
Improving Minimum Cost Spanning Trees by Upgrading

Nodes�
S. O. Krumkey M. V. Marathez H. Noltemeiery R. Ravix S. S. Ravi{

R. Sundaramk H.-C. Wirthy
Abstract

We study budget constrained network upgrading problems. We are given an undirected
edge weighted graph G = (V; E) where node v 2 V can be upgraded at a cost of c(v).
This upgrade reduces the weight of each edge incident on v. The goal is to find a min-
imum cost set of nodes to be upgraded so that the resulting network has a minimum
spanning tree of weight no more than a given budget D. The results obtained in the
paper include the following:

1. On the positive side, we provide a polynomial time approximation algorithm for
the above upgrading problem when the difference between the maximum and
minimum edge weights is bounded by a polynomial in n, the number of nodes in
the graph. The solution produced by the algorithm satisfies the budget constraint,
and the cost of the upgrading set produced by the algorithm is O(logn) times the
minimum upgrading cost needed to obtain a spanning tree of weight at most D.

2. In contrast, we show that, unless NP � DTIME(nO(log logn)), there can be no poly-
nomial time approximation algorithm for the problem that produces a solution
with upgrading cost at most � < lnn times the optimal upgrading cost even if
the budget can be violated by a factor f(n), for any polynomial time computable
function f(n). This result continues to hold, with f(n) = nk being any polynomial,
even when the difference between the maximum and minimum edge weights is
bounded by a polynomial in n.

3. Finally, we show that using a simple binary search over the set of admissible val-
ues, the dual problem can be solved with an appropriate performance guarantee.

AMS 1980 subject classification. 68R10, 68Q15, 68Q25

Keywords. Approximation algorithms, Bicriteria problems, Spanning trees,
Network design, Combinatorial algorithms.�A preliminary version of this paper appeared as [KM+97].yDept. of Computer Science, University of Würzburg, Am Hubland, 97074 Würzburg, Germany.
Email: fkrumke,noltemei,wirthg@informatik.uni-wuerzburg.de.zLos Alamos National Laboratory, P.O. Box 1663, MS B265, Los Alamos, NM 87545, USA.
marathe@lanl.gov.xR. Ravi, GSIA, Carnegie Mellon University, Pittsburgh, PA 15213, USA. Supported by NSF Career Grant
CCR-9625297. Email: ravi+@cmu.edu.{S. S. Ravi, Dept. of Computer Science, University at Albany – SUNY, Albany, NY 12222, USA. Email:
ravi@cs.albany.edu.kR. Sundaram, Delta Global Trading LP, Boston, MA 02111, USA. Work done while at MIT, Cambridge MA
02139. Email: koods@delta-global.com.

1

1 Introduction and Problem Formulation

1.1 Motivation

Several problems arising in areas such as communication networks and VLSI design can
be expressed in the following general form: Enhance the performance of a given network
by upgrading a suitable subset of nodes. In communication networks, upgrading a node
corresponds to installing faster communication equipment at that node. Such an upgrade
reduces the communication delay along each edge emanating from the node. In signal
flow networks used in VLSI design, upgrading a node corresponds to replacing a circuit
module at the node by a functionally equivalent module containing suitable drivers. Such
an upgrade decreases the signal transmission delay along thewires connected to themodule
[PS95]. Usually, there is a cost associated with upgrading a node, and this motivates the
study of problems of the following type: find an upgrading set of minimum cost so that the
resulting network satisfies certain performance requirements.

The performance of the upgraded network can be quantified in a number of ways. In
this paper, we consider the weight of a minimum spanning tree in the upgraded network
as the performance measure. We show that this network problem is NP-hard. So, the focus
of the paper is on the design of efficient approximation algorithms.

1.2 Preliminary Definitions

1.2.1 Node upgrade model

The node based upgrading model discussed in this paper can be formally described as follows.
Let G = (V;E) be a connected undirected graph. For each edge e 2 E, we are given three
integers d0(e) � d1(e) � d2(e) � 0. The value di(e) represents the length or delay of the
edge e if exactly i of its endpoints are upgraded.

Thus, the upgrade of a node v reduces the delay of each edge incident on v. The (integral)
value c(v) specifies how expensive it is to upgrade the node v. The cost of upgrading all
vertices inW � V , denoted by c(W), is equal toPv2W c(v).

Given a set W � V of vertices, denote by dW the edge weight function resulting from
the upgrade of the vertices inW; that is, for an edge (u; v) 2 EdW(u; v) := di(u; v) where i = jW \ fu; vgj.

Our model is a generalization of the node upgrade model introduced by Paik and Sahni
in [PS95]. In their model, the reduction in edge weight resulting from an upgrade of nodes
is determined by a constant 0 < � < 1 in the following way: if exactly one endpoint of an
edge is upgraded, then its weight is reduced by the factor �; if both endpoints are upgraded,
the weight is reduced by the factor �2. Clearly, the Paik-Sahni model is a special case of the
node upgrade model used in this paper.

1.2.2 Background: Bicriteria Problems and Approximation

The problem considered in this paper involves two optimization objectives, namely, the
upgrading cost and the weight of a minimum spanning tree in the upgraded network.

2

A framework for such bicriteria problems has been developed in [MR+95]. Since this frame-
work is used throughout this paper, we briefly review the relevant definitions from [MR+95].

A generic bicriteria problem can be specified as a triple (f; g; �) where f and g are two
objectives and � specifies a class of subgraphs. An instance of a bicriteria problem specifies
a budget on the objective g. A subgraph in the class � is a valid solution if it satisfies this
budget constraint. The goal is to find a valid solution that minimizes the objective f.

Using this notation, the problem treated in this paper can be expressed as (NODE UP-
GRADING COST, TOTAL WEIGHT, SPANNING TREE). The interpretation of this notation is
that the budgeted objective is the weight of a minimum spanning tree in the upgraded net-
work, and the goal is to minimize the upgrade cost.

Definition 1 (Approximation Algorithm) A (polynomial time) algorithm for a bicriteria prob-
lem (f; g; �) is said to have performance (�;�), if it has the following property: For any instance of(f; g; �), the algorithm

1. either produces a solution from the subgraph class � for which the value of objective g is at
most � times the specified budget and the value of objective f is at most � times the minimum
value of a solution from � that satisfies the budget constraint, or

2. correctly provides the information that there is no subgraph from � which satisfies the budget
constraint on g.

1.3 Problem Definition

We denote the total length of a minimum spanning tree (MST) in G with respect to the
weight function dW by MST(G;dW).
Definition 2 (Upgrading MST Problem) Given an edge and node weighted graph G = (V;E)
as above and a bound D, the upgrading minimum spanning tree problem, denoted by (NODE

UPGRADING COST, TOTAL WEIGHT, SPANNING TREE), is to upgrade a set W � V of nodes
such that MST(G;dW) � D and c(W) is minimized.

The problem (NODE UPGRADING COST, TOTAL WEIGHT, SPANNING TREE) is formu-
lated by specifying a budget on the weight of a tree while the upgrading cost is to be mini-
mized. We will refer to this problem as the primal problem. It is also meaningful to consider
the corresponding dual problem, denoted by (TOTAL WEIGHT, NODE UPGRADING COST,
SPANNING TREE), where we are given a budget on the upgrading cost and the goal is to
minimize the weight of a spanning tree in the resulting graph.

Definition 3 (Dual Upgrading MST Problem) Given an edge and node weighted graph G =(V;E) as above and a bound B on the upgrading cost, the problem (TOTAL WEIGHT, NODE UP-
GRADING COST, SPANNING TREE), is to upgrade a setW � V of nodes such that c(W)� B and
MST(G;dW) is minimized.

There is a close relationship between the approximabilities of the primal and the dual
problems. We will show in Section 3 that a good bicriteria approximation algorithm for one
of the problems can be used to design a good approximation algorithm for the other one in
a generic way; that is, given an (�;�)-approximation algorithm for the problem (NODE UP-
GRADING COST, TOTAL WEIGHT, SPANNING TREE), one can obtain a (�;�)-approximation
algorithm for the problem (TOTAL WEIGHT, NODE UPGRADING COST, SPANNING TREE).

3

2 Summary of Results and Related Work

2.1 Summary of Results

We derive our approximation results under the following assumption:

Assumption 4 There is a polynomial p such that D0 - D2 � p(n), where D0 := maxe2E d0(e)
and D2 := mine2E d2(e) are the maximum and minimum edge weight respectively, and n denotes
the number of nodes in the graph.

The main results of this paper are as follows.

1. We present a polynomial time approximation algorithm, which for any fixed " > 0,
provides a performance guarantee of ((1 + ")2O(logn); 1) for any instance of (NODE

UPGRADING COST, TOTAL WEIGHT, SPANNING TREE) satisfying Assumption 4.

2. In contrast, we show that Unless NP � DTIME(nO(log logn)), there can be no polyno-
mial time approximation algorithm for (NODE UPGRADING COST, TOTAL WEIGHT,
SPANNING TREE) with a performance of (�; f(n)) for any � < lnn and any polyno-
mial time computable function f. This result continues to hold, with f(n) = nk being
any polynomial, even when Assumption 4 holds.

3. We also show that using a simple binary search over the set of admissible values, an
approximation algorithmwith a performance guarantee of (1; (1+")2O(logn)) can be
obtained for any instance of the dual problem (TOTAL WEIGHT, NODE UPGRADING

COST, SPANNING TREE) satisfying Assumption 4.

It should be noted that our approximation algorithm for the problem (NODE UPGRADING

COST, TOTAL WEIGHT, SPANNING TREE) produces solutions inwhich the budget constraint
is strictly satisfied. This is unlike many bicriteria network design problems where it is nec-
essary to violate the budget constraint to obtain a solution that is near-optimal with respect
to the objective function [MR+95].
2.2 Related Work

As mentioned earlier, a simpler node upgrading model has been considered by Paik and
Sahni [PS95]. Under their model, Paik and Sahni studied the upgrading problem for several
performance measures including the maximum delay on an edge and the diameter of the
network. They presented NP-hardness results for several problems. Their focus was on
the development of polynomial time algorithms for special classes of networks (e.g. trees,
series-parallel graphs) rather than on the development of approximation algorithms. Our
constructions can be modified to show that all the problems considered here remain NP-
hard even under the Paik-Sahni model.

While in this paper we choose the total weight of a minimum spanning tree as a measure
of the performance of the upgraded network, there are other useful performance measures.
One of these measures, namely the bottleneck weight of a minimum bottleneck spanning
tree, leads to the problem (NODE UPGRADING COST, BOTTLENECK WEIGHT, SPANNING

TREE). This bottleneck problem has been investigated in [KM+97].
4

Edge-based network upgrading problems have also been considered in the literature
[Ber92, KN+96b, KN+96a]. There, each edge has a current weight and a minimum weight
(below which the edge weight cannot be decreased). Upgrading an edge corresponds to
decreasing the weight of that particular edge, and there is a cost associated with such an up-
grade. The goal is to obtain an upgraded network with the best performance. In [KN+96b]
the authors consider the problem of edge-based upgrading to obtain the best possible MST
subject to a budget constraint on the upgrading cost and present a (1+"; 1+1=")-approxima-
tion algorithm. Generalized versions where there are other constraints (e.g. bound onmaxi-
mum node degree) and the goal is to obtain a good Steiner tree, are considered in [KN+96a].
Other references addressing problems that can be interpreted as edge-based improvement
problems include [FSO96, HT97, Phi93].

3 Dual Problems and Approximability

In this sectionwe formally state and prove our claim from Section 1.3 that the dual problems
defined in this paper are closely related with respect to their approximability.

Lemma 5 If there exists an approximation algorithm for the problem (NODE UPGRADING COST,
TOTAL WEIGHT, SPANNING TREE) with a performance of (�;�), then there is an approximation
algorithm for the problem (TOTAL WEIGHT, NODE UPGRADING COST, SPANNING TREE) with
performance of (�;�).
Proof. Let A be an (�;�)-approximation algorithm for (NODE UPGRADING COST, TOTAL

WEIGHT, SPANNING TREE). We will show how to use A to construct a (�;�)-approximation
algorithm for the dual problem.

An instance of (TOTAL WEIGHT, NODE UPGRADING COST, SPANNING TREE) is spec-
ified by a graph G = (V;E), the node cost function c, the weight functions di, i = 0; 1; 2,
on the edges and the bound B on the node upgrading cost. We denote by OPT the opti-
mum weight of an MST after upgrading a vertex set of cost at most B. Observe that OPT
is an integer such that (n - 1)D2 � OPT � (n - 1)D0 where D2 := mine2E d2(e) andD0 := maxe2E d0(e).

We use binary search to find theminimum integerD such that (n-1)D2 � D� (n-1)D0
and algorithm A applied to the instance of (NODE UPGRADING COST, TOTAL WEIGHT,
SPANNING TREE) given by theweighted graphG as above and the boundD on theweight of
an MST after the upgrade, outputs an upgrading set of cost at most �B. It is easy to see that
this binary search indeed works and terminates with a value D � OPT. The corresponding
upgrading setW then satisfies MST(G;dW) � �D � �OPT and c(W)� �B. 2

Using a similar technique, one can also establish the following result:

Lemma 6 If there exists an approximation algorithm for the problem (TOTAL WEIGHT, NODE

UPGRADING COST, SPANNING TREE) with a performance of (�;�), then there is an approxima-
tion algorithm for the problem (NODE UPGRADING COST, TOTAL WEIGHT, SPANNING TREE)
with performance of (�;�). 2

In view of Lemma 5, the next section focuses on the development of an approximation
algorithm for the problem (NODE UPGRADING COST, TOTAL WEIGHT, SPANNING TREE).

5

4 The Algorithm

In this section we develop our approximation algorithm for the (NODE UPGRADING COST,
TOTAL WEIGHT, SPANNING TREE) problem. Without loss of generality, we assume that
for a given instance of (NODE UPGRADING COST, TOTAL WEIGHT, SPANNING TREE), the
bound D on the weight of the minimum spanning tree after the upgrade satisfies D �
MST(G;d2), since no upgrade strategy can shorten an edge e 2 E below d2(e), and therefore
it is impossible to obtain a minimum spanning tree of weight strictly lower thanMST(G;d2)
in our upgradingmodel. Thus, we can assume that there always exists a subset of the nodes
which, when upgraded, leads to an MST of weight at most D. We remind the reader that
our algorithm also uses Assumption 4 (stated in Section 2) regarding the edge weights in
the given instance.

4.1 Overview of the Algorithm

Our approximation algorithm can be thought of as a local improvement type algorithm. To
begin with, we compute an MST in the given graph with edge weights given by d0(e). This
value equals dW(e) for the initial case W = ?, where W � V is the set of upgraded nodes
maintained by the algorithm. During each iteration, we select a node and a subset of its
neighbors and upgrade them by adding them to the setW. The policy used in the selection
process is that of finding a set which gives us the best ratio improvement, which is defined
as the ratio of the improvement in the total weight of the spanning tree to the total cost
spent for upgrading the chosen nodes. Having selected such a set, we recompute the MST
and repeat our procedure. The procedure is halted when the weight of the MST is at most
the required bound D. To find a subset of nodes with the best ratio improvement in each
iteration, we use an approximate solution to the Two Cost Spanning Tree Problem defined
below.

Definition 7 (Two Cost Spanning Tree Problem) Given a connected undirected graphG = (V;E),
two edge weight functions, c and l, and a bound B, find a spanning tree T of G such that the total
cost c(T) is at most B and the total cost l(T) is a minimum among all spanning trees that obey the
budget constraint.

In the framework of bicriteria problems, the above problem can be expressed as (l-
TOTAL WEIGHT, c-TOTAL WEIGHT, SPANNING TREE). This problem has been addressed
by Ravi and Goemans [RG96] who obtained the following result.

Theorem 8 For all " > 0, there is a polynomial time approximation algorithm for the Two Cost
Spanning Tree problem with a performance of (1; 1 + "). 2
4.2 Algorithm and Performance Guarantee

The remainder of Section 4 is devoted to a proof of the following theorem.

Theorem 9 For any fixed " > 0, there is a polynomial time approximation algorithm that provides
a performance guarantee of ((1 + ")2O(logn); 1) for any instance of (NODE UPGRADING COST,
TOTAL WEIGHT, SPANNING TREE) satisfying Assumption 4.

6

ALGORITHM UPGRADE MST(
)� Input: A graph G = (V;E), three edge weight functions d0 � d1 � d2, a node weight
function c, and a number D, which is a bound on the weight of an MST in the upgraded
graph; a “guess value”
 for the optimal upgrading cost.

1. Initialize the set of upgraded nodes: W0 := ;.
2. Let T0 := MST(G;dW0).
3. Initialize the iteration count: i := 1.
4. Repeat the following steps until the current tree Ti-1 and the weight function dWi-1

satisfy the condition dWi-1(Ti-1) � D:

(a) Let Ti-1 := MST(G;dWi-1) be an MST w.r.t. the weight function dWi-1.
(b) Call Procedure COMPUTE QC to find a marked claw Cwith “good” quotient costq(C). Procedure COMPUTE QC is called with the graph G, the current MST Ti-1,

the current weight function dWi-1 and the bound
.
(c) If Procedure COMPUTE QC reports failure, then report failure and stop.
(d) Upgrade the marked verticesM(C) in C: Wi :=Wi-1 [M(C).
(e) Increment the iteration count: i := i+ 1.� Output: A spanning tree with weight at most D, such that total cost of upgrading the

nodes is no more than (1 + ")
 � O(logn), provided
 � OPT. Here, OPT denotes the
optimal upgrading cost to reduce the weight of an MST to be at mostD.

Figure 1: Approximation algorithm for node upgrading under total weight constraint.

The algorithm referred to Theorem9 is obtained by executing ALGORITHM UPGRADE MST
(shown in Figure 1) for a polynomial number of values of the parameter
. (Details re-
garding the values of
 used by the algorithm appear in Section 4.5.) ALGORITHM UP-
GRADE MST uses Procedure COMPUTE QC whose description appears in Figure 2.

Before we embark on a proof of the performance guarantee stated in Theorem 9, we
give the overall idea behind the proof. Recall that each basic step of the algorithm consists
of finding a node and a subset of neighbors to upgrade.

Definition 10 (Claw) A graph C = (V;E) is called a claw, if E is of the form E = f (v;w) : w 2V n fvg g for some node v 2 V. The node v is said to be the center of the claw. A claw with at least
two nodes is called a nontrivial claw.

Notice that a claw’s center is not uniquely determined if the claw contains less than three
nodes.

LetW be a subset of the nodes upgraded so far and let T be an MST with respect to dW;
that is, T = MST(G;dW). For a claw Cwith nodesM(C) � Cmarked, we define its quotient
cost q(C) to be q(C) := � c(M(C))dW(T)-MST(T[C;dW[M(C)) ; ifM(C) 6= ;;+1; otherwise.

In otherwords, q(C) is the cost of the vertices inM(C) divided by the decrease in the weight
of the MST when the vertices inM(C) are also upgraded and edges in the current tree T can

7

be exchanged for edges in the claw C. Notice that this way the real profit of upgrading the
verticesM(C) is underestimated, since the weight of edges outside ofCmight also decrease.

Our analysis shows that in each iteration, there exists a claw of quotient cost at most2OPTdW(T)-D, where T is an MST at the beginning of the iteration andW are the nodes upgraded

so far. Essentially this means, that in each iteration there is a claw whose quotient cost is
bounded by the ratio of twice the optimum cost and the remaining effort. We can then use a
potential function argument to show that this yields a logarithmic performance guarantee.

4.3 Bounded Claw Decompositions

Definition 11 Let G = (V;E) be a graph and W � V a subset of marked vertices. Let � � 1 be
an integer constant. A �-bounded claw decomposition of G with respect to W is a collectionC1; : : : ; Cr of nontrivial claws, which are all subgraphs of G, with the following properties:

1.
Sri=1V(Ci) = V and

Sri=1 E(Ci) = E.
2. No node fromW appears in more than � claws.
3. The claws are edge-disjoint.
4. If a claw Ci contains nodes fromW, then its center also belongs toW.

Lemma 12 Let F be a forest in G = (V;E) and letW � V be a set of marked nodes. Then there is a2-bounded claw decomposition of F with respect toW.

Proof. We show how to decompose each tree T in the forest F to get a 2-bounded decom-
position.

If each node in T has degree one, then T consists of a single edge which is a nontrivial
claw. Otherwise, let v be an arbitrary vertex of degree at least two where at least one of its
neighbors is of degree one. If all neighbors of v are of degree one, then T is again already a
nontrivial claw and we are done.

Let Nv be the neighbors of v in T which are of degree one. Construct a claw Cv by
selecting as its vertex setNv [fvg. Remove the vertices in Nv from T. Call the resulting treeT 0. Observe that T 0 consists of at least two vertices.

Repeat the above procedure with T 0 until we end up with a single claw. Add this claw
to the collection of claws. Since each vertex appears in at least one and in at most two of the
claws Cv, the claim now follows. 2

In the sequel we will make heavy use of the following simple lemma.

Lemma 13 Let TH be a minimum spanning tree of a graph H with edge weights given by d. For any
additional edge e to be added to H, if T 0 = MST(TH [feg) is a minimum spanning tree in TH [feg,
then T 0 is also a minimum spanning tree in H [feg. 2
Lemma 14 Let H be a spanning subgraph of a graph G = (V;E)with edge weights given by d. LetS � E be a set of edges, and let f =2 H [S be an additional edge. Then,

MST(H [S) -MST(H [S [f) �MST(H) -MST(H [f); (1)

that is, the net profit from using an edge f in terms of decreasing the weight of an MST can never be
increased with the help of a set S of edges added together with f.

8

PROCEDURE COMPUTE QC(
)� Input: A graph G = (V;E), a spanning tree T and a weight function d on E; W � V is the
set of upgraded nodes; a “guess”
 for the optimal upgrading cost.

1. Let s := dlog1+"
e.
2. For each node v =2W and all K 2 f1; (1 + "); (1 + ")2; : : : ; (1 + ")sg do

(a) Set up an instance Iv;K of the Two Cost Spanning Tree Problem as follows:� The vertex set of the graphGv contains all the vertices inG and an additional
“dummy node” x.� There is an edge (v; x) joining v to the dummy node x of length l(v; x) = 0
and cost c(v; x) = c(v) thus modeling the upgrading cost of v.� For each edge (v;w) 2 E, Gv contains two parallel edges h and hup. The
edge h models the situation where w is not upgraded, while hup models an
upgrade ofw:c(h) := 0 c(hup) := 0; if w 2Wl(h) := d2(v;w); if w 2W c(hup) := c(w); if w =2Wl(h) := d1(v;w); if w =2W l(hup) := d2(v;w):� For each edge (u;w) 2 T, there is one edge (u;w) 2 E which has lengthl(u;w) = d(u;w) and cost c(u;w) = 0.� The bound B on the c-cost of the tree is set to K.

(b) Using the algorithmmentioned in Theorem 8, find a tree of c-cost at most (1+")K
and l-cost no more than that of a minimum budget K bounded spanning tree (if
one exists). Let Tv;K be the tree produced by the algorithm.

3. If the algorithm fails for all instances Iv;K then report failure and stop.
4. Among all the trees Tv;K find a tree Tv�;K� which minimizes the ratio c(Tv�;K�)=(d(T)-l(Tv�;K�)).
5. Construct a marked claw C from Tv�;K� as follows:� The center of C is v� and v� is marked.� The edge (v�; w) is in the claw C if Tv�;K� contains an edge between v� andw. The

node w is marked if and only if the edge in Tv�;K� between v� and w has c-cost
greater than zero.� Output: A marked claw C (with its center also marked) with quotient cost q(C) satisfyingq(C) � 2(1 + ")2 OPTd(T)-D and cost c(M(C)) � (1 + ")
.

Figure 2: Algorithm for computing a good claw.

9

c(h) = 0w
c = 0l = dW

l(hup) = d2(v;w)c(hup) = c(w) l(h) = d1(v;w)
v Dummy xc = c(v)l = 0

Figure 3: Example of an instance Iv;K of Two Cost Spanning Tree Problem constructed by Pro-
cedure COMPUTE QC. Edges in the current MST are indicated by thick lines. The vertex w
is not contained in the current upgrading set.

Proof. We show the claim by induction on jSj. The claim is trivial if S is empty. Now letjSj = k+ 1, S = S 0 [feg, and let the claim hold for all sets of cardinality k.
By induction hypothesis, we have for the set S 0 that

MST(H [S 0) -MST(H [S 0 [f) �MST(H) -MST(H [f): (2)

Thus it suffices to show that MST(H[S) -MST(H [S[f) is bounded by the left hand side
of (2).

Let TS 0 := MST(H [S 0) and TS := MST(H [S). Notice that by Lemma 13 we can also
write TS as TS = MST(TS 0 [e). Hence TS differs from TS 0 by at most one edge swap; that
is, we can obtain TS from TS 0 by inserting edge e and removing a heaviest edge e 0 on the
cycle C 0e induced by e in TS 0. (Here, we explicitly allow the possibility that e = e 0, in which
case TS = TS 0).

We now estimate the weight difference between TS 0 and MST(H[S 0[f) = MST(TS 0[f).
Let C 0f be the cycle induced by the additional edge f in TS 0. If e 0 is not on C 0f, then C 0f is also
exactly that cycle which edge f induces in TS. Thus, in this case we get that

MST(H [S) -MST(H [S [f) = MST(H [S 0) -MST(H [S 0 [f) (3)

since the weights of both TS 0 and TS decrease by the difference of the weight of the heaviest
edge on Cf and d(f).

In the other case, the edge e 0 swapped out of TS 0 in exchange for e is on C 0f. Clearly, e 0
must be a heaviest edge on the cycle C 0e that is induced by e in TS 0. Thus, all edges on C 0e
have weight at most that of e 0.

The cycle which f induces in TS contains only edges from C 0e [C 0f. Since all the edges
on C 0e have weight at most d(e 0), this implies that the edge f can only replace edges in TS of
weight at most that of a heaviest edge in C 0e. But this means thatd(TS) -MST(TS[f) � maxh2C 0e d(h) - d(f) = d(T 0S) -MST(TS[f):
In other words, we have that

MST(H [S) -MST(H [S [f) �MST(T [S 0) -MST(T [S 0 [f): (4)

10

Nowusing (3) or (4), respectively, togetherwith the induction hypothesis stated in (2) yields
the lemma. 2
Lemma 15 Let T be a spanning tree of G and let T 0 be an MST with respect to some weight func-
tion d on the edges. Let � := T 0 nT be the edge difference set of the trees. Then there is a nonnegative
function e 7! u(e), e 2 �, with the following properties:

1.
Pe2� u(e) = d(T)- d(T 0):

2. For any subset A � �, d(T)-MST(T [A) �Xe2Au(e):
Proof. Let � = fe1; : : : ; ekg, and define function u byu(ej) := MST(T [fe1; : : : ; ej-1g) -MST(T [fe1; : : : ; ejg); j = 1; : : : ; k:
The first claim of the lemma is now obvious. Thus, we need to consider only the second
claim.

Let A = fei1 ; : : : ; eirg � �, with i1 � � � � � ir. Write �j := f ei 2 � j i � ij g andAj := �j \A. Notice that A0 = ? and Ar = A. With these definitions, we haveu(eij) = MST(T [(�j n eij)) -MST(T [�j):
Furthermore,d(T)-MST(T [Ar)= rXj=1�MST(T [Aj-1) -MST(T [Aj)�= rXj=1�MST(T [Aj-1) -MST(T [Aj-1 [eij)�
and by Lemma 14 applied to H := T [Aj-1, S := (�j n eij) and f := eij� rXj=1�MST

�T [Aj-1 [(�j n eij)� -MST
�T [Aj-1 [(�j n eij) [eij��= rXj=1�MST

�T [(�j n eij)� -MST(T [�j)�= rXj=1 u(eij);
which is what we wanted to show. 2
Lemma 16 Let T := Ti-1 be an MST at the beginning of iteration i, i.e., T = MST(G;dW), whereW :=Wi-1 is the upgrading set constructed so far. Then there is a marked claw C (where its centerv is also marked and v =2W) with quotient cost q(C) satisfyingq(C) � 2OPTdW(T)-D and c(M(C)) � OPT:

11

Proof. Let T 0 = MST(G;dW[OPT) be an MST after the additional upgrade of the vertices in
OPT. Clearly, dW[OPT(T 0) � D. Apply Lemma 12 to T 0 with the vertices in Z := OPT n W
marked. The lemma shows that there is a 2-bounded claw decomposition of T 0 with respect
to Z. Let the claws be C1; : : : ; Cr. In each claw Cj, the corresponding nodesM(Cj) := Cj\Z
from Z are marked. Since the decomposition is 2-bounded with respect to Z, it follows thatrXj=1 c(M(Cj)) � 2 �OPT: (5)

Moreover, the cost c(M(Cj)) of the marked nodes in each single claw Cj does not exceed
OPT, since we have marked only nodes from Z.

LetH be the graph obtained fromG by inserting each edge e twice, on the one handwith
weight dW(e) and on the other hand with the newweight dW[OPT(e). Then, T is a spanning
tree of H and T 0 can be identified with a minimum spanning tree of H.

Let � := T 0 n T be the edge difference set of trees T 0 and T in H, where we consider two
parallel edges with different weights as different edges. By Lemma 15, there exist numbersu(e), e 2 �, such that Xe2�u(e) = dW(T)- dW[OPT(T 0) � dW(T)-D: (6)

Moreover, for any edge subset of �, and in particular, for any claw Cj, we havedW(T)-MST(T [Cj; dW[OPT) � Xe2Cj u(e): (7)

In fact, Lemma 15 provides the stronger result that the difference of dW(T) and the mini-
mum spanning tree in T[Cj where each edge e of T still considered to have the old weightdW(e) is at least the right hand side of (7).

Now, since the weight of edges in claw Cj is only affected by the upgrade of the vertices
inM(Cj) = Z \ Cj, we obtain from (7)dW(T)-MST(T [Cj; dW[M(Cj)) � Xe2Cj u(e); (8)

that is, the decrease in the weight of the MST obtained by upgrading the vertices in M(Cj)
and possibly exchanging edges from the current MST for edges from Cj is at least the sumPe2Cj u(e).

Therefore, for each of the claws Cj withM(Cj) 6= ; in the 2-bounded decomposition ofT 0, the quotient cost q(Cj) satisfies q(Cj) � c(M(Cj))Pe2Cj u(e) : (9)

Let C be a claw among all the claws Cj with minimum q(C). Then,q(C) �Xe2Cj u(e) � c(M(Cj)) for j = 1; : : : ; r. (10)

Notice that the above inequality holds, regardless of whetherM(Cj) is empty or not. Sum-
ming the inequalities in (10) over j = 1; : : : ; r, and using Equations (5), (6), and (8), it can be
seen that C is a claw with the desired properties. 2

12

4.4 Finding a good claw in each iteration

Lemma 16 implies the existence of a marked claw with the required properties. We will
now deal with the problem of finding such a claw.

Lemma 17 Suppose that the bound
 given to Algorithm UPGRADE MST satisfies
 � OPT.
Then, during each iteration i, the algorithm chooses a marked claw C 0 such thatq(C 0) � 2(1 + ")2 OPTdW(T)-D and c(M(C 0)) � (1 + ")
;
where T := Ti-1 is an MST at the beginning of iteration i and W := Wi-1 is the set of nodes
upgraded so far.

Proof. By Lemma 16, there is a marked claw C with quotient cost q(C) at most 2 OPTdW(T)-D.
Let v be the center of this claw. By Lemma 16, v is marked. Let c(C) := c(M(C)) be the
cost of the marked nodes in C and L := MST(T [C;dW[M(C)) be the weight of the MST inT [C resulting from the upgrade of the marked vertices in C. Then, by the definition of the
quotient cost q(C) we have q(C) = c(C)dW(T)- L � 2 OPTdW(T)-D: (11)

Consider the iteration of Procedure COMPUTE QC when it processes the instance Iv;K of
Two Cost Spanning Tree Problem with graph Gv and c(C) � K < (1 + ") � c(C). The tree
MST(T[C;dW[M(C)) induces a spanning tree in Gv of total c-cost at most c(C) (which is at
most K) and of total l-length no more than L. Thus, the algorithm from Theorem 8 will find
a tree Tv;K such that its total c-cost c(Tv;K) is bounded from above by (1+ ")K � (1+ ")2c(C)
and of total l-length l(Tv;K) no more than L.

By construction, the marked claw C 0 computed by PROCEDURE COMPUTE QC from Tv;K
has quotient cost at most c(Tv;K)=(dW(T)-l(Tv;K)), which is at most (1+")2c(C)=(dW(T)-L).
The lemma now follows from (11). 2
4.5 Guessing an Upper Bound on the Improvement Cost

We run our Algorithm UPGRADE MST depicted in Figure 1 for all values of
 2 f1; (1 + "); (1 + ")2; : : : ; (1 + ")tg; where t := dlog1+" c(V)e:
We then choose the best solution among all the solutions produced. Our analysis shows

that when OPT �
 < (1 + ") � OPT, the algorithm will indeed produce a solution. In
the sequel, we estimate the quality of this solution. Assume that the algorithm uses f + 1
iterations and denote by C1; : : : ; Cf; Cf+1 the claws chosen in Step 4b of the algorithm. Letci := c(M(Ci)) denote the cost of the vertices upgraded in iteration i. Then, by constructionci � (1 + ")
 � (1 + ")2OPT for i = 1; : : : ; f + 1: (12)

13

4.6 Potential Function Argument

We are now ready to complete the proof of the performance stated in Theorem 9. Let MSTi
denote the weight of the MST at the end of iteration i, i.e., MSTi := dWi(Ti). Define �i :=
MSTi-D. Since we have assumed that the algorithm uses f + 1 iterations, we have �i � 1
for i = 0; : : : ; f and �f+1 � 0. As before, let ci := c(M(Ci)) denote the cost of the vertices
upgraded in iteration i. Then�i+1 = �i - (MSTi-MSTi+1) Lemma 17� �1- ci+1� �OPT

��i; (13)

where � := 2(1 + ")2. We now use an analysis technique due to Leighton and Rao [LR88].
The recurrence (13) and the estimate ln(1 - �) � -� give usfXi=1 ci � � �OPT � ln �0�f : (14)

Notice that the total cost of the nodes chosen by the algorithm is exactly the sum
Pf+1i=1 ci.

By (14) and (12) we havef+1Xi=1 ci = cf+1 + fXi=1 ci � (1 + ")2OPT + 2(1 + ")2OPT � ln �0�f : (15)

We will now show how to bound ln �0�f . Notice that �f = MSTf-D � 1, since the algorithm
uses f + 1 iterations and does not stop after the fth iteration. We have �0 = MST0-D �(n - 1)(D0 -D2), where D0 and D2 denote the maximum and the minimum edge weight
in the graph. It now follows from Assumption 4 that ln�0 2 O(log(np(n))) � O(logn).
Using this result in (15) yieldsf+1Xi=1 ci � (1 + ")2 �OPT + 2(1 + ")2O(logn) �OPT2 (1 + ")2O(logn) �OPT:
This completes the proof. 2
5 Hardness Result

In this section we prove the hardness result stated in Section 2. The proof relies on the
following lemma.

Lemma 18 Let � and f be two polynomial time computable functions. Let � be nondecreasing,
and let there be constants c > 1 and N 2 N such that �(n + 1) � c � �(n) for all n � N.
Then the existence of an (�(n); f(n))-approximation algorithm for (NODE UPGRADING COST,
TOTAL WEIGHT, SPANNING TREE) implies the existence of a c � �(n)-approximation algorithm
for MINIMUM DOMINATING SET. Here, n denotes the number of vertices in the input graphs.

Note that requiring the existence of c is not a serious restriction, since we can always
assume �(n) � n.

14

Proof. We perform a reduction from MINIMUM DOMINATING SET [GJ79, Problem GT2].
An instance of MINIMUM DOMINATING SET is given by a undirected graph G = (V;E). A
node set D � V is a minimum dominating set, if each node in V n D is incident to a node
in D, and D is of minimum cardinality among all node sets with the domination property.

Given an instance G = (V;E) of MINIMUM DOMINATING SET, add a new node r (the
root) to the graph and connect r to all the nodes inV . Letn 0 = jV j+1be the resulting number
of nodes. For all edges, set the initial weights to l0 := n � f(n 0) + 1, and the weights in the
upgrading case to l1 := l2 := 1. The upgrade cost of the root is set to c(r) := dn �c ��(n)e+1,
all remaining nodes have upgrading cost 1. The constraint on the total weight is n := jV j.

Now suppose there is an (�(n 0); f(n 0))-approximation algorithm for (NODE UPGRAD-
ING COST, TOTAL WEIGHT, SPANNING TREE). Observe that for the instance of this problem
constructed above, there is always a feasible solution, namely, the upgrading set consisting
of all vertices in the graph. Thus, if applied to this instance, the algorithm must output
an upgrading set of cost at most �(n 0) times the optimum upgrading cost such that the
upgraded network contains an MST of weight at most f(n 0) � n.

It is easy to see that upgrading a dominating set of size u in G yields a minimum span-
ning tree in G 0 which fulfills the weight constraint and has upgrade costs equal to u. Thus
the optimum upgrading cost OPT is at most the size of the minimum dominating set.

Conversely, each upgrading set in G 0 not containing the root and resulting in an MST
of weight at most n is also a dominating set in G. Now observe that any spanning tree of
weightmore thann has weight at least l0 = n�f(n 0)+1 > n�f(n 0). Thus, to satisfy theweight
constraint within a factor of f(n 0), the algorithm must output a spanning tree consisting of
edges of weight 1 only. Moreover, due to the high cost of upgrading the root, the algorithm
can never choose the root for upgrading: let u be the size of a smallest dominating set, then
OPT � u by our observations from above. The algorithm produces a solution of cost at
most �(n 0) �OPT � �(n 0) � u � c � �(n) � u < c(r).

Thus, an (�(n 0); f(n 0))-approximation algorithm can be used to obtain a dominating set
in the original graph G whose size is at most c � �(n) times the cardinality of an optimum
dominating set. 2
Corollary 19 (Non-Approximability) Let f be any (polynomial time computable) function, and�(n) < (1 - ") lnn for fixed " > 0. Unless NP � DTIME(nO(log logn)), there can be no polyno-
mial time approximation algorithm for (NODE UPGRADING COST, TOTAL WEIGHT, SPANNING

TREE) with performance guarantee (�(n); f(n)), where n denotes the number of vertices in the
input graph.

Proof. Feige [Fei96] has shown that, unless NP � DTIME(nO(log logn)), there can be no�(n)-approximation algorithm for MINIMUM DOMINATING SET when �(n) < lnn.
For some " > 0, assume that there is a ((1 - ") lnn; f(n))-approximation algorithm for

(NODE UPGRADING COST, TOTAL WEIGHT, SPANNING TREE). Then there are constants " 0,c, and N, such that for n � N
ln(n + 1) � c � lnn and (1 - ") lnn � 1- " 0c lnn:

With help of Lemma 18 we can conclude that there exists a ((1 - " 0) lnn)-approximation
algorithm for MINIMUM DOMINATING SET, which contradicts Feige’s result. 2

15

References

[Ber92] O. Berman, Improving the location of minisum facilities through network modification, Annals
of Operations Research 40 (1992), 1–16.

[Fei96] U. Feige, A threshold of lnn for approximating set cover, Proceedings of the 28th Annual
ACM Symposium on the Theory of Computing (STOC’96), 1996, pp. 314–318.

[FSO96] G. N. Frederickson and R. Solis-Oba, Increasing the weight of minimum spanning tree, Pro-
ceedings of the 7th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’96),
March 1996.

[GJ79] M. R. Garey and D. S. Johnson, Computers and intractability (a guide to the theory of NP-
completeness), W.H. Freeman and Company, New York, 1979.

[HT97] S. E. Hambrusch and H. Y. Tu, Edge weight reduction problems in acyclic graphs, J. Algo-
rithms 24 (1997), 66–93.

[KM+97] S. O. Krumke, M. V. Marathe, H. Noltemeier, R. Ravi, S. S. Ravi, R. Sundaram, and H. C.
Wirth, Improving spanning trees by upgrading nodes, Proceedings of the 24nd International
Colloquium on Automata, Languages and Programming (ICALP’97), Lecture Notes in
Computer Science, vol. 1256, 1997, pp. 281–291.

[KN+96a] S. O. Krumke, H. Noltemeier, M. V.Marathe, R. Ravi, and S. S. Ravi, Improving Steiner trees
of a network under multiple constraints, Tech. Report LA-UR 96-1374, Los Alamos National
Laboratory, Los Alamos, New Mexico, USA, 1996.

[KN+96b] S. O. Krumke, H. Noltemeier, S. S. Ravi, M. V. Marathe, and K. U. Drangmeister, Mod-
ifying networks to obtain low cost trees, Proceedings of the 22nd International Workshop
on Graph-Theoretic Concepts in Computer Science, Cadenabbia, Italy., Lecture Notes in
Computer Science., vol. 1197, June 1996, pp. 293–307. A Complete version to appear in
Theoretical Computer Science, 1998.

[LR88] F. T. Leighton and S. Rao, An approximate max-flow min-cut theorem for uniform multicom-
modity flow problems with application to approximation algorithms, Proceedings of the 29th
Annual IEEE Symposium on the Foundations of Computer Science (FOCS’88), 1988,
pp. 422–431.

[MR+95] M. V. Marathe, R. Ravi, R. Sundaram, S. S. Ravi, D. J. Rosenkrantz, and H. B. Hunt III,
Bicriteria network design problems, Proceedings of the 22nd International Colloquium on
Automata, Languages and Programming (ICALP’95), Lecture Notes in Computer Sci-
ence,, vol. 944, 1995, pp. 487–498. A complete version to appear in J. Algorithms, 1998.

[Phi93] C. Phillips, The network inhibition problem, Proceedings of the 25th Annual ACM Sympo-
sium on the Theory of Computing (STOC’93), May 1993, pp. 288–293.

[PS95] D. Paik and S. Sahni, Network upgrading problems, Networks 26 (1995), 45–58.

[RG96] R. Ravi and M. X. Goemans, The constrained minimum spanning tree problem, Proceedings
Scandinavian Workshop on Algorithmic Theory (SWAT’96), Reykjavik, Iceland, Lecture
Notes in Computer Science, vol. 1097, July 1996, pp. 66–75.

16

