1-35 ()
1)
© Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Approximation Algorithms for Certain Network
Improvement Problems

SVEN O. KRUMKE krumke@zib.de

Konrad-Zuse-Zentrum fir Informationstechnik Berlin, Department of Optimization, Takustr. 7,
14195 Berlin-Dahlem, Germany.

MADHAV V. MARATHE madhav@lanl.gov
Madhav V. Marathe, Los Alamos National Laboratory, P.O.Box 1663, MS B265, Los Alamos
NM 87545, USA.

HARTMUT NOLTEMEIER noltemei@informatik.uni-wuerzburg.de
Department of Computer Science, University of Wiirzburg, Am Hubland, 97074 Wirzburg, Ger-
many.

R. RAVI ravi+@Qcmu.edu
GSIA, Carnegie Mellon University, Pittsburgh, PA 15213.

S. S. RAVI raviQcs.albany.edu
Department of Computer Science, University at Albany — SUNY, Albany, NY 12222, USA.

Editor:

Abstract. We study budget constrained network upgrading problems. Such problems aim at
finding optimal strategies for improving a network under some cost measure subject to certain
budget constraints. Given an edge weighted graph G = (V, E), in the edge based upgrading model,
it is assumed that each edge e of the given network also has an associated function ce(t) that
specifies the cost of upgrading the edge by an amount ¢. A reduction strategy specifies for each
edge e the amount by which the length £(e) is to be reduced. In the node based upgrading model,
a node v can be upgraded at an expense of ¢(v). Such an upgrade reduces the delay of each edge
incident on v. For a given budget B, the goal is to find an improvement strategy such that the
total cost of reduction is at most the given budget B and the cost of a subgraph (e.g. minimum
spanning tree) under the modified edge lengths is the best over all possible strategies which obey
the budget constraint.

After providing a brief overview of the models and definitions of the various problems considered,
we present several new results on the complexity and approximability of network improvement
problems.

Keywords: Complexity, NP-hardness, Approximation Algorithms

1. Introduction and Motivation

Several problems arising in areas such as communication networks and VLSI design
can be expressed in the following general form: Enhance the performance of an
underlying network by carrying out upgrades at certain nodes and/or edges of the
network [7, 19, 21, 13, 14].

Consider the following scenario which best illustrates the type of problems we
investigate. A large communication company is approached by a client with the



requirement to interconnect a set of cities housing the client’s offices (e.g. banks
with high transaction rates between branches). The company has a list of feasible
links that it can use to construct a network to connect these cities. Each link has
a construction cost associated with it. One of the main concerns of the client is to
build a communication network of minimum cost. This is the ubiquitous minimum
spanning tree problem. With the advent of optical communication technology,
the client would like to upgrade the communication network and has allocated a
fixed budget to do so. In communication networks, upgrading a node corresponds
to installing faster switching equipment at that node. Such an upgrade reduces
the communication delay along each edge emanating from the node. Similarly,
upgrading an edge corresponds to replacing an existing link with a new type of
link. In general, there is a cost for improving each link (node) in the existing
network by a unit amount. The goal is to design a strategy to upgrade the links
of the network so that the total cost of upgrading the links (nodes) is no more
than the given budget, and the cost of a minimum spanning tree for the upgraded
network is the least over all the possible improvements of the network satisfying
the budget constraint.

Although substantial work has been done in finding optimal networks (e.g. span-
ning trees) in graphs, significantly less work has been reported on how to modify a
graph so as to optimize the cost of a suitable subgraph of the resulting graph, when
there is a budget constraint on the modification cost. Here, building on our recent
work in [13, 14], we formulate and study such budget constrained optimal network
upgrading problems.

The paper is organized as follows. Section 2 introduces the node and edge based
upgrading models. In Section 3 we formally define the problems under study. In
Section 5, we discuss the robustness and generality of our formulations. Section 4
briefly summarizes our results. Section 6 provides a comparison with related work.

In Section 7 we present our approximation algorithm for the bottleneck node up-
grading problem on unweighted graphs and establish its performance guarantee.
Section 8 investigates edge upgrading problems for constrained Steiner trees. Sec-
tion 9 describes our results for the case when the whole graph needs to be upgraded.

2. Preliminaries and Upgrading Models

Throughout the presentation we assume that G = (V, E) is a connected undirected
graph. Let w be a nonnegative edge weight function defined on G. For a tree T
in G, the bottleneck-delay of T under w is defined to be the weight of the heaviest
edge in T'. The total weight of T under the cost function w is the sum of the
weights w(e) of the edges e € T'. Finally, the diameter of T with respect to w,
denoted by dia,(7"), is the length of a longest simple path in 7.

Given a subset K C V of distinguished nodes called terminals, any subgraph T
of G which is a tree and which contains all the terminals from K is said to be a
Steiner tree of G for K.

We now describe our node based and edge based upgrading models.



2.1. Node Based Upgrading Model

In the node based upgrading model we are given a connected undirected graph
G = (V, E). Further, for each edge e = (u,v) € E, we are given three nonnegative
numbers: d(e) represents the length or delay of the link e. If exactly one of the
endpoints v and v is upgraded, the delay of e decreases to d,,(¢e), the “medium”
delay. If both endpoints are upgraded, then the delay falls to d;(e), the “low” delay.
It is assumed that d;(e) < d,,,(e) < d(e).

Thus, the upgrade of a node v reduces the delay of each edge incident on v. For
each node v € V the value ¢(v) specifies how expensive it is to upgrade the node.
For a subset W of V, the cost of upgrading all the nodes in W, denoted by ¢(W),

is equal to ), .y c(v).
2.2. FEdge Based Upgrading Model

In the edge based upgrading model, each edge e € E is associated with two non-
negative numbers as follows: £(e) denotes the length or the weight of the edge
e and £, (e) denotes the minimum length to which the edge e can be reduced.
Consequently, we assume throughout the presentation that fnin(e) < £(e). The
nonnegative cost function c.(t) associated with edge e indicates how expensive it
is to reduce the length of e by an amount ¢. We assume without loss of generality
that c.(0) = 0 for all edges e € E.> We also make the natural assumption that each
cost function ¢, is nondecreasing. In this paper we will restrict ourselves to the case
when the cost functions ¢, are linear, i.e., c.(t) = c. - t for some constant ¢, > 0.

A reduction strategy (or simply reduction) r on the edges of G specifies how to
reduce the ¢-length of each edge e to a value in the range [(min(€), £(€)]. Formally,
we require that

£(e) —r(e) > Lyin(e) forall e € E.

The cost of the reduction r is ), ce(r(e)). If r is a reduction on G, then we can
consider the graph G with edge weights given by the “reduced lengths”, namely
(L —r)(e):=L(e) —r(e) (e € E).

3. Problem Formulations and Notion of Approximation

As already mentioned, the problems studied in this paper are formulated as multi-
criteria optimization problems.

Definition 1. [k-Criteria Optimization Problem] For any fixed k > 2, a k-criteria
manimization problem 11 on a weighted graph is defined by specifying k polynomial
time computable minimization objectives, fi,..., fr, and a membership require-
ment in a class of weighted subgraphs I' (not necessarily weighted exactly the same
way as the original graph).

The problem specifies budget values F5, . .., Fy as upper bounds on the objectives
f2,-.-, fr. The goal is to find a subgraph from the set



{Ierfz(I)SF“ 222,,k}, (].)
having minimum possible value for f;.

Given an instance of a k-criteria problem, the set of feasible solutions for the
instance is defined as the set given in (1).

As an example, consider the following node based bottleneck spanning tree up-
grading problem, denoted by (NODE-UPGRADE, BOTTLENECK, SPANNING TREE).
(This problem is studied in Section 7.)

Definition 2. [Node Weighted Bottleneck Tree Upgrading Problem] Given an
edge and node weighted graph G = (V, E) as in Section 2.1 and a bound D, the
problem (NODE-UPGRADE, BOTTLENECK, SPANNING TREE) is to upgrade a set
S C V of nodes such that the resulting graph has a spanning tree of bottleneck
delay at most D and ¢(S) is minimized.

In the above problem, the class I' of subgraphs consists of all the spanning trees.
The first objective (which is to be minimized) is the upgrading cost, while the
second objective is the bottleneck weight of the tree after the upgrade.

Similarly, the edge based Steiner tree upgrading problem, denoted by (ToTAL
WEIGHT, DIAMETER, EDGE-UPGRADE, STEINER TREE), can be formulated as
follows. (This problem is studied in Section 8.)

Definition 3.  [Diameter Constrained Steiner Tree Problem]| Let G = (V, E) be an
edge weighted graph as in Section 2.2 and let d be an additional edge weight function
d which is independent of £. Given a bound D on the d-diameter and a nonnegative
budget value B, the diameter and budget constrained minimum total cost Steiner
tree problem, (ToTAL WEIGHT, DIAMETER, EDGE-UPGRADE, STEINER TREE), is
to find a subgraph from the set

T is a Steiner tree of G with the terminals K,
(T,r) : ris a reduction on G, , (2)
diag(T) < D and ) cpce-r(e) < B

such that the weight of the subgraph under the weight function (¢ —r) is as small
as possible.

We now introduce the notion of approximation that is used throughout the paper.

Definition 4. [k-Criteria Approximation Algorithm] For any fixed k£ > 2, a k-
criteria approzimation algorithm for a k-criteria minimization problem II with per-
formance («q, ..., ay) is a polynomial time algorithm with the following properties:

Given any instance of II with a nonempty set of feasible solutions, the algorithm
finds an “almost feasible solution”, that is a solution y from the set

{CUEFfZ(CU)Saze Z=2,,k}} (3)



such that fi(y) < a; - OPT. Here OPT denotes the minimum value of a solution
satisfying all the constraints.

If there is no feasible solution for an instance, the algorithm has the choice of
producing an “almost feasible solution” from the set given in (3) or providing the
(correct) information that the set of feasible solutions is empty.

In general, each performance factor «; depends on the input size and on the
budget values Fb, ..., F;. However, for several problems considered in this paper,
the «; values are constants. The performance of an approximation algorithm is
measured in terms of both near-optimality and the extent to which the constraints
are violated in the solution produced. Notice that any solution produced by the
algorithm is contained in the set (3). Thus, the solution belongs to the subgraph-
class I'.

For example, an (a, #)-approximation algorithm for (NODE-UPGRADE, BOTTLE-
NECK, SPANNING TREE) finds for any instance of the problem, an upgrading set S
of cost at most « - OPT such that the upgraded graph has a spanning tree of bot-
tleneck delay at most § times the given threshold D. Here, OPT is the minimum
upgrade cost needed to obtain a spanning tree of bottleneck delay at most D.

4. Summary of Results

We study the complexity and approximability of a number of node based and edge
based upgrading problems. We consider three objectives to evaluate the cost of a
(sub-)graph in the modified network: the bottleneck delay, the diameter and the
total cost.

Tables 1 and 2 summarize our results. The node based upgrading problems use the
model from Section 2.1 while the edge based upgrading problems utilize the model
defined in Section 2.2. In Tables 1 and 2, the rows are indexed by the problem. The
columns indicate the hardness and approximation results for each problem. Given
a bicriteria problem (i.e., a problem involving two criteria), we can obtain a dual
(or symmetric) version of the problem by interchanging the budgeted objective and
the minimization objective. In Section 5, we establish a general result (Theorem 2)
that allows us to obtain an approximation algorithm for the dual problem given
an approximation algorithm for the original problem. For this reason, results for
the dual problems are not explicitly indicated in the tables. The tables include the
following results.

1. The problems (EDGE-UPGRADE, BOTTLENECK, GRAPH), (EDGE-UPGRADE,
TOTAL-WEIGHT, GRAPH) and (EDGE-UPGRADE, BOTTLENECK, SPANNING
TREE) are solvable in polynomial time.

2. The problem (NODE-UPGRADE, BOTTLENECK, GRAPH) is MaxSNP-hard but
has a polynomial time (2, 1)-approximation algorithm.

3. (U-NODE-UPGRADE, BOTTLENECK, SPANNING TREE) has a polynomial time
(5+4InA, 1) approximation algorithm. Here, (U-NODE-UPGRADE, BOTTLE-
NECK, SPANNING TREE) is the restriction of the problem (NODE-UPGRADE,



Table 1.

Results for node based upgrading problems.
NP Z DTIME(n® (loslogn)) )

(The hardness results assume that

Problem

Hardness Result

Performance Guarantee

(U-NODE-UPGRADE,
BOTTLENECK, SPANNING
TREE)

Not  approximable  within
(a, f(n)) for any o < 1/3 -1nn
and polynomial time com-
putable function f (see [14]).

(5+41InA,1),
where A is the maximum de-
gree in the graph.

(NODE-UPGRADE, BoT- Not approximable within (2,1)
TLENECK, GRAPH) (a, f(n)) for any o < 1.038
and any polynomial time
computable function f.
(NODE-UPGRADE, Not  approximable  within open

ToTAL-WEIGHT,

(a, f(n)) for any a < 1.038

GRAPH) and any polynomial time

computable function f.

Table 2. Results for edge based upgrading problems. (The hardness results assume that

P # NP.)
Problem Hardness Result Performance Guarantee
(ToraL WEIGHT, DiaM- Not  approximable  within  (O(log |K]|), O(log |K|), O(log |K|)),
ETER, EDGE-UPGRADE, («,3,1) or (l,a,8) for any where K is the set of terminals.
STEINER TREE) o, > 1.

(EDGE-UPGRADE, BOT-
TLENECK, GRAPH)

polynomial time solvable.

(EpGE-UPGRADE, BoOT- polynomial time solvable.
TLENECK, SPANNING
TREE)

BOTTLENECK, SPANNING TREE) to those instances where the cost of upgrading
each node is 1, and A denotes the maximum node degree in the input graph.

4. There is an approximation algorithm for the (ToTaL WEIGHT, DIAMETER,
EDGE-UPGRADE, STEINER TREE) problem with a performance guarantee of
(O(log | K1), Olog | K1), O(log | K1)).

In addition to the above results for specific network improvement problems, we
also extend the results in [18] and show that our formalism for k-criteria approxi-
mation is both robust and general. It is more general because it subsumes the case
considered in [18] where one wishes to minimize some functional combination of
two criteria. It is more robust because the quality of approximation is independent
of which of the two criteria is chosen as the budgeted objective.



5. Generality and Robustness of Formulations
5.1. A Note on the Infeasibility of Multicriteria Problems

A seeming drawback of our Definition 4 is that when an instance of a k-criteria
optimization problem does not have a feasible solution, a k-criteria approximation
algorithm might give us an “almost feasible solution” with a very bad objective
function value (since in this case the algorithm is allowed to pick just any “almost
feasible solution”).

Of course, if we can check the feasibility of an instance in polynomial time, then
there are no severe problems. We can perform this check before running the k-
criteria approximation algorithm. If we detect infeasibility, we simply provide an
indication of that fact and stop.

For the rest of this subsection we assume that, given an instance of the k-criteria
minimization problem II, determining whether the set of feasible solutions is empty
is NP-complete. (This is true of all the NP-hard problems considered in this paper.)
Under this assumption, the existence of any polynomial time algorithm that outputs
a feasible solution if and only if a problem instance is feasible, will imply that
P = NP. Thus, it seems necessary to allow a k-criteria approximation algorithm
the “freedom” of violating most or all of the constraints by small factors while
approximating the minimization objective.

Let A be an («q, ..., ax)-approximation algorithm for the problem II, where for
simplicity the a; are assumed to be constants greater or equal to 1. Suppose that
given an instance I of II the algorithm A returns the solution #, and does not
produce an indication of infeasibility. We denote by

SIZ{ZL"EF:fi(ZL”)SFi,i=2,...,k}

the set of feasible solutions for I. We now run A again on the instance I’ obtained
from I by setting the bounds on the objectives f; to F} := o F; for i = 2,... k.
Thus, for I’ the problem consists of finding a subgraph from the set

Sy = {zel: filx) <F,i=2,...,k}
={zel: filz) <aiFi=2,...,k} (4)

minimizing f;. Notice that the set of feasible solutions defined in (4) is nonempty,
since £ € Sy. Let the corresponding solution delivered by A be z'. We then output
Z or #', depending on which of the two solutions has a better objective function
value under f;.

The solution & generated this way will violate the constraints f;(z) < F; at most
by the factors a?, i = 2,...,k. Moreover, Z is a good approximate solution for the
“relaxed” instance I' corresponding to I and satisfies

f1(2) <oy -min{ fi(z) : 2 € S;USP }.

Also, if the set of feasible solutions Sy of the original instance I is nonempty, then



f1(2) <oaq -min{ f1(z) :x € St }.

The above arguments show that we can augment a k-criteria approximation algo-
rithm to produce acceptably good solutions even if our original problem instance
is infeasible. Instead of just outputting any “almost feasible solution”, we can find
one that has a good objective function value f; for a relaxed problem instance. In
view of the assumption that deciding feasibility is NP-complete, this appears to be
the best that we can accomplish in polynomial time (assuming that P # NP).

5.2.  Generality

By “generality” we mean that our results for k-criteria formulations can be easily
modified to obtain results for classes of problems involving only one criterion. In
this section we discuss how approximation algorithms for multicriteria problems
can be used to obtain approximation algorithms for certain related unicriterion
problems.

Let II be a k-criteria minimization problem. For a fixed weight-vector o =
(01,...,0%) € IN*, we denote by II7 and IIY, the unicriterion problems of finding
a subgraph from I' minimizing f7 := Zle oifi and f7 := Hle f{" respectively.
Throughout this section we will assume that the objectives fi,..., fr are integer
valued. In case of rational objectives, the results can be extended with a small loss
in the performance guarantees. The restriction to integral cost functions will help
us to focus on the essential connections between multicriteria approximation and
unicriterion approximation. We will also make the following assumption about the
boundedness of the objective function values of 11§ and II1%:

Assumption 1. Let II' € {II7,11%2}. There is a polynomial p with the following
property: for any instance I of II' with encoding length |I| there exist (polynomial
time computable) numbers B, ..., By with 0 < B; < 201D for i = 2,...,k such
that the optimal solution z* to the instance of II' satisfies:

].sz(l'*)SBz, fori:?,...,k.

It should be noted here that Assumption 1 is not a severe restriction. If we assume
a reasonable encoding scheme (such as the usual binary encoding) for numbers, then
the assumption merely states that the encoding lengths of the single objective func-
tion values f;(z*) of an optimal solution z* remain polynomially bounded in the
input length. If this were not the case, then the encoding lengths of f7(z*) and
f2(z*) would not be polynomially bounded (assuming again a reasonable encod-
ing scheme). Hence, there can be no polynomial time algorithm, deterministic or
nondeterministic, that finds an optimal solution and outputs the optimal function
value, since the encoding length of the objective function value is exponential in
the input size.



THEOREM 1 Assume that there is an (aq,...,qx)-approzimation algorithm for a
k-criteria problem I1. Then for any e > 0 and o = (04, ...,01) € INF the following
statements hold:

(i) There is a polynomial time approzimation algorithm for 115 with a performance
guarantee of (1 + ¢) max{oq,...,ax}.

1) There is a polynomial time approximation algorithm for 117 with a performance
X

k
guarantee of (1 + E)Zi=2 7i Hle alt.

(3
In particular, if o = (1,1,...,1), then the performance of the approzimation
algorithm for 117 is (1 +¢)k—! Hle Q.

Proof: Let A be an (o, ..., a)-approximation algorithm for the problem II. We
first consider I119. The idea behind our approximation algorithm for the unicriterion
problem II7 is the following: Let 2* be an optimal solution of value Zle o; fi(z*)
for a given instance of II7. Then, z* is a feasible solution to the instance of the
k-criteria problem II of minimizing f;(z) subject to the constraints that f;(z) <
F; := fi(x*). The feasibility of 2* allows us to argue that there is a “good” optimal
solution to this instance of II, meaning that its objective value under f; is at most
that of x*. Using the k-criteria algorithm A would enable us to find a “good”
solution where also the linear combination of the objective values f;, i =1 ...,k
via o is reasonably close to the solution value for z*. Unfortunately, we do not
know the “right bounds” f;(z*) to use as upper bounds. Thus, we construct an
appropriate search space of bounds which is large enough to find good bounds and
small enough to be searchable exhaustively in polynomial time.

We formalize the above idea in ALGORITHM CONVERT-SUM shown in Figure 1.
Since € > 0, k and o; are all constants, it follows easily that ALGORITHM CONVERT-
SuM can be implemented to run in polynomial time.

Let 2™ be an optimal solution to the unicriterion problem II7. Consider the call
in ALGORITHM CONVERT-SUM to the k-criteria algorithm A, when the parameter
z satisfies:

filz™) <z < (1 +¢)fi(z"), i=2,...,k. (5)

Observe that by construction of the algorithm, such a call will be issued. The
algorithm A is hence applied to the k-criteria problem of finding a subgraph from

{CUEF:fi(CU)Szi,i=2,...,k}, (6)

having minimum possible value for f;. Because of (5), the optimal solution z* to
the unicriterion problem II% is contained in the feasible set (6), thus proving that
this set is nonempty. Therefore, by the performance guarantee of A, the k-criteria
approximation algorithm will return a subgraph & := A(z) from

{zel: filz) <a;-z,i=2,... .k} (7)



10

ALGORITHM CONVERT-SUM
e Input: A k-criteria approximation algorithm A for II, an instance of II7.

1. fori<+<2,...,k

(a) i« [log(i4.) Bil-
(b) M« {(1+¢e):j=0,...,7}.

2. endfor

M < My x --- x My

4. For a vector z = (22, ...,2k), let A(z) denote the subgraph returned by the
k-criteria algorithm A, when called with the bounds z; on the values of the
objectives f;, i =2,...,k.

5. Find z* € M such that Zle 0;fi(A(z)) is a minimum among all z € M.

6. return A(z*).

@

Figure 1. Converting a k-criteria algorithm into a unicriterion algorithm.

such that fi1(#) < a; - OPT. Here, OPT denotes the minimum objective value
under f; of a solution from (6). Combining the fact that & is contained in (7) with
Inequality (5) yields

fi(@) < (1 +¢)a; - fi(z"), i=2,...,k. (8)

Moreover, since we have seen that the optimal solution z* of the unicriterion prob-
lem is contained in the set (6) of feasible solutions of the instance of the k-criteria
problem just constructed, we obtain that OPT < fi(z*). Thus, again by the per-
formance of A this implies

fl(jﬁ) S Qg - OPT S Qg - fl(iL”*). (9)

Combining (8) and (9) gives us:

k

k
D 0ifi@) < ar-ofile®) +(1+2) Y ai-oifile”)
im1

=2

k
< (1+e) -max{ay,...,qp}- Zaifi($*)-
i=1

Since ALGORITHM CONVERT-SUM chooses the z* € M such that Zle 0:fi(A(z))
is minimum among all z € M, the claimed performance guarantee now follows in
the case of I17.

The proof for the problem 119 follows along the same lines. We just have to change
Step 5 of ALGORITHM CONVERT-SUM to select z* such that Hle £ (A(z")) is
minimum among all z € M. Then, using the same arguments as above, we get



11

from (8) and (9) that

k 2
[[77G) < af @) JJa+e)ad i)
i=1 i=2
. 2 k
= ((1 +e)Xim Ha;“') L.
i=1 i=1
This completes the proof. [l

Theorem 1 establishes a connection between the approximability of a multicrite-
ria problem and certain unicriterion problems. In particular, if a bicriteria problem
is “well approximable” with performance (o1, az), where a; and as are constants,
then there is also a “good” constant factor approximation for the problem of min-
imizing the sum of the two objectives.

The converse is not true in general. To see this, we will provide an example of a
problem II; of minimizing the objective f := fi + fa, which is well-approximable, in
fact polynomial time solvable. In contrast, the bicriteria problem II of minimizing f;
subject to a constraint on the value of f> turns out to be very hard to approximate.

Consider the bicriteria problem II of finding an independent dominating set U
in a graph G = (V, E) minimizing f;(U) := |U| subject to the constraint that
f2(U) := |V =U| < F;5. The problem II; where f; and f, are functionally combined
to f := fi1 + f2 consists of finding an independent dominating set U minimizing
fi(U) + f2(U) = |V|. Clearly, Il can be solved in polynomial time, e.g. by the
trivial algorithm that simply outputs any independent dominating set in the graph
G. Thus, I can be deemed “well-approximable”.

In contrast, II exhibits a different behavior. If we set the bound F, on the
cardinality of |V — U] to be Fy := |V]|, then II becomes the problem of finding
an independent dominating set of minimum cardinality. This problem is hard to
approximate [3]: unless P = NP, for any € > 0 there can be no polynomial time
approximation algorithm with a performance of |V'['/6=¢ for this problem. Thus,
the bicriteria problem II contains as a special case a problem which is hard to
approximate, while the unicriterion problem II is well-approximable.

5.3. Robustness

In this section we will elaborate on the “robustness” of our formulations and the
notion of approximation in the case of two criteria. By “robustness” we mean that
the quality of approximation is independent of which of the two criteria is chosen
as the budgeted objective. To see this, note that there are two natural ways to
formulate a bicriteria problem:

1. (f1, f2,T) - find a subgraph in I" whose f>-objective value is at most B and
which has minimum f;-objective value,

2. (f2, f1,T) - find a subgraph in I' whose fi-objective value is at most B and
which has minimum f>-objective value.



12

THEOREM 2 If there is an («, B)-approzimation algorithm for (fi, f2,T), then for
any € > 0 there is a ((1 + €)8, a)-approximation algorithm for the dual problem
(f2; fl; F) '

Moreover, if the objective fy is integer valued, then there is a (3, a)-approzimation
algorithm for the dual problem (f2, f1,T).

Proof: Let A be an («a, 3)-approximation algorithm for (fi, f2,T'). We will show
how to use A to construct a ((1 + €)3, a)-approximation algorithm for the dual
problem. The basic idea is to use A to search for the optimal objective function
value under f, for the given instance of (fa, f1,I).

An instance of (f2, f1,T") is specified by a weighted graph G = (V,E) and a
bound F> on the objective f;. Let OPT be the optimal function value under fs
subject to the constraint on f;. By Assumption 1, we can compute a number R in
polynomial time such that 0 < OPT < R. For a given number 0 < D < R, let Ip
be the instance of (f1, f2, ') obtained by specifying the bound D on objective fs.

We search the set

M:={0,1+¢,(1+¢)%...,(L+¢e)*}, where k = [log,,. R| (10)

and find the minimum value D € M such that A as applied to Ip outputs a
subgraph x with objective function value f; at most aB. It is easy to see that this
binary search indeed works and terminates with a value D' < (1 +¢)OPT.

The corresponding subgraph z' € I' has objective function value, under f,, of at
most D' < (1+¢)B - OPT and violates the constraint on objective f; by a factor
of at most . This way we obtain a ((1 + )8, a)-approximation for (fa, f1,I).

If fy is integer valued, then instead of performing a search on the set M defined
in (10) we can perform the binary search over the integers in the interval [0, R].
This provides a (3, a)-approximation for (fa, fi,T). O

By the result of the last theorem, our approximation results for (fi, f2,T") prob-
lems in the following sections will also yield approximation algorithms for the sym-
metric problem (f2, f1,T).

6. Comparison with Related Work

Several researchers have worked on versions of network upgrading problems. Fred-
erickson and Solis-Oba [7] considered the problem of increasing the weight of a
minimum spanning tree in a graph subject to a budget constraint where the cost
functions are assumed to be linear in the weight increase. In contrast to the results
presented here, they show that while the integral case is NP-hard, the rational case
is solvable in polynomial time using tools from matroid theory. Berman [2] consid-
ers the problem of shortening the edges of a given tree to minimize the weight of its
shortest path tree and shows that the problem can be solved in strongly polynomial
time.

Plesnik [20] has shown that the budget-constrained minimum diameter problem
(i-e., given a graph G = (V, E) with a length ¢(e) and cost c¢(e) for each edge e € E
and a cost budget B, select a subset E' of F so that the total cost of edges in E’



13

is at most B and the diameter of the graph formed by E’ is a minimum among
all subsets satisfying the budget constraint) is NP-hard. He also shows that, if the
budget constraint cannot be violated, then even approximating the diameter to
within a factor of less than 2 is NP-hard.

Hambrusch and Tu [12] consider budget constrained edge-based upgrading prob-
lems for directed graphs. In their work, the performance of the modified network
is characterized by the length of a longest path. They present hardness results for
general graphs and polynomial algorithms for special classes such as in-trees and
series-parallel graphs. Phillips [19] studies the problem of finding an optimal strat-
egy for reducing the capacity of a given network so that the residual capacity in the
modified network is minimized. The problems studied here and in [19, 2] can be
broadly classified as types of bicriteria problems. Recently, there has been substan-
tial work on finding efficient approximation algorithms for a variety of bicriteria
problems (see [15, 11, 18, 25, 24, 26] and the references cited therein).

Some node upgrading problems have been studied under a simpler model by Paik
and Sahni [21]. In their model, upgrading a node causes the delay of each edge
incident on that node to be reduced by a given constant factor § < 1. When both
end points of an edge are upgraded, the delay of the edge is reduced by the factor
62, It is easy to see that this model is a special case of the model treated in our
paper.

Under their model, Paik and Sahni studied the upgrading problem for several
performance measures including the maximum delay on an edge and the diameter
of the resulting network. They presented NP-hardness results for several problems.
Their focus was on polynomial time algorithms for special classes of networks (e.g.
trees, series-parallel graphs) rather than on approximation algorithms for NP-hard
versions. Our constructions can be modified to show that all the problems consid-
ered here remain NP-hard even under the Paik-Sahni model. The approximation
results presented here hold under our generalized model.

7. Approximation Algorithm for Unit Cost Node Upgrading

Recall that the problem (NODE-UPGRADE, BOTTLENECK, SPANNING TREE) con-
sists in finding an upgrading set of minimum cost such that such that after the
upgrade the graph has a spanning tree of bottleneck delay at most the given bound
D. In [14], we presented a (2Inn, 1) approximation algorithm for the general case,
when each node has a cost ¢(v) associated with it and the goal is to minimize the
upgrading cost. Here, n is the number of nodes in the input graph.

In this section, we will show how to obtain an improved approximation algorithm
for the problem in the case of unit costs on the vertices. We present an algorithm for
(U-NODE-UPGRADE, BOTTLENECK, SPANNING TREE) with a performance guar-
antee of (5 +41InA,1), where A denotes the maximum degree of the input graph.
For A € o(y/n), the result presented here for the unit cost case improves on the
performance of our algorithm for the general case. In particular, for the class of
bounded-degree graphs, we obtain a constant factor approximation.



14

We describe the algorithm in two stages. In the first stage, we only consider
case when the edge weights can take on two possible values. We then extend this
to handle the case when the edges take on three values depending on the subset
of adjacent nodes upgraded. In the remainder of this paper, we use the following
terminology. We say that an edge is uncritical if its delay is less than or equal to
the given bound D. An edge is 1-critical if its delay is > D and it can be made less
than or equal to D by upgrading one of its endpoints. An edge is 2-critical if its
delay is > D and it can be made less than or equal to D only by upgrading both
of its endpoints. Our algorithm also uses the following definition.

Definition 5. Given a graph G = (V, E), an edge weight function d and a number
D, the bottleneck subgraph of G, denoted by Bottleneck(G, d, D), consists of all
edges e such that d(e) < D.

7.1. The Case of no 2-Critical Edges

Recall that in the case of (U-NODE-UPGRADE, BOTTLENECK, SPANNING TREE)
the objective is to find an upgrading set of minimum cardinality. We first consider
the case when all edges are either uncritical or 1-critical. Our ALGORITHM UNIT-
CosT NODE-UPGRADING shown in Figure 2 gives the steps of our heuristic.

The performance of this heuristic is summarized in the following theorem.

THEOREM 3 ALGORITHM UNIT-COST NODE-UPGRADING is a polynomial time
approzimation algorithm for (U-NODE-UPGRADE, BOTTLENECK, SPANNING TREE)
when all edges are either uncritical or 1-critical. Given any such instance of (U-
NoDE-UPGRADE, BOTTLENECK, SPANNING TREE), the algorithm finds an upgrad-
ing set S satisfying the condition

IS| < 2(1+InA)-OPT — 1,

where A is the maximum degree in the input graph G and OPT is the size of an
optimal upgrading set. In particular, the algorithm has a performance guarantee of
(2+2InA,1).

The proof of this theorem relies on several lemmas. Step 3 of ALGORITHM UNIT-
Cost NODE-UPGRADING detects the case when no node needs to be upgraded.
Thus, for the remainder of the analysis, we assume that every optimal solution
contains at least one vertex. We use S* to denote an optimal upgrading set and
define OPT := |S*|. Also, let T be a corresponding bottleneck spanning tree, that
is, a tree which has bottleneck delay at most D after upgrading the vertices in S*.

LEMMA 1 Let C* be a minimum size set cover for the instance (Q,F) of the MIN
SET COVER problem constructed in Step 4 of ALGORITHM UNIT-COST NODE-
UPGRADING. Then |C*| < OPT.

Proof: We show that the sets S, with v € S* form a set cover for the instance
(Q,F) of MIN SET COVER. This will prove the claim of the lemma.



15

=

ALGORITHM UNIT-COST NODE-UPGRADING
e Input: A graph G = (V,E), three edge weight functions d, d,,, d;, and a

number D.

1. G' < Bottleneck(G,d, D)

2. Ch,...,Cq < connected components of G’

3. if ¢ =1 then return ()

4. Construct an instance (@, F) of MIN SET COVER as follows: Let the ground

10.
11.
12.

13.
14.

15.
16.

elements be @ := {C1,...,C,}. For each v € V define the set
Sy :={Cj:v e Cjorwvis adjacent to C; via a 1-critical edge }

and let F:={S,:veV}

Find a set cover C = {Sy, , ..., Sy, } of size at most 1+Inmax{|S,|:S, € F}
times the minimum size set cover for the instance (Q, F).

S« {vr,...,u}

S 0

for allv e S

(a) for all e € E incident on v
(i) d(e) < dp(e) /* thus the delay of such an edge will be at most D */
(b) endfor
endfor
G' = (V,E") < Bottleneck(G,d, D)
C1,...,CL « connected components of G’
Construct an auxiliary graph G = ({C},...,C"}, E) with (C},C)) € G if
and only if there are vertices v € C} and w € C} such that (v,w) € E.
T+ spanning tree of G
for all edges (C},C}) € T
(a) Choose v € C] and w € C} such that (v,w) € E.
(b) S'«+ S"U{v}
endfor
return SU S’

Figure 2. Approximation algorithm for unit costs without 2-critical edges.



16

Consider an arbitrary component C; € (). We have to show that C; is contained
in the union of the sets J,cg. So-

Since G’ = Bottleneck(G, d, D) contains more than one connected component,
the tree T* must contain a 1l-critical edge (u,w) with v € C; and w ¢ C;. Since
after the upgrade of the vertices in S* the tree T has bottleneck delay at most D
it follows that either u or w must be contained in S*.

We have C; € Sy, (because w is connected to C; via a 1-critical edge) and C; € S,
(since u is contained in C;). Thus, we can conclude that C; is covered by the sets
Sy, v € S*. O

LEMMA 2 Let S be the set constructed in Step 6. Then the bottleneck graph G’
computed in Step 10 has at most |S| connected components.

Proof: We show that for each node v there is a path in G' to at least one node
from S. Assume for the sake of contradiction that this is not the case. Then there
is a vertex v in a connected component C! of G’ where the component G' does not
contain any vertex of S. By construction, C} must contain one of the connected
components, say C, computed in Step 2 before the upgrade of the vertices in S.
Since the sets S, corresponding to the vertices v € S formed a feasible set cover,
it follows that C' must have either contained a vertex from S or must have been
adjacent to a vertex from S via a 1-critical edge. In both cases after the upgrade
this vertex from S is contained in the same connected component as the vertices in
C. But this means that C}, must contain at least one vertex from S, and this is a
contradiction. [l
The proof of the following lemma is just as easy.

LEMMA 3 The set SUS' output by ALGORITHM UNIT-COST NODE-UPGRADING
is a valid upgrading set in G. O

Using the results of Lemma 1, Lemma 2 and Lemma 3, we can now complete the
proof of Theorem 3. By Lemma 1 we know that

5% = OPT > [c*), (11)

where C* is an optimal set cover for the instance (@), F) of MIN SET COVER con-
structed in Step 4. Step 5 of the algorithm, that is, finding an approximation to
the optimal set cover, can be done using the well known greedy algorithm [5]. This
algorithm will produce a set cover C of size at most (1+Inmax{|S,|:v € V })-|C*|.
Since |Sy| < A, where A is the maximum degree in the graph G and |S| = |C|, this
yields

(11)
1S|=C| <1 +1nA)-|C*| < (1+InA)-OPT. (12)

We now address the cardinality of the set S’. Since by Lemma 2 the bottleneck
graph G' computed in Step 10 has at most |S| connected components, it follows
that the tree T' computed in Step 13 contains no more than |S| — 1 edges. Since in



17

the loop in Steps 14 to 15 for each edge in Ty we add one vertex to S’, we have
that |S’| < |S| — 1. Combining this result with (12) we obtain:

ISUS'| < |S|+ 18] <2|S] —1< 2(1+1nA)-OPT — 1.

This completes the proof of Theorem 3. |

The running time of ALGORITHM UNIT-COST NODE-UPGRADING can be ana-
lyzed as follows. As usual, let G = (V, E) with n := |V| and m := |E|. Computing
the connected components of G’ needs O(n + m) time. The instance of MIN SET
COVER can also be constructed in linear time. As shown in [5] the greedy algorithm
for MiN SET COVER can be implemented to run in time O(}, . |Sy|), which is
O(m) in our case. Computing the auxiliary graph in Step 12 can be accomplished
in O(n +m) time. It is straightforward to verify that all of the remaining steps can
also be carried out in linear time. We therefore conclude:

THEOREM 4 ALGORITHM UNIT-COST NODE-UPGRADING is an approzimation al-
gorithm for (U-NODE-UPGRADE, BOTTLENECK, SPANNING TREE) with a perfor-
mance guarantee of (2+2In A, 1), when all edges are either uncritical or 1-critical.
Here, A is the mazimum degree in the input graph G. Further, the algorithm can
be implemented to run in time O(n +m). O

7.2. FExtension to the General Unit Cost Case

We now extend the result of Theorem 4 to the case where there are also 2-critical
edges, that is, edges where both endpoints need to be upgraded in order to make
the delay of the edge fall below the threshold D.

The basic idea for the extended algorithm is the following. We first compute
the edge subgraph G’ of G consisting only of the 1-critical and uncritical edges.
Notice that all the edges between the different connected components of G’ are
2-critical. For each connected component C; of G' we run ALGORITHM UNIT-
CosT NODE-UPGRADING to obtain an upgrading set which makes C; contain a
spanning tree of delay at most D after the upgrade. In the final step, we find
a good upgrading set which reduces the delay of some (2-critical) edges between
the different components so that the whole graph becomes connected by edges
of delay at most D. The extended heuristic ALGORITHM UNIT-COST-GENERAL
NODE-UPGRADING is displayed in Figure 3.

In the sequel we again use OPT to denote the cardinality of an optimal solution

S*.

LEMMA 4 Let r be the number of components of the graph G' computed in Step 3.
Further, let U be the set of vertices constructed in Steps 10 to 11. Then

OPT >r and U] <2(r —1), (13)

Proof: Let T* be a bottleneck spanning tree in the graph resulting from the up-
grade of the vertices in the optimal set S*. Since there are r connected components



18

ALGORITHM UNIT-COST-GENERAL NODE-UPGRADING
e Input: A graph G = (V, E), three edge weight functions d, d,,, d;, and a
number D.

S0

E' + {e € E : eis either uncritical or 1-critical }
G « (V,E"

C1,...,C, « connected components of G’
fori«1,...,r

U o=

(a) Run ALGORITHM UNIT-COST NODE-UPGRADING on the connected com-
ponent C; and add the upgrading set produced by the algorithm to .S

6. endfor

7. Construct an auxiliary graph H = ({C4, ..., C,}, Ey) which contains an edge
(C;,C;) € Eg if and only if there exist vertices v € C; and u € C; such that
(v,u) € E.
/* Notice that such an edge (v, u) is 2-critical */

8. T ¢ spanning tree of H

U«0

10. for all edges (C;,C;) € T

(a) Choose v € C; and u € C; with (v,u) € E
(b) U<+ UU{v,u}

11. endfor

12, return SUU

©

Figure 3. Approximation algorithm for node weighted upgrading with unit costs.



19

C1,...,C, in the graph G', T* contains at least r — 1 2-critical edges having end-
points in different components. For each of these edges, both endpoints must belong
to OPT, which implies that |OPT| > r. This proves the first inequality in (13).
On the other hand, ALGORITHM UNIT-COST-GENERAL NODE-UPGRADING com-
putes a spanning tree 7" in Step 8 which has  — 1 edges. For each of the r —1 edges
of T the algorithm adds two vertices to U. Thus, |U| < 2(r — 1). O

7.8.  Performance Guarantee

We are now ready to establish the performance of the extended approximation
algorithm.

LEMMA 5 The performance of ALGORITHM UNIT-COST-GENERAL NODE-UPGRADING
as applied to (U-NODE-UPGRADE, BOTTLENECK, SPANNING TREE) is (5+41n A, 1),
where A denotes the mazimum degree in the graph given in the input.

Proof: Again, let 7* be a bottleneck spanning tree in the graph resulting from
the upgrade of the vertices in the optimal upgrading set S*. Let OPT; be the
minimum number of nodes which must be upgraded in component C; to make it
contain a spanning tree of bottleneck delay at most D, that is, OPT; is the optimal
solution value of the instance of (U-NODE-UPGRADE, BOTTLENECK, SPANNING
TREE) given by the graph G[C}], the restriction of d, d,, d; to the edges of G[C}]
and the bound D. Consider the intersection of S* with the cluster C;. We now
show that the inequality

1
|S*NCif = 5OPT, (14)

holds. In fact, let S; := S* N C;. We first prove that, after upgrading the nodes in
S;, each node in C; \ S; is connected to at least one node from S; via paths in C;
containing edges of delay no more than D.

Assume that this is not the case. Then there is a node v € C; \ S;, whose unique
path in 7™ to any node in S; contains at least one 2-critical edge. Fix w € S;
and consider the path (v = up,u1,...,ux = w) from v to w in T*. Without loss
of generality, we can assume that this path does not contain any node from S;
different from w. Let ¢ be the smallest number such that (ug, weq1) is 2-critical. As
v € S;, we have £ > 1. Since after the upgrade T™* contains only edges of delay at
most D, we see that both nodes uy and wugy1 belong to S;, contradicting the fact
that the path did not contain any other node from S; other than w.

We have seen that after upgrading the nodes in S; the cluster C; restricted to
edges of delay at most D contains at most |S;| = |S* N C;| connected components.
It is now easy to see that upgrading at most one more node from each of these
components will make C; connected by edges of delay at most D. Thus, there
exists an upgrading set in C; of size at most twice the size of S;. Consequently,
the minimum cardinality upgrading set in C; has also size at most 2|S;|, which
proves (14).



20

Since the clusters are disjoint, we can conclude that the size of the optimal up-
grading set S* is bounded from below as follows:

r (14) 1 <
OPT =|s*|=_[S"nC;| 2 3 Y OPT.. (15)
i=1 i=1

We know by Theorem 3 that ALGORITHM UNIT-COST NODE-UPGRADING finds a
solution for each cluster whose value is bounded from above by 2(1+In A;)-OPT;—1,
where A; is the maximum degree in the subgraph of G induced by C;. Using this
fact in conjunction with Lemma 4, we can estimate the cardinality of the solution
set S generated by our algorithm:

S| < 20r=1)+)_ (2(1+1InA;)-OPT; - 1)
i=1

< r—2+2(1+InA)> OPT;

i=1

(15)

< r—2+4(1+1InA)-OPT
Lemma 4

< (5+4lnA)-OPT — 2.

7.4. Running Time

The running time of ALGORITHM UNIT-COST-GENERAL NODE-UPGRADING can
be estimated in the following manner. Computing the graph G’ and its connected
components needs time O(n + m). Let component C; have n; nodes and m; edges.
Then, since ALGORITHM UNIT-COST NODE-UPGRADING as applied to component
C; needs O(n; + m;) time and we have Y./, n; = nand Y., m; < m, we see
that the time needed by the for-loop in Steps 5 to 6 is O(n + m). The auxiliary
graph H in Step 7 as well as a spanning tree of H can be constructed in linear time.
Also, the final for-loop can be implemented to use only O(n +m) time. Hence, the
whole ALGORITHM UNIT-COST-GENERAL NODE-UPGRADING runs in linear time.
We summarize the results of this section in the following theorem.

THEOREM 5 ALGORITHM UNIT-COST-GENERAL NODE-UPGRADING is an approz-
imation algorithm for (U-NODE-UPGRADE, BOTTLENECK, SPANNING TREE) with

a performance of (54 4Iln A 1). It can be implemented to run in time O(n + m).
O

8. Upgrading for Constrained Steiner Trees

In this section we investigate network improvement problems where the goal is
to find a reduction strategy such that the weight of a constrained Steiner tree



21

in the modified network is as small as possible. The problem (TOTAL WEIGHT,
DIAMETER, EDGE-UPGRADE, STEINER TREE) studied here is based on the edge
upgrading model introduced in Section 2.2. Recall that in this problem we are given
additionally d-weights on the edges of the graph. These weights are independent
of the (-lengths in the network and cannot be changed by a reduction. The goal
becomes to find a reduction and a Steiner tree obeying the diameter constraint
which is as light as possible after applying the reduction.

In our notation the problem (ToraL WEIGHT, DIAMETER, EDGE-UPGRADE,
STEINER TREE) is a tricriteria problem. Consequently, we will be concerned with
tricriteria approximation algorithms in this section. The objective function of the
problem (ToTAL WEIGHT, DIAMETER, EDGE-UPGRADE, STEINER TREE) is the
length (¢ — r)(T) of the Steiner tree in the modified network. We consider the
diameter constraint to be the first constraint, the budget constraint as the second
one. Let A be a tricriteria approximation algorithm with performance (a, 3,7) for
the problem. If the set (2) of feasible solutions is nonempty, then A must find a
reduction of cost at most yB and a tree T' of diameter at most 3D whose modified
length (£ — r)(T) is at most a times the optimum. If there is no feasible solution,
A has the choice of either providing the information that the set (2) is empty or
returning a reduction r of cost at most vB and a tree of diameter at most 8D.

In addition to graphs, we will also deal with multigraphs. Multigraphs are a
variation of graphs where more than one edge can join two vertices. We refer to
edges in a multigraph as multiedges.

We close this subsection by commenting on the hardness of the problem (TOTAL
WEIGHT, DIAMETER, EDGE-UPGRADE, STEINER TREE). It follows easily from
the NP-hardness of the classical Steiner tree problem [8, Problem ND12] that the
problem (ToTaL WEIGHT, DIAMETER, EDGE-UPGRADE, STEINER TREE) is NP-
hard. Moreover, even if one is already given an optimal reduction r* for one of
the problems, it remains hard to find a corresponding optimal tree in the modified
network.

The problem (ToraL WEIGHT, DIAMETER, EDGE-UPGRADE, STEINER TREE)
contains the problem (TOTAL-WEIGHT, EDGE-UPGRADE, GRAPH) studied in [13]
as a special case (K =V, d =0, D =0). Since this problem has been shown to be
NP-hard even on series-parallel graphs, we obtain the following theorem.

THEOREM 6 The problem (ToTAL WEIGHT, DIAMETER, EDGE-UPGRADE, STEINER
TREE)is NP-hard, even when restricted to series-parallel graphs. Unless P = NP,
for any «, B > 1, there is no polynomial time («, B8, 1)-approzimation for the (To-
TAL WEIGHT, DIAMETER, EDGE-UPGRADE, STEINER TREE)problem even when
restricted to bipartite graphs. Further, unless P = NP, for any 8,y > 1, there is no
polynomial time (1, 3,~)-approzimation algorithm for (ToTAL WEIGHT, DIAME-
TER, EDGE-UPGRADE, STEINER TREE). All of the above hardness results continue
to hold, if the d-weights are all equal to zero. O



22

8.1.  Algorithm Outline

We now discuss our approximation algorithm for (T'oTAL WEIGHT, DIAMETER,
EDGE-UPGRADE, STEINER TREE). We first present an informal description of the
algorithm in order to illustrate the main ideas behind the steps. We then proceed
with a more detailed presentation and show the pseudo code for our approximation
algorithm.

Our algorithm works roughly as follows: We first modify the graph by replacing
each edge with a number of parallel multiedges. In order to establish the perfor-
mance guarantee, we must show that the modification of the graph preserves the
structure of the problem.

The next main step of the algorithm consists of O(log|K|) phases, where K is
the set of terminals. Initially, the solution consists of the empty set. During each
phase of the algorithm we choose a set of edges to add to the solution. The set of
edges chosen in each iteration is required to possess three desirable properties:

1. The solution cost with respect to the shortened ¢-cost must be no more than OPT,
where OPT denotes the optimally (under a budget B on the cost of improve-
ment) improved total length of a Steiner tree with d-diameter at most D.

2. The diameter value with respect to d must not increase by more than D.
3. The reduction cost spent in each iteration is no more than B.

Since the number of iterations of the algorithm is O(log|K), this will lead to an
approximation algorithm which violates the budget and the diameter constraint by
a factor of at most O(log|K|) and which is within a factor of O(log|K]) of the
optimal solution. We use a solution based decomposition method in the analysis of
our algorithm. Its basic idea is to take advantage of the existence of an optimal
solution to prove that, in each phase, it is possible to choose a good set of edges.
We now refine the specification of our algorithm.

Main Step 1: Discretize the problem by using the transformation procedure shown
in ALGORITHM TRANSFORM (Figure 4) This transformation builds a multigraph
G' from the original graph G in the following way: Each edge e = (u,v) with
length ¢(e) and minimum length ¢min(e) is replaced by b, + 2 parallel multiedges
ek k= —1,0,...,b.. These edges reflect discrete steps in improvement.

The edge e ! corresponds to an “untouched” version of e with length ¢'(e™1) :=
{(e) and cost ¢'(e"!) := 0. For k > 0, e*, represents edge e shortened to £(e) — (1 +
g)k. Thus e* has length ¢/(e*) := £(e) — (1 +&)* and cost ¢'(e*) := (1 +¢)¥c,. The
d-weights for all the edges e* coincide with that of e. To avoid additional notation,
we also use d to denote these weights. This way, each multiedge ¢’ in G’ is assigned
three numbers: ¢'(¢'), ¢/(e’) and d(e').

Main Step 2: The algorithm maintains a set of connected subgraphs or clusters,
each with its own distinguished vertex or center. Initially, each terminal is in a
cluster by itself. In each phase of the second main step, we set up an auxiliary
graph G; using the constrained shortest path algorithm of [11]. We then solve a
variant of a constrained matching problem in G; and, finally, merge the clusters in



23

ALGORITHM TRANSFORM
e Input: A graph G = (V, E), four edge weight functions ¢, £y, ¢, d, and a
number B; a fized accuracy parameter € > 0

1. V'« V /* The vertex set of the graph to be constructed */
2. E' + [ /* The edge set of the graph to be constructed */
3. for all edges e = (u,v) € G

) be ¢ [log(y . (£(e) — lmin(e))]
b) Add b, + 2 parallel edges e*, k = —1,0,...,b. between u and v to E’

(a

(

(c) C'(e™h) « Le)

(d) d(e™") « d(e)

(e) (e}« 0

(e) for k=0,...,b,
(i) €'(e*)  Lle) = (L+e)*
(i) d(e k) < d(e)
(iii) c'(e*) + (1 +¢e)ke

(f) endfor

4. endfor

5. return G' = (V' E"), l', d, ¢

Figure 4. Procedure to transform G into G’ in the first step.

pairs by adding paths between their centers. Since the number of clusters decreases
by a factor of 2 due to the merging in each phase, the algorithm terminates in
[log, |K|] phases with one cluster.
Main Step 3: We take a tree T” rooted at the center of the single cluster left at
the end of the second main step with small diameter under the d-costs.
Main Step 4: In the final step, we use the information from the three values
associated with each edge in 7" to construct a reduction strategy r and a Steiner
tree T for the original graph G. We output r and T'.

A complete specification of our Algorithm is shown in Figure 5.

8.2. Correctness and Performance Guarantee

To facilitate the presentation, we will assume in the following that r* is an optimal
reduction strategy for the graph G and that 7™ is a corresponding optimal Steiner
tree of total weight OPT := (¢ —r*)(T™*) and diameter diays(T*) < D. We will show
on page 30 how to modify our algorithm to handle the case when the set of feasible
solutions is empty.

8.2.1. Some Basic Lemmas Our algorithm needs as subroutines two approxima-
tion algorithms for certain bicriteria problems on graphs. The first is a constrained



24

ALGORITHM IMPROVE DIAMETER-STEINER-TREE

e Input: A graph G = (V, E), a vertex subset K of terminals, four edge weight
functions £, fyin, ¢, d, and two numbers B and D; a fized accuracy parameter
e>0.

1.

®

10.

11.

Call ALGORITHM TRANSFORM(¢) to obtain a new (multi-) graph G’ = (V, E')
with weights £'(e), ¢'(e), d(e) on the edges e € E'.

i < 1 /* Initialize the phase count */

Cr+ {{v}:veK}

/* Initialize the set of clusters C; to contain |K| singleton sets, one for each
terminal in K */

for allv € K

(a) center({v}) « v

endfor /* For each cluster in C;, define the single node in the cluster to be
its center. */
while there is more than one cluster in C;

(a) Call ALGORITHM MERGE to merge clusters.
(b) i+ i+ 1 /* End of phase i */
endwhile
Let C, with center(C) = ¢ be the single cluster left.
Compute a shortest path tree T of C rooted at & with respect to the d-weights
(using only edges in C).
For each multiedge e* = (u,v) € T define the reduction r on the correspond-
ing edge e = (u,v) in the original graph by
_]0 if k=-1,
r(e) = { (1+e)k ifk>0.

Define a tree T in G by including the corresponding edges e.
return r and T’

Figure 5. Algorithm for diameter bounded Steiner tree improvement.




25

ALGORITHM MERGE

e Input: A graph G' = (V, E'), a vertex subset K of terminals, three edge weight
functions ¢', ¢/, d, and two numbers B and D, a set C; = {C} ..., C,} of clusters;
a fized accuracy parameter € > 0.

Let the set of clusters at the beginning of the ith phase be C; = {C1 ..., Cy, }.
s « [log(4. B] + 1.

M+ {0,(1+¢)° (1+e),...,(1+e)}.

Construct a (complete) multigraph G; = (V;, E;) as follows

Vi < { v, : v, is the center of cluster C, € C;. }

for all pairs (C,, Cy) of clusters in C;

(a) for all B' € M
(i) Let v, and v, be the centers of Cy and C,, respectively.
(ii) Let the path P, (B') be a (1+ 1/¢,1,1)-approximation to the re-
stricted shortest path problem in G’ between the centers v, and v,,
with edge weights ¢', ¢/, d and the bounds B’ on the ¢'-cost and D
on the d-length respectively.
(iii) Include a multiedge (vg,vy) in G; of weight ¢'(v,,vy) equal to the
U'-cost of P,y (B'). The weight ¢'(vy,v,) of the edge is set to that of
the ¢’-cost of P, (B').
(b) endfor

7. endfor

8. Find a (2,2)-approximation to the (ToraL WEIGHT, ToTAL WEIGHT,
MaXIiMUM MATCHING)problem with edge weights ¢/, ¢’ and the bound
(14 ¢)?B on the ¢/-weight of the matching,.

9. For each edge e = (vy,vy) in the matching, merge the clusters C, and C,,
for which v, and v, were centers respectively, by adding the corresponding
path P,y to form a new cluster Cy,. The node (edge) set of the cluster Cyy
is defined to be the union of the node (edge) sets of Cy,C, and the nodes
(edges) in P,y. One of v, and v, is (arbitrarily) chosen to be the center v,
of the cluster Cyy. Cyy is added to the cluster set C;;q for the next phase,
while C, and Cy are removed.

SOt W=

Figure 6. Subroutine to merge clusters.



26

variant of the shortest path problem and is hence referred to as the restricted
shortest path problem. The second one is a constrained minimum weight matching
problem.

Definition 6.  [Restricted Shortest Path Problem] The input for the restricted
shortest path problem, (ToraL WEIGHT, ToTAL WEIGHT, TOTAL WEIGHT,
x-y-PATH), consists of a (multi-) graph G = (V, E), two distinguished vertices
x,y €V, three nonnegative edge weight functions d;, d> and ds and two numbers
D> and Dj3. The problem is to find a subgraph from

{P : P is a path between z and y in G, ) cpda(e) < Dz and ), pds(e) < Ds }
having minimum value d; (P) := > _ . p di(e).

The result of the following lemma is due to Warburton [26], but can also be proved
by an extension of Hassin’s work [11].

LEMMA 6 ([26, 11]) For any fized € > 0, there is an approzimation algorithm for
(ToraL WEIGHT, ToTraL WEIGHT, TOTAL WEIGHT, x-y-PATH) with a perfor-
mance of (1+¢,1,1). O

As mentioned, we also need results about finding minimum weight matchings in
graphs. Recall that a matching in a graph G = (V,E) is a subset M C E of
the edges such none of the edges in M are incident. A maximum matching is a
matching of maximum cardinality.

Definition 7. [Minimum Weight Matching Problem] An instance of the mini-
mum weight matching problem, MIN MATCHING, is given by a graph G =
(V, E) and an edge weight function d. The problem is to find a maximum matching
M C E in G having minimum weight d(M) := ) ., d(e).

The minimum weight matching problem can be solved in polynomial time, in fact
in time O(n?) on a graph with n nodes, by classical algorithms, see e.g. [16, 17].
What we will need for the construction of our approximation algorithm in this
section is an approximation algorithm for a bicriteria version of MIN MATCHING.
In this problem, which we will denote by (ToTraL WEIGHT, TOTAL WEIGHT,
MaxiMuM MATCHING), we are given two edge weight functions d; and dy on the
edges of G and the goal is to find a maximum matching M of weight dy (M) at most
a given bound D5, having minimum weight d; (M).

An easy reduction from PARTITION shows that (TOTAL WEIGHT, TOTAL WEIGHT,
MAXIMUM MATCHING) is NP-hard. On the other hand, the results of Marathe et
al. in [18] show that the problem (ToTaAL WEIGHT, TOTAL WEIGHT, MAXIMUM
MATCHING) has an efficient bicriteria approximation algorithm:

LeMMA 7 ([18]) There is a (2,2)-approzimation algorithm? for (TOTAL WEIGHT,
ToTAL WEIGHT, MAXIMUM MATCHING). |



27

We now show that the transformation procedure does not destroy important
properties with respect to the problem.

LEMMA 8 For anye > 0, the graph G' obtained as a result of applying ALGORITHM
TRANSFORM to G satisfies the following properties:

1. There exists a Steiner tree T in G' of total ¢'-length at most OPT, ¢'-cost no
more than (14 €)B and of d-diameter at most D.

2. Let u,v € K be two terminals. Let P be the unique path between u and v in the
optimally improved tree T*. Let (£ — r*)(P) denote the length with respect to
C—r* and Cp := ), pr(e) - c. denote the money spent by r* on the edges of
P respectively. Then, in G' there exists a path between u and v of d-diameter
at most D, {'-length at most (£ — r*)(P) and ¢'-cost at most (1 +¢)Cp.

Proof: We only show the first part of the lemma. The second part can be proved
similarly. Consider the optimal reduction 7* and a corresponding optimal con-
strained Steiner tree T* in G' of minimum weight OPT := (¢ — r*)(T™).

We now define a tree 7" in G’ as follows. For each edge e = (u,v) € T* which is
reduced by r*(e) we select a multiedge e* in G’ with the following properties:

le) —(14+e)r*(e) < (k) <tle) —r*(e)
cer*(e) < d(eF) < (1 +e)r*(e)
d(e*) =d(e)

The tree T” defined this way has a total ¢'-length ¢'(T”) which is bounded from
above by (¢ —7)(T*) = OPT. Also, the ¢/-cost of T" is at most 1 + ¢ times the cost
of the reduction r and thus does not exceed (1 +¢€)B. Clearly, the d-diameters of
T' and T* coincide. O

8.2.2. A Bound on the Diameter of the Tree

OBSERVATION 1 The set of cluster centers maintained by ALGORITHM IMPROVE
DIAMETER-STEINER-TREE is always a subset of the terminals K of the original
graph G. |

LEMMA 9 ALGORITHM IMPROVE DIAMETER-STEINER-TREE terminates in [log, | K|]
phases.

Proof: Let k; denote the number of clusters in phase i. Note that k;y; = [%]

since we pair up the clusters (using a matching in Step 9 of the merging procedure
in ALGORITHM MERGE). Hence we are left with one cluster after phase [log, | K]|]
and the algorithm terminates. O

LeMMA 10 ([25]) Suppose T is a tree with an even number of marked nodes. Then
there is a pairing (vi,w1), ..., (vg,wg) of the marked nodes such that the v; — w;
paths in T are edge-disjoint. O



28

LEMMA 11 Let C € C; be any cluster in phase i of ALGORITHM IMPROVE DIAMETER-
STEINER-TREE and let v be its center. Then any node u in C is reachable from v
by a path in C of d-weight at most iD.

Proof: By Observation 1, the set of cluster centers in phase i is a subset of the
terminals K. By Lemma 8, there is a Steiner tree in G’ of d-diameter at most D
and of total ¢’-cost no more than (1+¢)B. This implies that all the paths P,,(B’)
which are constructed in Step 6 of ALGORITHM MERGE with the help of Hassin’s
restricted shortest path algorithm have d-weight at most D.

We now establish the claim of the lemma by induction on i. For ¢ = 1 the claim
is trivial. Assume now that all the clusters in phase i have the property stated in
the claim. Consider the merging of C; and Cy with centers v, and v, to a cluster
Cyy that then appears in phase ¢ + 1. Without loss of generality assume that v, is
chosen to be the center of the cluster C,,. By induction hypothesis, for any node
u in O,y that was in C, there is a path from u to v, of d-weight at most iD. This
path is also present in C,,. Consider a node u € Cy. Then, again by induction
hypothesis, there is a path of length at most iD from u to v, in C, (and thus also
in Cyy). Since we have seen that the path added in phase ¢ between v, and v, is of
d-weight at most D, we can connect u to v, by a path of d-weight at most (i 4+ 1)D.

O

Using the result of the last lemma in conjunction with Lemma 9 we can establish

the following lemma.

LEMMA 12 ALGORITHM IMPROVE DIAMETER-STEINER-TREE outputs a Steiner
tree T' with d-diameter at most 2[log, |K|] - D.

Proof: It follows from Lemmas 11 and 9 that the tree 7' found in Step 9 of ALGO-
RITHM IMPROVE DIAMETER-STEINER-TREE has d-diameter at most 2[log, | K|]-D.
By construction of r and T in Step 10, the d-diameter of T in G is no more than
the d-diameter of 7" in G'. O

This completes the proof of the performance guarantee with respect to the d-cost.
We now proceed to prove the performance guarantee with respect to the modified
{-lengths.

8.2.3. The Total Modified Length

LEMMA 13 Let T' be any minimum {'-cost Steiner tree in G' subject to the con-
straints that its d-diameter is bounded by D and its total ¢'-cost does not exceed
(1 + €)B. The {'-weight of the constrained minimum weight matching found in
Step 9 of ALGORITHM MERGE in any phase of ALGORITHM IMPROVE DIAMETER-
STEINER-TREE is at most 2(1 + 1/e)¢'(T"). Also, the ¢'-cost of the matching is at
most 2(1 +¢)? - B.

Proof: Notice that by Lemma 8, a tree satisfying both the constraints as stated
in the claim does exist.

Let i be fixed and consider the ith phase of ALGORITHM IMPROVE DIAMETER-
STEINER-TREE. By Observation 1 all the centers vy, vs, ..., vy, in the ith stage are



29

terminals. Thus, all these vertices are contained in the Steiner tree 7'. We mark
the nodes vy, v2, .. Y in 7' and apply Lemma 10 to 7" with these vertices
marked.

The lemma states that there is a pairing of the centers such that the paths between
the paired vertices in 7" are edge disjoint. Without loss of generality assume that
this pairing is (vy,v2),. .., (U2LEJ—1’U2LEJ)'

2 2

By the disjointness of these paths, their total ¢'-cost is at most ¢/(T"). Similarly,
the total ¢/-cost of the edges in these paths does not exceed (1 + €)B, and none of
the paths has length more than D under the d-weight function. By construction
of the paths P,,(B') in Step 6 of ALGORITHM MERGE, for each of the paths P
between the centers from above we can find a path P’ among the paths P,,(B') in

G' with the following properties:

1. The d-length of P’ is at most that of P. Thus, the d-length of P’ is bounded
by D.

2. The total ¢’-cost of P’ is at most 1 + € times the ¢’-cost of P. The factor 1 +¢
stems from the discrete budget values, which are used for the constrained paths.

3. The ¢'-length of P’ is at most 1 4+ 1/e times that of P. Here, the factor 1 +
1/e comes from the approximation algorithm for the restricted shortest path
problem.

Using the edges in G; corresponding to this selection from the paths P,,(B’) yields
a matching of the vertices (U2L%J—1 , U2L%J) in G; of £'-length at most (1+1/e)¢'(T")
and of ¢’-cost at most (1 +¢)c/ (1) < (1+¢)?- B.

In Step 8 of ALGORITHM MERGE, a (2, 2)-approximation for the (ToTAL WEIGHT,
ToraL WEIGHT, MAXIMUM MATCHING)problem is found. This matching M must
have ¢’-cost at most 2(1 +¢)? - B and ¢'-weight at most 2(1+ 1/£)¢'(T"). This com-
pletes the proof. O

We are now ready to estimate the £'-length of the Steiner tree T'.

LEMMA 14 ALGORITHM IMPROVE DIAMETER-STEINER-TREE outputs a Steiner
tree T with total length (¢ — r)(T) under the modified length function £ —r of at
most 2(1+ 1/¢)[log, |K|] - OPT.

Proof: By the results of Lemma 9 and Lemma 13, the total ¢'-length of the edges
in the single cluster C' is at most 2(141/¢)[log, |K|]-¢ (T"), where T" is an optimal
constrained Steiner tree in G'. Thus, the total £'-length of the shortest path tree T,
which is computed in Step 9 of ALGORITHM IMPROVE DIAMETER-STEINER-TREE
is also no more than 2(1 4 1/¢)[log, |K|] - ¢'(T").

By Lemma 8, ¢/(T'") < OPT and hence

¢(T) < 2(1 + 1/e)[log, | K] - OPT. (16)

By the construction of the reduction r and the tree T in the final Step 10 of ALGO-
RITHM IMPROVE DIAMETER-STEINER-TREE, the length of 7" under the modified
length function ¢ — r is bounded from above by ¢'(T'). Now using (16) establishes
the lemma. O



30

8.2.4. Bounding the Cost of the Reduction Strategqy ~We now address the ¢'-cost
of the edges that are added during an arbitrary phase of the algorithm. From
Lemma 13 and Lemma 9 we get:

LEMMA 15 The total ¢'-cost of the tree T found in Step 9 of ALGORITHM IMPROVE
DIAMETER-STEINER-TREE is at most 2(1 + £)*[log, |K|] - B. Moreover, the cost
of the reduction r constructed in Step 10 is also bounded by 2(1 + )*[log, |K|] - B.

O

8.2.5. Handling Infeasibility of an Instance We have already all the main in-
gredients to establish the performance of our ALGORITHM IMPROVE DIAMETER-
STEINER-TREE. As long as there exists a feasible solution, the algorithm will find
a reduction r of cost O(log|K|) - B and a tree T' of d-diameter O(log|K]|) - D such
that (¢ —r)(T) < O(log |K|) - OPT.

To make our algorithm have indeed a (O(log |K|), O(log |K|), O(log | K])) perfor-
mance, we must ensure that, if the algorithm outputs a solution, this solution will
violate the constraints on the d-diameter and on the cost of the reduction by at
most logarithmic factors. We have proved that if there is a feasible solution, then
the multicriteria approximation algorithms for the restricted shortest path prob-
lems and the bicriteria matching problem will not stop and inform us about the
infeasibility of the instances of these problems constructed during the run of our al-
gorithm. Thus, if one of these two subroutines detects infeasibility of a subproblem,
we can also stop our algorithm and inform about the infeasibility of the instance
of (TorAL WEIGHT, DEGREE, EDGE-UPGRADE, STEINER TREE)to be handled.
Finally, by testing the d-diameter of the tree and the cost of the reduction produced
by our algorithm and outputting these only if the constraints are violated by at
most the logarithmic factors we make sure that we will always output an “almost
feasible” solution as stated in Definition 4.

8.2.6. Combining all Ingredients One can verify that ALGORITHM IMPROVE
DIAMETER-STEINER-TREE can be implemented to run in polynomial time. Thus,
combining the results of Lemmas 12, 14 and 15, we obtain the following theorem.

THEOREM 7 For any fized € > 0, ALGORITHM IMPROVE DIAMETER-STEINER-
TREE is an approzimation algorithm for (ToraL WEIGHT, DIAMETER, EDGE-
UPGRADE, STEINER TREE)with a performance of (ae, Be,7ve), where

a: = 2(1+1/e)[log, |Kl],
B = 2[log, |K[] and
e = 2(1+¢)*[logy | K]].

Here, K is the set of terminals given in the input. O



31

9. Upgrading the Whole Graph

In the previous sections, we were searching for minimum cost node- or edge-
upgrading strategies such that in the upgraded network the cost of a subgraph
is minimized. It is natural to consider upgrading strategies so as to minimize the
cost of the whole graph under some measure. For instance, it is meaningful to ask
for a minimum cost upgrading set such that after the upgrade, all the edges in the
network are of delay at most D. This problem has been called the link delay problem
[21]. Following our terminology we call this the (NODE-UPGRADE, BOTTLENECK,
GRAPH). In this section, we will discuss several such upgrade problems.

9.1. Upgrading under the Edge Based Model

Consider the case of rational edge upgrade functions for the (EDGE-UPGRADE,
ToraL-WEIGHT, GRAPH), where the cost functions ¢, are all linear. For any
graph G, it can be verified that the greedy-strategy that successively reduces a
cheapest available edge until the weight of the graph has fallen below the given
threshold on the total weight is an optimal reduction strategy. Thus this problem
is solvable in polynomial time.

Now consider the bottleneck version of the problem, namely problem (EDGE-
UPGRADE, BOTTLENECK, GRAPH), where we specify a bound on the bottleneck
cost of the graph. The problem then is quite easy to solve. We first isolate all edges
that have a cost greater than the specified bound. We then simply have to reduce
these edges to get their values below the specified bound. Thus the bottleneck
version is solvable in linear time for general graphs.

It should be noted that the version where we need to upgrade the graph so that
the modified graph has a spanning tree of bottleneck cost at most a given bound D,
that is, problem (EDGE-UPGRADE, BOTTLENECK, SPANNING TREE), can also be
solved efficiently. To do this, we set up a minimum cost spanning tree problem in
the following manner. For each edge whose weight is at most D, the cost is set to
zero; for each edge e whose weight is greater than D, the cost of the edge is set
to ce (D — £(e)). An edge set of minimum upgrading cost can be identified from a
minimum cost spanning tree for the resulting graph.

9.2.  Upgrading under the Node Based Model

Paik and Sahni showed in [21] that (NODE-UPGRADE, BOTTLENECK, GRAPH)
is NP-hard by providing a reduction from VERTEX COVER, which is the decision
version of MIN VERTEX COVER. The reduction was done in their node upgrading
model mentioned in Section 6. Since this model is a special case of our model, we
immediately obtain the hardness of (NODE-UPGRADE, BOTTLENECK, GRAPH) in
our setting. We now present a simple polynomial time approximation algorithm for
(NODE-UPGRADE, BOTTLENECK, GRAPH) with a performance of (2,1). Its basic
outline is as follows. (This outline uses some terminology introduced in Section 7.)
The upgrading set S is initialized to be the empty set. If there are infeasible



32

ALGORITHM APPROXIMATE LINKDELAY
e Input: A graph G = (V,E), three edge weight functions d, d,,, d;, a node
weight function ¢, and a number D

1. forallee FE

(a) if e is a “useless edge”, i.e., di(e) > D, then return “The link delay
cannot be reduced to be at most D”.

2. endfor

3. Ey+{ecE: eis 2-critical }

4. S+ {u,v:(u,v) € Bz}

5. for all e € E — E5 such that e is incident on some node in S
(a) d(e) < d,,(e) /* one endpoint of e is already upgraded */

6. endfor

7. E':={e€E—Ey:dle)>D}

8. Compute a 2-approximation C' to the problem of finding a minimum total
cost vertex cover in the graph G' = (V, E').
9. return SUC

Figure 7. Approximation algorithm for the Link Delay Problem.

edges (i.e., edges where upgrading cannot reduce the delay to be at most D), the
algorithm terminates after reporting that the instance does not have a solution. So,
we may assume that there are no infeasible edges in the instance. Then, for each
2-critical edge both endpoints are added to the upgrading set S. It follows that up
to this point S is a subset of the optimal solution S*. We update the delays of the
edges incident on the nodes in S. Observe that for each of the edges which still
has delay strictly greater than the bound D it suffices to upgrade at most one of
its endpoints. Our algorithm finds an approximation C' to the problem of finding
a minimum cost vertex cover in the edge subgraph of G consisting of those edges
whose delay still exceeds D. We output S U C' as an upgrading set.

The heuristic is shown in Algorithm 7. Step 8, that is, computing an approximate
minimum cost vertex cover can be done using known approximation algorithms, see
e.g. [8]. The following theorem states our approximation result:

THEOREM 8 Algorithm 7 is an approzimation algorithm for (NODE-UPGRADE,
BOTTLENECK, GRAPH) with a performance guarantee of (2,1).

Proof: Let S* be an upgrading set of minimum cost. Clearly, the set .S in Step 4
of Algorithm 7 must be contained in S*. It is also easy to see that S* \ V' must
be a vertex cover in the graph G' as defined in Step 8 of the algorithm. Thus, the
cost of the nodes in S* \ V' is at least that of the optimum vertex cover in G’. The
proof can now be completed in a straightforward manner. O

The proof of Theorem 8 shows also that, if we can compute a minimum cost
vertex cover in G’ efficiently, i.e., in polynomial time, then this result immediately



33

carries over to (NODE-UPGRADE, BOTTLENECK, GRAPH). Bern et al. have shown
[4] that the minimum cost vertex cover problem can be solved in polynomial time
on graphs of bounded treewidth. It is easy to see that the treewidth of graph G’
obtained in Algorithm 7 is no more than the treewidth of the original graph G.
Thus, we can conclude:

COROLLARY 1 The restriction of (NODE-UPGRADE, BOTTLENECK, GRAPH) to
graphs of bounded treewidth can be solved in polynomial time. [l

We now address the hardness of (NODE-UPGRADE, BOTTLENECK, GRAPH). As
already mentioned, the NP-hardness of this problem was established in [21]. We
briefly argue that in fact one can find an L-reduction (see [22]) from MIN VER-
TEX COVER to (BOTTLENECK, NODE-UPGRADE, GRAPH) to show that the latter
problem is MaxSNP-hard. Given an instance I of MIN VERTEX COVER given by a
graph G = (V, E) with |V| =: n we construct an instance I' of (NODE-UPGRADE,
BOTTLENECK, GRAPH) as follows: We use the same graph G = (V, E), set ¢(v) =1
forall v € V, d(e) = dn(e) = f(n) + 1 and di(e) = 1 for all e € E, where f is any
polynomial time computable function. Finally, let the bound D be 1.

Any vertex cover in G will give us a feasible upgrading set for the instance I' of
(NODE-UPGRADE, BOTTLENECK, GRAPH). Thus, an optimum upgrading set has
cardinality at most that of the minimum vertex cover: OPT(I") < OPT(I). It is
also straightforward to see that any feasible upgrading set for I’ will form a vertex
cover in GG. This way, we have found a L-reduction from MIN VERTEX COVER to
(BOTTLENECK, NODE-UPGRADE, GRAPH). Moreover, this L-reduction shows us
that the existence of an («, f(n))-approximation algorithm for (NODE-UPGRADE,
BOTTLENECK, GRAPH) implies that there is an a-approximation algorithm for MIN
VERTEX COVER. Here, f is an arbitrary polynomial time computable function.

As shown in [22] the MIN VERTEX COVER problem is MaxSNP-hard.® Thus,
the above arguments show that (NODE-UPGRADE, BOTTLENECK, GRAPH) is also
MaxSNP-hard and by the results from [1] there can be no PTas for (NODE-UPGRADE,
BOTTLENECK, GRAPH), unless P = NP.

In [3] it is shown that, unless P = NP, MIN VERTEX COVER cannot be approx-
imated to within a factor of o < 1.038. Combining this result with our reduction
above, it follows that a similar non-approximability result holds for the (NODE-
UPGRADE, BOTTLENECK, GRAPH) problem. Further, it can be verified that the
above reduction also applies to the (NODE-UPGRADE, TOTAL-WEIGHT, GRAPH)
problem and so we obtain a non-approximability result for that problem as well.
Thus, we conclude:

THEOREM 9 Unless P = NP, for any a < 1.038 and any polynomial time com-
putable function f, there are no (f(n),a)-approzimation algorithms for (NODE-
UPGRADE, BOTTLENECK, GRAPH) and (NODE-UPGRADE, TOTAL-WEIGHT, GRAPH)
problems. O

Acknowledgments: We thank Ravi Sundaram (Delta Trading Inc), Cynthia
Philips (Sandia National Laboratories), Hans-Christoph Wirth and Kai-Uwe Drang-
meister (University of Wiirzburg) for several interesting discussions and suggestions



34

related to the results presented in this paper. We also thank Jan Plesnik, Greg
Frederickson and Roberto Solis-Oba for making available copies of their papers.
Madhav Marathe’s research was supported by the Department of Energy under
Contract W-7405-ENG-36. R. Ravi’s research was supported by NSF CAREER
Award CCR-9625297.
A preliminary version of the paper was presented at the DIMACS workshop on
Network Design: Connectivity and Facilities Location, May 1997.

Notes

. Any reduction strategy will incur a minimum cost of ZeGE‘ ce(0) and we can subtract this
sum from the budget in advance.

2. Actually, reference [18] contains the stronger result that for any ¢ > 0 thereisa (1+1/e,14¢)-
approximation algorithm. For our purposes, it suffices to use the slightly weaker result.

3. The problem is MaxSNP-complete for graphs of bounded degree.

References

1. S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy, Proof verification and in-
tractability of approzimation problems, Proceedings of the 33rd Annual IEEE Symposium
on the Foundations of Computer Science (FOCS’92), October 1992, pp. 13-23.

2. O. Berman, Improving the location of minisum facilities through network modification, An-
nals of Operations Research 40 (1992), pp. 1-16.

3. M. Bellare, O. Goldreich, and M. Sudan, Free bits, PCPs and non-approzimability — to-
wards tight results, Proceedings of the 36th Annual IEEE Symposium on the Foundations of
Computer Science (FOCS’95), 1995, pp. 422-431.

4. M. W. Bern, E. L. Lawler and A. L. Wong, Linear - Time Computation of Optimal Subgraphs
of Decomposable Graphs, Journal of Algorithms, 8 (1987), pp. 216-235.

5. T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, McGraw-Hill
Book Co., Cambridge, MA, 1990.

6. J. Edmonds and E. L. Johnson, Matching, Euler tours and the Chinese postman, Mathe-
matical Programming 5 (1973), 88-124.

7. G. N. Frederickson and R. Solis-Oba, Increasing the weight of minimum spanning tree,
Proceedings of the 7th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’96),
January 1996, pp. 539-546.

8. M. R. Garey and D. S. Johnson, Computers and intractability: A guide to the theory of
NP-completeness, W. H. Freeman and Company, San Francisco, CA, 1979.

9. M. W. Goemans and D. P. Williamson, A general approzimation technique for constrained
forest problems, SIAM Journal on Computing, 24 (1995), pp. 296-317.

10. M. M. Halldorsson, Approzimating the minimum mazimal independence number, Informa-
tion Processing Letters 46 (1993), 169-172.

11. R. Hassin, Approximation schemes for the restricted shortest path problem, Mathematics of
Operations Research, 17 (1992), pp. 36—42.

12. S. E. Hambrusch and H. Y. Tu, Edge Weight Reduction Problems in Acyclic graphs, J.
Algorithms, 24 (1997), pp. 66-93.

13. S. O. Krumke, H. Noltemeier, S. S. Ravi, M. V. Marathe, and K. U. Drangmeister, Modifying

FEdges of a Network to Obtain Short Subgraphs, Accepted for publication in Theoretical Com-
puter Science. (An extended abstract of this paper titled Modifying networks to obtain low
cost trees appeared in Proceedings of the 22nd International Workshop on Graph-Theoretic
Concepts in Computer Science, Cadenabbia, [taly, Lecture Notes in Computer Science, June
1996, pp. 293-307.)



14.

15.

16.

17.

18.

19.

20.

21.
22.

23.

24.

25.

26.

35

S. O. Krumke, M. V. Marathe, H. Noltemeier, R. Ravi, S. S. Ravi, R. Sundaram, and
H. C. Wirth, Improving Spanning Trees by Upgrading Nodes, Proceedings of the 24th In-
ternational Colloquium on Automata, Languages and Programming (ICALP’97), Bologna,
Italy, July 1997, pp. 281-291.

D. Karger and S. Plotkin, Adding multiple cost constraints to combinatorial optimization
problems, with applications to multicommodity flows, Proceedings of the 27th Annual ACM
Symposium on the Theory of Computing (STOC’95), May 1995, pp. 18-25.

E. L. Lawler, Combinatorial optimization: Networks and matroids, Holt, Rinehart and Win-
ston, 1976.

L. Lovész and M. D. Plummer, Matching theory, Akadémiai Kiadé, Budapest (1986), 1986.
M. V. Marathe, R. Ravi, R. Sundaram, S. S. Ravi, D. J. Rosenkrantz, and H. B. Hunt III,
Bicriteria network design problems, Proceedings of the 22nd International Colloquium on
Automata, Languages and Programming (ICALP’95), July 1995, pp. 487-498.

C. Phillips, The network inhibition problem, Proceedings of the 25th Annual ACM Sympo-
sium on the Theory of Computing (STOC’93), May 1993, pp. 288-293.

J. Plesnik, The complezity of designing a network with minimum diameter, Networks 11
(1981), pp. 77-85.

D. Paik and S. Sahni, Network upgrading problems, Networks 26 (1995), pp. 45-58.

C. H. Papadimitriou and M. Yannakakis, Optimization, approzimation, and complexity
classes, Journal of computer and system sciences 43 (1991), pp. 425-440.

R. Ravi, Steiner trees and beyond, Ph.D. thesis, Brown University, Providence, Rhode Island
02912, USA, 1993.

R. Ravi, Rapid rumor ramification, Proceedings of the 35th Annual I[EEE Symposium on
the Foundations of Computer Science (FOCS’94), November 1994, pp. 202-213.

R. Ravi, M. V. Marathe, S. S. Ravi, D. J. Rosenkrantz, and H. B. Hunt 111, Many birds with
one stone: Multi-objective approzimation algorithms, Proceedings of the 25th Annual ACM
Symposium on the Theory of Computing (STOC’93), May 1993, pp. 438—-447.

A. Warburton, Approzimation of pareto optima in multiple-objective shortest path problems,
Operations Research 35 (1992), pp. 70-79.



