
, , 1{35 ()c Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.
Approximation Algorithms for Certain NetworkImprovement ProblemsSVEN O. KRUMKE krumke@zib.deKonrad-Zuse-Zentrum f�ur Informationstechnik Berlin, Department of Optimization, Takustr. 7,14195 Berlin-Dahlem, Germany.MADHAV V. MARATHE madhav@lanl.govMadhav V. Marathe, Los Alamos National Laboratory, P.O.Box 1663, MS B265, Los AlamosNM 87545, USA.HARTMUT NOLTEMEIER noltemei@informatik.uni-wuerzburg.deDepartment of Computer Science, University of W�urzburg, Am Hubland, 97074 W�urzburg, Ger-many.R. RAVI ravi+@cmu.eduGSIA, Carnegie Mellon University, Pittsburgh, PA 15213.S. S. RAVI ravi@cs.albany.eduDepartment of Computer Science, University at Albany { SUNY, Albany, NY 12222, USA.Editor:Abstract. We study budget constrained network upgrading problems. Such problems aim at�nding optimal strategies for improving a network under some cost measure subject to certainbudget constraints. Given an edge weighted graph G = (V;E), in the edge based upgrading model,it is assumed that each edge e of the given network also has an associated function ce(t) thatspeci�es the cost of upgrading the edge by an amount t. A reduction strategy speci�es for eachedge e the amount by which the length `(e) is to be reduced. In the node based upgrading model,a node v can be upgraded at an expense of c(v). Such an upgrade reduces the delay of each edgeincident on v. For a given budget B, the goal is to �nd an improvement strategy such that thetotal cost of reduction is at most the given budget B and the cost of a subgraph (e.g. minimumspanning tree) under the modi�ed edge lengths is the best over all possible strategies which obeythe budget constraint.After providing a brief overview of the models and de�nitions of the various problems considered,we present several new results on the complexity and approximability of network improvementproblems.Keywords: Complexity, NP-hardness, Approximation Algorithms1. Introduction and MotivationSeveral problems arising in areas such as communication networks and VLSI designcan be expressed in the following general form: Enhance the performance of anunderlying network by carrying out upgrades at certain nodes and/or edges of thenetwork [7, 19, 21, 13, 14].Consider the following scenario which best illustrates the type of problems weinvestigate. A large communication company is approached by a client with the

2requirement to interconnect a set of cities housing the client's o�ces (e.g. bankswith high transaction rates between branches). The company has a list of feasiblelinks that it can use to construct a network to connect these cities. Each link hasa construction cost associated with it. One of the main concerns of the client is tobuild a communication network of minimum cost. This is the ubiquitous minimumspanning tree problem. With the advent of optical communication technology,the client would like to upgrade the communication network and has allocated a�xed budget to do so. In communication networks, upgrading a node correspondsto installing faster switching equipment at that node. Such an upgrade reducesthe communication delay along each edge emanating from the node. Similarly,upgrading an edge corresponds to replacing an existing link with a new type oflink. In general, there is a cost for improving each link (node) in the existingnetwork by a unit amount. The goal is to design a strategy to upgrade the linksof the network so that the total cost of upgrading the links (nodes) is no morethan the given budget, and the cost of a minimum spanning tree for the upgradednetwork is the least over all the possible improvements of the network satisfyingthe budget constraint.Although substantial work has been done in �nding optimal networks (e.g. span-ning trees) in graphs, signi�cantly less work has been reported on how to modify agraph so as to optimize the cost of a suitable subgraph of the resulting graph, whenthere is a budget constraint on the modi�cation cost. Here, building on our recentwork in [13, 14], we formulate and study such budget constrained optimal networkupgrading problems.The paper is organized as follows. Section 2 introduces the node and edge basedupgrading models. In Section 3 we formally de�ne the problems under study. InSection 5, we discuss the robustness and generality of our formulations. Section 4briey summarizes our results. Section 6 provides a comparison with related work.In Section 7 we present our approximation algorithm for the bottleneck node up-grading problem on unweighted graphs and establish its performance guarantee.Section 8 investigates edge upgrading problems for constrained Steiner trees. Sec-tion 9 describes our results for the case when the whole graph needs to be upgraded.2. Preliminaries and Upgrading ModelsThroughout the presentation we assume that G = (V;E) is a connected undirectedgraph. Let w be a nonnegative edge weight function de�ned on G. For a tree Tin G, the bottleneck-delay of T under w is de�ned to be the weight of the heaviestedge in T . The total weight of T under the cost function w is the sum of theweights w(e) of the edges e 2 T . Finally, the diameter of T with respect to w,denoted by diaw(T), is the length of a longest simple path in T .Given a subset K � V of distinguished nodes called terminals, any subgraph Tof G which is a tree and which contains all the terminals from K is said to be aSteiner tree of G for K.We now describe our node based and edge based upgrading models.

32.1. Node Based Upgrading ModelIn the node based upgrading model we are given a connected undirected graphG = (V;E). Further, for each edge e = (u; v) 2 E, we are given three nonnegativenumbers: d(e) represents the length or delay of the link e. If exactly one of theendpoints u and v is upgraded, the delay of e decreases to dm(e), the \medium"delay. If both endpoints are upgraded, then the delay falls to dl(e), the \low" delay.It is assumed that dl(e) � dm(e) � d(e).Thus, the upgrade of a node v reduces the delay of each edge incident on v. Foreach node v 2 V the value c(v) speci�es how expensive it is to upgrade the node.For a subset W of V , the cost of upgrading all the nodes in W , denoted by c(W),is equal to Pv2W c(v).2.2. Edge Based Upgrading ModelIn the edge based upgrading model, each edge e 2 E is associated with two non-negative numbers as follows: `(e) denotes the length or the weight of the edgee and `min(e) denotes the minimum length to which the edge e can be reduced.Consequently, we assume throughout the presentation that `min(e) � `(e). Thenonnegative cost function ce(t) associated with edge e indicates how expensive itis to reduce the length of e by an amount t. We assume without loss of generalitythat ce(0) = 0 for all edges e 2 E.1 We also make the natural assumption that eachcost function ce is nondecreasing. In this paper we will restrict ourselves to the casewhen the cost functions ce are linear, i.e., ce(t) = ce � t for some constant ce � 0.A reduction strategy (or simply reduction) r on the edges of G speci�es how toreduce the `-length of each edge e to a value in the range [`min(e); `(e)]. Formally,we require that`(e)� r(e) � `min(e) for all e 2 E.The cost of the reduction r isPe2E ce(r(e)). If r is a reduction on G, then we canconsider the graph G with edge weights given by the \reduced lengths", namely(`� r)(e) := `(e)� r(e) (e 2 E).3. Problem Formulations and Notion of ApproximationAs already mentioned, the problems studied in this paper are formulated as multi-criteria optimization problems.De�nition 1. [k-Criteria Optimization Problem] For any �xed k � 2, a k-criteriaminimization problem � on a weighted graph is de�ned by specifying k polynomialtime computable minimization objectives, f1; : : : ; fk, and a membership require-ment in a class of weighted subgraphs � (not necessarily weighted exactly the sameway as the original graph).The problem speci�es budget values F2; : : : ; Fk as upper bounds on the objectivesf2; : : : ; fk. The goal is to �nd a subgraph from the set

4 fx 2 � : fi(x) � Fi; i = 2; : : : ; k g; (1)having minimum possible value for f1.Given an instance of a k-criteria problem, the set of feasible solutions for theinstance is de�ned as the set given in (1).As an example, consider the following node based bottleneck spanning tree up-grading problem, denoted by (Node-Upgrade, Bottleneck, Spanning Tree).(This problem is studied in Section 7.)De�nition 2. [Node Weighted Bottleneck Tree Upgrading Problem] Given anedge and node weighted graph G = (V;E) as in Section 2.1 and a bound D, theproblem (Node-Upgrade, Bottleneck, Spanning Tree) is to upgrade a setS � V of nodes such that the resulting graph has a spanning tree of bottleneckdelay at most D and c(S) is minimized.In the above problem, the class � of subgraphs consists of all the spanning trees.The �rst objective (which is to be minimized) is the upgrading cost, while thesecond objective is the bottleneck weight of the tree after the upgrade.Similarly, the edge based Steiner tree upgrading problem, denoted by (TotalWeight, Diameter, Edge-Upgrade, Steiner Tree), can be formulated asfollows. (This problem is studied in Section 8.)De�nition 3. [Diameter Constrained Steiner Tree Problem] Let G = (V;E) be anedge weighted graph as in Section 2.2 and let d be an additional edge weight functiond which is independent of `. Given a bound D on the d-diameter and a nonnegativebudget value B, the diameter and budget constrained minimum total cost Steinertree problem, (Total Weight, Diameter, Edge-Upgrade, Steiner Tree), isto �nd a subgraph from the set8<: (T; r) : T is a Steiner tree of G with the terminals K,r is a reduction on G,diad(T) � D and Pe2T ce � r(e) � B 9=; ; (2)such that the weight of the subgraph under the weight function (`� r) is as smallas possible.We now introduce the notion of approximation that is used throughout the paper.De�nition 4. [k-Criteria Approximation Algorithm] For any �xed k � 2, a k-criteria approximation algorithm for a k-criteria minimization problem � with per-formance (�1; : : : ; �k) is a polynomial time algorithm with the following properties:Given any instance of � with a nonempty set of feasible solutions, the algorithm�nds an \almost feasible solution", that is a solution y from the setfx 2 � : fi(x) � �i � Fi; i = 2; : : : ; k g (3)

5such that f1(y) � �1 � OPT. Here OPT denotes the minimum value of a solutionsatisfying all the constraints.If there is no feasible solution for an instance, the algorithm has the choice ofproducing an \almost feasible solution" from the set given in (3) or providing the(correct) information that the set of feasible solutions is empty.In general, each performance factor �i depends on the input size and on thebudget values F2; : : : ; Fk. However, for several problems considered in this paper,the �i values are constants. The performance of an approximation algorithm ismeasured in terms of both near-optimality and the extent to which the constraintsare violated in the solution produced. Notice that any solution produced by thealgorithm is contained in the set (3). Thus, the solution belongs to the subgraph-class �.For example, an (�; �)-approximation algorithm for (Node-Upgrade, Bottle-neck, Spanning Tree) �nds for any instance of the problem, an upgrading set Sof cost at most � �OPT such that the upgraded graph has a spanning tree of bot-tleneck delay at most � times the given threshold D. Here, OPT is the minimumupgrade cost needed to obtain a spanning tree of bottleneck delay at most D.4. Summary of ResultsWe study the complexity and approximability of a number of node based and edgebased upgrading problems. We consider three objectives to evaluate the cost of a(sub-)graph in the modi�ed network: the bottleneck delay, the diameter and thetotal cost.Tables 1 and 2 summarize our results. The node based upgrading problems use themodel from Section 2.1 while the edge based upgrading problems utilize the modelde�ned in Section 2.2. In Tables 1 and 2, the rows are indexed by the problem. Thecolumns indicate the hardness and approximation results for each problem. Givena bicriteria problem (i.e., a problem involving two criteria), we can obtain a dual(or symmetric) version of the problem by interchanging the budgeted objective andthe minimization objective. In Section 5, we establish a general result (Theorem 2)that allows us to obtain an approximation algorithm for the dual problem givenan approximation algorithm for the original problem. For this reason, results forthe dual problems are not explicitly indicated in the tables. The tables include thefollowing results.1. The problems (Edge-Upgrade, Bottleneck, Graph), (Edge-Upgrade,Total-Weight, Graph) and (Edge-Upgrade, Bottleneck, SpanningTree) are solvable in polynomial time.2. The problem (Node-Upgrade, Bottleneck, Graph) is MaxSNP-hard buthas a polynomial time (2; 1)-approximation algorithm.3. (U-Node-Upgrade, Bottleneck, Spanning Tree) has a polynomial time(5 + 4 ln�; 1) approximation algorithm. Here, (U-Node-Upgrade, Bottle-neck, Spanning Tree) is the restriction of the problem (Node-Upgrade,

6Table 1. Results for node based upgrading problems. (The hardness results assume thatNP 6� DTIME(nO(log log n)).)Problem Hardness Result Performance Guarantee(U-Node-Upgrade,Bottleneck, SpanningTree) Not approximable within(�; f(n)) for any � < 1=3 � lnnand polynomial time com-putable function f (see [14]). (5 + 4 ln�; 1),where � is the maximum de-gree in the graph.(Node-Upgrade, Bot-tleneck, Graph) Not approximable within(�; f(n)) for any � < 1:038and any polynomial timecomputable function f . (2; 1)(Node-Upgrade,Total-Weight,Graph) Not approximable within(�; f(n)) for any � < 1:038and any polynomial timecomputable function f . open
Table 2. Results for edge based upgrading problems. (The hardness results assume thatP 6= NP.)Problem Hardness Result Performance Guarantee(Total Weight, Diam-eter, Edge-Upgrade,Steiner Tree) Not approximable within(�; �; 1) or (1; �; �) for any�; � � 1. (O(log jKj);O(log jKj);O(log jKj)),where K is the set of terminals.(Edge-Upgrade, Bot-tleneck, Graph) polynomial time solvable.(Edge-Upgrade, Bot-tleneck, SpanningTree) polynomial time solvable.
Bottleneck, Spanning Tree) to those instances where the cost of upgradingeach node is 1, and � denotes the maximum node degree in the input graph.4. There is an approximation algorithm for the (Total Weight, Diameter,Edge-Upgrade, Steiner Tree) problem with a performance guarantee of(O(log jKj);O(log jKj);O(log jKj)).In addition to the above results for speci�c network improvement problems, wealso extend the results in [18] and show that our formalism for k-criteria approxi-mation is both robust and general. It is more general because it subsumes the caseconsidered in [18] where one wishes to minimize some functional combination oftwo criteria. It is more robust because the quality of approximation is independentof which of the two criteria is chosen as the budgeted objective.

75. Generality and Robustness of Formulations5.1. A Note on the Infeasibility of Multicriteria ProblemsA seeming drawback of our De�nition 4 is that when an instance of a k-criteriaoptimization problem does not have a feasible solution, a k-criteria approximationalgorithm might give us an \almost feasible solution" with a very bad objectivefunction value (since in this case the algorithm is allowed to pick just any \almostfeasible solution").Of course, if we can check the feasibility of an instance in polynomial time, thenthere are no severe problems. We can perform this check before running the k-criteria approximation algorithm. If we detect infeasibility, we simply provide anindication of that fact and stop.For the rest of this subsection we assume that, given an instance of the k-criteriaminimization problem �, determining whether the set of feasible solutions is emptyis NP-complete. (This is true of all the NP-hard problems considered in this paper.)Under this assumption, the existence of any polynomial time algorithm that outputsa feasible solution if and only if a problem instance is feasible, will imply thatP = NP. Thus, it seems necessary to allow a k-criteria approximation algorithmthe \freedom" of violating most or all of the constraints by small factors whileapproximating the minimization objective.Let A be an (�1; : : : ; �k)-approximation algorithm for the problem �, where forsimplicity the �i are assumed to be constants greater or equal to 1. Suppose thatgiven an instance I of � the algorithm A returns the solution ~x, and does notproduce an indication of infeasibility. We denote bySI = fx 2 � : fi(x) � Fi; i = 2; : : : ; k gthe set of feasible solutions for I . We now run A again on the instance I 0 obtainedfrom I by setting the bounds on the objectives fi to F 0i := �iFi for i = 2; : : : ; k.Thus, for I 0 the problem consists of �nding a subgraph from the setSI0 = fx 2 � : fi(x) � F 0i ; i = 2; : : : ; k g= fx 2 � : fi(x) � �iFi; i = 2; : : : ; k g (4)minimizing f1. Notice that the set of feasible solutions de�ned in (4) is nonempty,since ~x 2 SI0 . Let the corresponding solution delivered by A be x0. We then output~x or x0, depending on which of the two solutions has a better objective functionvalue under f1.The solution x̂ generated this way will violate the constraints fi(x) � Fi at mostby the factors �2i , i = 2; : : : ; k. Moreover, x̂ is a good approximate solution for the\relaxed" instance I 0 corresponding to I and satis�esf1(x̂) � �1 �minf f1(x) : x 2 SI [SI0 g:Also, if the set of feasible solutions SI of the original instance I is nonempty, then

8 f1(x̂) � �1 �minf f1(x) : x 2 SI g:The above arguments show that we can augment a k-criteria approximation algo-rithm to produce acceptably good solutions even if our original problem instanceis infeasible. Instead of just outputting any \almost feasible solution", we can �ndone that has a good objective function value f1 for a relaxed problem instance. Inview of the assumption that deciding feasibility is NP-complete, this appears to bethe best that we can accomplish in polynomial time (assuming that P 6= NP).5.2. GeneralityBy \generality" we mean that our results for k-criteria formulations can be easilymodi�ed to obtain results for classes of problems involving only one criterion. Inthis section we discuss how approximation algorithms for multicriteria problemscan be used to obtain approximation algorithms for certain related unicriterionproblems.Let � be a k-criteria minimization problem. For a �xed weight-vector � =(�1; : : : ; �k) 2 INk , we denote by ��+ and ��� the unicriterion problems of �ndinga subgraph from � minimizing f�+ := Pki=1 �ifi and f�� := Qki=1 f�ii respectively.Throughout this section we will assume that the objectives f1; : : : ; fk are integervalued. In case of rational objectives, the results can be extended with a small lossin the performance guarantees. The restriction to integral cost functions will helpus to focus on the essential connections between multicriteria approximation andunicriterion approximation. We will also make the following assumption about theboundedness of the objective function values of ��+ and ���:Assumption 1. Let �0 2 f��+;���g. There is a polynomial p with the followingproperty: for any instance I of �0 with encoding length jI j there exist (polynomialtime computable) numbers B2; : : : ; Bk with 0 � Bi � 2p(jIj) for i = 2; : : : ; k suchthat the optimal solution x� to the instance of �0 satis�es:1 � fi(x�) � Bi; for i = 2; : : : ; k.It should be noted here that Assumption 1 is not a severe restriction. If we assumea reasonable encoding scheme (such as the usual binary encoding) for numbers, thenthe assumption merely states that the encoding lengths of the single objective func-tion values fi(x�) of an optimal solution x� remain polynomially bounded in theinput length. If this were not the case, then the encoding lengths of f�+(x�) andf��(x�) would not be polynomially bounded (assuming again a reasonable encod-ing scheme). Hence, there can be no polynomial time algorithm, deterministic ornondeterministic, that �nds an optimal solution and outputs the optimal functionvalue, since the encoding length of the objective function value is exponential inthe input size.

9Theorem 1 Assume that there is an (�1; : : : ; �k)-approximation algorithm for ak-criteria problem �. Then for any " > 0 and � = (�1; : : : ; �k) 2 INk the followingstatements hold:(i) There is a polynomial time approximation algorithm for ��+ with a performanceguarantee of (1 + ")maxf�1; : : : ; �kg.(ii) There is a polynomial time approximation algorithm for ��� with a performanceguarantee of (1 + ")Pki=2 �iQki=1 ��ii .In particular, if � = (1; 1; : : : ; 1), then the performance of the approximationalgorithm for ��� is (1 + ")k�1Qki=1 �i.Proof: Let A be an (�1; : : : ; �k)-approximation algorithm for the problem �. We�rst consider ��+. The idea behind our approximation algorithm for the unicriterionproblem ��+ is the following: Let x� be an optimal solution of valuePki=1 �ifi(x�)for a given instance of ��+. Then, x� is a feasible solution to the instance of thek-criteria problem � of minimizing f1(x) subject to the constraints that fi(x) �Fi := fi(x�). The feasibility of x� allows us to argue that there is a \good" optimalsolution to this instance of �, meaning that its objective value under f1 is at mostthat of x�. Using the k-criteria algorithm A would enable us to �nd a \good"solution where also the linear combination of the objective values fi, i = 1 : : : ; kvia � is reasonably close to the solution value for x�. Unfortunately, we do notknow the \right bounds" fi(x�) to use as upper bounds. Thus, we construct anappropriate search space of bounds which is large enough to �nd good bounds andsmall enough to be searchable exhaustively in polynomial time.We formalize the above idea in Algorithm Convert-Sum shown in Figure 1.Since " > 0, k and �i are all constants, it follows easily that Algorithm Convert-Sum can be implemented to run in polynomial time.Let x� be an optimal solution to the unicriterion problem ��+. Consider the callin Algorithm Convert-Sum to the k-criteria algorithm A, when the parameterz satis�es:fi(x�) � zi < (1 + ")fi(x�); i = 2; : : : ; k: (5)Observe that by construction of the algorithm, such a call will be issued. Thealgorithm A is hence applied to the k-criteria problem of �nding a subgraph fromfx 2 � : fi(x) � zi; i = 2; : : : ; k g; (6)having minimum possible value for f1. Because of (5), the optimal solution x� tothe unicriterion problem ��+ is contained in the feasible set (6), thus proving thatthis set is nonempty. Therefore, by the performance guarantee of A, the k-criteriaapproximation algorithm will return a subgraph x̂ := A(z) fromfx 2 � : fi(x) � �i � zi; i = 2; : : : ; k g (7)

10Algorithm Convert-Sum� Input: A k-criteria approximation algorithm A for �, an instance of ��+.1. for i 2; : : : ; k(a) ri dlog(1+") Bie.(b) Mi f (1 + ")j : j = 0; : : : ; ri g.2. endfor3. M M2 � � � � �Mk4. For a vector z = (z2; : : : ; zk), let A(z) denote the subgraph returned by thek-criteria algorithm A, when called with the bounds zi on the values of theobjectives fi, i = 2; : : : ; k.5. Find z� 2M such that Pki=1 �ifi(A(z)) is a minimum among all z 2M .6. return A(z�).Figure 1. Converting a k-criteria algorithm into a unicriterion algorithm.such that f1(x̂) � �1 � OPT. Here, OPT denotes the minimum objective valueunder f1 of a solution from (6). Combining the fact that x̂ is contained in (7) withInequality (5) yieldsfi(x̂) � (1 + ")�i � fi(x�); i = 2; : : : ; k: (8)Moreover, since we have seen that the optimal solution x� of the unicriterion prob-lem is contained in the set (6) of feasible solutions of the instance of the k-criteriaproblem just constructed, we obtain that OPT � f1(x�). Thus, again by the per-formance of A this impliesf1(x̂) � �1 �OPT � �1 � f1(x�): (9)Combining (8) and (9) gives us:kXi=1 �ifi(x̂) � �1 � �1f1(x�) + (1 + ") kXi=2 �i � �ifi(x�)� (1 + ") �maxf�1; : : : ; �kg � kXi=1 �ifi(x�):Since Algorithm Convert-Sum chooses the z� 2 M such that Pki=1 �ifi(A(z))is minimum among all z 2 M , the claimed performance guarantee now follows inthe case of ��+.The proof for the problem ��� follows along the same lines. We just have to changeStep 5 of Algorithm Convert-Sum to select z� such that Qki=1 f�ii (A(z�)) isminimum among all z 2 M . Then, using the same arguments as above, we get

11from (8) and (9) thatkYi=1 f�ii (x̂) � ��11 � f�11 (x�) � kYi=2(1 + ")�i��ii � f�ii (x�)= (1 + ")Pki=2 �i kYi=1��ii ! � kYi=1 f�ii (x�):This completes the proof.Theorem 1 establishes a connection between the approximability of a multicrite-ria problem and certain unicriterion problems. In particular, if a bicriteria problemis \well approximable" with performance (�1; �2), where �1 and �2 are constants,then there is also a \good" constant factor approximation for the problem of min-imizing the sum of the two objectives.The converse is not true in general. To see this, we will provide an example of aproblem �+ of minimizing the objective f := f1+f2, which is well-approximable, infact polynomial time solvable. In contrast, the bicriteria problem � of minimizing f1subject to a constraint on the value of f2 turns out to be very hard to approximate.Consider the bicriteria problem � of �nding an independent dominating set Uin a graph G = (V;E) minimizing f1(U) := jU j subject to the constraint thatf2(U) := jV �U j � F2. The problem �+ where f1 and f2 are functionally combinedto f := f1 + f2 consists of �nding an independent dominating set U minimizingf1(U) + f2(U) � jV j. Clearly, �+ can be solved in polynomial time, e.g. by thetrivial algorithm that simply outputs any independent dominating set in the graphG. Thus, �+ can be deemed \well-approximable".In contrast, � exhibits a di�erent behavior. If we set the bound F2 on thecardinality of jV � U j to be F2 := jV j, then � becomes the problem of �ndingan independent dominating set of minimum cardinality. This problem is hard toapproximate [3]: unless P = NP, for any " > 0 there can be no polynomial timeapproximation algorithm with a performance of jV j1=6�" for this problem. Thus,the bicriteria problem � contains as a special case a problem which is hard toapproximate, while the unicriterion problem �+ is well-approximable.5.3. RobustnessIn this section we will elaborate on the \robustness" of our formulations and thenotion of approximation in the case of two criteria. By \robustness" we mean thatthe quality of approximation is independent of which of the two criteria is chosenas the budgeted objective. To see this, note that there are two natural ways toformulate a bicriteria problem:1. (f1; f2;�) - �nd a subgraph in � whose f2-objective value is at most B andwhich has minimum f1-objective value,2. (f2; f1;�) - �nd a subgraph in � whose f1-objective value is at most B andwhich has minimum f2-objective value.

12Theorem 2 If there is an (�; �)-approximation algorithm for (f1; f2;�), then forany " > 0 there is a ((1 + ")�; �)-approximation algorithm for the dual problem(f2; f1;�).Moreover, if the objective f1 is integer valued, then there is a (�; �)-approximationalgorithm for the dual problem (f2; f1;�).Proof: Let A be an (�; �)-approximation algorithm for (f1; f2;�). We will showhow to use A to construct a ((1 + ")�; �)-approximation algorithm for the dualproblem. The basic idea is to use A to search for the optimal objective functionvalue under f2 for the given instance of (f2; f1;�).An instance of (f2; f1;�) is speci�ed by a weighted graph G = (V;E) and abound F2 on the objective f1. Let OPT be the optimal function value under f2subject to the constraint on f1. By Assumption 1, we can compute a number R inpolynomial time such that 0 � OPT � R. For a given number 0 � D � R, let IDbe the instance of (f1; f2;�) obtained by specifying the bound D on objective f2.We search the setM := f0; 1 + "; (1 + ")2; : : : ; (1 + ")kg; where k = �log1+"R� (10)and �nd the minimum value D 2 M such that A as applied to ID outputs asubgraph x with objective function value f1 at most �B. It is easy to see that thisbinary search indeed works and terminates with a value D0 � (1 + ")OPT.The corresponding subgraph x0 2 � has objective function value, under f2, of atmost �D0 � (1 + ")� �OPT and violates the constraint on objective f1 by a factorof at most �. This way we obtain a ((1 + ")�; �)-approximation for (f2; f1;�).If f1 is integer valued, then instead of performing a search on the setM de�nedin (10) we can perform the binary search over the integers in the interval [0; R].This provides a (�; �)-approximation for (f2; f1;�).By the result of the last theorem, our approximation results for (f1; f2;�) prob-lems in the following sections will also yield approximation algorithms for the sym-metric problem (f2; f1;�).6. Comparison with Related WorkSeveral researchers have worked on versions of network upgrading problems. Fred-erickson and Solis-Oba [7] considered the problem of increasing the weight of aminimum spanning tree in a graph subject to a budget constraint where the costfunctions are assumed to be linear in the weight increase. In contrast to the resultspresented here, they show that while the integral case is NP-hard, the rational caseis solvable in polynomial time using tools from matroid theory. Berman [2] consid-ers the problem of shortening the edges of a given tree to minimize the weight of itsshortest path tree and shows that the problem can be solved in strongly polynomialtime.Plesnik [20] has shown that the budget-constrained minimum diameter problem(i.e., given a graph G = (V;E) with a length `(e) and cost c(e) for each edge e 2 Eand a cost budget B, select a subset E0 of E so that the total cost of edges in E0

13is at most B and the diameter of the graph formed by E0 is a minimum amongall subsets satisfying the budget constraint) is NP-hard. He also shows that, if thebudget constraint cannot be violated, then even approximating the diameter towithin a factor of less than 2 is NP-hard.Hambrusch and Tu [12] consider budget constrained edge-based upgrading prob-lems for directed graphs. In their work, the performance of the modi�ed networkis characterized by the length of a longest path. They present hardness results forgeneral graphs and polynomial algorithms for special classes such as in-trees andseries-parallel graphs. Phillips [19] studies the problem of �nding an optimal strat-egy for reducing the capacity of a given network so that the residual capacity in themodi�ed network is minimized. The problems studied here and in [19, 2] can bebroadly classi�ed as types of bicriteria problems. Recently, there has been substan-tial work on �nding e�cient approximation algorithms for a variety of bicriteriaproblems (see [15, 11, 18, 25, 24, 26] and the references cited therein).Some node upgrading problems have been studied under a simpler model by Paikand Sahni [21]. In their model, upgrading a node causes the delay of each edgeincident on that node to be reduced by a given constant factor � < 1. When bothend points of an edge are upgraded, the delay of the edge is reduced by the factor�2. It is easy to see that this model is a special case of the model treated in ourpaper.Under their model, Paik and Sahni studied the upgrading problem for severalperformance measures including the maximum delay on an edge and the diameterof the resulting network. They presented NP-hardness results for several problems.Their focus was on polynomial time algorithms for special classes of networks (e.g.trees, series-parallel graphs) rather than on approximation algorithms for NP-hardversions. Our constructions can be modi�ed to show that all the problems consid-ered here remain NP-hard even under the Paik-Sahni model. The approximationresults presented here hold under our generalized model.7. Approximation Algorithm for Unit Cost Node UpgradingRecall that the problem (Node-Upgrade, Bottleneck, Spanning Tree) con-sists in �nding an upgrading set of minimum cost such that such that after theupgrade the graph has a spanning tree of bottleneck delay at most the given boundD. In [14], we presented a (2 lnn; 1) approximation algorithm for the general case,when each node has a cost c(v) associated with it and the goal is to minimize theupgrading cost. Here, n is the number of nodes in the input graph.In this section, we will show how to obtain an improved approximation algorithmfor the problem in the case of unit costs on the vertices. We present an algorithm for(U-Node-Upgrade, Bottleneck, Spanning Tree) with a performance guar-antee of (5 + 4 ln�; 1), where � denotes the maximum degree of the input graph.For � 2 o(pn), the result presented here for the unit cost case improves on theperformance of our algorithm for the general case. In particular, for the class ofbounded-degree graphs, we obtain a constant factor approximation.

14We describe the algorithm in two stages. In the �rst stage, we only considercase when the edge weights can take on two possible values. We then extend thisto handle the case when the edges take on three values depending on the subsetof adjacent nodes upgraded. In the remainder of this paper, we use the followingterminology. We say that an edge is uncritical if its delay is less than or equal tothe given bound D. An edge is 1-critical if its delay is > D and it can be made lessthan or equal to D by upgrading one of its endpoints. An edge is 2-critical if itsdelay is > D and it can be made less than or equal to D only by upgrading bothof its endpoints. Our algorithm also uses the following de�nition.De�nition 5. Given a graphG = (V;E), an edge weight function d and a numberD, the bottleneck subgraph of G, denoted by Bottleneck(G; d;D), consists of alledges e such that d(e) � D.7.1. The Case of no 2-Critical EdgesRecall that in the case of (U-Node-Upgrade, Bottleneck, Spanning Tree)the objective is to �nd an upgrading set of minimum cardinality. We �rst considerthe case when all edges are either uncritical or 1-critical. Our Algorithm Unit-Cost Node-Upgrading shown in Figure 2 gives the steps of our heuristic.The performance of this heuristic is summarized in the following theorem.Theorem 3 Algorithm Unit-Cost Node-Upgrading is a polynomial timeapproximation algorithm for (U-Node-Upgrade, Bottleneck, Spanning Tree)when all edges are either uncritical or 1-critical. Given any such instance of (U-Node-Upgrade, Bottleneck, Spanning Tree), the algorithm �nds an upgrad-ing set S satisfying the conditionjSj � 2(1 + ln�) �OPT� 1;where � is the maximum degree in the input graph G and OPT is the size of anoptimal upgrading set. In particular, the algorithm has a performance guarantee of(2 + 2 ln�; 1).The proof of this theorem relies on several lemmas. Step 3 of Algorithm Unit-Cost Node-Upgrading detects the case when no node needs to be upgraded.Thus, for the remainder of the analysis, we assume that every optimal solutioncontains at least one vertex. We use S� to denote an optimal upgrading set andde�ne OPT := jS�j. Also, let T � be a corresponding bottleneck spanning tree, thatis, a tree which has bottleneck delay at most D after upgrading the vertices in S�.Lemma 1 Let C� be a minimum size set cover for the instance (Q;F) of the MinSet Cover problem constructed in Step 4 of Algorithm Unit-Cost Node-Upgrading. Then jC�j � OPT.Proof: We show that the sets Sv with v 2 S� form a set cover for the instance(Q;F) of Min Set Cover. This will prove the claim of the lemma.

15
Algorithm Unit-Cost Node-Upgrading� Input: A graph G = (V;E), three edge weight functions d, dm, dl, and anumber D.1. G0 Bottleneck(G; d;D)2. C1; : : : ; Cq connected components of G03. if q = 1 then return ;4. Construct an instance (Q;F) of Min Set Cover as follows: Let the groundelements be Q := fC1; : : : ; Cqg. For each v 2 V de�ne the setSv := fCj : v 2 Cj or v is adjacent to Cj via a 1-critical edge gand let F := fSv : v 2 V g.5. Find a set cover C = fSv1 ; : : : ; Svkg of size at most 1+lnmaxf jSvj : Sv 2 F gtimes the minimum size set cover for the instance (Q;F).6. S fv1; : : : ; vkg7. S0 ;8. for all v 2 S(a) for all e 2 E incident on v(i) d(e) dm(e) /* thus the delay of such an edge will be at most D */(b) endfor9. endfor10. G0 = (V;E0) Bottleneck(G; d;D)11. C 01; : : : ; C 0s connected components of G012. Construct an auxiliary graph Ĝ = (fC 01; : : : ; C 0sg; Ê) with (C 0i ; C 0j) 2 Ĝ ifand only if there are vertices v 2 C 0i and w 2 C 0j such that (v; w) 2 E.13. T̂ spanning tree of Ĝ14. for all edges (C 0i ; C 0j) 2 T̂(a) Choose v 2 C 0i and w 2 C 0j such that (v; w) 2 E.(b) S0 S0 [fvg15. endfor16. return S [S0Figure 2. Approximation algorithm for unit costs without 2-critical edges.

16Consider an arbitrary component Cj 2 Q. We have to show that Cj is containedin the union of the sets Sv2S� Sv .Since G0 = Bottleneck(G; d;D) contains more than one connected component,the tree T � must contain a 1-critical edge (u;w) with u 2 Cj and w 62 Cj . Sinceafter the upgrade of the vertices in S� the tree T � has bottleneck delay at most Dit follows that either u or w must be contained in S�.We have Cj 2 Sw (because w is connected to Cj via a 1-critical edge) and Cj 2 Su(since u is contained in Cj). Thus, we can conclude that Cj is covered by the setsSv, v 2 S�.Lemma 2 Let S be the set constructed in Step 6. Then the bottleneck graph G0computed in Step 10 has at most jSj connected components.Proof: We show that for each node v there is a path in G0 to at least one nodefrom S. Assume for the sake of contradiction that this is not the case. Then thereis a vertex v in a connected component C 0v of G0 where the component G0 does notcontain any vertex of S. By construction, C 0v must contain one of the connectedcomponents, say C, computed in Step 2 before the upgrade of the vertices in S.Since the sets Sv corresponding to the vertices v 2 S formed a feasible set cover,it follows that C must have either contained a vertex from S or must have beenadjacent to a vertex from S via a 1-critical edge. In both cases after the upgradethis vertex from S is contained in the same connected component as the vertices inC. But this means that C 0v must contain at least one vertex from S, and this is acontradiction.The proof of the following lemma is just as easy.Lemma 3 The set S [S0 output by Algorithm Unit-Cost Node-Upgradingis a valid upgrading set in G.Using the results of Lemma 1, Lemma 2 and Lemma 3, we can now complete theproof of Theorem 3. By Lemma 1 we know thatjS�j = OPT � jC�j; (11)where C� is an optimal set cover for the instance (Q;F) of Min Set Cover con-structed in Step 4. Step 5 of the algorithm, that is, �nding an approximation tothe optimal set cover, can be done using the well known greedy algorithm [5]. Thisalgorithm will produce a set cover C of size at most (1+lnmaxf jSvj : v 2 V g) � jC�j.Since jSvj � �, where � is the maximum degree in the graph G and jSj = jCj, thisyieldsjSj = jCj � (1 + ln�) � jC�j (11)� (1 + ln�) �OPT: (12)We now address the cardinality of the set S0. Since by Lemma 2 the bottleneckgraph G0 computed in Step 10 has at most jSj connected components, it followsthat the tree T̂ computed in Step 13 contains no more than jSj � 1 edges. Since in

17the loop in Steps 14 to 15 for each edge in TH we add one vertex to S0, we havethat jS0j � jSj � 1. Combining this result with (12) we obtain:jS [S0j � jSj+ jS0j � 2jSj � 1 � 2(1 + ln�) �OPT� 1:This completes the proof of Theorem 3.The running time of Algorithm Unit-Cost Node-Upgrading can be ana-lyzed as follows. As usual, let G = (V;E) with n := jV j and m := jEj. Computingthe connected components of G0 needs O(n +m) time. The instance of Min SetCover can also be constructed in linear time. As shown in [5] the greedy algorithmfor Min Set Cover can be implemented to run in time O(Pv2V jSvj), which isO(m) in our case. Computing the auxiliary graph in Step 12 can be accomplishedin O(n+m) time. It is straightforward to verify that all of the remaining steps canalso be carried out in linear time. We therefore conclude:Theorem 4 Algorithm Unit-Cost Node-Upgrading is an approximation al-gorithm for (U-Node-Upgrade, Bottleneck, Spanning Tree) with a perfor-mance guarantee of (2+2 ln�; 1), when all edges are either uncritical or 1-critical.Here, � is the maximum degree in the input graph G. Further, the algorithm canbe implemented to run in time O(n+m).7.2. Extension to the General Unit Cost CaseWe now extend the result of Theorem 4 to the case where there are also 2-criticaledges, that is, edges where both endpoints need to be upgraded in order to makethe delay of the edge fall below the threshold D.The basic idea for the extended algorithm is the following. We �rst computethe edge subgraph G0 of G consisting only of the 1-critical and uncritical edges.Notice that all the edges between the di�erent connected components of G0 are2-critical. For each connected component Ci of G0 we run Algorithm Unit-Cost Node-Upgrading to obtain an upgrading set which makes Ci contain aspanning tree of delay at most D after the upgrade. In the �nal step, we �nda good upgrading set which reduces the delay of some (2-critical) edges betweenthe di�erent components so that the whole graph becomes connected by edgesof delay at most D. The extended heuristic Algorithm Unit-Cost-GeneralNode-Upgrading is displayed in Figure 3.In the sequel we again use OPT to denote the cardinality of an optimal solutionS�.Lemma 4 Let r be the number of components of the graph G0 computed in Step 3.Further, let U be the set of vertices constructed in Steps 10 to 11. ThenOPT � r and jU j � 2(r � 1); (13)Proof: Let T � be a bottleneck spanning tree in the graph resulting from the up-grade of the vertices in the optimal set S�. Since there are r connected components

18
Algorithm Unit-Cost-General Node-Upgrading� Input: A graph G = (V;E), three edge weight functions d, dm, dl, and anumber D.1. S ;2. E0 f e 2 E : e is either uncritical or 1-criticalg3. G0 (V;E0)4. C1; : : : ; Cr connected components of G05. for i 1; : : : ; r(a) RunAlgorithm Unit-Cost Node-Upgrading on the connected com-ponent Ci and add the upgrading set produced by the algorithm to S6. endfor7. Construct an auxiliary graphH = (fC1; : : : ; Crg; EH) which contains an edge(Ci; Cj) 2 EH if and only if there exist vertices v 2 Ci and u 2 Cj such that(v; u) 2 E./* Notice that such an edge (v; u) is 2-critical */8. T spanning tree of H9. U ;10. for all edges (Ci; Cj) 2 T(a) Choose v 2 Ci and u 2 Cj with (v; u) 2 E(b) U U [fv; ug11. endfor12. return S [UFigure 3. Approximation algorithm for node weighted upgrading with unit costs.

19C1; : : : ; Cr in the graph G0, T � contains at least r � 1 2-critical edges having end-points in di�erent components. For each of these edges, both endpoints must belongto OPT, which implies that jOPTj � r. This proves the �rst inequality in (13).On the other hand, Algorithm Unit-Cost-General Node-Upgrading com-putes a spanning tree T in Step 8 which has r�1 edges. For each of the r�1 edgesof T the algorithm adds two vertices to U . Thus, jU j � 2(r � 1).7.3. Performance GuaranteeWe are now ready to establish the performance of the extended approximationalgorithm.Lemma 5 The performance of Algorithm Unit-Cost-General Node-Upgradingas applied to (U-Node-Upgrade, Bottleneck, Spanning Tree) is (5+4 ln�; 1),where � denotes the maximum degree in the graph given in the input.Proof: Again, let T � be a bottleneck spanning tree in the graph resulting fromthe upgrade of the vertices in the optimal upgrading set S�. Let OPTi be theminimum number of nodes which must be upgraded in component Ci to make itcontain a spanning tree of bottleneck delay at most D, that is, OPTi is the optimalsolution value of the instance of (U-Node-Upgrade, Bottleneck, SpanningTree) given by the graph G[Ci], the restriction of d, dm, dl to the edges of G[Ci]and the bound D. Consider the intersection of S� with the cluster Ci. We nowshow that the inequalityjS� \ Cij � 12OPTi (14)holds. In fact, let Si := S� \ Ci. We �rst prove that, after upgrading the nodes inSi, each node in Ci n Si is connected to at least one node from Si via paths in Cicontaining edges of delay no more than D.Assume that this is not the case. Then there is a node v 2 Ci n Si, whose uniquepath in T � to any node in Si contains at least one 2-critical edge. Fix w 2 Siand consider the path (v = u0; u1; : : : ; uk = w) from v to w in T �. Without lossof generality, we can assume that this path does not contain any node from Sidi�erent from w. Let ` be the smallest number such that (u`; u`+1) is 2-critical. Asv 62 Si, we have ` � 1. Since after the upgrade T � contains only edges of delay atmost D, we see that both nodes u` and u`+1 belong to Si, contradicting the factthat the path did not contain any other node from Si other than w.We have seen that after upgrading the nodes in Si the cluster Ci restricted toedges of delay at most D contains at most jSij = jS� \ Cij connected components.It is now easy to see that upgrading at most one more node from each of thesecomponents will make Ci connected by edges of delay at most D. Thus, thereexists an upgrading set in Ci of size at most twice the size of Si. Consequently,the minimum cardinality upgrading set in Ci has also size at most 2jSij, whichproves (14).

20Since the clusters are disjoint, we can conclude that the size of the optimal up-grading set S� is bounded from below as follows:OPT = jS�j = rXi=1 jS� \ Cij (14)� 12 rXi=1 OPTi: (15)We know by Theorem 3 that Algorithm Unit-Cost Node-Upgrading �nds asolution for each cluster whose value is bounded from above by 2(1+ln�i)�OPTi�1,where �i is the maximum degree in the subgraph of G induced by Ci. Using thisfact in conjunction with Lemma 4, we can estimate the cardinality of the solutionset S generated by our algorithm:jSj � 2(r � 1) + rXi=1 (2(1 + ln�i) �OPTi � 1)� r � 2 + 2(1 + ln�) rXi=1 OPTi(15)� r � 2 + 4(1 + ln�) �OPTLemma 4� (5 + 4 ln�) �OPT� 2:7.4. Running TimeThe running time of Algorithm Unit-Cost-General Node-Upgrading canbe estimated in the following manner. Computing the graph G0 and its connectedcomponents needs time O(n+m). Let component Ci have ni nodes and mi edges.Then, since Algorithm Unit-Cost Node-Upgrading as applied to componentCi needs O(ni + mi) time and we have Pri=1 ni = n and Pri=1mi � m, we seethat the time needed by the for-loop in Steps 5 to 6 is O(n +m). The auxiliarygraph H in Step 7 as well as a spanning tree of H can be constructed in linear time.Also, the �nal for-loop can be implemented to use only O(n+m) time. Hence, thewhole Algorithm Unit-Cost-General Node-Upgrading runs in linear time.We summarize the results of this section in the following theorem.Theorem 5 Algorithm Unit-Cost-General Node-Upgrading is an approx-imation algorithm for (U-Node-Upgrade, Bottleneck, Spanning Tree) witha performance of (5 + 4 ln�; 1). It can be implemented to run in time O(n +m).8. Upgrading for Constrained Steiner TreesIn this section we investigate network improvement problems where the goal isto �nd a reduction strategy such that the weight of a constrained Steiner tree

21in the modi�ed network is as small as possible. The problem (Total Weight,Diameter, Edge-Upgrade, Steiner Tree) studied here is based on the edgeupgrading model introduced in Section 2.2. Recall that in this problem we are givenadditionally d-weights on the edges of the graph. These weights are independentof the `-lengths in the network and cannot be changed by a reduction. The goalbecomes to �nd a reduction and a Steiner tree obeying the diameter constraintwhich is as light as possible after applying the reduction.In our notation the problem (Total Weight, Diameter, Edge-Upgrade,Steiner Tree) is a tricriteria problem. Consequently, we will be concerned withtricriteria approximation algorithms in this section. The objective function of theproblem (Total Weight, Diameter, Edge-Upgrade, Steiner Tree) is thelength (` � r)(T) of the Steiner tree in the modi�ed network. We consider thediameter constraint to be the �rst constraint, the budget constraint as the secondone. Let A be a tricriteria approximation algorithm with performance (�; �;) forthe problem. If the set (2) of feasible solutions is nonempty, then A must �nd areduction of cost at most B and a tree T of diameter at most �D whose modi�edlength (` � r)(T) is at most � times the optimum. If there is no feasible solution,A has the choice of either providing the information that the set (2) is empty orreturning a reduction r of cost at most B and a tree of diameter at most �D.In addition to graphs, we will also deal with multigraphs. Multigraphs are avariation of graphs where more than one edge can join two vertices. We refer toedges in a multigraph as multiedges.We close this subsection by commenting on the hardness of the problem (TotalWeight, Diameter, Edge-Upgrade, Steiner Tree). It follows easily fromthe NP-hardness of the classical Steiner tree problem [8, Problem ND12] that theproblem (Total Weight, Diameter, Edge-Upgrade, Steiner Tree) is NP-hard. Moreover, even if one is already given an optimal reduction r� for one ofthe problems, it remains hard to �nd a corresponding optimal tree in the modi�ednetwork.The problem (Total Weight, Diameter, Edge-Upgrade, Steiner Tree)contains the problem (Total-Weight, Edge-Upgrade, Graph) studied in [13]as a special case (K = V , d � 0, D = 0). Since this problem has been shown to beNP-hard even on series-parallel graphs, we obtain the following theorem.Theorem 6 The problem (Total Weight, Diameter, Edge-Upgrade, SteinerTree)is NP-hard, even when restricted to series-parallel graphs. Unless P = NP,for any �; � � 1, there is no polynomial time (�; �; 1)-approximation for the (To-tal Weight, Diameter, Edge-Upgrade, Steiner Tree)problem even whenrestricted to bipartite graphs. Further, unless P = NP, for any �; � 1, there is nopolynomial time (1; �;)-approximation algorithm for (Total Weight, Diame-ter, Edge-Upgrade, Steiner Tree). All of the above hardness results continueto hold, if the d-weights are all equal to zero.

228.1. Algorithm OutlineWe now discuss our approximation algorithm for (Total Weight, Diameter,Edge-Upgrade, Steiner Tree). We �rst present an informal description of thealgorithm in order to illustrate the main ideas behind the steps. We then proceedwith a more detailed presentation and show the pseudo code for our approximationalgorithm.Our algorithm works roughly as follows: We �rst modify the graph by replacingeach edge with a number of parallel multiedges. In order to establish the perfor-mance guarantee, we must show that the modi�cation of the graph preserves thestructure of the problem.The next main step of the algorithm consists of O(log jKj) phases, where K isthe set of terminals. Initially, the solution consists of the empty set. During eachphase of the algorithm we choose a set of edges to add to the solution. The set ofedges chosen in each iteration is required to possess three desirable properties:1. The solution cost with respect to the shortened `-cost must be no more than OPT,where OPT denotes the optimally (under a budget B on the cost of improve-ment) improved total length of a Steiner tree with d-diameter at most D.2. The diameter value with respect to d must not increase by more than D.3. The reduction cost spent in each iteration is no more than B.Since the number of iterations of the algorithm is O(log jKj), this will lead to anapproximation algorithm which violates the budget and the diameter constraint bya factor of at most O(log jKj) and which is within a factor of O(log jKj) of theoptimal solution. We use a solution based decomposition method in the analysis ofour algorithm. Its basic idea is to take advantage of the existence of an optimalsolution to prove that, in each phase, it is possible to choose a good set of edges.We now re�ne the speci�cation of our algorithm.Main Step 1: Discretize the problem by using the transformation procedure shownin Algorithm Transform (Figure 4) This transformation builds a multigraphG0 from the original graph G in the following way: Each edge e = (u; v) withlength `(e) and minimum length `min(e) is replaced by be + 2 parallel multiedgesek, k = �1; 0; : : : ; be. These edges reect discrete steps in improvement.The edge e�1 corresponds to an \untouched" version of e with length `0(e�1) :=`(e) and cost c0(e�1) := 0. For k � 0, ek, represents edge e shortened to `(e)� (1+")k. Thus ek has length `0(ek) := `(e)� (1 + ")k and cost c0(ek) := (1 + ")kce. Thed-weights for all the edges ek coincide with that of e. To avoid additional notation,we also use d to denote these weights. This way, each multiedge e0 in G0 is assignedthree numbers: `0(e0), c0(e0) and d(e0).Main Step 2: The algorithm maintains a set of connected subgraphs or clusters,each with its own distinguished vertex or center. Initially, each terminal is in acluster by itself. In each phase of the second main step, we set up an auxiliarygraph Gi using the constrained shortest path algorithm of [11]. We then solve avariant of a constrained matching problem in Gi and, �nally, merge the clusters in

23Algorithm Transform� Input: A graph G = (V;E), four edge weight functions `, `min, c, d, and anumber B; a �xed accuracy parameter " > 01. V 0 V /* The vertex set of the graph to be constructed */2. E0 ; /* The edge set of the graph to be constructed */3. for all edges e = (u; v) 2 G(a) be dlog(1+")(`(e)� `min(e))e(b) Add be + 2 parallel edges ek, k = �1; 0; : : : ; be between u and v to E0(c) `0(e�1) `(e)(d) d(e�1) d(e)(e) c0(e�1) 0(e) for k = 0; : : : ; be(i) `0(ek) `(e)� (1 + ")k(ii) d(ek) d(e)(iii) c0(ek) (1 + ")kce(f) endfor4. endfor5. return G0 = (V 0; E0), `0, d, c0Figure 4. Procedure to transform G into G0 in the �rst step.pairs by adding paths between their centers. Since the number of clusters decreasesby a factor of 2 due to the merging in each phase, the algorithm terminates indlog2 jKje phases with one cluster.Main Step 3: We take a tree T 0 rooted at the center of the single cluster left atthe end of the second main step with small diameter under the d-costs.Main Step 4: In the �nal step, we use the information from the three valuesassociated with each edge in T 0 to construct a reduction strategy r and a Steinertree T for the original graph G. We output r and T .A complete speci�cation of our Algorithm is shown in Figure 5.8.2. Correctness and Performance GuaranteeTo facilitate the presentation, we will assume in the following that r� is an optimalreduction strategy for the graph G and that T � is a corresponding optimal Steinertree of total weight OPT := (`�r�)(T �) and diameter diad(T �) � D. We will showon page 30 how to modify our algorithm to handle the case when the set of feasiblesolutions is empty.8.2.1. Some Basic Lemmas Our algorithm needs as subroutines two approxima-tion algorithms for certain bicriteria problems on graphs. The �rst is a constrained

24
Algorithm Improve Diameter-Steiner-Tree� Input: A graph G = (V;E), a vertex subset K of terminals, four edge weightfunctions `, `min, c, d, and two numbers B and D; a �xed accuracy parameter" > 0.1. CallAlgorithm Transform(") to obtain a new (multi-) graphG0 = (V;E0)with weights `0(e), c0(e), d(e) on the edges e 2 E0.2. i 1 /* Initialize the phase count */3. C1 ffvg : v 2 K g/* Initialize the set of clusters C1 to contain jKj singleton sets, one for eachterminal in K */4. for all v 2 K(a) center(fvg) v5. endfor /* For each cluster in C1, de�ne the single node in the cluster to beits center. */6. while there is more than one cluster in Ci(a) Call Algorithm Merge to merge clusters.(b) i i+ 1 /* End of phase i */7. endwhile8. Let Ĉ , with center(Ĉ) = v̂ be the single cluster left.9. Compute a shortest path tree T̂ of Ĉ rooted at v̂ with respect to the d-weights(using only edges in Ĉ).10. For each multiedge ek = (u; v) 2 T̂ de�ne the reduction r on the correspond-ing edge e = (u; v) in the original graph byr(e) := � 0 if k = �1,(1 + ")k if k � 0.De�ne a tree T in G by including the corresponding edges e.11. return r and TFigure 5. Algorithm for diameter bounded Steiner tree improvement.

25
Algorithm Merge� Input: A graph G0 = (V;E0), a vertex subset K of terminals, three edge weightfunctions `0, c0, d, and two numbers B and D, a set Ci = fC1 : : : ; Ckig of clusters;a �xed accuracy parameter " > 0.1. Let the set of clusters at the beginning of the ith phase be Ci = fC1 : : : ; Ckig.2. s dlog(1+")Be+ 1.3. M f0; (1 + ")0; (1 + ")1; : : : ; (1 + ")sg.4. Construct a (complete) multigraph Gi = (Vi; Ei) as follows5. Vi f vx : vx is the center of cluster Cx 2 Ci. g6. for all pairs (Cx; Cy) of clusters in Ci(a) for all B0 2 M(i) Let vx and vy be the centers of Cx and Cy, respectively.(ii) Let the path Pxy(B0) be a (1 + 1="; 1; 1)-approximation to the re-stricted shortest path problem in G0 between the centers vx and vy,with edge weights `0, c0, d and the bounds B0 on the c0-cost and Don the d-length respectively.(iii) Include a multiedge (vx; vy) in Gi of weight `0(vx; vy) equal to the`0-cost of Pxy(B0). The weight c0(vx; vy) of the edge is set to that ofthe c0-cost of Pxy(B0).(b) endfor7. endfor8. Find a (2; 2)-approximation to the (Total Weight, Total Weight,Maximum Matching)problem with edge weights `0, c0 and the bound(1 + ")2B on the c0-weight of the matching.9. For each edge e = (vx; vy) in the matching, merge the clusters Cx and Cy,for which vx and vy were centers respectively, by adding the correspondingpath Pxy to form a new cluster Cxy. The node (edge) set of the cluster Cxyis de�ned to be the union of the node (edge) sets of Cx; Cy and the nodes(edges) in Pxy. One of vx and vy is (arbitrarily) chosen to be the center vxyof the cluster Cxy. Cxy is added to the cluster set Ci+1 for the next phase,while Cx and Cy are removed.Figure 6. Subroutine to merge clusters.

26variant of the shortest path problem and is hence referred to as the restrictedshortest path problem. The second one is a constrained minimum weight matchingproblem.De�nition 6. [Restricted Shortest Path Problem] The input for the restrictedshortest path problem, (Total Weight, Total Weight, Total Weight,x-y-Path), consists of a (multi-) graph G = (V;E), two distinguished verticesx; y 2 V , three nonnegative edge weight functions d1, d2 and d3 and two numbersD2 and D3. The problem is to �nd a subgraph from�P : P is a path between x and y in G, Pe2P d2(e) � D2 and Pe2P d3(e) � D3 	having minimum value d1(P) :=Pe2P d1(e).The result of the following lemma is due to Warburton [26], but can also be provedby an extension of Hassin's work [11].Lemma 6 ([26, 11]) For any �xed " > 0, there is an approximation algorithm for(Total Weight, Total Weight, Total Weight, x-y-Path) with a perfor-mance of (1 + "; 1; 1).As mentioned, we also need results about �nding minimum weight matchings ingraphs. Recall that a matching in a graph G = (V;E) is a subset M � E ofthe edges such none of the edges in M are incident. A maximum matching is amatching of maximum cardinality.De�nition 7. [Minimum Weight Matching Problem] An instance of the mini-mum weight matching problem, Min Matching, is given by a graph G =(V;E) and an edge weight function d. The problem is to �nd a maximum matchingM � E in G having minimum weight d(M) :=Pe2M d(e).The minimum weight matching problem can be solved in polynomial time, in factin time O(n3) on a graph with n nodes, by classical algorithms, see e.g. [16, 17].What we will need for the construction of our approximation algorithm in thissection is an approximation algorithm for a bicriteria version of Min Matching.In this problem, which we will denote by (Total Weight, Total Weight,Maximum Matching), we are given two edge weight functions d1 and d2 on theedges of G and the goal is to �nd a maximum matchingM of weight d2(M) at mosta given bound D2, having minimum weight d1(M).An easy reduction fromPartition shows that (Total Weight, Total Weight,Maximum Matching) is NP-hard. On the other hand, the results of Marathe etal. in [18] show that the problem (Total Weight, Total Weight, MaximumMatching) has an e�cient bicriteria approximation algorithm:Lemma 7 ([18]) There is a (2; 2)-approximation algorithm2 for (Total Weight,Total Weight, Maximum Matching).

27We now show that the transformation procedure does not destroy importantproperties with respect to the problem.Lemma 8 For any " > 0, the graph G0 obtained as a result of applying AlgorithmTransform to G satis�es the following properties:1. There exists a Steiner tree T 0 in G0 of total `0-length at most OPT, c0-cost nomore than (1 + ")B and of d-diameter at most D.2. Let u; v 2 K be two terminals. Let P be the unique path between u and v in theoptimally improved tree T �. Let (` � r�)(P) denote the length with respect to`� r� and CP :=Pe2P r(e) � ce denote the money spent by r� on the edges ofP respectively. Then, in G0 there exists a path between u and v of d-diameterat most D, `0-length at most (`� r�)(P) and c0-cost at most (1 + ")CP .Proof: We only show the �rst part of the lemma. The second part can be provedsimilarly. Consider the optimal reduction r� and a corresponding optimal con-strained Steiner tree T � in G of minimum weight OPT := (`� r�)(T �).We now de�ne a tree T 0 in G0 as follows. For each edge e = (u; v) 2 T � which isreduced by r�(e) we select a multiedge ek in G0 with the following properties:`(e)� (1 + ")r�(e) � `0(ek) � `(e)� r�(e)cer�(e) � c0(ek) � (1 + ")r�(e)d(ek) = d(e)The tree T 0 de�ned this way has a total `0-length `0(T 0) which is bounded fromabove by (`� r)(T �) = OPT. Also, the c0-cost of T 0 is at most 1+ " times the costof the reduction r and thus does not exceed (1 + ")B. Clearly, the d-diameters ofT 0 and T � coincide.8.2.2. A Bound on the Diameter of the TreeObservation 1 The set of cluster centers maintained by Algorithm ImproveDiameter-Steiner-Tree is always a subset of the terminals K of the originalgraph G.Lemma 9 Algorithm Improve Diameter-Steiner-Tree terminates in dlog2 jKjephases.Proof: Let ki denote the number of clusters in phase i. Note that ki+1 = dki2 esince we pair up the clusters (using a matching in Step 9 of the merging procedurein Algorithm Merge). Hence we are left with one cluster after phase dlog2 jKjeand the algorithm terminates.Lemma 10 ([25]) Suppose T is a tree with an even number of marked nodes. Thenthere is a pairing (v1; w1), : : :, (vk ; wk) of the marked nodes such that the vi � wipaths in T are edge-disjoint.

28Lemma 11 Let C 2 Ci be any cluster in phase i of Algorithm Improve Diameter-Steiner-Tree and let v be its center. Then any node u in C is reachable from vby a path in C of d-weight at most iD.Proof: By Observation 1, the set of cluster centers in phase i is a subset of theterminals K. By Lemma 8, there is a Steiner tree in G0 of d-diameter at most Dand of total c0-cost no more than (1+ ")B. This implies that all the paths Pxy(B0)which are constructed in Step 6 of Algorithm Merge with the help of Hassin'srestricted shortest path algorithm have d-weight at most D.We now establish the claim of the lemma by induction on i. For i = 1 the claimis trivial. Assume now that all the clusters in phase i have the property stated inthe claim. Consider the merging of Cx and Cy with centers vx and vy to a clusterCxy that then appears in phase i+1. Without loss of generality assume that vx ischosen to be the center of the cluster Cxy. By induction hypothesis, for any nodeu in Cxy that was in Cx there is a path from u to vx of d-weight at most iD. Thispath is also present in Cxy. Consider a node u 2 Cy . Then, again by inductionhypothesis, there is a path of length at most iD from u to vy in Cy (and thus alsoin Cxy). Since we have seen that the path added in phase i between vx and vy is ofd-weight at most D, we can connect u to vx by a path of d-weight at most (i+1)D.Using the result of the last lemma in conjunction with Lemma 9 we can establishthe following lemma.Lemma 12 Algorithm Improve Diameter-Steiner-Tree outputs a Steinertree T with d-diameter at most 2dlog2 jKje �D.Proof: It follows from Lemmas 11 and 9 that the tree T̂ found in Step 9 of Algo-rithm Improve Diameter-Steiner-Tree has d-diameter at most 2dlog2 jKje�D.By construction of r and T in Step 10, the d-diameter of T in G is no more thanthe d-diameter of T 0 in G0.This completes the proof of the performance guarantee with respect to the d-cost.We now proceed to prove the performance guarantee with respect to the modi�ed`-lengths.8.2.3. The Total Modi�ed LengthLemma 13 Let T 0 be any minimum `0-cost Steiner tree in G0 subject to the con-straints that its d-diameter is bounded by D and its total c0-cost does not exceed(1 + ")B. The `0-weight of the constrained minimum weight matching found inStep 9 of Algorithm Merge in any phase of Algorithm Improve Diameter-Steiner-Tree is at most 2(1 + 1=")`0(T 0). Also, the c0-cost of the matching is atmost 2(1 + ")2 � B.Proof: Notice that by Lemma 8, a tree satisfying both the constraints as statedin the claim does exist.Let i be �xed and consider the ith phase of Algorithm Improve Diameter-Steiner-Tree. By Observation 1 all the centers v1; v2; : : : ; vki in the ith stage are

29terminals. Thus, all these vertices are contained in the Steiner tree T 0. We markthe nodes v1; v2; : : : ; v2b ki2 c in T 0 and apply Lemma 10 to T 0 with these verticesmarked.The lemma states that there is a pairing of the centers such that the paths betweenthe paired vertices in T 0 are edge disjoint. Without loss of generality assume thatthis pairing is (v1; v2); : : : ; (v2b ki2 c�1; v2b ki2 c).By the disjointness of these paths, their total `0-cost is at most `0(T 0). Similarly,the total c0-cost of the edges in these paths does not exceed (1 + ")B, and none ofthe paths has length more than D under the d-weight function. By constructionof the paths Pxy(B0) in Step 6 of Algorithm Merge, for each of the paths Pbetween the centers from above we can �nd a path P 0 among the paths Pxy(B0) inG0 with the following properties:1. The d-length of P 0 is at most that of P . Thus, the d-length of P 0 is boundedby D.2. The total c0-cost of P 0 is at most 1 + " times the c0-cost of P . The factor 1 + "stems from the discrete budget values, which are used for the constrained paths.3. The `0-length of P 0 is at most 1 + 1=" times that of P . Here, the factor 1 +1=" comes from the approximation algorithm for the restricted shortest pathproblem.Using the edges in Gi corresponding to this selection from the paths Pxy(B0) yieldsa matching of the vertices (v2b ki2 c�1; v2b ki2 c) in Gi of `0-length at most (1+1=")`0(T 0)and of c0-cost at most (1 + ")c0(T 0) � (1 + ")2 �B.In Step 8 of Algorithm Merge, a (2; 2)-approximation for the (Total Weight,Total Weight, Maximum Matching)problem is found. This matchingM musthave c0-cost at most 2(1+ ")2 �B and `0-weight at most 2(1+1=")`0(T 0). This com-pletes the proof.We are now ready to estimate the `0-length of the Steiner tree T .Lemma 14 Algorithm Improve Diameter-Steiner-Tree outputs a Steinertree T with total length (` � r)(T) under the modi�ed length function ` � r of atmost 2(1 + 1=")dlog2 jKje �OPT.Proof: By the results of Lemma 9 and Lemma 13, the total `0-length of the edgesin the single cluster Ĉ is at most 2(1+1=")dlog2 jKje �`0(T 0), where T 0 is an optimalconstrained Steiner tree in G0. Thus, the total `0-length of the shortest path tree T̂ ,which is computed in Step 9 of Algorithm Improve Diameter-Steiner-Treeis also no more than 2(1 + 1=")dlog2 jKje � `0(T 0).By Lemma 8, `0(T 0) � OPT and hence`0(T̂) � 2(1 + 1=")dlog2 jKje �OPT: (16)By the construction of the reduction r and the tree T in the �nal Step 10 of Algo-rithm Improve Diameter-Steiner-Tree, the length of T under the modi�edlength function `� r is bounded from above by `0(T̂). Now using (16) establishesthe lemma.

308.2.4. Bounding the Cost of the Reduction Strategy We now address the c0-costof the edges that are added during an arbitrary phase of the algorithm. FromLemma 13 and Lemma 9 we get:Lemma 15 The total c0-cost of the tree T̂ found in Step 9 of Algorithm ImproveDiameter-Steiner-Tree is at most 2(1 + ")2dlog2 jKje � B. Moreover, the costof the reduction r constructed in Step 10 is also bounded by 2(1+ ")2dlog2 jKje �B.8.2.5. Handling Infeasibility of an Instance We have already all the main in-gredients to establish the performance of our Algorithm Improve Diameter-Steiner-Tree. As long as there exists a feasible solution, the algorithm will �nda reduction r of cost O(log jKj) �B and a tree T of d-diameter O(log jKj) �D suchthat (`� r)(T) � O(log jKj) �OPT.To make our algorithm have indeed a (O(log jKj);O(log jKj);O(log jKj)) perfor-mance, we must ensure that, if the algorithm outputs a solution, this solution willviolate the constraints on the d-diameter and on the cost of the reduction by atmost logarithmic factors. We have proved that if there is a feasible solution, thenthe multicriteria approximation algorithms for the restricted shortest path prob-lems and the bicriteria matching problem will not stop and inform us about theinfeasibility of the instances of these problems constructed during the run of our al-gorithm. Thus, if one of these two subroutines detects infeasibility of a subproblem,we can also stop our algorithm and inform about the infeasibility of the instanceof (Total Weight, Degree, Edge-Upgrade, Steiner Tree)to be handled.Finally, by testing the d-diameter of the tree and the cost of the reduction producedby our algorithm and outputting these only if the constraints are violated by atmost the logarithmic factors we make sure that we will always output an \almostfeasible" solution as stated in De�nition 4.8.2.6. Combining all Ingredients One can verify that Algorithm ImproveDiameter-Steiner-Tree can be implemented to run in polynomial time. Thus,combining the results of Lemmas 12, 14 and 15, we obtain the following theorem.Theorem 7 For any �xed " > 0, Algorithm Improve Diameter-Steiner-Tree is an approximation algorithm for (Total Weight, Diameter, Edge-Upgrade, Steiner Tree)with a performance of (�"; �"; "), where�" = 2(1 + 1=")dlog2 jKje;�" = 2dlog2 jKje and" = 2(1 + ")2dlog2 jKje:Here, K is the set of terminals given in the input.

319. Upgrading the Whole GraphIn the previous sections, we were searching for minimum cost node- or edge-upgrading strategies such that in the upgraded network the cost of a subgraphis minimized. It is natural to consider upgrading strategies so as to minimize thecost of the whole graph under some measure. For instance, it is meaningful to askfor a minimum cost upgrading set such that after the upgrade, all the edges in thenetwork are of delay at mostD. This problem has been called the link delay problem[21]. Following our terminology we call this the (Node-Upgrade, Bottleneck,Graph). In this section, we will discuss several such upgrade problems.9.1. Upgrading under the Edge Based ModelConsider the case of rational edge upgrade functions for the (Edge-Upgrade,Total-Weight, Graph), where the cost functions ce are all linear. For anygraph G, it can be veri�ed that the greedy-strategy that successively reduces acheapest available edge until the weight of the graph has fallen below the giventhreshold on the total weight is an optimal reduction strategy. Thus this problemis solvable in polynomial time.Now consider the bottleneck version of the problem, namely problem (Edge-Upgrade, Bottleneck, Graph), where we specify a bound on the bottleneckcost of the graph. The problem then is quite easy to solve. We �rst isolate all edgesthat have a cost greater than the speci�ed bound. We then simply have to reducethese edges to get their values below the speci�ed bound. Thus the bottleneckversion is solvable in linear time for general graphs.It should be noted that the version where we need to upgrade the graph so thatthe modi�ed graph has a spanning tree of bottleneck cost at most a given bound D,that is, problem (Edge-Upgrade, Bottleneck, Spanning Tree), can also besolved e�ciently. To do this, we set up a minimum cost spanning tree problem inthe following manner. For each edge whose weight is at most D, the cost is set tozero; for each edge e whose weight is greater than D, the cost of the edge is setto ce(D � `(e)). An edge set of minimum upgrading cost can be identi�ed from aminimum cost spanning tree for the resulting graph.9.2. Upgrading under the Node Based ModelPaik and Sahni showed in [21] that (Node-Upgrade, Bottleneck, Graph)is NP-hard by providing a reduction from Vertex Cover, which is the decisionversion of Min Vertex Cover. The reduction was done in their node upgradingmodel mentioned in Section 6. Since this model is a special case of our model, weimmediately obtain the hardness of (Node-Upgrade, Bottleneck, Graph) inour setting. We now present a simple polynomial time approximation algorithm for(Node-Upgrade, Bottleneck, Graph) with a performance of (2; 1). Its basicoutline is as follows. (This outline uses some terminology introduced in Section 7.)The upgrading set S is initialized to be the empty set. If there are infeasible

32Algorithm Approximate Linkdelay� Input: A graph G = (V;E), three edge weight functions d, dm, dl, a nodeweight function c, and a number D1. for all e 2 E(a) if e is a \useless edge", i.e., dl(e) > D, then return \The link delaycannot be reduced to be at most D".2. endfor3. E2 f e 2 E : e is 2-criticalg4. S fu; v : (u; v) 2 E2 g5. for all e 2 E �E2 such that e is incident on some node in S(a) d(e) dm(e) /* one endpoint of e is already upgraded */6. endfor7. E0 := f e 2 E �E2 : d(e) > D g8. Compute a 2-approximation C to the problem of �nding a minimum totalcost vertex cover in the graph G0 = (V;E0).9. return S [CFigure 7. Approximation algorithm for the Link Delay Problem.edges (i.e., edges where upgrading cannot reduce the delay to be at most D), thealgorithm terminates after reporting that the instance does not have a solution. So,we may assume that there are no infeasible edges in the instance. Then, for each2-critical edge both endpoints are added to the upgrading set S. It follows that upto this point S is a subset of the optimal solution S�. We update the delays of theedges incident on the nodes in S. Observe that for each of the edges which stillhas delay strictly greater than the bound D it su�ces to upgrade at most one ofits endpoints. Our algorithm �nds an approximation C to the problem of �ndinga minimum cost vertex cover in the edge subgraph of G consisting of those edgeswhose delay still exceeds D. We output S [C as an upgrading set.The heuristic is shown in Algorithm 7. Step 8, that is, computing an approximateminimum cost vertex cover can be done using known approximation algorithms, seee.g. [8]. The following theorem states our approximation result:Theorem 8 Algorithm 7 is an approximation algorithm for (Node-Upgrade,Bottleneck, Graph) with a performance guarantee of (2; 1).Proof: Let S� be an upgrading set of minimum cost. Clearly, the set S in Step 4of Algorithm 7 must be contained in S�. It is also easy to see that S� n V 0 mustbe a vertex cover in the graph G0 as de�ned in Step 8 of the algorithm. Thus, thecost of the nodes in S� nV 0 is at least that of the optimum vertex cover in G0. Theproof can now be completed in a straightforward manner.The proof of Theorem 8 shows also that, if we can compute a minimum costvertex cover in G0 e�ciently, i.e., in polynomial time, then this result immediately

33carries over to (Node-Upgrade, Bottleneck, Graph). Bern et al. have shown[4] that the minimum cost vertex cover problem can be solved in polynomial timeon graphs of bounded treewidth. It is easy to see that the treewidth of graph G0obtained in Algorithm 7 is no more than the treewidth of the original graph G.Thus, we can conclude:Corollary 1 The restriction of (Node-Upgrade, Bottleneck, Graph) tographs of bounded treewidth can be solved in polynomial time.We now address the hardness of (Node-Upgrade, Bottleneck, Graph). Asalready mentioned, the NP-hardness of this problem was established in [21]. Webriey argue that in fact one can �nd an L-reduction (see [22]) from Min Ver-tex Cover to (Bottleneck, Node-Upgrade, Graph) to show that the latterproblem is MaxSNP-hard. Given an instance I of Min Vertex Cover given by agraph G = (V;E) with jV j =: n we construct an instance I 0 of (Node-Upgrade,Bottleneck, Graph) as follows: We use the same graph G = (V;E), set c(v) = 1for all v 2 V , d(e) = dm(e) = f(n) + 1 and dl(e) = 1 for all e 2 E, where f is anypolynomial time computable function. Finally, let the bound D be 1.Any vertex cover in G will give us a feasible upgrading set for the instance I 0 of(Node-Upgrade, Bottleneck, Graph). Thus, an optimum upgrading set hascardinality at most that of the minimum vertex cover: OPT(I 0) � OPT(I). It isalso straightforward to see that any feasible upgrading set for I 0 will form a vertexcover in G. This way, we have found a L-reduction from Min Vertex Cover to(Bottleneck, Node-Upgrade, Graph). Moreover, this L-reduction shows usthat the existence of an (�; f(n))-approximation algorithm for (Node-Upgrade,Bottleneck, Graph) implies that there is an �-approximation algorithm forMinVertex Cover. Here, f is an arbitrary polynomial time computable function.As shown in [22] the Min Vertex Cover problem is MaxSNP-hard.3 Thus,the above arguments show that (Node-Upgrade, Bottleneck, Graph) is alsoMaxSNP-hard and by the results from [1] there can be noPtas for (Node-Upgrade,Bottleneck, Graph), unless P = NP.In [3] it is shown that, unless P = NP, Min Vertex Cover cannot be approx-imated to within a factor of � < 1:038. Combining this result with our reductionabove, it follows that a similar non-approximability result holds for the (Node-Upgrade, Bottleneck, Graph) problem. Further, it can be veri�ed that theabove reduction also applies to the (Node-Upgrade, Total-Weight, Graph)problem and so we obtain a non-approximability result for that problem as well.Thus, we conclude:Theorem 9 Unless P = NP, for any � < 1:038 and any polynomial time com-putable function f , there are no (f(n); �)-approximation algorithms for (Node-Upgrade, Bottleneck, Graph) and (Node-Upgrade, Total-Weight, Graph)problems.Acknowledgments: We thank Ravi Sundaram (Delta Trading Inc), CynthiaPhilips (Sandia National Laboratories), Hans-ChristophWirth and Kai-Uwe Drang-meister (University of W�urzburg) for several interesting discussions and suggestions

34related to the results presented in this paper. We also thank Jan Plesnik, GregFrederickson and Roberto Solis-Oba for making available copies of their papers.Madhav Marathe's research was supported by the Department of Energy underContract W-7405-ENG-36. R. Ravi's research was supported by NSF CAREERAward CCR-9625297.A preliminary version of the paper was presented at the DIMACS workshop onNetwork Design: Connectivity and Facilities Location, May 1997.Notes1. Any reduction strategy will incur a minimum cost of Pe2E ce(0) and we can subtract thissum from the budget in advance.2. Actually, reference [18] contains the stronger result that for any " > 0 there is a (1+1="; 1+")-approximation algorithm. For our purposes, it su�ces to use the slightly weaker result.3. The problem is MaxSNP-complete for graphs of bounded degree.References1. S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy, Proof veri�cation and in-tractability of approximation problems, Proceedings of the 33rd Annual IEEE Symposiumon the Foundations of Computer Science (FOCS'92), October 1992, pp. 13{23.2. O. Berman, Improving the location of minisum facilities through network modi�cation, An-nals of Operations Research 40 (1992), pp. 1{16.3. M. Bellare, O. Goldreich, and M. Sudan, Free bits, PCPs and non-approximability | to-wards tight results, Proceedings of the 36th Annual IEEE Symposium on the Foundations ofComputer Science (FOCS'95), 1995, pp. 422{431.4. M. W. Bern, E. L. Lawler and A. L. Wong, Linear -Time Computation of Optimal Subgraphsof Decomposable Graphs, Journal of Algorithms, 8 (1987), pp. 216{235.5. T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, McGraw-HillBook Co., Cambridge, MA, 1990.6. J. Edmonds and E. L. Johnson, Matching, Euler tours and the Chinese postman, Mathe-matical Programming 5 (1973), 88{124.7. G. N. Frederickson and R. Solis-Oba, Increasing the weight of minimum spanning tree,Proceedings of the 7th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA'96),January 1996, pp. 539{546.8. M. R. Garey and D. S. Johnson, Computers and intractability: A guide to the theory ofNP-completeness, W. H. Freeman and Company, San Francisco, CA, 1979.9. M. W. Goemans and D. P. Williamson, A general approximation technique for constrainedforest problems, SIAM Journal on Computing, 24 (1995), pp. 296{317.10. M. M. Halld�orsson, Approximating the minimum maximal independence number, Informa-tion Processing Letters 46 (1993), 169{172.11. R. Hassin, Approximation schemes for the restricted shortest path problem, Mathematics ofOperations Research, 17 (1992), pp. 36{42.12. S. E. Hambrusch and H. Y. Tu, Edge Weight Reduction Problems in Acyclic graphs, J.Algorithms, 24 (1997), pp. 66{93.13. S. O. Krumke, H. Noltemeier, S. S. Ravi, M. V. Marathe, and K. U. Drangmeister,ModifyingEdges of a Network to Obtain Short Subgraphs, Accepted for publication in Theoretical Com-puter Science. (An extended abstract of this paper titled Modifying networks to obtain lowcost trees appeared in Proceedings of the 22nd International Workshop on Graph-TheoreticConcepts in Computer Science, Cadenabbia, Italy, Lecture Notes in Computer Science, June1996, pp. 293{307.)

3514. S. O. Krumke, M. V. Marathe, H. Noltemeier, R. Ravi, S. S. Ravi, R. Sundaram, andH. C. Wirth, Improving Spanning Trees by Upgrading Nodes, Proceedings of the 24th In-ternational Colloquium on Automata, Languages and Programming (ICALP'97), Bologna,Italy, July 1997, pp. 281{291.15. D. Karger and S. Plotkin, Adding multiple cost constraints to combinatorial optimizationproblems, with applications to multicommodity ows, Proceedings of the 27th Annual ACMSymposium on the Theory of Computing (STOC'95), May 1995, pp. 18{25.16. E. L. Lawler, Combinatorial optimization: Networks and matroids, Holt, Rinehart and Win-ston, 1976.17. L. Lov�asz and M. D. Plummer, Matching theory, Akad�emiai Kiad�o, Budapest (1986), 1986.18. M. V. Marathe, R. Ravi, R. Sundaram, S. S. Ravi, D. J. Rosenkrantz, and H. B. Hunt III,Bicriteria network design problems, Proceedings of the 22nd International Colloquium onAutomata, Languages and Programming (ICALP'95), July 1995, pp. 487{498.19. C. Phillips, The network inhibition problem, Proceedings of the 25th Annual ACM Sympo-sium on the Theory of Computing (STOC'93), May 1993, pp. 288{293.20. J. Plesnik, The complexity of designing a network with minimum diameter , Networks 11(1981), pp. 77{85.21. D. Paik and S. Sahni, Network upgrading problems, Networks 26 (1995), pp. 45{58.22. C. H. Papadimitriou and M. Yannakakis, Optimization, approximation, and complexityclasses, Journal of computer and system sciences 43 (1991), pp. 425{440.23. R. Ravi, Steiner trees and beyond, Ph.D. thesis, Brown University, Providence, Rhode Island02912, USA, 1993.24. R. Ravi, Rapid rumor rami�cation, Proceedings of the 35th Annual IEEE Symposium onthe Foundations of Computer Science (FOCS'94), November 1994, pp. 202{213.25. R. Ravi, M. V. Marathe, S. S. Ravi, D. J. Rosenkrantz, and H. B. Hunt III, Many birds withone stone: Multi-objective approximation algorithms, Proceedings of the 25th Annual ACMSymposium on the Theory of Computing (STOC'93), May 1993, pp. 438{447.26. A. Warburton, Approximation of pareto optima in multiple-objective shortest path problems,Operations Research 35 (1992), pp. 70{79.

