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Abstract. We consider the undirected minimum spanning tree problem
in a stochastic optimization setting. For the two-stage stochastic opti-
mization formulation with finite scenarios, a simple iterative randomized
rounding method on a natural LP formulation of the problem yields a
nearly best-possible approximation algorithm.

We then consider the Stochastic minimum spanning tree problem in a
more general black-box model and show that even under the assumptions
of bounded inflation the problem remains log n-hard to approximate un-
less P = NP ; where n is the size of graph. We also give approximation
algorithm matching the lower bound up to a constant factor.

Finally, we consider a slightly different cost model where the sec-
ond stage costs are independent random variables uniformly distributed
between [0, 1]. We show that a simple thresholding heuristic has cost

bounded by the optimal cost plus ζ(3)
4

+ o(1).

1 Introduction

Stochastic optimization refers to problems where the inputs have an uncertainty,
usually modeled by giving a probability distribution over the inputs. A common
framework for stochastic optimization problem is two-stage stochastic optimiza-
tion with recourse [2]. The uncertainty in the variables is modeled by proba-
bility distribution over a set of scenarios one of which will emerge tomorrow.
Recourse is the ability to take corrective action tomorrow when one of the sce-
narios emerges.

This framework is well suited to network design problems where, in practice,
the network has to be designed depending on the future demand patterns. One of
the basic problems in network design is the minimum cost spanning tree problem.
In this paper, we consider various models of the Stochastic Minimum Spanning
Tree problem and give near optimal approximation algorithms for them.
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Related Work. Stochastic Programming is well studied field with vast litera-
ture [16]. Recently, there has been work in designing approximation algorithm
for the problems [6, 7, 9, 12, 15].

The models considered here are usually the two stage stochastic optimization
with recourse. However, the variables in each scenario are correlated; e.g., in the
network design problems considered by [6, 7, 9, 12], the costs of all edges in each
scenario increases by the same factor.

In [15], Shmoys et al consider the problem of Stochastic set-cover and show
how a ρ-approximation for the deterministic version of the problem can be used
to obtain a 2ρ-approximation to the Stochastic version of the set-cover problem.
Although, the spanning tree problem can be formulated as a set cover problem
(see Section 3), the techniques of [15] do not yield a solution as the set cover
problem is exponential in size. Also, the deterministic spanning tree problem
when formulated as a set cover problem has a integrality gap of 2 while stochastic
version of the problem is O(log n)-hard to approximate unless P = NP . Hence,
it is unlikely that techniques discussed in [15] will be applicable to Stochastic
MST problem.

2 Models and Our Results

2.1 Stochastic MST with Explicit Scenarios

A popular formulation for stochastic optimization problems explicitly lists the
finite set of scenarios which can occur tomorrow. The stochastic version of the
minimum spanning tree problem under this model can be stated as follows: In
the first stage we are given a complete graph G = (V,E) on n nodes and a non-
negative cost function c0 on edges. In the second stage we have k scenarios and
probabilities pi, 1 ≤ i ≤ k of their occurrences. Each scenario has a different cost
function ci on the edges. The problem is select a subset of edges E0 in the first
stage and then augment it with Ei in the ith scenario to obtain a spanning tree
in each of the k scenarios. The objective function to minimize is the expected
cost of the edges chosen. Note that, this cost is c0(E0)+

∑k
i=1 pici(Ei). Observe

that in this model the costs of the edges in any scenario need not be correlated.
Although, the deterministic version of the problem has linear-time randomized
algorithm [10], the stochastic version of this problem is hard. It has been shown
in [3, 5] that the problem is hard to approximate within a factor ofmin{log n,
log k}, by a reduction from set-cover.

We give the following result for this model:

Theorem 1. There exists a polynomial time randomized algorithm which re-
turns a solution of expected cost O((log n + log k) · OPT) with high probability,
where OPT is the cost of the optimum solution of the Stochastic spanning tree
problem on graph G = (V,E), |V | = n with k scenarios. The running time is
polynomial in k and n.

Observe that, when k = poly(n) our algorithm gives the best approximation up
to a constant factor.
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We formulate a simple linear program for the stochastic spanning tree problem.
We then use an optimal fractional solution to randomly round each edge. The
techniques used for proving Theorem 1 are adapted from Alon[1].

2.2 Stochastic MST in the Black-Box Model

In this model, the scenarios are not stated explicitly but we have access to a
Black-box from which we can sample the second stage scenarios. The samples
are drawn from the same probability distribution as the second stage scenarios.
Let λ = max1≤i≤k,e∈E{ ci

e

c0
e
,

c0
e

ci
e
} denote the maximum cost inflation factor. We

show that even when λ is polynomial in n = |V (G)| the problem is hard to
approximate.

Theorem 2. Stochastic Spanning Tree problem on a graph G = (V,E) with
n = |V (G)| with inflation λ is O(log n)-hard to approximate unless P = NP
even when λ = poly(n).

We then give an approximation algorithm matching the lower bound proved
in Theorem 2.

Theorem 3. Given an instance of Stochastic Spanning Tree problem in the
Black-box model with inflation factor λ, there exists a randomized algorithm
which returns a solution of expected cost O((log n+log λ) ·OPT) with high prob-
ability, where OPT is the cost of the optimum solution. The running time of the
algorithm is polynomial in n and λ.

Hence, if λ = p(n) for some polynomial p(n), we get an approximation algorithm
optimal up to a constant factor. We reduce the Stochastic MST problem in the
black-box model to the Stochastic MST with explicit scenarios by sampling
k = poly(n, λ) times and using these scenarios in the new problem constructed.
We show that solving the Stochastic MST problem with these explicit scenarios
gives a good solution to Stochastic MST problem in the Black-box model as well.

2.3 Stochastic MST with Independent Random Costs

A well-studied problem is to determine the cost of the minimum spanning tree
of a complete graph when the edge costs are independent random variables uni-
formly distributed in [0, 1]. A classic result of Frieze [4] shows that the expected
cost of the minimum spanning tree is ζ(3) + o(1). A natural stochastic version
of the problem can be formulated when first-stage costs are given by a cost
function c0 and second-stage costs are independent random variables uniformly
distributed between [0, 1].

For this model, we analyze a thresholding heuristic. The thresholding heuris-
tic with threshold α consists of excluding all edges with cost more than α in the
first stage and constructing a minimum spanning tree over each of the resulting
components. These components are then optimally joined in the second stage.
We show that a thresholding heuristic gives a solution within ζ(3)

4 + o(1) of the
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optimum solution. We also show that if the optimum solution is ‘tiny’, then our
solution is also small by showing that the expected cost of our solution is at
most

√
3ζ(3) · OPT + o(1).

Theorem 4. The thresholding heuristic with the threshold ζ(3)
n gives a solution

whose expected cost is at most OPT + ζ(3)
4 +o(1), where OPT is the expected cost

of the optimal solution. The expected cost is also bounded by
√

3ζ(3) · OPT+o(1).

Another stochastic version of the problem, when both the first stage and second
stage costs are independent random variables uniformly distributed between
[0, 1], was studied by Flaxman et al[3]. Flaxman et al[3] show that a thresholding
heuristic gives a solution of cost ζ(3)− 1

2 +o(1), while ζ(3)
2 +c for some c > 0 is a

lower bound for the optimum. Surprisingly, the best threshold for their problem
is 1

n .

3 Stochastic MST with Explicit Scenarios

Linear Programming Formulation. The LP formulation for the two-stage Stochas-
tic MST is the standard formulation enforcing the requirement that every non-
trivial cut must be covered by an edge chosen in the first stage or, in each
scenario, it must be covered with an edge chosen in the second stage. Although
this LP formulation has an integrality gap of 2 in the deterministic setting, for
stochastic version of the MST problem the optimal solution can be rounded
to obtain a near optimal approximation algorithm. We call the following linear
program the cut-cover LP.

min
∑

e c0
ex

0
e +

∑
e

∑k
i=1 pi ci

ex
i
e

s.t. ∑
e∈δ(S) x0

e + xi
e ≥ 1 ∀S ⊂ V, 1 ≤ i ≤ k

xi
e ≥ 0 ∀e ∈ E, 0 ≤ i ≤ k

We solve the the cut-cover linear programming formulation of the 2-stage
spanning tree problem. Although, the linear program is not compact, an efficient
separation subroutine can be supplied via an invocation to a min-cut subproblem.
Alternately, equivalent compact reformulations can be readily obtained. (For eg.
see the survey on spanning tree formulations by Magnanti and Wolsey [11]).

Rounding the Linear Program. Let x̂ denote the optimal solution. We construct
k forests, one for each scenario, by rounding the LP solution x̂ in phases. Ini-
tially, all k forests have singleton components. In each phase, we pick edge e
independently with probability x̂0

e and include it in each of the k forests. Also
for each i, 1 ≤ i ≤ k, we pick edge e independently with x̂i

e and include it in the
ith forest. Clearly, the expected cost of edges included in each phase is precisely
OPT where OPT is the cost of the optimal LP solution x̂. We argue that in one
phase, for each of the k forests, the number of components decrease by a factor
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of 9
10 with probability at least 1

2 . We then argue that in O(log n + log k) phases,
with very high probability, each of the k forests will have just one component,
i.e., a feasible solution for the 2-stage spanning tree problem and the expected
cost of the solution is O(log n + log k) · OPT as claimed. We elaborate on the
above outline.

Lemma 1. The expected cost of the edges paid in any phase is at most OPT.

Proof. An edge e is included in the first stage with probability x̂0
e and in the

ith scenario with probability x̂i
e. Hence, the expected cost paid for including this

edge is c0
ex̂

0
e +

∑k
i=1 pici

ex̂
i
e. Hence, the total expected cost paid in any phase is

∑
e∈E(c0

ex̂
0
e +

∑k
i=1 pici

ex̂
i
e) which is exactly OPT. ��

Let F i
j denote the ith forest after j phases. Let Ci

j denote the number of
components in F i

j . We call a phase j ‘successful’ for scenario i, if Ci
j < 0.9Ci

j−1

or if Ci
j−1 = 1. We now state a lemma from [1]. For completeness, we also include

the proof in the Appendix.

Lemma 2 (Alon [1]). For every i, j, the conditional probability that phase j is
successful for scenario i, given any set of components in F i

j−1, is at least 1
2 .

Lemma 3. After t = (40 log n + 16 log k) phases, the probability that any of the
k forests, F i

t , 1 ≤ i ≤ k, is not connected is at most 1
(kn)2 .

Proof. Observe that the ith forest gets connected after at most log0.9 n < 10 log n
successful phases. Hence, if F i

t is not connected, then there have been at most
10 log n successful phases for the ith scenario. The probability of this event is no
more than the probability that we get at most 10 log n heads in t independent
tosses of a fair coin. Although, the event that a phase j is successful for scenario
i is not independent for different j, we can apply the above bound since Lemma
2 gives a lower bound on success given any history. Using estimates for tails of
Binomial distributions, this probability is at most

e−(10 log n+8 log k)2/2×(20 log n+8 log k) ≤ e−(10 log n+8 log k)/4 ≤ 1
(kn)2

.

Using union bound, we get that the probability that any of the k forests is not
connected is at most k × 1

(kn)2 = 1
kn2 . ��

Hence, after 40 log n + log k phases with very high probability each of the k
forests are connected and from Lemma 1, the expected cost of the solution is
(40 log n + log k) · OPT proving Theorem 1.

Remark 1. If the randomized rounding fails to connect any forest after O(log n+
log k) phases, then we use a simple k-approximation algorithm: for each scenario
build a tree by running Kruskal’s algorithm on edge costs equal to the minimum
of first and second stage costs. This will guarantee that our algorithm always
builds a spanning tree; further, since the failure probability is at most 1

(kn)2 per
scenario the expected cost of our solution is still bounded by O(log n + log k)
times the optimum.
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Remark 2. Theorem 1 shows that the cut-cover LP formulation has a integrality
gap of O(log n) assuming k = poly(n). Also, the reduction from set cover given
by Gupta [5], yields examples where the cut-cover LP has a integrality gap of
Ω(log n). Hence, the integrality gap of the cut-cover LP formulation is θ(log n).

4 Approximation Algorithm for Black-Box Model

In this section, we consider the black-box model for the Stochastic spanning tree
problem. We assume that the inflation factor λ is bounded by some polynomial
p(n). Note that the problem still remains O(log n)-hard to approximate unless
P = NP (Theorem 2).

Let TRUE-LP denote the linear programming formulation of the stochastic
spanning tree problem. Given any ε > 0, δ > 0, we sample from the black
box, according to probability distribution ρ, the second stage scenarios k =
poly(n, λ, 1

ε , 1
δ ) times. We then formulate a new stochastic MST problem using

these k samples as the second stage scenarios each occurring with probability
1
k . We call the corresponding linear program of the new instance of the problem
formed SAMPLE-LP.

Let x̂0 denote the first stage component of the optimal solution of SAMPLE-LP.
We show that if x̂0 is used as the first stage solution for TRUE-LP, with proba-
bility 1− δ, we can extend this solution in any scenario with total expected cost
(1 + ε)OPT where is the expected cost of the optimal solution of TRUE-LP.
Hence, using the result of Theorem 1, we round this LP solution to get an inte-
gral solution of expected cost O(log n · OPT). Observe that, to obtain the first
stage solution we only need to know the first stage fractional variables x̂0 and
need not know the second stage distribution or second stage solution.

Given any x0, the first stage variables, let f(x0) denote the cost of extending
x0 to a feasible solution on a random sample according to probability distribution
ρ and let F (x0) = E

[
f(x0)

]
. Let Fk(x0) be the random variable denoting the

average completion cost over k independently sampled scenarios, i.e., Fk(x0) =
1
k

∑k
i=1 fi(x0) where fi(x0) is the random variable denoting the cost of extending

x0 in the ith sample. The key to bounding our sample size is Lemma 4. The
techniques of [15, 14] also can also be used to prove Lemma 4, we here give a
much simpler proof. For simplicity, we assume that probability distribution ρ is
discrete and finite but the same argument also works for continuous distributions.

Lemma 4. Given any ε > 0 and δ > 0, if k = λ4

ε2δ , then Pr[|Fk(x0)− F (x0)| <
ε · OPT] ≤ δ. Here, OPT is the expected cost of the optimal solution.

Proof. Clearly E
[
Fk(x0)

]
= 1

k

∑k
i=1 E

[
fi(x0)

]
= 1

k

∑k
i=1 F (x0) = F (x0). Also,

V ar[Fk(x0)] =
1
k2

k∑

i=1

V ar[fi(x0)] =
1
k

V ar[f(x0)] (1)

as f i(x0) are independent random variables with distribution identical to f(x0).
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Now,
V ar[f(x0)] =

∑

t

ρt(ct(x0) − F (x0))2 (2)

where ρt is the probability of the tth scenario and ct(x0) is the cost paid in this
scenario to extend x0 to a feasible solution. Let j denote the index for which
ct(x0) is minimum. As we can select exactly the edges selected in the jth scenario
in any other scenario to extend x0 and inflation factor is bounded by λ, hence

ct(x0) ≤ λ2cj(x0) (3)

Also, if we do not select anything in the first stage our cost only goes up by a
factor of λ and hence

∑
t ρtct(x0) ≤ λ ·OPT. As cj(x0) is minimum, this implies

cj(x0) ≤ λ · OPT (4)

From Equation (2), (3) and (4), we have

V ar[f(x0)] ≤ ∑
t ρtct(x0)2

≤ (λ2cj(x0))
∑

t ρtct(x0)
= λ2cj(x0) · λ · OPT
≤ λ4 OPT2

(5)

Hence, using Equation (1),

V ar[Fk(x0)] =
1
k

V ar[f(x0)] = ε2δ · OPT2 (6)

Hence, by the Chebychev inequality we have,

Pr[|Fk(x0) − F (x0)| > ε · OPT] ≤ ε2δ · OPT2

ε2 · OPT2 = δ (7)

��
Proof of Theorem 3. Let x̂0 denote the first stage component of the optimial
solution of SAMPLE-LP formed using k = λ4

ε2δ samples. Also let x̄0 denote the
first stage optimal solution to TRUE-LP. Using Lemma 4 twice, once for x̂0 and
once for x̄0, we have with probability at least 1 − 2δ that

|Fk(x̂0) − F (x̂0)| ≤ ε · OPT
|Fk(x̄0) − F (x̄0)| ≤ ε · OPT

As x̂0 is the optimal solution to SAMPLE-LP and x̄0 is the optimal solution to
TRUE-LP, we have

Fk(x̂0) ≤ Fk(x̄0), F (x̄0) ≤ F (x̂0)

Using the above we have that

F (x̂0) ≤ F (x̄0) + 2ε · OPT (8)
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Hence, sampling k = λ4

ε2δ times and solving the SAMPLE-LP gives first stage
variables which can be extended to second stage with total cost at most (1 +
ε)OPT with probability at least 1 − 2δ. Hence, now if we apply Theorem 1
to SAMPLE-LP, we obtain the first stage component of a solution of total cost
O((log n+log λ+log 1

εδ )OPT) with probability at least 1−δ proving Theorem 3.
��

5 Stochastic MST with Random Costs

In this section, we consider the two stage stochastic MST when the second stage
costs are given by independent random variables uniformly distributed between
[0, 1].

Thresholding. A thresholding heuristic with threshold α consists of removing all
edges in the first stage with costs more than α and constructing a minimum cost
spanning tree over each of the components formed. The components are then
joined in an optimal manner in the second stage.

Observe that, for a forest F , the cost of extending F to a spanning tree
in the second stage depends only on the sizes of the components of F . Let
the components of F be (C1, . . . , Ck). Construct an auxillary graph F ′ with k
vertices vi, 1 ≤ i ≤ k where vi corresponds to component Ci of F . Include |Ci| ·
|Cj | edges between vi and vj , where the cost of edges are independent random
variables distributed uniformly between [0, 1]. Clearly, the cost of extending F
to a spanning tree in the second stage is the cost of minimum spanning tree of
F ′ which only depends on the sizes of the components of F .

In Lemma 6, we show that if we join k components then the expected average
cost of each edge bought tomorrow is between ( k

n ) ζ(3)
n + o( 1

n ) and ζ(3)
n + o( 1

n ).
Hence, it is ‘reasonable’ not to buy any edge which costs more than ζ(3)

n and
buy the edges which cost less than ζ(3)

n in the first stage itself.
First, we prove a lemma which shows how the cost of the second stage depends

on the sizes of the components formed in the first stage. Note that the cost of
extending a forest F to a spanning tree in the second is the exactly the cost of
minimum cost spanning tree in the auxillary graph F ′ defined above.

Lemma 5. Let G and G′ be two forests, where the components of G are (C1, C2,
. . . , Ck) and the components of G′ are (C1 ∪ {x}, C2 \ {x}, C3, . . . , Ck) for some
vertex x ∈ C2. If |C1| ≥ |C2|, then the expected cost of extending G to a span-
ning tree in the second stage is less than the cost of extending G′ to a spanning
tree.

Proof. Let E[c(G)] denote the expected cost of extending G to a spanning tree in
the second stage. Consider graph H which has components(C1, C

′
2, x, C3,. . . , Ck),

where C ′
2 = C2 \ x. If we connect up x to C1 for free, then we get G′, and if we

connect x to C ′
2 for free, then we get G. Therefore,

E[c(H)] ≥ E[c(G)] and E[c(H)] ≥ E[c(G′)]
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We will show that the reduction in cost when connecting x to C1 is larger.
This will imply that E[c(G)] ≤ E[c(G′)].

Let Gp denote the graph formed by including in G every edge independently
with probability p. Similarly, define G′

p and Hp. In order to bound expected cost
of spanning trees on G and G′, we look at the expected number of connected
components in Gp, G′

p and Hp. Let χ(Gp) and χ(G′
p) denote the number of

connected components of Gp and G′
p respectively. We will show that E[χ(Gp)] ≤

E
[
χ(G′

p)
]
. Note that this suffices in proving the above claim, since E[c(G)] =

∫ 1

0
(E[χ(Gp)] − 1) dp.
Note that we can obtain Gp (resp. G′

p) from Hp by connecting x to C1 (resp.
C ′

2) in Hp. We focus only on the number of connected components.
We use the principle of deferred decision. We first reveal the edges coming

out of vertex x in Hp. If x has edges to both C1 and C ′
2 or to neither of them,

then adding an edge from x to either C1 or C ′
2 and revealing rest of the edges

in the graph gives the expected number of connected components.
Now observe that since |C1| > |C ′

2|, the probability that x is connected
to component C1 in Hp is reater than the probability that x is connected to
C ′

2. Therefore, G′
p formed by including x to C ′

2 in Hp, has higher probability
of reducing the number of connected components by 1 than in Gp, formed by
including x in C1. From this it follows that E[χ(Gp)] ≤ E

[
χ(G′

p)
]
. This proves

the lemma. ��
The cost of extending a forest with k components to a spanning tree in the

second stage can now be bounded as follows. The proof involving some careful
calculations appears in the Appendix.

Lemma 6. Given a forest F with k components, the expected cost of extending F

to a spanning tree in the second stage is between ( k
n )

2
ζ(3)+o(1) and k

nζ(3)+o(1).

Using this lemma, we now prove the main result of this section.

Proof of Theorem 4. Now, we prove Theorem 4 which bounds the expected
cost of the solution returned by a thresholding heuristic. First, observe that the
optimum solution must buy a forest in the first stage and join the components
of the forest in the second stage. Suppose, the thresholding heuristic and the
optimum solution buys k and opt1 edges respectively, in the first stage. Then,
they buy n− k − 1 and n− opt1 − 1 edges respectively, in the second stage. We
form two cases depending on which of k and opt1 is larger.

Case I (k ≤ opt1). Let the cost of the k edges bought by the thresholding
heuristic be c1(k). List the opt1 edges included in the optimum solution in the
first stage in increasing costs. Clearly, cost of the first k edges in the order is at
least c1(k) as we chose the cheapest k acyclic edges. Also, rest of the opt1 − k

edges in the sequence must cost at least ζ(3)
n as any acyclic subgraph of edges

with cost at most ζ(3)
n is of size at most k. If E[c(G)] denotes the expected cost

of the thresholding heuristic and Loss denotes E[c(G)] − OPT,then by Lemma
6 we have,
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E[c(G)] ≤ c1(k) +
(

n − k − 1
n

)

ζ(3) + o(1)

and OPT ≥ c1(k) + (opt1 − k)
ζ(3)
n

+
(

n − opt1 − 1
n

)2

ζ(3) − o(1)

⇒ Loss ≤
(

n − opt1 − 1
n

)

ζ(3) −
(

n − opt1 − 1
n

)2

ζ(3) + o(1)

Case II (k > opt1). Let the cost of the opt1 edges bought by the optimum
solution be c1(opt1). Order the k edges bought by the thresholding heuristic in
increasing order of costs. The cost of the first opt1 edges in this order is at most
c1(opt1) as we buy the cheapest acyclic subgraph of size opt1. Also, each of the
last k−opt1 edges in the order costs at most ζ(3)

n as we threshold at ζ(3)
n . Hence,

using Lemma 6, we get

E[c(G)] ≤ c1(opt1) + (k − opt1)
ζ(3)
n

+
(

n − k − 1
n

)

ζ(3) + o(1)

and OPT ≥ c1(opt1) +
(

n − opt1 − 1
n

)2

ζ(3) − o(1)

⇒ Loss ≤
(

n − opt1 − 1
n

)

ζ(3) −
(

n − opt1 − 1
n

)2

ζ(3) + o(1)

Now, (n−opt1−1
n )ζ(3) − (n−opt1−1

n )2ζ(3) ≤ ζ(3)
4 for any value of opt1. Hence, we

get that

E[c(G)] ≤ OPT +
ζ(3)
4

+ o(1)

for both of the cases, proving the first claim in the theorem.
Now observe that OPT ≤ ζ(3) and consequently, each of the terms in the

expression of OPT must be less than ζ(3). Using this, in case I, we have that

E[c(G)] ≤ c1(k) +
(

n − k − 1
n

)

ζ(3) + o(1)

= c1(k) +
(

opt1 − k

n

)

ζ(3) +
(

n − opt1 − 1
n

)

ζ(3) + o(1)

≤

√
√
√
√3

(

c1(k)2 +
((

opt1 − k

n

)

ζ(3)
)2

+
(

n − opt1 − 1
n

)

ζ(3)

)2

+o(1)

≤
√

3(ζ(3)c1(k) + ζ(3)(opt1 − k)
ζ(3)
n

+ζ(3)(
n − opt1 − 1

n
)2ζ(3))+o(1)

≤
√

3ζ(3) · OPT + o(1)

The second step of the inequality follows from the fact that
√

3(a2 + b2 + c2)≥
a + b + c for any reals a, b, c.
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In the second case, we have that

E[c(G)] ≤ c1(k) +
(

k − opt1
n

)

ζ(3) +
(

n − opt1 − 1
n

)

ζ(3) + o(1)

= c1(opt1) +
(

n − opt1 − 1
n

)

ζ(3) + o(1)

≤
√
√
√
√2

(

c1(opt1)
2 +

((
n − opt1 − 1

n

)

ζ(3)
)2

)

+ o(1)

≤
√
√
√
√2

(

ζ(3)c1(opt1) + ζ(3)
(

n − opt1 − 1
n

)2

ζ(3)

)

+ o(1)

≤
√

2ζ(3) · OPT + o(1)

Here, the second step follows from
√

2(a2 + b2) ≥ a + b for any reals a, b.
Hence, c(T ) ≤ √

3ζ(3) · OPT + o(1) as claimed.
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Appendix A: Hardness of Stochastic MST with Bounded
Inflation

In this section, we prove Theorem 2 stating that Stochastic MST with polynomial
inflation is O(log n)-hard to approximate unless NP ⊆ DTIME(nO(log log n)). We
give an approximation preserving transformation from the Set Cover problem to
the Stochastic MST with inflation λ = p(n) for some polynomial p(n).

Given an instance of set cover problem, i.e, a set U = [n] and collection of
subsets S1, . . . , Sm, we construct an instance of stochastic spanning tree problem
with m+n+1 vertices. Let the vertices be {v1, . . . , vn, s1, . . . , sm, r}. The vertex
vi corresponds to element i ∈ U and sj corresponds to subset Sj .

The first stage cost of edge (r, sj) is 1, for each 1 ≤ j ≤ m and cost of all
other edges is mn. See Figure 1(a). The edges not present have cost mn.

There are n scenarios, one corresponding to each element i ∈ U , each having
a probability 1

n of appearance in the second stage. In the ith scenario, each edge
of cut separating Ti = {vi}∪{sj : i ∈ Sj} from G\Tj has cost mn and remaining
edges have cost 1

mn . See Figure 1(b). The edges absent have cost mn.

1 1 1 1 1 1 1

1
mns1 sm

v1 vn v1

r r

1
mn

(a) (b)

T1

1
mn

Fig. 1. (a) First stage costs (b) Second stage scenario corresponding to v1



On Two-Stage Stochastic Minimum Spanning Trees 333

It is clear that the inflation factor of any edge is bounded by m2n2. Given any
set cover C of size k, choose edges (r, vj) such that Sj ∈ C in the first stage. In
the ith scenario, this first stage solution can be extended to a spanning tree with
edges of cost 1

mn . Hence, there exists a feasible solution of stochastic spanning
tree of total cost at most k + 1

n . Given a feasible solution to the stochastic
spanning tree of total cost c ≤ m + 1, we construct a feasible set cover of cost
between c − 1

n and c. Clearly, the solution contains no edge of cost mn. Let
C = {Sj : (r, sj) is selected in the first stage}. In the ith scenario, we cannot
buy any edge of cost mn. Hence, the ith element must have been covered by
some set in C. Hence, the sets selected form a set cover. Also, the total cost paid
in the second stage is at most 1

n . Hence, the size of C is at least c− 1
n . The cost

of the set cover is exactly the first stage cost paid in the solution.
Hence, the hardness of the approximation result for the set cover [8, 13] imply

that the stochastic spanning tree is at least O(log n)-hard to approximate unless
P = NP .

Appendix B: Proofs

Proof of Lemma 2. If F i
j−1 is connected, then the claim is trivial. Given some

forest F i
j−1, shrink each component to a singleton vertex and call the constructed

multi-graph H. Consider any vertex v in H. An edge e is not included in F i
j with

probability (1−x0
e)(1−xi

e). Let δ(v) denote the neighborhood of node v. Hence,
the probability that v remains isolated is

∏

e∈δ(v)

(1 − x0
e)(1 − xi

e) ≤ exp(−
∑

e∈δ(v)

(x0
e + xi

e))

Using the fact that
∑

e∈δ(v)(x
0
e + xi

e) ≥ 1, we get that the probability that v

is isolated is at most 1
e . Using linearity of expectation, the expected number

of isolated vertices in H is |H|/e, and hence with probability at least 1
2 , the

number of isolated vertices is less than 2|H|/e. Hence, the number of connected
components in F i

j is at most

2|H|
e

+
1
2
(|H| − 2|H|/e) = (

1
2

+
1
e
)|H| < 0.9|H|

Using that |H| = Ci
j−1, we get the desired result.

Proof of Lemma 6. Let E[c(F )] denote the expected cost of extending the
forest F to a spanning tree. By Lemma 5, we get that E[c(F )] is minimum
when the k components of F are of equal sizes and it is maximum when all
except one component are singletons. We calculate the expected costs of joining
k components in either cases and get appropriate bounds as claimed.

Consider the case when F has one component of size n − k + 1 and rest
k − 1 components are singleton vertices. Then, the expected cost of joining the
components optimally is
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E[c(F )] =
∫ 1

p=0

E[κ(Fp) − 1] dp (9)

where Fp is the graph formed when each edge is included in F , independently,
with probability p and κ(Fp) denotes the connected component of Fp. Now,
using the ideas from [3], we need to consider components of size at most (log n)2.
There are at most n

(log n)2 components of size greater than (log n)2 and each can

be joined with probability 1 − o(1) with an edge of cost at most log n
n . Hence,

the total cost of joining such components is o(1). Also, we can assume that
n − k + 1 ≥ (log n)2, otherwise the claim holds trivially as otherwise k−1

n ζ(3) +

o(1) ≥ n−(log n)2

n ζ(3) + o(1) = ζ(3) + o(1). Hence, we assume that the that the
largest component of F is not included in a component of size more than (log n)2.
Using the above observations we have that,

E[c(F )] =
∫ 1

p=0

(log n)2∑

j=1

(
k − 1

j

)

jj−2 pj−1(1 − p)j(n−j)+O(j2)dp + o(1)

=
(log n)2∑

j=1

(
k − 1

j

)

jj−2

∫ 1

p=0

pj−1(1 − p)jn dp + o(1)

=
(log n)2∑

j=1

(
k − 1

j

)

jj−2 (j − 1)!(jn)!
(j + jn)!

+ o(1)

=
(log n)2∑

j=1

(k − 1)j

j!
jj−2 (j − 1)!

jjnj
+ o(1)

=
(log n)2∑

j=1

(
k − 1

n

)j 1
j3

+ o(1)

≤ k − 1
n

(log n)2∑

j=1

1
j3

+ o(1) =
k

n
ζ(3) + o(1)

Now consider the case when all k components are nearly of equal sizes. As-
sume for the sake of simplicity that all the components are of size n

k . Then F is
equivalent to a multi-graph on k vertices, each vertex representing a component
in F . The multi-graph has (n

k )2 edges between any two vertices. We replace the
(n

k )2 edges edges with a single edge whose cost is a random variable defined to
be the minimum of (n

k )2 independent random variables uniformly distributed
between [0, 1]. Observe that the new random variable has is distributed around
the origin like a uniform random variable between [0, ( k

n )2]. Hence, using the
result by Frieze [4], the cost of the minimum cost spanning tree is ( k

n )2ζ(3). The
argument goes through even in the case when k does not divide n and all compo-
nents differ in sizes by at most one and the same bound holds. The calculations
are tedious and are omitted.
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