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In the weighted minimum strongly connected spanning subgraph (WMSCSS) problem 
we must purchase a minimum-cost strongly connected spanning subgraph of a digraph. 
We show that half-integral linear program (LP) solutions for WMSCSS can be efficiently 
rounded to integral solutions at a multiplicative 1.5 cost. This rounding matches a known 
1.5 integrality gap lower bound for a half-integral instance. More generally, we show 
that LP solutions whose non-zero entries are at least a value f > 0 can be rounded at 
a multiplicative cost of 2 − f .

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The weighted minimum strongly connected spanning 
subgraph (WMSCSS) problem is arguably the simplest NP-
hard connectivity problem on directed graphs. In WMSCSS

we are given a strongly connected1 digraph D = (V , A)

with weight function w : A → R+ . Our goal is to pur-
chase a strongly connected spanning subgraph H = (V , A′)
of G of minimum cost, where the cost of H is w(A′) :=∑

a∈A′ w(a). The simplicity of WMSCSS has lent itself to 
several applications in network design and computational 
biology [1,19,23,26].

Unfortunately WMSCSS is NP-hard [16]. Even worse, it 
has been shown to be MaxSNP hard, meaning that it ad-
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mits no polynomial-time approximation scheme assuming 
P �= NP [19].

Fortunately WMSCSS admits a simple 2-approximation 
due to Frederickson and JáJá [11] which employs min-cost 
arborescences. Given digraph D = (V , A) and root r ∈ V , 
an r-in-arborescence of D is a spanning subgraph I =
(V , A′) such that every node v �= r has exactly one path 
to r along edges in A′ . An r-out-arborescence O is defined 
analogously with paths from r to v . Minimum-weight r-in-
and r-out-arborescences can be computed in polynomial 
time [6,7]. The mentioned 2-approximation simply fixes an 
arbitrary root r and then takes the union of a min-cost r-
in-arborescence and a min-cost r-out-arborescence. Since 
every node has a path to and from r in their union, the re-
sult is a feasible WMSCSS solution. Moreover, the result is 
a 2-approximation since the optimal WMSCSS is a strongly 
connected spanning subgraph and so contains a feasible r-
in- and r-out-arborescence as a subgraph for any choice 
of r. Remarkably, this 2-approximation has remained the 
best-known polynomial-time approximation for WMSCSS

for almost 40 years.
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Thus, WMSCSS falls into a class of combinatorial opti-
mization problems which admit simple, polynomial-time 
algorithms whose constant approximation ratios have not 
been improved in many decades. Notable other examples 
include the Traveling Salesman Problem (TSP) for which 
Christofides’ simple 1.5-approximation [5] has remained 
the best polynomial-time approximation since 1976 and 
the Weighted Tree Augmentation Problem (WTAP) for 
which the best known polynomial-time approximation ra-
tio is 2 as established by Frederickson and JáJá [11] in 
1981 in the same work that gave a 2 approximation for
WMSCSS. Given the apparent difficulty in improving these 
bounds, a great deal of work has focused on improving 
the approximation ratios of algorithms for special cases of 
these problems [2,9,13,14,19,20,22,25,27].

A recently fruitful such special case has been the as-
sumption that solutions to the relevant linear program 
(LP) are half-integral—that is, each coordinate of an op-
timal solution is assumed to lie in {0, 12 , 1}. Notably, 
Cheriyan et al. [4] showed that WTAP admits a 4/3-
approximation if the relevant LP is half-integral and Igle-
sias and Ravi [15] generalized this by showing that a 
2/(1 + f )-approximation is possible for WTAP if non-zero 
LP values are assumed to be at least f > 0. Similarly, a 
recent breakthrough of Karlin et al. [17] showed that a 
≈ 1.49993 approximation is possible for TSP if the LP so-
lution is assumed to be half-integral. Studying such special 
cases offers the opportunity to develop tools and to help 
delineate lower and upper bounds for the general case. 
For example, TSP instances with half-integral optimal LP 
solutions are conjectured to be the hardest TSP instances 
to approximate [24] and so the work of Karlin et al. [17]
was taken as evidence that Christofides’ algorithm does 
not, in fact, attain the best constant approximation among 
all polynomial-time algorithms—a suspicion recently con-
firmed by Karlin et al. [18].

1.1. Our contributions

In this work we take this approach to WMSCSS. Specif-
ically, we adapt a deterministic algorithm of Laekhanukit 
et al. [21] to show that half-integral solutions for the WM-

SCSS LP can be deterministically rounded in polynomial 
time at a multiplicative cost of 1.5. In this LP, we enforce 
that every non-trivial cut has at least one purchased edge 
leaving. We use δ+(S) to denote the set of arcs leaving 
S ⊂ V .

min w(x)
def= w T · x (WMSCSS LP)

s.t. x(δ+(S)) ≥ 1 ∀∅ ⊂ S ⊂ V

xa ≥ 0 ∀a ∈ A

Laekhanukit et al. [21] gave a family of half-integral in-
stances of WMSCSS for which the integrality gap of the 
WMSCSS LP is bounded below by 1.5 − ε for any ε > 0, 
and so our upper bound of 1.5 is tight.

More generally, we show how to round any LP solution 
with non-zero entries bounded below by f > 0 at a multi-
plicative cost of 2 − f .
2

Our result for half-integral solutions may be seen as 
adding to a growing body of evidence that a polynomial-
time 1.5-approximation is both achievable and the best 
possible for WMSCSS. Prior evidence includes a series of 
works that culminated in a 1.5-approximation for the unit-
cost case of WMSCSS [2,19,25] and the aforementioned 1.5
integrality gap lower bound, which is the best known in-
tegrality gap lower bound for WMSCSS LP. Since the best 
known integrality gap lower bound is attained by a half-
integral solution, it seems possible that for WMSCSS, like 
for TSP, the hardest-to-approximate instances may be half-
integral.

Our rounding algorithm will be a degenerate form of 
one proposed by Laekhanukit et al. [21]. In particular, 
Laekhanukit et al. [21] proposed an algorithm to study the 
k-arc connected subgraph problem for k ≥ 2 on unit-cost
graphs. This is the k-arc connected generalization of the 
unit-cost WMSCSS. We make use of the same algorithm 
but use it with k = 1 on arbitrary cost graphs; thus, the 
setting in which we apply this algorithm is somewhat dif-
ferent from that of prior work.

2. Rounding

We review the algorithm of Laekhanukit et al. [21] for 
k = 1 before presenting our new analysis.

2.1. Algorithm of Laekhanukit et al. [21]

The algorithm makes use of the r-in- and r-out-
arborescence LPs, defined as follows.

min w(x) (In-Arborescence LP)

s.t. x(δ+(S)) ≥ 1 ∀∅ ⊂ S ⊂ V s.t. r /∈ S

xa ≥ 0 ∀a ∈ A

The r-out-arborescence LP is defined symmetrically; in 
particular “δ+(S)” is replaced with “δ−(S)” (the set of 
edges entering the set S).

Given an x which is feasible for the arborescence LP, 
it is known how to efficiently sample arborescences in a 
manner consistent the marginals defined by x, as sum-
marized by the following claim. In the following, Din is a 
distribution over subgraphs of D each of which contains an 
in-arborescence and Dout is a distribution over subgraphs 
of D each of which contains an out-arborescence.2

Lemma 1 ([3,8,10,12]). Given an x feasible for the r-in- and 
r-out-arborescence LP’s, we can, in polynomial time, indepen-
dently sample sub-graphs I ∼ Din and O  ∼ Dout such that 
Pr(a ∈ I) = Pr(a ∈ O ) = xa for every a ∈ A. Moreover, the size 
of the support of Din and Dout is polynomial in the size of the 
graph and is computable in polynomial-time.

2 In the algorithm originally presented by Din Laekhanukit et al. [21]
the lemma has I equal to an in-arborescence and O equal to an out-
arborescence and Pr(a ∈ I) ≤ xa and Pr(a ∈ O ) ≤ xa . It is easy to see that 
the claimed lemma immediately follows by adding extra arcs to I and O
to increase the probability arc a is sampled to be exactly xa whenever 
that is not the case.
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The algorithm of Laekhanukit et al. [21] which we 
adapt for our case is as follows: given an x feasible for 
WMSCSS LP for an arbitrary root r, enumerate the support 
of Din and Dout as in Lemma 1 to get digraphs I1, . . . Iα
and O 1, . . . O β . Let χi j be Ii ∪ O j . Return the χi j of mini-
mum weight.3

2.2. Rounding LP solutions

We now apply this algorithm to LP solutions whose 
non-zero entries are at least f . Let PMSCS be the polytope 
corresponding to WMSCSS LP and let P f := {x ∈ PMSCS :
xa /∈ (0, f ) for all a ∈ A} be all feasible points whose non-
zero entries are at least f .

Theorem 1. Given an x ∈ P f , the above deterministic algorithm 
outputs an integral WMSCSS solution x̂ such that w(x̂) ≤ (2 −
f ) · w(x) in polynomial time.

Proof. Let χ be the digraph returned by the algorithm. 
Since each O i and I j contains an r-out and r-in-arbore-
scence, the characteristic vector corresponding to χ is a 
feasible integral solution to WMSCSS LP. Moreover, a poly-
nomial runtime follows immediately from Lemma 1 and 
the fact that there are only polynomially many χi j ’s.

Thus, let us bound the cost of χ . By an averaging ar-
gument, it suffices to upper bound the expected cost of 
χ̂ = I ∪ O where I ∼ Din and O  ∼ Dout since χ is in the 
support of this distribution, and the minimum cost mem-
ber in the collection has cost at most the average.

Consider a fixed arc a. By the inclusion-exclusion prin-
ciple, the fact that a ∈ I is independent of whether a ∈ O , 
and Lemma 1, the probability that a is in χ̂ is

Pr(a ∈ χ̂ ) = Pr(a ∈ I) + Pr(a ∈ O ) − Pr(a ∈ I)Pr(a ∈ O )

= 2xa − x2
a .

Thus, by linearity of expectation we have

E[w(χ̂ )] =
∑

a

w(a) · (2xa − x2
a)

≤
∑

a

w(a) · (2xa − xa · f )

(Since xa > 0 =⇒ xa ≥ f ∀xa ∈ P f )

= (2 − f ) · w(x). �
As a corollary of Theorem 1 we recover our 1.5-cost 

rounding for half-integral solutions:

Corollary 1. There is a deterministic polynomial-time algorithm 
which, given an x ∈ P1/2 , outputs a feasible integral x̂ such that 
w(x̂) ≤ 1.5 · w(x).

3 Here Laekhanukit et al. [21] actually used the optimal x. Addition-
ally, Laekhanukit et al. [21] stated their algorithm as choosing uniformly 
at random from among the χi j but then remarked that it can be deran-
domized; we give the derandomized version.
3
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