profit equal to w j as any other facility
in F will provide a smaller profit. For a node vi such that v′

i is not in F , it is serviced
by some v′

j ∈ F , i �= j , such that cvi ,v
′
j
is maximum over all facilities. Note that for

any fixed F , for any i such that v′
i /∈ F , we can assign it to some v′

j ∈ F such that
dsi j ≤ R for the maximum possible s over all such v′

j . In this way, the demand at i
will be serviced for the most number of realizations.

Under this reduction, the set of facilities F∗ that are optimal for the maximum
k-facility location problem will also form a solution to MAX-EXP-COVER-LRO-
R with the same objective value. Therefore, this reduction is also approximation-
preserving. ��

Cornuejols et al. (1977) showed that a greedy algorithm has a worst-case bound of
(1− 1/e) for the maximum k-facility location problem. Later, Ageev and Sviridenko
(2004) improved the worst-case bound to (1− (1− 1/q)q), where q is the maximum
size of the subsets. Since the reduction in the proof of Proposition 5.5 is approximation-
preserving, the same ratios will be also valid for MAX-EXP-COVER-LRO-R.

6 Conclusions

We studied the problem of locating facilities to maximize the expected demand ser-
viced in a network with unreliable edges. As opposed to similar problems in the
literature, in this problem edges do not fail independently. Given the reliability of
each edge, we assume a linear reliability ordering of edges such that failure of an
edge implies the failure of all edges with the same or lower reliability. Under this reli-
ability model, the possible network realizations become polynomial in number and
a favorable problem structure exists. We showed that the surviving network compo-
nents can be represented by a binary tree; hence a transformation to a tree problem
follows. We presented polynomial time exact algorithms or hardness results for sev-
eral variations of the problem in terms of the number of linear orderings, different
objectives, capacity limits and distance limits for coverage. Our findings represent
new results on finding tractable models of edge failure for facility location plan-
ning.

123

J Comb Optim (2017) 34:931–955 949

Appendix 1: A dynamic programming algorithm for 1-LRO

We are given a rooted tree T with weights PEW (v) for all nodes v of T. Tv denotes
the subtree of T rooted at v, and Lv the set of its leaves. For every nonnegative integer
t ≤ k, we denote EW (v, t) as themaximum expectedweight at Tv obtained by placing
exactly t facilities in Lv . We have EW (v, 0) = 0 at all nodes v of T. If v is a leaf, then
EW (v, t) = PEW (v), for all 1 ≤ t ≤ k. For a non-leaf node v, let vl and vr be the
two children of v. For t ≥ 1, we have the following recursive relation.

EW (v, t) = max
0≤t ′≤t

{EW (vr , t
′) + EW (vl , t − t ′)} + PEW (v). (5)

The recurrence corresponds to allocating t ′ of the t facilities optimally in the right
subtree and the remaining in the left and counting in the expected weight of the root
node v as long as t ≥ 1 since in this case some leaf will have a facility and allow
the expected weight at the root node to be counted in the objective. The recursion
proceeds bottom-up from leaves to the root node.

Proposition 6.1 The dynamic programming algorithm solves the MAX-WT-k-LEAF-
SUBTREE problem in O(kn) time.

Proof As the component tree has 2n − 1 nodes, the recursive equations in the DP
algorithm are calculated in O(kn) time. ��

Corollary 6.1 TheMAX-EXP-COVER-LRO problem is solved in O(m log n+T (n)+
kn) time, where O(T (n)) is the time complexity of finding an MST of the input graph.

Proof First the component tree is constructed in O(m log n + T (n)) time. Then the
DP algorithm is applied in O(kn) time to the component tree CT with its weights
defined as PEW (v), for v in CT . By Propositions 3.1 and 6.1, we obtain an optimal
solution to the MAX-EXP-COVER-LRO problem. ��

The dynamic programming approach can be generalized to handle a version of the
problemwith uniform capacities at the facilities and another cost minimization version
with penalties for unmet demand.

Solving the capacitated 1-LRO problem by dynamic programming

When the supply quantities at the facilities are limited and a shortage can possibly
occur after the disruption, a capacitated problem can be defined. We assume that k
facilities each with supply quantity C will be open and the objective is to maximize
the expected total demand served. The capacitated k-facility problem of maximizing
expected coverage with a single LRO is formulated as follows.

MAX-EXP-COVER-LRO-CAP: Find F ⊆ V, |F | = k to
maximize

∑m
q=0

∑
vi∈V P(q) wi Dvi (F,C, q),

123

950 J Comb Optim (2017) 34:931–955

where Dvi (F,C, q) (taking values between 0 and 1) is the percentage of wi , namely
demand of node vi , that can be covered by the facilities F , each with capacity C , in
the network realization where the q strongest edges survive.

We next give a dynamic programming algorithm to solve this problem. The recur-
sion is on the subtrees of the component tree CT and the number of facilities. For an
interior node v of the component tree CT , let Tv be the subtree of CT rooted at node
v. Associated with Tv , we define ECC(Tv, t) = Maximum Expected Coverage in Tv

when t facilities are located at the leaves of Tv . Recall that when a disconnector edge
fails, it disconnects Tv into two components and this is represented by its two children
in CT . Let the corresponding two subtrees be Tv,L and Tv,R so that if a facility is
located in Tv , it will either be located in Tv,L or Tv,R .

If t = 0 we have ECC(Tv, 0) = 0 at all nodes v in the tree. If v is a leaf, we then
have ECC(v, t) = min{Ct, wv} · rel(v) for all 1 ≤ t ≤ k.

For a non-leaf node v and for t > 0, we have the following relation.

ECC(Tv, t) = max
1≤t ′≤t

{ECC(Tv,L , t ′) + ECC(Tv,R, t − t ′)

+rel(v)min{Ct,
∑

l∈Lv

wl}} (6)

The recurrence corresponds to allocating t ′ of the t facilities optimally in the left
subtree and the remaining in the right. As a result of this recursion we obtain a solution
with two properties: (1) the demand assignment in a component will be kept the same
when this component is contained in a bigger component, in some network realization
wheremore edges survive, and (2) any component which has a deficit will try to satisfy
its deficit from the first surplus component that it connects to (the earliest) along the
component tree (bottom-up).

Property 6.1 If node vi ∈ V is assigned to some facility at node v j which is a leaf in
Tv , it will also be assigned to the facility at v j for any of the nodes v′ whose subtree Tv′
contains Tv . We call this property the Monotonicity of Demand Assignment (MDA)
property.

Property 6.2 A solution has the Bottom-up Demand Assignment (BDA) property, if
the following holds:

For each component H ⊂ G with a deficit, and each node v j with unsatisfied
demand in this component, let H ′ be the first component that contains H with respect
to the CT with surplus. Then, v j is assigned to a facility in H ′.

By virtue of the above properties, an optimal solution can be constructed by satis-
fying the demands of all nodes at the first instance (going bottom-up) when there is
enough capacity, leading to the recursion presented.

Lemma 6.1 There exists an optimal solution to the MAX-EXP-COVER-LRO-CAP
problem with the MDA and BDA properties.

Proof Take an optimal solution to the MAX-EXP-COVER-LRO-CAP problem such
that the MDA property does not hold. Then, there must be some subtree Tv of CT

123

J Comb Optim (2017) 34:931–955 951

representing a component H ⊂ G in a network realization such that some node vi is
assigned to some facility at node v j of H , but in another component H ′ that contains
H , vi is assigned to a facility at a node outside H . Consider the edge whose failure
leaves H as a component. We can reroute flow on this edge to be directed from a
surplus component to a deficit component, satisfying the same set of demands with
the MDA property.

Take an optimal solution to the MAX-EXP-COVER-LRO-CAP problem such that
the BDAproperty does not hold. By satisfying the deficit in a component by the earliest
surplus-component, we get the most partial expected weight. ��
Proposition 6.2 The dynamic programming algorithm solves theMAX-EXP-COVER-
LRO-CAP problem in O(kn) time after the construction of the component tree.

Proof As the component tree has 2n−1 nodes, the recursive equations in the algorithm
are calculated in O(kn) time. ��

Appendix 2: Solving the cost minimization 1-LRO problem by dynamic
programming

We consider a cost minimization version of the facility location problem for the 1-
LRO case. We are given a fixed cost fv for opening a facility at node v, a variable
capacity cost cv per unit of demand served from a facility at node v, for v ∈ V .
Furthermore, a variable shortfall cost s per unit of unserved demand is given. The
objective is to minimize a weighted sum of the facility opening costs and the expected
costs of capacity used and demand unserved. In this problem up to n facilities can be
opened. We refer to the problem as MIN-EXP-COST, and formulate it below.

MIN-EXP-COST: Find F ⊆ V, to
maximize

∑
vi∈F fvi +

∑m
q=0 P(q) {∑vi∈F cvi xiq+s

∑
vi∈V yiq}

where xiq is the amount of capacity used at the facility located at vi , and yiq is the
part of wi that is not covered by the facilities F in the network realization where the
q strongest edges survive.

This problem can be solved by a dynamic programming algorithm. The recursion
is on the subtrees of the component tree CT . We use the same definitions of Tv , Tv,L ,
Tv,R , Lv and PEW (v) as before. Associated with Tv , we define MEC(Tv,UC) as the
minimum expected cost in Tv when at least one facility is located at the leaves of Tv

and the minimum unit capacity cost of the open facilities in Tv is at most UC . This is
defined for each UC value that is equal to cl for l ∈ Lv . Let CVmin(v) = minl∈Lv cl .
Then, MEC(Tv,CV) = ∞ for all 0 < CV < CVmin(v). Similarly, we define
MEC(Tv, 0) = as the minimum expected cost in Tv when no facility is located at the
leaves of Tv .

For a leaf node v, we have the following relations.

MEC(v,CV) =
{
fv + cv wv rel(v), for all CV ≥ cv

∞, for all 0 < CV < cv.
(7)

MEC(v, 0) = s wv rel(v). (8)

123

952 J Comb Optim (2017) 34:931–955

For a non-leaf node v, we have the following two relations.

MEC(Tv, 0) = MEC(Tv,L , 0) + MEC(Tv,R, 0) + s PEW (v) (9)

MEC(Tv,UC) = min{ MEC1, MEC2, MEC3 } (10)

where

MEC1 = MEC(Tv,L , 0) + min
UC ′≤UC

{MEC(Tv,R,UC ′) + min{UC ′, s} PEW (v)}
MEC2 = MEC(Tv,R, 0) + min

UC ′≤UC
{MEC(Tv,L ,UC ′) + min{UC ′, s} PEW (v)}

MEC3 = min
UCL ,UCR s.t. UC≥min{UCL ,UCR}

{MEC(Tv,L ,UCL) + MEC(Tv,R,UCR)

+min{UCL ,UCR, s} PEW (v)}

Equation (9) considers the case when no facility exists in Tv so that none of the
demand of Tv can be serviced and the corresponding shortfall cost is incurred. In
Eq. (10) the minimum expected cost in Tv is calculated when a facility is located in
one of the leaves of Tv . We take the minimum of three terms that correspond to three
cases: (1) A facility exists in Tv,R but not in Tv,L ; (2) A facility exists in Tv,L but
not in Tv,R ; (3) A facility exists in both Tv,R and Tv,L . Let us consider the first case.
Here, at node v of CT , the partial expected weight is covered if the minimum unit
capacity cost UC in Tv is less than or equal to the unit shortfall cost s. The second
case is symmetric. In the third case, at least one of the two subtrees contains a facility
with unit capacity cost at most UC (hence the condition UC ≥ min{UCL ,UCR}).
All nodes in Tv are either served by the smallest unit cost facility or the shortfall cost
is incurred in the last term.

Proposition 6.3 The dynamic programming algorithm solves the minimum expected
cost facility location problem MIN-EXP-COST in O(n4) time after the construction
of the component tree.

Proof The component tree has 2n − 1 nodes. For each node the recursive equations
in the DP algorithm are calculated for each of the possible UC values. There are at
most n possibleUC values, one for each node where a facility can be placed. For any
particularUC value, there are O(n2) choices to check to compute the best combination
for the minimum. ��

Appendix 3: Polynomial-time solution using an iterative argument

We next give an alternative LP formulation for the MAX-WT-k-LEAF-2-SUBTREES
problem and show that an integral optimal solution can be obtained from an optimal
extreme point solution of the LP using an iterative argument similar to the technique
presented in Singh and Lau (2007).

To do this, we further reduce the problem to one of picking a set of k leaves such
that the weight of the internal nodes not in the paths from these leaves to the roots
in the two trees is as small as possible. We use an indicator variable xl for each leaf

123

J Comb Optim (2017) 34:931–955 953

to denote if it is chosen in the set of k leaves, for l ∈ L . For every internal node v

in each of the two trees, we have a variable yv denoting if this node is not in a path
from a chosen leaf to the corresponding tree’s root, and thus needs to be counted in
the objective function to be minimized. We have the following LP relaxation for the
problem.

(LP2) Minimize
∑

v∈V1∪V2
wv yv +

∑

l∈L
wl (1 − xl) (11)

s.t. yv +
∑

l∈Tv∩L

xl ≥ 1 ∀ v ∈ V1 ∪ V2 (12)

∑

l∈L
xl = k (13)

yv ≥ 0 ∀ v ∈ V1 ∪ V2 (14)

0 ≤ xv ≤ 1 ∀ v ∈ L (15)

We prove the following results for a slightly more general LP2 where T1 and T2
may be forests rather than trees, with common leaf set L .

First observe that if we find a variable yv that is set to 1 in an optimal solution
to LP2, we can simplify the problem as follows. For such an internal node v, all its
non-leaf descendants also have y-value 1 and all its leaf descendants have x-value
0; thus we pick the highest such node and delete its subtree with the corresponding
constraints (12) from the problem.

On the other hand, if we find a variable xl that is set to 1 in an optimal solution to
LP2, then we simplify as follows. The y-value of all nodes on the path from l to the
root in both forests to zero (their constraints are satisfied). We delete this leaf l and
these internal nodes with the corresponding constraints (12). We now have a problem
with at least one less leaf; hence constraint (13) is also modified with a right-hand side
of k − 1.

In either case, the resulting problem has the same type of constraints and so we can
continue to recursively find another variable set to 1 to finally find an integer solution.
We summarize this self-reducibility property in the lemma below.

Lemma 6.2 If every extreme point solution to LP2 has a variable set to 1, then LP2
always has an integral optimal solution.

We can now get an integral solution to LP2 by proving the following key claim.

Proposition 6.4 Any extreme point solution to LP2 always has a variable set to 1.

Proof We prove this by contradiction. Suppose at an extreme feasible point (or basic
feasible or vertex solution) x ′, y′ all positive variables are fractional and without loss
of generality they are < 1. Consider a maximal set of independent tight constraints
from LP2 corresponding to this extreme point (namely, a maximal set of constraints
that are tight at this solution and are linearly independent of one another). The set of
tight constraints (excluding nonnegativity) can be indexed by V ′

1∪V ′
2∪k where V ′

1 and
V ′
2 are internal nodes in the forests T1 and T2 whose corresponding constraints (12)

are tight and k is the index of the cardinality constraint (13).

123

954 J Comb Optim (2017) 34:931–955

Since we have a basic solution, the number of linearly independent tight constraints
equals the number of fractional valued variables. We argue that if all variables are
fractional, every tight constraint hasmany nonnegative variables involving it. However
we can show that the total number of independent tight constraints cannot be as many
as the number of such fractional variables contradicting the fact that this is an extreme
point. To carry out the proof, we use a token argument as in Jain (1998), Singh and
Lau (2007).

We give one token to each positive variable. We then redistribute these tokens
among the independent tight constraints so that each tight constraint gets at least one
token and there are some leftover tokens which will show a contradiction.

Here is how the redistribution works. If any tight constraint in V ′
1 or V

′
2 correspond-

ing to an internal node v has y′
v > 0, we assign the token of v to this constraint.

Next, we look at tight constraints in V ′
1 or V ′

2 corresponding to nodes v such that
y′
v = 0: we call these constraints leaf-tight. Note that any leaf can be only in one
leaf-tight constraint in each tree since a set of independent leaf-tight constraints in
a tree correspond to disjoint sets of leaves. In particular, if there are two leaf-tight
constraints in the same tree containing a leaf, they correspond to two ancestors of the
leaf; subtracting the constraint of the lower ancestor from that of the higher leaves a
set of leaf variables which are all set to zero. However, these tight zero constraints and
the lower ancestor’s constraint added together give the higher ancestor’s constraint (a
contradiction). Therefore, for every leaf l such that x ′

l > 0, we assign half its token
to a leaf-tight constraint in V ′

1 that contains x ′
l , if one exists, and the other half to a

leaf-tight constraint in V ′
2 that contains x

′
l , if one exists. Also note that any leaf-tight

constraint involves at least two leaves (since it is tight and no leaf has x ′-value 1).
Thus every leaf-tight constraint in each tree also gets at least one token.

Now consider the set of all leaf-tight constraints among V ′
1∪V ′

2 in one of the forests,
say T1. If their union contains all leaves that have fractional x ′-value, then their sum is
the same as the cardinality constraint (on all leaves)whichmust be linearly independent
of them by our initial choice. Thus there is at least one leaf that is not spanned by these
maximal leaf-tight constraints in V ′

1. However, note that the difference between the
cardinality constraint and these leaf-tight sets in T1 is an integer which is not zero and
since there is no leaf with x ′-value 1 there are actually two leaves that are not spanned
by leaf-tight constraints in T1 and thus their token assignments of 1

2 to constraints in
T1 is unused. By a symmetric argument, there are two leaves that are not spanned by
leaf-tight constraints in T2 and thus their token assignments of 1

2 each are not used
in T2. We thus get a total of 2 unassigned tokens of which we can assign one to the
cardinality constraint and the other extra one gives the desired contradiction. ��
As a result of Proposition 6.4 and Lemma 6.2, an integer optimal solution is obtained
from LP2 recursively.

References

Ageev AA, Sviridenko MI (2004) Pipage rounding: a new method of constructing algorithms with proven
performance guarantee. J Comb Optim 8(3):307–328

Ausiello G, Crescenzi P, Gambosi G, Kann V, Marchetti-Spaccamela A, Protasi M (1999) Complexity and
approximation. Springer, Berlin

123

J Comb Optim (2017) 34:931–955 955

Colbourn CJ, Xue G (1998) A linear time algorithm for computing the most reliable source on a series-
parallel graph with unreliable edges. Theoret Comput Sci 209:331–345

Cornuejols G, Fisher M, Nemhauser G (1977) Location of bank accounts to optimize float: an analytic
study of exact and approximate algorithms. Manag Sci 23:789–810

Eiselt HA, Gendreau M, Laporte G (1992) Location of facilities on a network subject to a single-edge
failure. Networks 22:231–246

Eiselt HA, Gendreau M, Laporte G (1996) Optimal location of facilities on a network with an unreliable
node or edge. Inf Process Lett 58(2):71–74

Feige U (1998) A threshold of ln n for approximating set cover. J ACM 45(4):634–652
Gunnec D, Salman FS (2007) Assessing the reliability and the expected performance of a network under

disaster risk. In: Proceedings of the international network optimization conference (INOC), April
22–25, Spa, Belgium

Hochbaum DS (1982) Approximation algorithms for the set covering and vertex cover problems. SIAM J
Comput 11:555–556

Jain K (1998) A factor 2 approximation algorithm for the generalized Steiner network problem. Combina-
torica, 21:39–60, 2001. Preliminary version in Proceedings of 39th IEEE FOCS

Korte B, Lovasz L, Schrader R (1991) Greedoids, algorithms and combinatorics. Springer, Berlin
Melachrinoudis E, Helander ME (1996) A single facility location problem on a tree with unreliable edges.

Networks 27(3):219–237
Nemhauser GL, Wolsey LA (1988) Integer and combinatorial optimization. Wiley, New York
Pardi F, Goldman N (2005) Species choice for comparative genomics: being greedy works. PLoS Genet

1(6):e71
Salman FS, Yucel E (2015) Emergency facility location under random network failures: insights from the

Istanbul case. Comput Oper Res 62:266–281
Singh M, Lau LC (2007) Approximating minimum bounded degree spanning trees to within one of optimal
Steel M (2005) Phylogenetic diversity and the greedy algorithm. Syst Biol 54(4):527–529
Wolle T (2002) A framework for network reliability problems on graphs of bounded treewidth. In: Pro-

ceedings of the 13th international symposium on algorithms and computation, LNCS, vol 2518, pp
137–149

Xue G (1997) Linear time algorithms for computing the most reliable source on an unreliable tree network.
Networks 30:37–45

123

	Multiple facility location on a network with linear reliability order of edges
	Abstract
	1 Introduction
	2 Problem definition
	2.1 Dependent failures with linear reliability order

	3 Algorithms for a single linear reliability order
	3.1 Graph disconnectors and the component tree
	3.2 Reformulation of MAX-EXP-COVER-LRO
	3.3 A greedy algorithm

	4 Algorithms for two LROs
	4.1 Polynomial-time solution by total unimodularity of an LP formulation
	4.2 Solving the problem with facility opening costs via matching

	5 Extensions and hardness results
	5.1 NP-hardness of the case with three LROs
	5.2 The case with an arbitrary number of LROs
	5.3 Maximizing expected demand served within a distance limit in the d-LRO case

	6 Conclusions
	Appendix 1: A dynamic programming algorithm for 1-LRO
	Solving the capacitated 1-LRO problem by dynamic programming
	Appendix 2: Solving the cost minimization 1-LRO problem by dynamic programming
	Appendix 3: Polynomial-time solution using an iterative argument
	References

