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We give the first approximation algorithm for the node-weighted Steiner tree
problem. Its performance guarantee is within a constant factor of the best possible
unless P 2 NP. (P stands for the complexity class deterministic quasi-polynomial
time, or DTIME[n™Y¢7]) Our algorithm generalizes to handle other network-
design problems.  © 1995 Academic Press. Inc.

1. INTRODUCTION

The Steiner problem in networks is a classic hard problem in combinato-
rial optimization. Much research has been devoted to heuristics for its
solution {4, 7, 14, 17, 18, 24]. Despite a slew of new approximation
algorithms for this problem and some of its variants, no approximation
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algorithm has been given for perhaps the most natural variant: the rode-
weighted Steiner tree problem, in which costs can be assigned to nodes as
well as edges. Indeed, Winter’s survey [22] on the network Steiner problem
closes with the sentence, “Further investigation of the vertex-weighted
SPN (Steiner problem in networks] is needed.”

One reason for the dearth of results on the node-weighted variant may
be that it is harder than the standard problem. Indeed, while constant-
factor approximations are known for the standard problem [10, 15, 21, 25]
and even some of its generalizations [1, 6], the node-weighted version can-
not be approximated to within less than a logarithmic factor unless P 2
NP (2, 13]!

In this paper, we give the first approximation algorithm for the node-
weighted Steiner tree problem. The performance guarantee is logarithmic.
Thus assuming P 2 NP, the accuracy of our approximation is within a
constant factor of the best-possible approximation achievable in polyno-
mial time.

The algorithm we propose is only a slight variant of a heuristic proposed
by Rayward-Smith and Clare in 1986 {8, 17, 18] for the standard edge-
weighted Steiner tree problem. The key to our analysis is a decomposition
lemma for trees; this lemma may be useful in other contexts as well.

We also show how to generalize the algorithm and its analysis to handle
more general connectivity requirements. Thus, we obtain approximation
algorithms for node-weighted versions of, e.g., fixed and nonfixed point-
to-point connection problems.

Preliminaries

Let G be a graph with nonnegative costs assigned to its nodes and
edges. The cost of a subgraph of G is the sum of the costs of its nodes and
edges. Let 4 be a subset of the nodes of G, called terminals. A Steiner tree
for A in G is a connected subgraph of G containing all the nodes of A.
(Note that an edge-minimal Steiner tree is indeed a tree.) The Steiner tree
problem is to find a minimum-cost Steiner tree.

We introduce a problem that turns out to be closely related. Let B be a
ground set, and let S;,..., S, be subsets of B with costs ¢,,...,c,. A set
cover is a collection of sets S; whose union is B. The set-cover problem is
to find a minimum-cost set cover.

Berman [2] showed that, in the presence of node-weights, approximating
the minimum-cost Steiner tree is as hard as approximating set cover. More
specifically, he showed that any instance of set cover can be formulated as

'Here we use P to mean the complexity class deterministic quasi-polynomial time, or
DTIME[nPol¥ios n),
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an instance of the node-weighted Steiner tree problem. The reduction is
illustrated in Fig. 1. Thus an approximation algorithm for minimum-cost
Steiner tree could be used to achieve the same approximation for set
cover.

It has recently been proved [13] that no polynomial-time approximation
algorithm for set cover achieves an approximation factor smaller than
1 In |B] (unless Deterministic Time n™"°¢" contains NP). By Berman'’s
reduction, the same holds for the node-weighted Steiner tree problem.
Thus we cannot expect to obtain an approximation algorithm that achieves
a performance ratio better than logarithmic.

THEOREM 1.1. There is a polynomial-time algorithm to approximate the
node-weighted Steiner tree problem in networks. The performance ratio is
2 In k, where k is the number of terminals.

An example due to Chvital [3] can be adapted to show that our analysis
of the algorithm is nearly tight (See Fig. 2).

Our method can be easily applied to more general node-weighted
network-design problems. For example, consider the following generaliza-
tion of the Steiner problem: given a set of pairs of nodes (s;, ¢;), find a
minimum-cost subgraph in which each s, is connected to ¢. The edge-
weighted version of this problem was addressed in [1}; the node-weighted
version can be approximately solved using the method of this paper.

We use a framework due to Goemans and Williamson [6] to formulate
problems like that described above. Many network-design problems can be
formulated as finding a subgraph of minimum cost that covers a family of

F1G. 1. Let G be a graph with k nodes, one for each ground element, plus s nodes, one
for each set §,. There is an edge between a ground element node and a set node if the set
contains the element. In addition, all the set nodes are pairwise adjacent. The cost of each set
node is that of the set it represents. All other nodes and all edges have zero cost. It is easy to
check that a Steiner tree for the k nodes corresponds to a set cover of the same cost, and vice
versa.
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@ terminal node

FiG. 2. In the example above, the minimum-node-cost Steiner tree consists of the node of
unit cost with edges to all the terminals. The greedy algorithm may choose each of the other
nodes from left to right successively to produce a Steiner tree of cost 2(H(k) — 1), where
H(k) denotes the kth harmonic number.

cuts in the graph (the particular family depends on the problem). For
certain families of cuts, the edge-weighted problem can be approximated
to within a factor of two [6]. We show in Section 5 that the node-weighted
variants of these network-design problems can also be approximated; the
performance is as in Theorem 1.1.

2. THE ALGORITHM

In this section we describe the algorithm. Note that since any Steiner
tree must include all the terminals, we can assume without loss of
generality that the terminals have zero cost.

The algorithm maintains a node-disjoint set of trees containing all the
terminals. Initially, each terminal is in a tree by itself.

The algorithm uses a greedy strategy to iteratively merge the trees into
larger trees until there is only one tree. In each iteration, it selects a node
v and a nonsingleton subset of the current trees so as to minimize the ratio

cost of the node v plus sum of distances to the trees

(1)

number of trees

Here the distance along a path does not include the costs of its endpoints.
Thus the choice minimizes the average node-to-tree distance. The algo-



108 NODE-WEIGHTED STEINER TREES

rithm uses the shortest paths between the node and the selected trees to
merge the trees into one.

It is easy to implement an iteration. For each node v, define the gquotient
cost of v to be the minimum value of (1) taken over all nonsingleton
subsets of the current trees. To find the quotient cost of v, compute the
distances d; from v to each of the trees 7; assume without loss of
generality that the trees are numbered so that d; <d, < - <d,. In
computing the quotient cost of ¢, it is sufficient to consider subsets of the
form {T,, T,,...,T;}. Thus the quotient cost for a given vertex can be
computed in polynomial time; by computing the quotient cost of all the
vertices, we can determine the minimum quotient cost and thus carry out
an iteration in polynomial time.

In Fig. 2, we adapt an example due to Chvatal [3] to show that the
performance ratio in Theorem 1.1 is nearly tight. In this example, the
Steiner tree of minimum node cost is the single node of unit cost adjacent
to all the terminals. However the greedy algorithm may choose the node of
cost 2/k in the first iteration to merge its two neighbors into a tree since
this node has the minimum quotient cost of 1 /k for this iteration. In each
subsequent iteration I, the greedy algorithm may choose the node of cost
2/(k + i — 1) which achieves the minimum quotient cost of 1/(k + i — 1)
for this iteration. Thus the tree produced by the greedy algorithm has cost
2(H(k) — 1) where H(k) denotes the kth harmonic number.

In Section 4, we show that the cost of all nodes and edges selected by
the algorithm is not much more than the minimum cost of a Steiner tree.

3. SPIDER DECOMPOSITION

The proof of the performance guarantee of the algorithm involves
showing the existence of a node with low quotient cost relative to the
minimum cost of a Steiner tree. To show this, we prove that a minimum
Steiner tree can be decomposed into subtrees we call spiders. It follows
that one of these spiders has low quotient cost relative to the cost of the
minimum Steiner tree. It then follows that the cost of an iteration of the
greedy algorithm is small.

DEFINITION. A spider is a tree with at most one node of degree greater
than two. A center of a spider is a node from which there are edge-disjoint
paths to the leaves of the spider. Note that if a spider has at least three
leaves, its center is unique. A foot of a spider is a leaf, or, if the spider has
at least three leaves, the spider’s center. Note that every spider contains
disjoint paths from each of its centers to all of its feet. A nontrivial spider
is one with at least two leaves.
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DEFINITION. Let G be a graph, and let M be a subset of its nodes. A
spider decomposition of M in G is a set of node-disjoint nontrivial spiders
in G such that the union of the feet of the spiders in the decomposition
contains M.

THEOREM 3.1. Let G be a connected graph, and let M be a subset of its
nodes such that |M| = 2. Then G contains a spider decomposition of M.

Proof. The proof we provide here is due to Wolsey [23). The depth of a
node in the tree is defined as the distance of the node from an arbitrarily
chosen root.

We prove the theorem by induction on [M|. Choose a node v of
maximum depth in the tree such that the subtree rooted at ¢ contains at
least two nodes in M. Ties are broken arbitrarily. By choice of v, all the
paths from the nodes in M to the node v in the subtree of v are
node-disjoint, and together form a nontrivial spider centered at v.

We now delete the subtree rooted at v including the node v from the
tree. If no node in M remains in the tree, we are done. It the tree contains
two or more nodes in M, then we can find a spider decomposition of these
nodes by the induction hypothesis. Otherwise, there is exactly one node in
M remaining in the tree. In this case, we add the path in the tree from this
node in M to the spider centered at v. This leaves a spider centered at v
and we are done. W

4. THE PERFORMANCE (GUARANTEE

Now we prove the performance guarantee for the greedy algorithm. Let
¢, denote the number of trees in the solution just after iteration i. Thus,
for instance, ¢, is the number of terminals in G. Let the number of trees
merged at iteration ¢ be h;. Then we have

¢i=¢i41-(hi~_1)' (2)

Let C,; denote the cost of the subgraph added by the algorithm in iteration
i. Let OPT denote the cost of a minimum-cost Steiner tree spanning the
terminals. The key ingredient of our proof is the following lemma, which
depends on our spider-decomposition theorem.

LEMMA 4.1. _Af any iteration i of the algorithm,
Ci- i

h)z2 ——. 3

‘~ oPT )

The above lemma can be intuitively interpreted as follows. At the
beginning of iteration i, any optimal tree of total cost OPT can be used to
connect the ¢;_, remaining trees into one. This tree can be decomposed
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using Theorem 3.1 into a spider decomposition of the remaining trees. By
averaging, one of these spiders has quotient cost better than the “average
quotient cost” of the whole tree, i.e., OPT/(¢,_ ,), and thus the best
quotient cost for this iteration is at most this quantity. We proceed with
the formal proof of the lemma below.

Proof.  Let T* be a minimum-cost Steiner tree. Let 7\,---,7,  be the
current trees at the beginning of iteration ¢ of the algorithm. Let T* be
the graph obtained from T* contracting each 7, to a supernode of zero
cost. Namely, beginning with 7%, for each 7}, we contract all the nodes in
T, N T* into a single supernode in 7;* and assign this supernode zero cost.
The nodes in T* that do not participate in any contraction in forming 7;*
retain their original cost. Note that 7* is connected and contains all
supernodes. Let M be the set of supernodes. We apply Theorem 3.1 to the
graph T* to obtain a spider decomposition of M. Furthermore, the total
cost of spiders in the decomposition is at most that of 7;* which is in turn
at most OPT.

Let ¢,...,c, be the centers of the spiders in the decomposition. For a
spider with only two leaves, i.e., a path, pick any node in the path as its
center. Let m,,..., m, denote the number of nodes of M in each of these
spiders, respectively. Since every spider in the decomposition is nontrivial,
each m, is at least two. Let the cost of the spider centered at ¢; be Cost;.
Moreover, a spider with center ¢, induces a subset of the current trees,
namely the m; trees whose supernodes belong to this spider. The cost of ¢,
plus the sum of distances to these trees is exactly Cost;. Hence the
quotient cost of ¢; is at most

Cost i

m,

Since the algorithm chooses a vertex of minimum quotient cost, for each
spider in the decomposition we have
C.

4

h; m;

Costj

Summing over all the spiders in the decomposition yields

C» r [4
71-' Y m; < Y Cost,.

ij=1 j=1

By node-disjointness, the sum L7 ; m; of the number of nodes of M in
each of the spiders is exactly the number ¢, | of current trees. Also
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L7_ Cost; is exactly the cost of the spider decomposition, which is at most
OPT. Substituting in the above equation and simplifying yields

Cidi
< h,.
OPT !

We now use the above lemma in conjunction with an analysis technique
due to Leighton and Rao [11] to complete the proof of the performance
guarantee.

Proof. Substituting Eq. (3) into (2) and using the inequality &, <
2(h; — 1), we get

T 4
¢’is¢i»l( - 2‘0PT)' (4)

If the total number of iterations of the algorithm is p, then ¢, = 1.
Simplifying (4), we obtain

p C.
¢pS¢UI=_I(l— - )

i 2-OPT

Taking natural logarithms on both sides and simplifying using the approxi-
mation In(1 + x) < x, we obtain

7 d)(]
Y. C <2ln[—|-OPT.
i=1 d’p

Since we assumed that all the terminals have zero cost, note that the cost
of the final solution is the exactly the sum X7, C;. Noting that ¢, = k
and ¢, = 1 we finally have

p
Y C <2ink-OPT. (5)
j=1

This proves the performance guarantee in Theorem 1.1. ®

5. GENERAL NODE-WEIGHTED
NETWORK-DESIGN
PROBLEMS

In this section, we generalize our algorithm to handle more general
network-design problems. As discussed in the Introduction, many such
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problems can be formulated as cut-covering problems: for a certain family
of cuts in a graph, find a minimum-cost subgraph intersecting all the cuts
in the family. Fix a graph G with node and edge weights. For any node
subset S, there is a corresponding cut I'(S) in G, namely that consisting of
edges with exactly one endpoint in S. Thus we can use a 0—1 function f on
the set of node subsets to define a family of cuts: f(§) = 1 whenever I'(S)
is in the family. Goemans and Williamson {6] proposed a class of cut
families and showed that they are useful in modeling network-design
problems such as the point-to-point connection problem. They called a
function f proper if it obeys the following properties: (symmetry property)
f(8) = f(V — §) for all S c V; and (disjointness property) if 4 and B are
disjoint, the f(.4) = f(B) = 0 implies that f(4 U B) = 0.

Given a function f, the terminals are the nodes v of G such that
fe}) = 1. As before, every solution subgraph must contain all the termi-
nals. Hence we can assume without loss of generality that the terminals
have zero cost.

Goemans and Williamson gave a 2-approximation algorithm for edge-
weighted cut-cover problems where the cut family corresponds to a proper
function f. In this paper we give a complementary result for node-weighted
problems.

THEOREM 5.1.  Let G be a graph with node and edge weights. Let f be a
proper function on the node subsets of G. There is a polynomial-time approxi-
mation algorithm for finding a minimum-cost subgraph covering all cuts in the
family defined by f. The performance guarantee is 2 In k, where k is the
number of terminals.

Proof of Theorem 5.1. The algorithm in the theorem follows the outline
of the algorithm in Section 2 very closely. As before, the algorithm
maintains a set of node-disjoint trees. Initially each terminal is in a tree by
itself; the algorithm merges them iteratively. An important difference is
that only some of the trees are candidates for merging.

We designate a tree to be active if f({nodes in the tree}) = 1. At each
iteration, the algorithm proceeds as before but considers only active trees
in computing the quotient costs of nodes. That is, the algorithm selects a
node and a set of at least two active trees so as to minimize

cost of the node plus sum of distances to the active trees

- 6
number of active trees (6)

Then the algorithm uses the paths from the node to the selected trees and
merges them into a single tree.

As long as there is at least one active tree in the network, it follows by
the symmetry and disjointness properties of f that there are at least two.
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The algorithm reduces the number of active trees in the network by at
least one in each iteration; thus it eventually terminates and outputs a set
of inactive trees as the final solution. Thus each connected component of
the solution is inactive. It follows [6] that the solution is in fact a cut-cover.

The proof of the performance guarantee proceeds as before, except that
we define the value of the potential function ¢; to be the number of active
trees in the current solution, rather than the number of trees. To prove the
analogue of Lemma 4.1, we consider an optimal cut cover and contract the
current trees. This may result in a subgraph with possibly many inactive
connected components. We then apply Theorem 3.1 to each of these
connected components to obtain a spider decomposition of the contracted
active trees. We use the result in the inequality

< by — (h; — 1), (7)

where h; is the number of active trees merged in the ith iteration. Note
that with our new definition of the potential function ¢, we have inequal-
ity in (7) instead of equality as in (2) because the tree resulting from the
merge may be inactive. The rest of the analysis is identical. This completes
the proof of Theorem 5.1. W

6. CONCLUSIONS AND OPEN PROBLEMS

We have described approximation techniques for a variety of one-
connected network-design problems. These are the first approximation
algorithms that can handle costs on the nodes. Recently our techniques
have been generalized [16) to handle node-weighted network-design prob-
lems with an additional constraint on the maximum degree of any node in
the tree.

Two other natural generalizations of the Steiner tree problem are at
least as hard to approximate as the set-cover problem, the directed Steiner
problem, and the group Steiner problem. In the directed Steiner problem,
we are given a directed arc-weighted graph, a distinguished node, and a set
of terminals. The goal is to find a minimum-cost arborescence rooted at
the distinguished node and spanning the terminals. A transformation of
the node Steiner problem to the directed version was proposed by Segev
[20].

The group Steiner problem, proposed by Reich and Widmayer [19],
arises in VLSI design. In this problem, we are given an undirected
edge-weighted graph and a collection of node subsets, called groups. The
goal is to find a minimum-cost connected subgraph containing at least one
node from each group.
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We now show how to reduce the set-cover problem to a group Steiner
problem: construct a graph with an auxiliary node and one node for each
subset in the set-cover problem. Each subset node has an edge to the
auxiliary node of cost equal to the cost of the subset. In formulating the
group Steiner problem on this graph, define a group for each ground set
element in the set-cover problem: namely, the set of nodes corresponding
to the subsets that contain the ground element. It is easy to check that a
group Steiner tree in this graph corresponds to a set cover of the same cost
and vice versa.

Thus both the group Steiner problem and the directed Steiner problem
are candidates for logarithmic-factor approximation algorithms.

Indeed, we also observe that an approximation algorithm for the latter
would yield one for the former. An instance of the group Steiner problem
can be transformed to an instance of the directed Steiner problem as
follows: replace each edge in the input graph with a pair of antiparallel
arcs of the same cost. For each group g = {u,,...,u,} of vertices, intro-
duce a new vertex ¢, and add zero-cost arcs from each u, € g to v,. It is
easy to verify that an outward-directed Steiner tree originating from a
node in any group in this transformed graph can be converted to a group
Steiner tree of the same edge cost in the original graph and vice versa.
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