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We study a fundamental class of two-layer network design problems. A hub layer is 
configured by establishing hubs at selected nodes at considerable cost so that the routes 
between hubs can be operated cheaply. The remaining edges in the network are operated 
at regular cost. The resulting problem is to determine the set of nodes to open hubs and 
the set of edges to establish in order to find a network of minimum total cost.
We consider the case where the network is required to form a Steiner tree spanning 
a given set of terminal vertices. When edge costs are non-metric, we show logarithmic 
approximation hardness even for the special case of spanning trees. On the other hand, 
we show a polynomial-time reduction for Steiner trees to its corresponding node-weighted 
version thus proving a logarithmic approximation factor. When edge costs are metric, we 
show the problem is only a constant factor harder to approximate than its original version 
(with no hub installation) using a similar reduction.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In contemporary supply chain management, logistics 
service providers typically operate at minimal margins, 
so that a high degree of consolidation and the resulting 
economies of scale are mandatory to run a profitable busi-
ness. This leads to a typical layered design of logistics net-
works in which a subset of locations are opened as hubs. 
We operate high-volume lower-cost routes in the hub-level 
network and connect clients using the lower-level network 
that augments the backbone connectivity provided by the 
hub-level network. We term this the hub network design
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(HND) problem. We can define concrete formulations of 
the HND problem by specifying connectivity requirements 
that feasible solutions have to satisfy. One such problem is 
the hub Steiner tree problem that requires a subset of ver-
tices specified as terminals to be connected.

Definition 1 (Hub Steiner tree (HStT)). Given an undirected 
graph G = (V , E), a terminal set R ⊆ V , non-negative edge 
cost ce for e ∈ E , non-negative hub opening cost f v for v ∈
V and a constant λ ∈ [0, 1] reflecting the cost differential 
between two levels, a hub Steiner tree (HStT) is a tree T =
(V T , ET ) spanning the terminal set R (i.e., R ⊆ V T ) along 
with a set of hubs H ⊆ V T . Let T H denote the set of edges 
in T induced by H (i.e., with both ends in H). We call T H

the set of hub-level edges and T \T H the set of lower-level
edges. We define c(S) = ∑

e∈S ce for S ⊆ E and f (U ) =∑
v∈U f v for U ⊆ V . The cost of the hub Steiner tree (T , H)

is λc(T H ) + c(T \T H ) + f (H). The goal in the HStT problem 
is to find an HStT of minimum cost.
ss article under the CC BY-NC-ND license 
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When G is a complete graph and the edge costs c
satisfy the triangle inequality (i.e., cxy + c yz ≥ cxy for all 
x, y, z ∈ V ), then we say that we have an instance of a 
metric HStT problem. Otherwise, we have an instance of 
the non-metric HstT.

Definition 2 (Hub spanning tree (HST)). The hub spanning tree
(HST) problem is a special case of the HStT problem where 
the terminal set R = V .

We note that several two-level network design prob-
lems have been studied actively; e.g., access network de-
sign [1–3], buy-at-bulk network design [4–9], hub loca-
tion problem [10,11], and location routing problem [12,13]. 
These problems and the HStT problem are closely related, 
but they differ in several aspects. For example, the exis-
tence of hubs is not considered or more complex connec-
tivity is required in them. The HStT problem is simple, but 
captures an essential part of two-level network design that 
is as yet unstudied. Our contributions in this paper are 
summarized as follows.

1. We show NP-hardness and logarithmic approximation 
hardness of the HST problem by reductions from the 
set cover problem in Section 2. Since the HST problem 
is a special case of the HStT problem, the same results 
hold for the latter.

2. For the non-metric HStT problem in Section 3, we 
show a polynomial-time reduction to the node-
weighted Steiner tree problem. This implies an 2 log |R|-
approximation algorithm for this case.

3. For the metric HStT problem in Section 4, we show 
a polynomial-time reduction to the original version 
of the Steiner tree problem (with no hub installa-
tion). This implies a constant-factor approximation al-
gorithm.

2. Hardness of hub spanning tree problem

In this section, we prove hardness results for the HST 
problem by reducing from the set cover problem. Similar 
reductions have been used in several related network de-
sign problems (e.g., [14–16]).

Definition 3 (Set cover). Let S1, . . . , Sn be arbitrary subsets 
on a ground set of elements x1, . . . , xt . The set cover prob-
lem is to find a minimum cardinality set of subsets whose 
union is the set of all elements.

The following hardness of approximation result for the 
set cover problem is due to Dinur and Steurer [17].

Theorem 2.1 ([17]). For every δ > 0, it is NP-hard to approxi-
mate the set cover problem to within (1 − δ) ln n, where n is the 
size of the instance.

Our hardness results presented in this section repeat-
edly use the following reduction from the set cover prob-
lem.
2

Fig. 1. An illustration of the reduction. The cost of a solid (dashed, resp.) 
edge is zero (β , resp).

Reduction 1. We construct an undirected weighted graph 
G = (V , E) as follows: create a node v Si for each set Si , 
a vertex v j for each element x j , and a new vertex vr as 
the root. Let A := {v Si : i = 1, . . . , n} and B := {v j : j =
1, . . . , t}. For each v S ∈ A we create an edge (vr, v S ) with 
cost 0. For each v S ∈ A and v j ∈ B such that j ∈ S , we cre-
ate an edge (v j, v S) with cost β whose value will be set 
later to achieve desired hardness results. The hub opening 
cost is one for all vertices in A and zero for all others. See 
Fig. 1 for an illustration.

Non-metric HST Based on the above construction, we have 
the following theorem:

Theorem 2.2. For any λ ∈ [0, 1), the non-metric HST is NP-
hard.

Proof. Set β > 1
1−λ

in Reduction 1. We show that the min-
imum set cover has cardinality k if and only if the optimal 
HST cost in Reduction 1 is k + λβt , where t is the number 
of elements. Notice this proves the theorem.

Without loss of generality, assume an optimal set cover 
is {S j}k

j=1. Our HST is constructed by opening hubs in 
{vr} ∪{v S j }k

j=1 ∪ B and selecting the following set of edges: 
{(vr, v S j ), (v S j , vl) : ∀ j = 1, . . . , k, l ∈ S j}. In the resulting 
HST, a vertex in set B is connected to only one vertex in 
set A (breaking ties arbitrarily between a pair of A nodes 
that have edges to it). The resulting HST has cost k + λβt . 
This shows the minimum cost of the HST problem is less 
than or equal to k + λβt . Conversely, we claim all edges 
in the optimal HST between A and B have both endpoints 
opened as hubs: suppose not, let (v S , vl) be an edge vi-
olating this property. We can alternatively open hubs on 
both endpoints which incurs a unit hub opening cost and 
reduces the cost of (v S , vl) by (1 − λ)β > 1 (this might 
lead to cost decrease in other edges too), which results 
in a contradiction. Consequently the set S := {v S : S ∈
A is an opened hub in HST} is a valid set cover. Observe 
that the edges between A and B now have cost βλ and 
there are t such edges, so we have |S| ≤ k. This shows the 
minimum set cover has cardinality less than or equal to 
k. �

Similarly we have the following approximation hard-
ness result.

Theorem 2.3. If there is an α-approximation algorithm for 
the non-metric HST problem with λ = 0, then there is an α-
approximation algorithm for the set cover problem.
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Proof. Given a set cover instance with minimum cardinal-
ity k, we generate the HST instance as in Reduction 1 with 
λ = 0 and β > αk. Let T be an α-approximate solution of 
this instance. We will prove that every edge in T has both 
endpoints opened as hubs. Suppose not, there exists one 
edge that is not between two hubs, incurring a cost of at 
least β + (t − 1)βλ = β (since λ = 0). Since β > αk, this 
implies T is not an α-approximate solution, contradicting 
our assumption.

Let k be the cardinality of a minimum set cover. Next 
we show the cost of an optimal HST is at most k: we 
can open hubs at the k vertices that correspond to the 
optimal set-cover, whose cost is k + λβt = k. As a result, 
the cost of T is at most αk. We can therefore obtain an 
α-approximate set cover solution by selecting those sets 
opened as hubs. �

We obtain the following corollary by combining Theo-
rems 2.1 and 2.3.

Corollary 2.4. When λ = 0, for any δ > 0 it is NP-hard to 
approximate the non-metric HST problem within a factor of 
(1 − δ) ln n.

Metric HST For notational convenience, we shall denote 
nodes in A as A-nodes and nodes in B as B-nodes. We call 
an A-node selected if its corresponding set is included in 
the set cover solution.

Theorem 2.5. For any λ ∈ (0, 1), the metric HST problem with 
uniform hub opening cost is NP-hard.

Proof. We modify Reduction 1 for the non-metric HST. We 
assign a unit hub opening cost for every node. Recall that 
the edge weight between the root and an A-node is 0, 
and the edge weight between an A-node and an B-node 
is β . We take the metric completion of this graph, i.e., we 
add all the edges in the complete graph where the cost of 
an edge is defined as the shortest path length between its 
two endpoints, based on these edge weights. Recall t is the 
number of elements. We claim that for β > max{ 1

λ
, 2

1−λ
}, 

the minimum cost of a HST is k + t + tλβ if and only if the 
size of the minimum set cover is k.

For the ‘if’ part, given a set cover of size k, we install 
hubs on all B-nodes and selected A-nodes. We connect 
each A-node to the root by edge cost 0. We connect each 
B-node to a selected A-node which includes that element 
by paying λβ . This gives an HST with cost k + t + tλβ .

For the ‘only if’ part, since the root and all A-nodes are 
connected by the edges of cost 0, no hub is needed at the 
root to reduce the edge cost between the root and an A-
node. We will ensure that opened hubs among A-nodes 
exactly represent selected sets. To do so, we need to ensure 
two things in an optimal HST.

(I) Each edge between an A-node and a B-node is an 
hub-level edge (i.e., hubs are opened on its both end-
points);

(II) No edge exists between two A-nodes, or two B-nodes.
3

A sufficient condition for (I) is β > λβ + 2 where β is the 
lower-level edge cost for connecting an B-node to an A-
node and λβ + 2 is the hub-level edge cost and the hub 
opening costs of its two end nodes. This condition also 
implies that, if an edge joining two B-nodes is used in 
the optimal HST, it is the hub-level edge because lower-
level edges joining two B-nodes are of cost at least 2β

(> β > λβ + 2). For (II), first notice two A-nodes are al-
ready connected via the root by two 0-cost edges. Sec-
ond, under the condition for (I), it is sufficient to have 
2λβ > βλ + 1 where 2λβ is the cost of the hub-level edges 
joining two elements-nodes and βλ + 1 is the cost for 
connecting a B-node to an A-node by an hub-level edge 
by opening a hub on the common A-node. To summarize, 
we need β > max{ 1

λ
, 2

1−λ
} which are the conditions in the 

claim. �
3. Non-metric hub Steiner tree

In this section we reduce the HStT problem to the 
node-weighted Steiner tree problem defined below.

Definition 4 (Node-weighted Steiner tree (NWST)). Let G be 
an undirected graph with nonnegative costs assigned to its 
nodes and edges. Let R ⊆ V be a set of terminals. A Steiner 
tree for R in G is a connected subgraph of G containing 
all the nodes of R . The node-weighted Steiner tree (NWST) 
problem is to find a minimum-cost Steiner tree.

For NWST, Klein and Ravi [14] showed a greedy algo-
rithm which achieves a logarithmic approximation factor.

Theorem 3.1 ([14]). The NWST problem admits a polynomial-
time 2 ln k-approximation algorithm, where k is the number of 
terminals.

Below we present our reduction.

Reduction 2. Given an HStT problem as in Definition 1. 
We create an NWST instance as follows. Let V ′ and E ′
be the node and edge set of the NWST instance respec-
tively. Let c′ : E ′ → R+ be the edge weight function. For 
each node v ∈ V in HStT, we create a pair of nodes vh, vl . 
Let V hub := {vh : v ∈ V } and V low := {vl : v ∈ V }, where 
V hub stands for the ‘hub-level nodes’ and V low for the 
‘lower-level nodes’. Let V ′ = V hub ∪ V low. Define the set 
of terminals R ′ := {vl : v ∈ R}. For each edge e = (u, v)

in HStT, we add to E ′ all possible edges between these 
vertices: (uh, ul), (vh, vl), (uh, vh), (ul, vl), (uh, vl), (ul, vh). 
Edge weights are defined as follows:

c′(uh, ul) = c′(vh, vl) := 0.

c′(ul, vl) = c′(uh, vl) = c′(ul, vh) := c(u, v).

c′(uh, vh) := λc(u, v).

For each v ∈ V , the node weight on vh is defined as f v

and on vl as zero. See Fig. 2 for an illustration.
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Fig. 2. Edge weights in Reduction 2.

Theorem 3.2. If we have a γ -approximation algorithm for the 
NWST problem, then there exists a γ -approximation algorithm 
for the HStT problem.

Proof. First, we show that the optimal value of the re-
duced NWST instance is at most that of the given HStT 
instance. Let T be a hub Steiner tree T of cost c(T ) in the 
HStT instance. We construct a Steiner tree T ′ of cost at 
most c(T ) for the reduced NWST instance. For hub-level 
edges (u, v) in T , we add (uh, vh), (uh, ul), (vh, vl) to T ′ . 
For lower-level edges (u, v) in T , we add (ul, vl) to T ′ . It 
is straightforward to verify that T ′ has the same cost as T . 
Next we show T ′ is indeed a Steiner tree that connects ter-
minals in R ′ . Consider any pair of nodes (u, v) in R; Since 
T is a Steiner tree in HStT, there exists a path that con-
nects u and v in T . Call this path P . We will find a path P ′
in T ′ that connects ul and vl as follows: for any hub-level 
edge (a, b) in P , add edges (al, ah), (ah, bh), (bh, bl) to P ′ . 
For any lower-level edge (a, b) in P , add an edge (al, bl). It 
is easy to see that P ′ indeed connects ul and vl .

Next, we prove the opposite direction. Let T ′ be a fea-
sible Steiner tree spanning R for the NWST instance. We 
show that there exists a hub Steiner tree T with cost 
c(T ) ≤ c′(T ′) for the HStT instance. For each hub-level 
node vh ∈ V hub spanned by T ′ , we install a hub on v
in T . For each edge (uh, vh) in T ′ where uh, vh ∈ V hub, 
we add an upper level edge (u, v) to T . For edges of the 
form (uh, vl) or (ul, vl), we add a lower-level edge (u, v). 
For the remaining edges in T ′ , we do nothing. Arbitrarily 
delete edges to remove cycles in T as necessary. It is easy 
to verify that T connects all terminals of R and has cost 
no more than c′(T ′). �

As a corollary of Theorems 3.1 and 3.2, we obtain the 
following result.

Corollary 3.3. There is a polynomial-time 2 lnk-approximation 
algorithm for the non-metric H StT problem, where k is the 
number of terminals.

4. Metric hub Steiner tree

In the previous section, we reduced the HStT problem 
to the NWST problem. In this section, we show that, if the 
edge-costs are metric, the HStT problem can be reduced to 
the edge-weighted Steiner tree (EWST) problem, the spe-
cial case of the NWST in which all node costs are zero. The 
EWST problem admits a number of constant-factor approx-
imations. The currently known best approximation factor is 
ρS T = ln 4 + ε ≈ 1.38 [18,19].
4

Fig. 3. Convert a HStT to a Steiner tree where the terminal set R =
{a, b, c, d}. On the left, squares (disks, resp.) indicate hubs (non-hubs, 
resp.). On the right, the corresponding Steiner tree uses two vertical 
edges, two lower-level edges and one hub-level edge.

Theorem 4.1 ([18,19]). For any constant ε > 0, there is a 
polynomial-time (ln 4 + ε)-approximation algorithm for the 
EWST problem.

Reduction 3. Let V ′ and E ′ be the vertex and edge set 
of the instance we reduce to. Let c′ : E ′ → R+ be the 
edge weight function. For each node v ∈ V in HStT, we 
create a pair of nodes vh, vl . Let V ′ be the set of all 
newly created nodes. Define the set of terminals R ′ := {vl :
v ∈ V }. For each edge e = (u, v) in HStT, we add to E ′
the following edges (uh, vh), (ul, vl), (uh, ul), (vh, vl). Edge 
weights are defined as: c′(uh, vh) := λc(u, v), c′(ul, vl) :=
c(u, v), c′(uh, ul) := fu, c′(vh, vl) := f v . Call the metric 
completion of this graph G ′ = (V ′, E ′).

For ease of presentation, we define the following par-
tition of E ′: H := {(uh, vh) : u, v ∈ V }, L := {(ul, vl) : u, v ∈
V }, J := {(vh, vl), v ∈ V }, K := {(uh, vl), (ul, vh) : u, v ∈ V }, 
where H stands for hub-level edges, L for lower-level 
edges, J for vertical edges and K for cross edges.

Theorem 4.2. If there exists a γ -approximation algorithm for 
the EWST problem, then there exists a 2γ -approximation algo-
rithm for the metric HStT problem.

Proof. First, we show that from a hub Steiner tree T in 
G , we can construct a Steiner tree T ′ in G ′ whose cost is 
the same as T . Next, we show that for any Steiner tree T ′
spanning R ′ in G ′ , we can construct a hub Steiner tree T
in G with total cost at most twice the cost of T ′ .

For the first part, we define a tree T ′ from T by includ-
ing all upper-level and lower-level edges in T in addition 
to each edge of the form (ul, uh) that corresponds to in-
stalling a hub u in T . Then T ′ is the required Steiner tree 
in G ′ . See Fig. 3 for an illustration.

For the second part, we first partition edges of T ′ into 
four sets as follows. Define E H := H ∩ T ′, E L := L ∩ T ′, E J =
J ∩ T ′, E K = K ∩ T ′ . Recall that for each edge (uh, vl) ∈ E K , 
there exists a shortest path Puh vl from uh to vl realiz-
ing the distance on this edge which only uses edges from 
H ∪ L ∪ J . Let P be the set of such paths, i.e. P := {Puh vl :
(uh, vl) ∈ E K }. To construct a hub Steiner tree in G , we in-
stall hubs F := {v : (vh, vl) ∈ E J ∪ {P ∩ J : P ∈P}}. We add 
in all edges (u, v) such that their copies (uh, vh) or (ul, vl)

is in E H ∪ E L ∪ {P\ J : P ∈ P}. Let S be the graph con-
structed as described above. Since T ′ is a Steiner tree, S
guarantees the connectivity for terminals R . We may as-
sume by short-cutting edges that S is a tree. Fig. 4 shows 
an example of our construction. On the left, solid lines rep-
resent edges in the Steiner tree. The dashed path between 
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Fig. 4. Convert a Steiner tree to a HStT where the terminal set R =
{a, b, c, d, e, g}. By replacing solid edges with shortest paths, we construct 
S (bottom left). Its hub level restriction S H contains two components 
(subtrees): one containing a single edge (b, c) and the other containing 
two edges (e, f ) and ( f , g) where node f is an unhubbed node. By post-
processing (doubling tree edges, taking Eulerian walks and short-cutting 
on S H ), we obtain a valid HStT (bottom right).

el and fh represents the shortest path between these two 
nodes. Similarly for the dashed path between fh and gl . 
By definition S contains all solid edges except (el, fh) and 
( fh, gl) which we replace by four dashed edges.

Let S H be the restriction of S on the hub-level edges 
(i.e., the edges (u, v) added to S corresponding to an 
edge (uh, vh) ∈ H). S H may have multiple connected com-
ponents, each of which may contain unhubbed nodes (for 
which we do not have vertical edges of the form (uh, ul)

in F ). In Fig. 4, the left bottom tree corresponds to S with 
two components (subtrees): one containing a single edge 
(b, c) and the other containing two edges (e, f ) and ( f , g)

where node f is an unhubbed node. For each subtree, 
by doubling the tree, taking an Eulerian walk and short-
cutting edges, we can construct a new subtree on only 
the hubbed nodes with the cost at most doubled w.r.t. 
the original subtree. The final solution consists of edges 
from all these new subtrees, as well as edges that are con-
tained in S but not in any of the original subtrees. In Fig. 4, 
the bottom right shows this solution after postprocessing, 
which short-cuts the visit to node f .

Notice any two components are connected by our con-
struction, which implies that this solution is connected. 
Recall S spans the terminal set R . As a result, the solu-
tion also spans R . In particular, it means the solution is a 
valid HStT whose cost is at most twice the cost of the orig-
inal Steiner tree. The theorem is then proved by combining 
the two parts. �

We get the following corollary from Theorems 4.1
and 4.2.

Corollary 4.3. There is a polynomial-time 2ρS T -approximation 
algorithm for the metric HStT problem, where ρS T = ln 4 + ε
for any constant ε > 0.
5

5. Conclusion

In this paper, we introduced the HStT problem and 
presented hardness results and approximation algorithms. 
Our hardness results rely on reductions from the set cover 
problem, and approximation algorithms rely on reduc-
tions to the node-weighted or edge-weighted instances of 
Steiner tree.

The generalized network design problem [20] is a well-
known generalization of the Steiner tree problem (includ-
ing the Steiner forest problem e.g.), where the connectivity 
constraint is specified by a proper set-function over the 
node set V . The greedy algorithm of Klein and Ravi [14] is 
known to work for the node-weighted version of this gen-
eralized network design problem. It is not hard to verify 
that Reduction 2 works for this generalization without any 
modification. As a result, we can obtain an approximation 
algorithm for the two-level hub version of this generalized 
network design problem with logarithmic performance ra-
tio. It is also straightforward to extend our reduction of 
metric HStT to the hub network design version of the gen-
eralized network design problem with metric edge costs.

Extending Theorem 2.3 for λ > 0 is open. Requiring that 
the hub level network in the solution consists of a single 
connected component is a practically motivated extension 
that merits further study in future work.
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