
Sending Secrets Swiftly:

Approximation Algorithms
for Generalized Multicast Problems

Afshin Nikzad1 and R. Ravi2

1 MS&E Department, Stanford University, USA
nikzad@stanford.edu

2 Tepper School of Business, Carnegie Mellon University, USA
ravi@cmu.edu

Abstract. We consider natural generalizations of the minimum broad-
cast time problem under the telephone model, where a rumor from a root
node must be sent via phone calls to the whole graph in the minimum
number of rounds; the telephone model implies that the set of edges in-
volved in communicating in a round form a matching. The extensions we
consider involve generalizing the number of calls that a vertexmay partici-
pate in (the capacitated version), allowing conference calls (the hyperedge
version) as well as a new multicommodity version we introduce where the
rumors are no longer from a single node but from different sources and in-
tended for specific destinations (the multicommodity version). Based on
the ideas from [6,7], we present a very simple greedy algorithm for the basic
multicast problem with logarithmic performance guarantee and adapt it
to the extensions to design typically polylogarithmic approximation algo-
rithms. For the multi-commodity version, we give the first approximation

algorithm with performance ratio 2O(log log k
√

log k) for k source-sink pairs.
We provide nearly matching lower bounds for the hypercasting problem.
For themulticommodity multicasting problem, we present improved guar-
antees for other variants involving asymmetric capacities, small number of
terminals and with larger additive guarantees.

Keywords: approximation algorithms, graph algorithms, b-matching,
LP rounding.

1 Introduction and Motivation

Rumor spreading in networks has been an area of much study involving the
gamut from finding the minimum possible number of messages to spread gossip
around the network [23,2,12] to finding graphs with minimum number of edges
that are able to spread rumors in the minimum possible time in the network [9].
An important NP-hard formulation asks to find a scheme that spreads a rumor
from a single root node to all other nodes under the popular “telephone” model
where every node can participate in a telephone call with at most one other
neighbor in each round, and the goal is to minimize the number of rounds. This

J. Esparza et al. (Eds.): ICALP 2014, Part II, LNCS 8573, pp. 568–607, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Approximation Algorithms for Generalized Multicast Problems 569

is the minimum broadcast time problem for which there has been active work
in designing approximation algorithms [14,20,10,7]. We study generalizations of
this problem that involve (i) sending the message to only a subset of receivers
(multicasting), (ii) capacity constraints on the number of calls in which a node
can participate (capacitated cases), (iii) allowing conference calls modeled by
hyperedges (hypercasting problem), and (iv) multiple sources of rumors with
different sets that are the targets for the different rumors (the multicommodity
case). Our paper initiates work on the capacitated, hypercasting and multicom-
modity extensions of the “rapid rumor ramification” problem [20], bringing it to
next range of generalizations of “sending secrets swiftly”.

Problem Definition

Definition 1. In the (minimum time) Multicast problem, we are given an
undirected graph G(V,E) which represents a telephone network on V , where two
adjacent nodes can place a telephone call to each other. We are given a source
vertex r and a set of terminals R ⊆ V . The source vertex has a message and
it wants to inform all the terminals of the message. To do this, the vertices of
the graph can communicate in rounds: In each round, we pick a matching of G
and arrange a bidirected phone call between each vertex in the matching and its
matched pair. If any of the two vertices knows the message before the phone call,
the other one will also know it afterwards. The goal is to deliver the message to
all the terminals in the minimum number of rounds.

When R = V , the Multicast problem is known as the (minimum time) broadcast
problem which is one of the most basic and well-studied problems in this setting.
Applications of this problem arise commonly in multicasting in networks [21],
keeping the information consistent across copies of replicated databases by broad-
casting from the changed copy to the others [16,17], as well as in finding schemes
that ensure that maximum information delay in problems modeled by vector
clocks [15] is minimized.

In this paper, we investigate the Multicast Problem in the following three more
general settings: i. Allowing multiple source vertices, i.e. the multi-commodity
setting rather than the single-source setting. ii. Allowing conference calls (with
possibly more than two participants) rather than just having phone calls. iii. Im-
posing capacities for the vertices, i.e. allowing a vertex to be in a number of phone
calls in each round, which can not exceed its capacity. In all of these general-
izations, the objective function remains minimizing the total number of rounds
used in the solution.

The first generalization is having messages with arbitrary source and desti-
nation vertices, i.e. unlike the Multicast Problem, the messages do not need to
share the same source vertex.

Definition 2. In the Multicommodity Multicast Problem (MM), a graph
G(V,E) is given along with a set of pairs of nodes P = {(si, ti)|1 ≤ i ≤ k}, known
as demand pairs. Each vertex si has a message mi which needs be delivered to ti.
The vertices communicate similar to the Multicast problem, i.e. during a phone

570 A. Nikzad and R. Ravi

call, each vertex can pass (a copy of) all of the messages that it has to the other
vertex.

The second aspect in our model is having conference calls rather than having
only phone calls, i.e. calls involving (possibly) more that two, rather than only
two, persons. So, instead of a simple graph G, we are given a hypergraph the
edges of which represent the potential conference calls. We call this problem the
Hypercast Problem; we define this problem formally and study it extensively in
Section D.

Finally, we bring in the notion of capacity of a vertex to our model for the
Multicast Problem, and allow a vertex to be in possibly more than a single call in
each round; the maximum number of phone calls that a vertex can have in each
round is called the capacity of the vertex. The Capacitated Multicast Problem is
formally defined and studied in Section C.

In this paper, we develop a unified solution framework that can incorporate
each of the Hypercast, Multi-commodity Multicast, and Capacitated Multicast
aspects, leading to the first approximation algorithms for any combination of these
extensions such as the Capacitated Hypercast Problem, or Multi-commodity Hy-
percast Problem. In the rest of this paper, we let n = |V |, k = |R| and OPT be
the optimal number of rounds needed to solve the given Multicast instance, unless
it is specified otherwise.

2 Related Work

Finding optimal broadcast schedules for trees was one of the first theoretical
problems in this setting and was solved using Dynamic Programming [18]. For
general graphs, Kortsarz et. al. developed an additive approximation algorithm
which uses at most c ·OPT +O(

√
n) rounds for some constant c. Later, Ravi [20]

provided a O(log2 n
log logn)-approximation for the same problem using the result of

Raghavan [19] for randomized rounding of an LP formulation for the concurrent
multicommodity flow problem.

Guha et.al. [10] improved the approximation factor for Multicasting in general
graphs to O(log k) where k is the number of terminals. To the best of our knowl-
edge, the best approximation factor for the Multicast problem is O(log k

log log k) [7].

Both of [7,10] present a recursive algorithm which reduces the total number of
uninformed terminals in each step of the recursion, while using O(OPT) number
of rounds in that step. In [10], they reduce the number of uninformed terminals
by a constant factor in each step and so they obtain a O(log k)-approximation,
but in [7], the number of uninformed terminals is reduced by a factor of OPT
which gives a O(log k

log log k)-approximation due to the fact that OPT = Ω(log k).

3 Our Results

Our main contribution is developing a framework to design approximation algo-
rithms for various generalizations of the Multicast Problem. A summary of the
key results in this paper is listed below. For the complete list of our results, see
Tables 1 and 2 in Section 7.

Approximation Algorithms for Generalized Multicast Problems 571

1. In Section 5, we give a very simple O(log k)-approximation for the Multicast
Problem, which is based on the ideas of [6,7]. With a slight modification of
this algorithm in Section C, we adapt it to solve the Capacitated Multicast
Problem.

2. In Section 6, based on our simple algorithm for the Multicast Problem,

we design a 2O(log log k
√
log k)-approximation for the Multi-commodity Mul-

ticast Problem (note that the approximation factor is, while being super-
polylogarithmic, still smaller than any constant root of k).

3. In Section D, we develop our simple algorithm further and obtain a O(log k ·
logn · D)-approximation for the Hypercast Problem, where D is the maxi-
mum size of a hyperedge. Also, our hardness results for the Hypercast Prob-
lem show that the dependence on D is unavoidable (see Section I).

4. In Sections G and H, we explore the Multi-commodity Multicast problem fur-
ther and design two polylogarithmic approximation algorithms which carry
additional additive factors of

√
n and Δ(G) (maximum degree).

While our algorithms for Multicast and Multi-commodity Multicast problems
are purely combinatorial, the algorithm for Hypercast involves solving a Linear
Program and randomized rounding of the LP solution.

Our results are not limited to this since our framework can handle more
general cases of the Multicast Problem, e.g. Capacitated Multi-commodity Hy-
percast Problem; all of them are summarized in Section 7.

4 Preliminaries

4.1 The Multicast Problem

In the context of any of the problems discussed in Section 1, sending vertex u
to vertex v means sending the information of u to v in a (potentially specified)
number of rounds. Given that P = {(si, ti)|1 ≤ i ≤ k} is the set of demand pairs
in any single-source or multi-commodity instance, let S = {s1, . . . , sk} be the
set of sources, T = {t1, . . . , tk} be the set of sinks, and R = S ∪ T be the set of
terminals. Also, let I(G,P) denote the Multicast (Hypercast) instance defined
by P on the graph (Hypergraph) G. We also use I when both G,P are clearly
known from the context.

4.2 Schedules

A schedule is a sequence of rounds. The length of a schedule S is denoted by
|S| and is the number of rounds it contains. A schedule for a (single-source or
multi-commodity) Multicast instance is non-lazy if, in any round of it, any two
idle and adjacent vertices have identical information in that round.

4.3 Graphs and Matchings

Suppose G is a simple graph and let n = |V (G)|. Let N(v) be the set of the
neighbors of a vertex v, and for any S ⊆ V (G), let N(S) = ∪v∈SN(v). Denote

572 A. Nikzad and R. Ravi

the degree of the maximum-degree vertex in G by Δ(G). For any X ⊆ V (G),
let G[X] be the induced subgraph of G on X . For any family of subgraphs of G,
such as F , let V (F) denote the union of the vertices of the subgraphs in F and
E(F) denote the union of the edges of the subgraphs in F .

The distance between two vertices of G, such as u and v, is represented by
dG(u, v). If there is no path in G between u, v, then let dG(u, v) = ∞. The diam-
eter of G, denoted by diam(G), is max

u,v∈V (G)
dG(u, v). Also, define diamP (G) =

max
(s,t)∈P

dG(s, t), where P is a set of pairs of vertices, e.g. the set of demand pairs.

Given a bipartite graph H [X,Y] with partitions X and Y , a b-matching in H
is a subset M of the edges of H such that each vertex of X is incident to exactly
one edge of M and each vertex of Y is incident to at most b edges of M .

4.4 Spiders

Spiders are subgraphs that have been useful in designing algorithms for the
Multicast and directed Broadcast problems in [10,5]. A spider S is a set of
(almost) vertex-disjoint paths all starting at the same vertex, e.g. v, and sharing
no vertex other than v. Define the center of S to be v. Also, let the degree of
S, denoted by deg(S), be the degree of v in S, and the length of S, denoted by
len(S), be maxu∈V (S) dS(u, v).

It’s very easy to verify the following lemma stated in [5].

Lemma 1. Using a non-lazy schedule, the center of a spider S can send (broad-
cast) a message to the rest of its vertices in deg(S) + len(S)− 1 rounds.

5 The Multicast Problem

In this section, we present a O(log k)-approximation for the Multicast problem,
which is obtained by simplifying the O(log k

log log k)-approximation given in [7]. Our
simple algorithm plays an important role in our framework. Later, this algorithm
will be developed further to design algorithms for the introduced generalizations
of the Multicast problem. For instance, with a slight modification, it turns into a
O(log k)-approximation for the Capacitated Multicast problem (see Section C).

5.1 Outline of the Algorithm

Our algorithm accepts a parameter L as a part of the input, which is our guess
for the optimal solution of the given multicast instance. Since n is an upper
bound on the length of the optimal schedule, we can easily try all the possible
values for L from 1 to n and run the algorithm once for each of these values.
Our algorithm is guaranteed to return a schedule of length O(L · log k) assuming
that L is the length of the optimal schedule. So, from now on in this section, we
think of L as the length of the optimal schedule W.L.O.G.

The algorithm is a recursive algorithm and has 4 phases. In Phase 1 of the
algorithm, we reduce the given instance to a smaller instance. In Phase 2, we

Approximation Algorithms for Generalized Multicast Problems 573

solve the smaller instance recursively, and finally in Phase 3 and 4, we inform
the rest of the vertices which didn’t receive the message in Phase 2. We explain
each of these phases briefly and after that, we’ll see the full description of the
algorithm.

Phase 1. This phase starts with finding a family of vertex disjoint paths P each
of length at most 4L such that the endpoints of the paths belong to R. We find
these paths greedily, i.e. we start with P = ∅ and using BFS, we search for a
new path of length at most 4L between the terminals. We continue until we can
add no more such paths to P . Pick one endpoint from each path and designate
the picked set of vertices to be R′.

Phase 2. Solve the multicast problem for the new set of terminals R′ recursively
and run the obtained schedule. (So, all the vertices in R′ will receive the message
by the end of this phase.)

Phase 3. Inform all the vertices belonging to V (P) in 4L rounds. This is possible
since in Phase 2, we have already informed at least one vertex of each path in P .

Phase 4. For each of the uninformed terminals, namely v ∈ R\V (P), find a
path Mv which connects v to one of the informed vertices (note that the set of
the informed vertices is currently V (P)). These paths are guaranteed to satisfy
the following properties:

1. The length of each path is at most 2L.
2. Only one vertex on each path belongs to V (P), which is an endpoint of the

path.
3. The paths won’t share any vertices except possibly in the endpoints belong-

ing to the set V (P). Moreover the degree of any node in V (P) due to these
paths is at most L.

In other words, M =
⋃

v∈R\V (P)

Mv is a union of vertex disjoint spiders of length

at most 2L and we will inform the vertices in R\V (P) using these spiders. (see
Figure 1)

Before presenting the algorithm formally, we describe Phase 4 in more details.

5.2 The Algorithm: Phase 4

Our goal in Phase 4, assuming that the vertices in V (P) have received the mes-
sage, is to inform the rest of the terminals in O(L) rounds. The only assumptions
we need here are that the choice of P is maximal in Phase 1 and V (P) is in-
formed.

To inform the rest of the terminals, we find a family of vertex-disjoint spi-
ders such that each of them has a length at most 2L and a center belonging to
V (P). Moreover, we need the spiders to contain all the terminals in R\V (P).
To construct the family of spiders, we start with finding the paths Mv for
all v ∈ R\V (P). In order to find the paths, we construct a bipartite graph

574 A. Nikzad and R. Ravi

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

��
��
��
��

�
�
�
�

��
��
��
��

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�
�
�
�
� �

�
�
�
��
��
��
��

�
�
�
�

�
�
�
�

P

R\V (P) spider 2spider 1

Fig. 1. Informing the vertices of R\V (P) using spiders

H [R\V (P), V (P)] with edges defined as follows: There is an edge in H between
two vertices x ∈ R\V (P) and y ∈ V (P) if there is path of length at most 2L
connecting x to y such that no other vertex of the path belongs to V (P) except
y. So, each edge in H is associated with a path in G (if there were many such
paths for x, y, then choose one of them arbitrarily). Now, find a b-matching in H
for the minimum possible integer b. Then, for all v ∈ R\V (P), define Mv to be
a path in G which is associated with the edge incident to v in the b-matching.

Let M be the subgraph of G defined as M =
⋃

v∈R\V (P)

Mv, then, the following

lemma holds for M .

Lemma 2. M is a union of vertex disjoint spiders each with length at most 2L
and degree at most L.

Proof. First, we show that M is a union of vertex disjoint spiders. To prove
this, note that for any two vertices u, v ∈ R\V (P), Mu and Mv can’t share any
vertex except possibly in the endpoints belonging to V (P), since if they do, it
contradicts the maximality of P , i.e. there would have been a path of length at
most 4L between u and v which could be added to P .

So, M is a union of vertex-disjoint spiders, namely the family M of spiders,
and since the length of each path Mv is at most 2L, then len(M) ≤ 2L. It only
remains to prove that deg(M) ≤ L. Consider the optimal multicast schedule
which uses exactly L rounds. Let E′ be the subset of the edges of G which are
used in the optimal schedule and G′ be the subgraph of G with E′ as its edge set.
It’s easy to verify that G′ is a tree of diameter at most 2L and maximum degree
at most L [20]. Now, for each v ∈ R\V (P), define M ′

v to be the unique path in G′

from v to f(v), where f(v) = argminu∈V (P) dG′(v, u). Note that dG′(v, f(v)) ≤
2L since the diameter of G′ is at most 2L, which implies (v, f(v)) ∈ E(H)
because of the existence of Mv.

Approximation Algorithms for Generalized Multicast Problems 575

Next, we prove that
⋃

v∈R\V (P)

(v, f(v)) is a L-matching in H , which shows

the existence of a b-matching in H with b ≤ L, and that’s all we need to show
that deg(M) ≤ L. To prove the claim, just note that the family of paths {M ′

v :
v ∈ R\V (P)} in G′ are edge-disjoint, which means there can’t be more than

Δ(G′) of these paths with the same endpoint, implying that
⋃

v∈R\V (P)

(v, f(v))

is a Δ(G′)-matching in H . The fact that Δ(G′) ≤ L finishes the proof.

From Lemmas 1 and 2 we conclude the following:

Lemma 3. Assuming that the vertices in V (P) have received the message, we
can find a schedule in polynomial time which informs the rest of the terminals
in 3L rounds.

5.3 The Algorithm

The whole algorithm for the Multicast problem is presented more formally below.

Algorithm Multicast
Input: A graph G and a set of terminals R
1. P , R′ ←∅
2. for all (u, v) ∈ R×R such that u
= v (∗ Phase 1 ∗)
3. do Find the shortest path in G[V (G)\V (P)] from u to v, namely Qu,v.
4. if the length of Qu,v is not more than 4L
5. then P←P ∪Qu,v

6. R′←R′ ∪ {u}
7. Inform R′ recursively by calling Multicast(G,R′). (∗ Phase 2 ∗)
8. Inform V (P) using the paths in P in at most 4L rounds. (∗ Phase 3 ∗)
9. Construct the bipartite graph H [R\V (P), V (P)].(∗ Beginning of Phase 4 ∗)
10. Find the smallest integer b such that H has a b-matching.
11. Use the family of spiders M associated with the b-matching and inform

R\V (P) in at most deg(M) + len(M)− 1 rounds.

Theorem 1. Algorithm Multicast is a 7 log k-approximation for the Multicast
problem.

Proof. The proof of correctness is trivial. We just analyze the approximation
factor of the algorithm here. Note that in each level of the recursion, the number
of terminals are at least halved, which means there will be at most log k levels.
Moreover, in each level we use at most 4L rounds in Line 9 and deg(M) +
len(M)− 1 rounds in Line 12. By lemma 3 we have deg(M)+ len(M)− 1 ≤ 3L
implying that we use at most 7L rounds in each level of the recursion and 7L·log k
rounds in total.

6 The Multicommodity Multicast Problem

In this section, we present a 2
O
(
log log |R|·

√
log |R|

)
-approximation for the Multi-

commodity Multicast Problem; recall that R is the set of terminals.

576 A. Nikzad and R. Ravi

6.1 Preleminaries: Multicast Schedules

Any single-source Multicast schedule can be represented by a directed tree such
that there will be phone calls only on the tree edges. Given a multicast schedule,
this tree is defined by choosing, for every vertex other than the source, the unique
edge along which a message is conveyed to that vertex for the first time [20]. We
state this fact in the proposition below.

Proposition 1. Any single-source Multicast schedule can be represented by a
subgraph of G which is a tree.

Also, using Proposition1, we can assume that the output ofAlgorithmMulticast
is a tree:

Proposition 2. W.L.O.G. the output of Algorithm Multicast can be assumed
to be a tree, i.e. the set of edges used in the phone calls form a tree.

6.2 Sparsification

Before describing our algorithm, we need a key lemma related to graph spanners,
i.e. sparse subgraphs such that distances between adjacent nodes are preserved
within a logarithmic factor in the subgraph. To the best of our knowledge, this
result first appeared in [1] as Lemma 3.1. We only state and use a simple corollary
of this lemma, for which an independent proof is given also in Section H of this
paper.

Corollary 1. Given a simple n-vertex graph G, we can find a subgraph s(G) of
G in polynomial time, such that |E(s(G))| ≤ 2n logn and for each (u, v) ∈ E(G),
we have ds(G)(u, v) ≤ 8 logn · dG(u, v).

Algorithm Sparsify follows as a consequence of Corollary 1. It takes a simple
undirected graph H(V, P) as its input and computes s(H). We will use this
subroutine later in our main algorithm.

Algorithm Sparsify
Input: A vertex set V , and a set of pairs of V , called P
Output: A subset of P
1. Assuming that H(V, P) is a simple undirected graph, use Corollary 1 to

compute s(H).
2. Output E(s(H)).

6.3 The Algorithm

In the rest of this section, assume that we want to solve the instance I(G,P),
and L is an optimal solution for this instance. Similar to Algorithm Multicast ,
our algorithm for the MM Problem accepts a parameter L in the input, which
is our guess for the optimal solution.

Approximation Algorithms for Generalized Multicast Problems 577

The algorithm consists of 3 phases. In Phase 1, we (potentially) reduce the num-
ber of the demand pairs using Algorithm Sparsify , i.e. by calling Sparsify(R,P).
Assuming that a subset of P , namely P̂ , is the output, we will see that repeating
any feasible solution of I(G, P̂) for O(log n) times would give a feasible solution
for I(G,P).

In Phase 2, we try to satisfy a large fraction of the demand pairs greedily.
If it is done successfully, we repeat, otherwise, we go to Phase 3 and solve an
instance with a fewer number of terminals recursively. A key new idea to handle
the smaller instance is to use a fictitious multicast scheme to assign the terminal
pairs not satisfied in this phase to one of the terminals that are.

Before seeing the formal description of the algorithm, we explain Phases 2
and 3 more precisely.

Phase 2. In this phase, we find a maximal family of vertex-disjoint paths,
namely P , where each path in P has a length at most L and connects si to ti
for some pair (si, ti) in P . If |P| was large enough, then using these paths we
satisfy a large fraction of the demand pairs in L rounds, and repeat Phase 2.
Otherwise, we go to Phase 3.

More precisely, in the beginning of Phase 2, P is empty. We sort the pairs in
P in some arbitrary order, say (si, ti) for 1 ≤ i ≤ k, and visit the pairs in this
order. When visiting the i-th pair, we check if there exists a path of length at
most L between si and ti in G[V (G)\V (P)]. If there was such a path, we add it
to P . After visiting all of the k pairs in P , assume P ′ = {(s′1, t′1), . . . , (s′k′ , t′k′})
is the subset of the pairs in P for which we were able to find the path of length
at most L. Now, two possible cases can happen based on the size of P . Define
ξ(x) = 2log x−√

log x for all positive x, then, if |P| > ξ(|R|) (sufficiently large,
and hence sufficiently good progress), remove P ′ from P and repeat Phase 2.
Otherwise, go to Phase 3.

Phase 3. In this Phase, we construct a smaller instance on the set of terminals
R′ = {s′1, . . . , s′k′}, solve it recursively, and then provide a solution for the original
problem using the solution of the smaller instance, as in our original framework
for multicasting. Intuitively, we send each vertex in R\R′ to a vertex in R′ in
a small number of rounds. By doing so, we create a new instance of the MM
problem, i.e. the old instance induced on the set R′. We solve this new instance
recursively, and convert its solution to a solution for the old instance. Note that
since R′ is “small”, the recursive problem is much smaller than the original one
and hence we have made progress, but at the expense of having to route all the
remaining demands of the recursively picked demand terminals. Formally, we
perform the following steps in Phase 3:

1. Construct a function f : R → R′ and a schedule S such that S sends v to
f(v) for all v ∈ R, and also |S| ≤ L. Run the schedule S and send v to f(v)
for all v ∈ R.

2. Construct a new instance of the MM problem on G with the set of terminals
R′ and the set of demand pairs P ′ = {(f(u), f(v)) : ∀(u, v) ∈ P}. Solve this
instance recursively and run the obtained schedule.

578 A. Nikzad and R. Ravi

3. Run the schedule S in the reverse order to send f(v) to v simultaneously for
all v ∈ R.

�
�
�
�
��
��
��
��
��
��
��
��

��
��
��
��

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��v

rB

R′

V (G)

f(v)

Fig. 2. The Multicast instance obtained from adding a dummy binary tree to the graph

Constructing S and f for Phase 3. To complete the above description for
Phase 3, we need to find the schedule S and the function f . To do so, we construct
and solve an auxiliary Multicast instance, the solution of which gives S and f .

In the beginning of Phase 3, construct an arbitrary binary tree B of height
O(log |R′|) rooted at a dummy vertex rB , such that the only common vertices be-
tween B and G are the leaves of B, which coincide with the set R′ (see Figure 2).

Using Algorithm Multicast , solve the Multicast instance with the root rB and
the set of terminals R\R′. Let the schedule S be the solution to this instance,
which uses the tree TS (recall that by Proposition 2, the solution provided by
Algorithm Multicast is a tree). Then, define f as follows: If v ∈ R′, let f(v) = v,
otherwise, consider the unique path in TS from v to rB . Define f(v) to be the
closest vertex to rB which is on this path and belongs to V (G) (see Figure 2).

Defining f and S completes the description of Phase 3. Now, we present our
algorithm more formally below.

Algorithm MM
Input: A graph G and a set of pairs P
1. if P = {} then return.
2. S ← {s| ∃t : (s, t) ∈ P}
3. T ← {t| ∃s : (s, t) ∈ P}
4. R ← S ∪ T
5. if |P | > 2|R|. log |R| (∗ Phase 1 ∗)
6. then P = Sparsify(R,P)
7. for 1 to 8 log |R|
8. do MM (G,P)
9. return.
10. P , X ←∅ (∗ Phase 2 ∗)
11. for i ← 1 to |P |
12. do Find the shortest path in G[V (G)\V (P)] from si to ti, namely Qi.
13. if the length of Qi is not more than L

Approximation Algorithms for Generalized Multicast Problems 579

14. then P←P ∪ {Qi}
15. X←X ∪ {(si, ti)}
16. if |P| ≥ ξ(|R|)
17. then For all (si, ti) ∈ X simultaneously, send si to ti through the path

Qi.
18. P ← P\X
19. Go to Line 10.
20. else Construct and solve the auxiliary Multicast instance to obtain S

and f . (∗ Phase 3 ∗)
21. Run the schedule S in the reverse order to send v to f(v) for all

v ∈ R.
22. Y ←{(f(u), f(v))|(u, v) ∈ P}
23. MM (G, Y)
24. Run the schedule S to send f(v) to v for all v ∈ R

Before analyzing the approximation ratio of the algorithm, we give the fol-
lowing lemma to bound the length of schedule S in terms of L and m, where
m = |R|.

Lemma 4. |S| ≤ 21 logm · L+ 14 log2 m.

Proof. Note that S is found by Algorithm Multicast as a solution to the auxiliary
Multicast instance, and so by Theorem 1, |S| ≤ 7 logm ·Laux, where Laux is the
length of the optimal schedule for the auxiliary instance. Consequently, to prove
the claimed bound, it’s enough to prove that Laux ≤ 3L+ 2 logm. So, we show
there exists a feasible schedule of length 3L+ 2 logm for the auxiliary instance.
This schedule has 4 steps: 1. Use the dummy binary tree and send its root, i.e.
rB, to all of its leaves, i.e. the set R′. 2. Use the path Qi and inform V (Qi)
simultaneously for all Qi ∈ P . 3. Run the schedule L. 4. Run the schedule L in
the reverse order.

The suggested schedule has a length at most 3L+ 2 logm since Steps 1,2,3,4
have a length at most 2 logm,L,L, L respectively. In the rest of the proof, we
show the feasibility of this schedule. Note that after Step 1, the set of vertices
R′ is informed since they are the leaves of the binary tree. After Step 2, the set
V (P) is informed since each path Qi ∈ P has an endpoint si ∈ R′. For the sake
of contradiction, assume there is a terminal r ∈ R\R′ which is not informed after
Step 4. This terminal has to be in at least one demand pair, namely the pair
(s, t). The schedule L sends s to t via a path in G, namely Q. The path Q must
share at least a vertex with P , due to the maximality of P . This fact, and the
fact that V (P) is informed by the end of Step 2, imply that t should be informed
after Step 3, and s should be informed after Step 4. Which is a contradiction
with r not being informed by the end of Step 4.

Theorem 2. Algorithm MM is a 2
O
(
log log |R|·

√
log |R|

)
-approximation for the

Multi-commodity Multicast Problem.

580 A. Nikzad and R. Ravi

Proof. Let T (m) denote the approximation factor of our algorithm. By induction

on m, we prove that T (m) ≤ 2ε log logm.
√
logm, for any fixed ε > 6. To do so, we

provide an upperbound for T (m) as follows:

T (m) ≤ 8 logm·
(

2m logm

ξ(m)
· L+7 logm · (6L+ 4 logm) + T (ξ(m)) · (43 logm · L+ 28 log2 m)

)
× 1

L

Before analyzing this recurrence relation, we show that its right-hand side
gives a valid upperbound on T (m): The last coefficient in the right-hand side,
i.e. 1

L , is due to the definition of approximation ratio of an algorithm. The first
coefficient, i.e. 8 logm, stands for Line 7 of the algorithm, as a result of the
(potential) sparsification. It remains to analyze the middle coefficient.

The summand 2m logm
ξ(m) ·L is an upperbound on the number of rounds used in

Phase 2 of the algorithm. The two other summands bound the number of rounds
used in Phase 3 of the algorithm. We justify the latter fact separately as follows.

The summand 7 logm · (6L + 4 logm) is an upperbound on the number of
rounds used in Lines 21 and 24 overall. Since only the schedule S is run in these
lines, we equivalently show that |S| ≤ 7 logm · (3L + 2 logm), which is done in
Lemma 4.

Finally, we verify that the summand T (ξ(m)) · (43 logm · L + 28 log2 m) is an
upperbound on the number of rounds used in Line 23 of the algorithm: Let LY

be the optimal number of rounds needed to solve I(G, Y). By the induction hy-
pothesis, the number of rounds used in Line 23 is at most T (ξ(m)) · LY . So, it’s
enough to show that LY ≤ 43 logm ·L+28 log2 m. We do this by giving a feasible
solution of length at most 43 logm · L + 28 log2 m for I(G, Y): Run the schedule
S, then run L, and finally run the schedule S in the reverse order. The claimed
upperbound for the length of this schedule simply follows from Lemma 4.

It only remains to analyze the recursive formula T (m) and prove the claimed
bound for it; we omit this part here, the complete proof appears in Section B.

7 Conclusion

Our main contribution is developing a unified recursive framework that we use
to design approximation algorithms for various extensions of the Multicast Prob-
lem. In particular, we consider three generalizations: i. allowing conference calls
involving possibly more than two participants; ii. allowing multiple source and
destination vertices; and iii. allowing capacities for vertices .

A comprehensive summary of all our results can be seen in Tables 1 and 2. A
descriptive summary of the tables also appears in Section A. For the cells in the
tables which are marked with [∗], the proofs have been omitted in this paper,
since they are very similar to the proofs that appear in the paper and can be
derived from them with slight modifications.

Designing a poly-logarithmic approximation algorithm for the multicommod-
ity multicast problem is the most important remaining open problem from our
work.

Approximation Algorithms for Generalized Multicast Problems 581

Table 1. This table summarizes our approximation ratios and additive approximations
for the Multicast Problem

Multicast Single-source Multi-commodity

Non-capacitated O(log k/ log log k) [7] 2O(log log k·√log k)

Ω(3− ε) [5] O
(
log n · OPT +

√
n log2 n

)

O
(

log3 n
log log n

· (OPT +Δ(G))
)

Capacitated O(log k) 2O(log log k·√log k) [∗]

Table 2. This table summarizes our hardness results and approximation ratios for the
Hypercast Problem

Hypercast Single-source Multi-commodity

Non-capacitated O(log k · log n ·D) 2O(
√

log k(log log n+logD))

Ω(D1/3) [∗]
Capacitated O(log k · log n ·D) 2O(

√
log k(log log n+logD))

[∗] [∗]

Acknowledgments. We would like to thank Takuro Fukunaga for discussions
in the early stages of this work. We also thank Subhash Khot for pointing out
the hardness result of [11] on finding large independent sets and Guy Kortsarz
for his comments about the choice of the presentation.

References

1. Awerbuch, B., Kutten, S., Peleg, D.: On buffer-economical store-and-forward dead-
lock prevention. IEEE Transactions on Communication 42, 2934–2937 (1994)

2. Baker, B., Shostak, R.: Gossips and telephones. Discrete Math 2, 191–193 (1972)
3. Censor-Hillel, K., Haeupler, B., Kelner, J., Maymounkov, P.: Global Computation

in a Poorly Connected World: Fast Rumor Spreading No Dependence on Conduc-
tance. In: STOC: ACM Symposium on Theory of Computing (2012)

4. Dvork, T.: Chromatic Index of Hypergraphs and Shannons Theorem. European
Journal of Combinatorics 21(5), 585–591 (2000)

5. Elkin, M., Kortsarz, M.G.: Combinatorial logarithmic approximation algorithm for
directed telephone broadcast problem. In: Proceedings of the Thiry-fourth Annual
ACM Symposium on Theory of Computing, STOC 2002 (2002)

6. Elkin, M., Kortsarz, G.: An approximation algorithm for the directed telephone
multicast problem. Algorithmica 45(4), 569–583 (2006)

7. Elkin, M., Kortsarz, G.: Sublogarithmic approximation for telephone multicast.
In: SODA 2003 Proceedings of the Fourteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, pp. 76–85 (2003)

8. Feige, U., Kilian, J.: Zero knowledge and the chromatic number. J. Comput. System
Sci. 57, 187–199 (1998)

9. Grigni, M., Peleg, D.: Tight bounds on minimum broadcast networks. SIAM J.
Discrete Math. 4, 207–222 (1991)

582 A. Nikzad and R. Ravi

10. Guha, S., Bar-noy, A., Naor, J., Schieber, B.: Multicasting in heterogeneous net-
works. In: STOC 1998 Proceedings of the Thirtieth Annual ACM Symposium on
Theory of Computing, pp. 448–453 (1998)

11. Guruswami, V., Sinop, A.K.: The complexity of finding independent sets in
bounded degree (hyper)graphs of low chromatic number. In: SODA 2011 Pro-
ceedings of the 22nd Annual ACM-SIAM Symposium on Discrete Algorithms,
pp. 1615–1626 (2011)

12. Hajnal, A., Milner, E.C., Szemeredi, E.: A cure for the telephone disease. Canad
Math. Bull 15, 447–450 (1976)

13. Haeupler, B.: Simple, Fast, and Deterministic Gossip and Rumor Spreading. In:
SODA: ACM-SIAM Symposium on Discrete Algorithms (2013)

14. Kortsarz, G., Peleg, D.: Approximation algorithms for minimum time broadcast.
SIAM Journal on Discrete Methods 8, 401–427 (1995)

15. Kossinets, G., Kleinberg, J., Watts, D.: The structure of information pathways in a
social communication network. In: Proceedings of the 14th SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 435–443 (2008)

16. Leighton, F.T., Lewin, D.M.: Global Hosting System, US Patent 6108703 (Issued
August 22, 2000)

17. Onus, M., Richa, A.W.: Minimum maximum-degree publish-subscribe overlay net-
work design. IEEE/ACM Transactions on Networking, TON (2011)

18. Proskurowski, A.: Minimum broadcast trees. IEEE Trans. Comput. C-30, 363
(1981)

19. Raghavan, P.: Probabilistic construction of deterministic algorithms: Approximat-
ing packing integer programs. In: 27th Annual Symposium on Foundations of Com-
puter Science (FOCS 1986), pp. 10–18 (1986)

20. Ravi, R.: Rapid rumor ramification: approximating the minimum broadcast time.
In: 35th Annual Symposium on Foundations of Computer Science, FOCS 1994
(1994)

21. Scheuermann, P., Wu, G.: Heuristic Algorithms for Broadcasting in Point-to-Point
Computer Networks. IEEE Transactions on Computers 33(9), 804–811 (1984)

22. Schrijver, A.: Combinatorial optimization: Polyhedra and Eficiency, ch. 21.
Springer (2003)

23. Tijdeman, R.: On a Telephone Problem. Nieuw Arch. Wisk. 19, 188–192 (1971)

A Roadmap for the Appendix

The main results that appear in the Appendix are listed below.

1. In Section C, we present a very simple O(log k)-approximation for the Ca-
pacitated Multicast Problem.

2. In Section D, we develop our simple algorithm further and obtain a O(log k ·
logn · D)-approximation for the Hypercast Problem, where D is the maxi-
mum size of a hyperedge. The dependence on D is natural due to our strong
hardness results for the Hypercast Problem (see Section I): we prove that
for any constant ε > 0, the Hypercast Problem is Ω(n1−ε)-hard. But this
hardness result, as our algorithm also suggests, only holds for large values of
D ≥ Ω(n1−ε). The more natural and interesting case though, is when D is
small, for which we provide a hardness ratio of Ω(D1/3) under Khot’s 2-to-1
conjecture.

Approximation Algorithms for Generalized Multicast Problems 583

3. By modifying our algorithm for the Multi-commodity Multicast problem,
we obtain two other algorithms for the same problem in Appendices
G and H, which respectively produce solutions of length at most

O
(
logn ·OPT +

√
n log2 n

)
and O

(
log3 n

log logn · (OPT +Δ(G))
)
.

4. In Section H we show an (approximate) equivalence between the Multi-
commodity Multicast problem and the following Minimum Poise Subgraph
problem: find a subgraph H of G in which the Poise of H [20], namely, the
maximum pairwise distance in H between all pairs (si, ti) plus the maximum
degree in H , is minimized. We prove that any α-approximation algorithm

for either of these problems gives an O
(
α · log3 n

log logn

)
-approximation for the

other one.

Below, we briefly discuss these results an their connection to each other.
The algorithm for the Capacitated Multicast Problem is presented in Section

C. As it can be seen in the tables, the approximation ratio for the capacitated
problems almost always matches the ratio for the associated non-capacitated
version, which means our framework can handle capacities very well.

The algorithm for the Hypercast Problem appears in Section D. In the Hyper-
cast Problem, note that despite the strong Ω(n1−ε) hardness result, which holds
only for the less interesting case of D ≥ Ω(n1−ε), we develop a O(log k · log n ·D)-
approximation. It is not hard to see that this result is tight up to logarithmic
factors if D ≥ nε for some constant ε > 0 (the proof is very similar to the proof
for the Ω(n1−ε)-hardness). For the general case when we have no restrictions on
D, we can also prove an Ω(D1/3)-hardness under Khot’s 2-to-1 conjecture. All
these hardness results appear in the Section I.

Although there is a significant gap between the existing hardness ratio and
the approximation ratio provided for the Multicommodity Multicast Problem,
we are able to tighten this gap when OPT ≥ Ω(

√
n). For this case, we have

a O(log2 n)-approximation as a consequence of an alternate algorithm that we
present in Section G, which uses at most O(log n · OPT +

√
n log2 n) rounds.

On the way to obtaining this additive approximation, we prove results for the
special case when the instance has a small number of terminals in Section F. For
given demand pairs P , this variant finds a schedule of length O(|P |+D) where
D denotes diamP (G).

To derive the result for small number of terminals, we develop and employ an
extension of our framework for asymmetric capacities in Section E. Note that
our results on this model also apply for the GOSSIP models recently studied in
the literature [3,13] to give relative approximation algorithms in contrast to the
more absolute guarantees provided in these papers in terms of the size of the
graph or its diameter.

We shed more light on the Multicommodity Multicast problem by showing
that it is (approximately) equivalent to a Minimum Poise Subgraph Problem, i.e.
the problem of finding a subgraph H of the graph G which minimizes Δ(H) +
diamP (H). More precisely, we show that any α-approximation algorithm for

either of these problems gives an O
(
α · log3 n

log logn

)
-approximation for the other

584 A. Nikzad and R. Ravi

one. This equivalence is formally proved in Section H. As a consequence of this
equivalence, we obtain an algorithm which guarantees to produce a schedule

of length at most O
(

log3 n
log logn · (OPT +Δ(G))

)
. Note that this gives a poly-

logarithmic approximation in the instances when OPT = Ω(Δ(G)).

B Complete Proof of Theorem 2

Proof (of Theorem 2). Let T (m) denote the approximation factor of our algo-

rithm. By induction on m, we prove that T (m) ≤ 2ε log logm.
√
logm, for any fixed

ε > 6. To do so, we provide an upperbound for T (m) as follows:

T (m) ≤ 8 logm·
(

2m logm

ξ(m)
· L + 7 logm · (6L+ 4 logm) + T (ξ(m)) · (43 logm · L+ 28 log2 m)

)
×1

L

Before analyzing this recurrence relation, we show that its right-hand side
gives a valid upperbound on T (m): The last coefficient in the right-hand side,
i.e. 1

L , is due to the definition of approximation ratio of an algorithm. The first
coefficient, i.e. 8 logm, stands for Line 7 of the algorithm, as a result of the
(potential) sparsification. It remains to analyze the middle coefficient.

The summand 2m logm
ξ(m) ·L is an upperbound on the number of rounds used in

Phase 2 of the algorithm. The two other summands bound the number of rounds
used in Phase 3 of the algorithm. We justify the latter fact separately as follows.

The summand 7 logm · (6L + 4 logm) is an upperbound on the number of
rounds used in Lines 21 and 24 overall. Since only the schedule S is run in these
lines, we equivalently show that |S| ≤ 7 logm · (3L + 2 logm), which is done in
Lemma 4.

Finally, we verify that the summand T (ξ(m)) · (43 logm · L + 28 log2 m) is an
upperbound on the number of rounds used in Line 23 of the algorithm: Let LY

be the optimal number of rounds needed to solve I(G, Y). By the induction hy-
pothesis, the number of rounds used in Line 23 is at most T (ξ(m)) · LY . So, it’s
enough to show that LY ≤ 43 logm ·L+28 log2 m. We do this by giving a feasible
solution of length at most 43 logm · L + 28 log2 m for I(G, Y): Run the schedule
S, then run L, and finally run the schedule S in the reverse order. The claimed
upperbound for the length of this schedule simply follows from Lemma 4.

Now, we prove the claimed bound for T (m). First, we simplify the above
recurrence relation and write a slightly weaker version of it:

T (m) ≤ 16 log3 m · m

ξ(m)
+ 1128 log3 m · T (ξ(m)) (1)

Recall that ξ(m) = 2logm−√
logm. Use the induction hypothesis to bound the

right-hand side of (1) by

≤ 16 log3 m.(2
√
logm + 27+ε log log ξ(m).

√
log ξ(m))

≤ 212+3 log logm+ε log log ξ(m)·
√

log ξ(m)

Approximation Algorithms for Generalized Multicast Problems 585

where in the last inequality, we have used the fact that
√
logm ≤ 7+ε log log ξ(m).√

log ξ(m) for all m ≥ 1. So, the proof is complete if we show that

12 + 3 log logm+ ε log log ξ(m) ·
√
log ξ(m) ≤ ε log logm.

√
logm

Observe that:

12+3 log logm+ε log log ξ(m)·
√

log ξ(m) ≤ ε log logm·
(

12

ε log logm
+

3

ε
+

√
log ξ(m)

)

(2)

Since we have
√
logm−

√
logm ≤

√
logm − 0.5 for all m ≥ 4, then we can

bound the right-hand side of (2) by

≤ ε log logm ·
(

12

ε log logm
+

3

ε
+
√
logm− 0.5

)
(3)

And since for any fixed ε > 6, there exists a fixed positive integer mε such that
12

ε log logm + 3
ε < 0.5 for all m ≥ mε, then we can bound (3) by ε log logm ·

√
logm,

which finishes the proof.

C The Capacitated Multicast Problem

In this section, we bring in the notion of capacity of a vertex to our model for
the Multicast Problem, and allow a vertex to be in possibly more than a single
call in each round; the maximum number of phone calls that a vertex can have
in each round is called the capacity of the vertex.

Definition 3. In the Capacitated Multicast Problem (CM) we are given
an instance of the Multicast problem along with an integer cv for each vertex
v ∈ V as its capacity. The only difference with the Multicast Problem is that
here, each vertex can be in up to cv phone calls in a round, i.e. in each round,
we can pick a subgraph H of G such that the degree of each vertex v in H is at
most cv, and arrange phone calls between the endpoints of all the edges in H.
Note that we can assume w.l.o.g. that the capacities cv are all at least one since
we can delete nodes that have zero capacity from the problem.

In this section, we present an O(log k)-approximation for the Capacitated
Multicast Problem.

C.1 Preliminaries

First, we need to define a new notion of b-matchings due to the presence of
capacities. Given that c is a capacity vector for the vertices of Y , i.e. a |Y |-
dimensional vector of positive integers such that cy denotes the capacity of the
vertex y ∈ Y , we define a c-matching in H to be a subset M of the edges of H
such that each vertex of X is incident to exactly one edge of M and each vertex
y ∈ Y is incident to at most cy edges of M .

586 A. Nikzad and R. Ravi

We also need to refine the definition of the degree of a spider. When we have
capacities cv on the vertices, we can state a lemma similar to Lemma 1. Define

the relative degree of a spider S, denoted by rdeg(S), to be �deg(S)
cv

� where v is
the center of the spider. Then we have:

Lemma 5. Using a non-lazy schedule, the center of a spider S can send (broad-
cast) a message to the rest of its vertices in rdeg(S) + len(S)− 1 rounds.

C.2 The Algorithm

Our algorithm is an adaptation of Algorithm Multicast and the only difference
between our algorithm and Algorithm Multicast is in Phase 4. Before proceeding
to more details about Phase 4, first verify that Phases 1-3 are still valid and can
be executed with the presence of capacities. Particularly in Phase 3, all we do
is using matchings for sending the message through the paths in P , and this is
possible since all the capacities are at least 1.

Our goal in Phase 4, assuming that the vertices in V (P) have received the
message, is to inform the rest of the terminals in O(L) rounds.

To do so, we find a family of vertex-disjoint spiders such that each of them
has a length at most 2L and a center belonging to V (P), moreover, we need
the spiders to contain all the terminals in R\V (P). Assuming that S is such
a family of spiders, by Lemma 5 we can inform the set R\V (P) in at most
rdeg(S) + len(S) − 1 rounds, where rdeg(S) = maxS∈S rdeg(S). We show we
can find a family S with rdeg(S) ≤ L and len(S) ≤ 2L, which implies the set
R\V (P) can be informed in at most 3L− 1 rounds in Phase 4. The other parts
of the analysis will be identical to the analysis of Algorithm Multicast . So, in
the rest of this section, we only show how to find the desired family of spiders.

Construct the bipartite graphH [R\V (P), V (P)] similar as before, but instead
of finding the smallest integer b such that H has a b-matching, find the smallest b
such that H has a (b ·c)-matching, where c is the capacity vector for the vertices
in V (P). Then, using the (b · c)-matching, construct the family of spiders M
identical to the way we construct them in subsection 5.2. Following the proof of
Lemma 2, it can be seen that len(M) ≤ 2L, and it only remains to show that
rdeg(M) ≤ L.

Consider the optimal multicast schedule which uses exactly L rounds. Let
E′ be the subset of the edges of G which are used in the optimal schedule
and G′ be the subgraph of G with E′ as its edge set. Note that G′ is not
necessarily a tree as in the previous section; however, the maximum degree of
any node v in E′ is cv · L by the optimality of the schedule. Now, for each
v ∈ R\V (P), define M ′

v to be an arbitrary shortest path in G′ from v to f(v),
where f(v) = argminu∈V (P) dG′(v, u).

We prove that
⋃

v∈R\V (P)

(v, f(v)) is an (L · c)-matching in H , which shows the

existence of a (b · c)-matching in H with b ≤ L, which implies rdeg(M) ≤ L. To
prove the claim, just note that the family of paths {M ′

v : v ∈ R\V (P)} in G′ are
edge-disjoint (otherwise, it contradicts the maximality of P). This means for any

Approximation Algorithms for Generalized Multicast Problems 587

v ∈ V (P), there are no more than cv · L of these paths with the same endpoint
v, since otherwise, the degree of v in G′ is more than cv · L, a contradiction.

Consequently,
⋃

v∈R\V (P)

(v, f(v)) is an (L · c)-matching in H . This proves the

claim.

D The Hypercast Problem

In this section, we study the problem with conference calls, i.e. calls involving
(possibly) more that two, rather than only two, persons. We formally define the
Hypercast problem as follows.

Definition 4. In the Hypercast problem, we are given a hypergraph G(V,E)
where there can be a conference call between two or more nodes if G has a
hyperedge containing exactly these nodes. Similar to the Multicast problem, we
are also given a source vertex r and a set of terminals R. Our goal is to deliver a
message from the source vertex r to all the terminals in the minimum number of
rounds. To do this, the vertices of the graph can communicate in rounds: In each
round, we pick a matching of G, i.e. a set of vertex-disjoint edges, and for each
edge of the matching, we arrange a conference call containing all the vertices in
that edge. If any of the vertices in the conference call knows the message, the
others will also know it after the call.

In this section, we present an O(log k · logn ·D)-approximation for the hyper-
cast problem, where D denotes the maximum size of an edge in the hypergraph
G. Unlike the algorithm for Multicast Problem which was purely combinatorial,
this algorithm needs to set up a Linear Program for designing some parts of the
multicast schedule.

The dependence on D in the approximation factor is natural due to our strong
hardness results for the Hypercast Problem (see Section I): we prove that for
any constant ε > 0, the Hypercast Problem is Ω(n1−ε)-hard. But this hardness
result, as our algorithm also suggests, only holds for large values ofD ≥ Ω(n1−ε).
The more natural and interesting case though, is when D is small, for which we
provide a hardness ratio of Ω(D1/3) under Khot’s 2-to-1 conjecture.

D.1 Preliminaries: Spiders and Hypergraphs

The set of vertices and (hyper)edges of a hypergraph G are respectively denoted
by V (G) and E(G). We say an edge e intersects a subset of vertices S ⊆ V (G)
(or another edge e′) if e contains at least one vertex of S (one vertex of e′).
With abuse of notation, we denote this by e ∩ S
= ∅ (respectively e ∩ e′
= ∅).
A subset M ⊆ E(G) is called a matching if any two edges in M have an empty
intersection.

A path P is a sequence of edges such as e0, . . . , em where ei ∩ ej
= ∅ iff
|i − j| ≤ 1. The length of P is denoted by len(P) and is equal to m. Having

588 A. Nikzad and R. Ravi

the definition of the length of a path, the notions of connectivity, distance and
diameter in a hypergraph are trivially adapted from simple graphs.

A spider S is a family of paths P1, . . . , Pk such that the first edge of all of
them is the same, and moreover, they will be a family of vertex-disjoint paths if
their first edge is deleted. The set of vertices in the first edge (or simply, the first
edge, when it’s clear from the context) is called the center of S. By adapting the
definition of length of a spider in simple graphs, we define len(S) = maxi len(Pi).

D.2 Outline of the Algorithm

Our algorithm is similar to Algorithm Multicast presented in Section 5; it is a
recursive algorithm with 4 phases. In Phase 1 of the algorithm, we reduce the
given instance to a smaller instance. In Phase 2, we solve the smaller instance
recursively and as the result, inform a subset of the terminals. And finally in
Phases 3 and 4, we inform the rest of the vertices that didn’t receive the message
in Phase 2. First we explain each of these phases briefly, and then present the
full description of the algorithm and its analysis.

Phase 1. This phase starts with finding a family of vertex disjoint paths P
each of length (number of the hyperedges) at most 4L such that the first and
last edge of each path intersects R. Similar to Algorithm Multicast , we find these
paths greedily, i.e. we start with P = ∅ and using any shortest path algorithm
for hypergraphs, we search for a new path in G[V (G)\V (P)] which connects two
of the terminals. Moreover, length of the path must be at most 4L. We continue
until we can add no more such paths to P . Then, pick an arbitrary terminal
from the first edge of each path and let the obtained set of vertices be R′.

Phase 2. Solve the multicast problem for the new set of terminals R′ recursively
and run the obtained schedule. (So, all the vertices in R′ will receive the message
by the end of this phase.)

Phase 3. Inform all the vertices belonging to V (P) in 4L rounds. This is possible
since in Phase 2, we have already informed at least one vertex of each path in P .

Phase 4. For each of the uninformed terminals, namely v ∈ R\V (P), find a
path Mv which connects v to one of the informed vertices (note that the set
of the informed vertices is currently V (P)). These paths will be guaranteed to
satisfy the following properties:

Approximation Algorithms for Generalized Multicast Problems 589

������������

��
��
��
��

��
��
��
��
��
��
��
�� }

��
��
��
��

��
��
��
��
��
��
��
��

��������

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

centers

P

spider 1 spider 2

Fig. 3. The gray vertices are in R\V (P). Despite this figure, centers of the spiders can
possibly intersect.

1. For each v ∈ R\V (P), the first edge of Mv contains v and the last edge
intersects V (P). Moreover, no other edge of Mv intersects V (P).

2. The length of each path is at most 2L.
3. The paths would be vertex disjoint if the last edge of each path is removed.

In other words, M =
⋃

v∈R\V (P)

Mv is a union of spiders of length at most 2L

and we will inform the vertices in R\V (P) using these spiders (see Figure 3).
However, this is not as simple as it is in Section 5, since unlike there, the centers
of spiders may intersect. So, bounding the degree and length of each of the
spiders is not enough to bound the total number of rounds needed for informing
R\V (P). We need the family of spiders to satisfy an additional constraint, which
we call z-disjointness. We define this concept and then describe Phase 4 for the
Algorithm. The other 3 Phases remain unchanged.

D.3 Disjoint and Fast Spiders

Definition 5. A family F of spiders is z-disjoint if they satisfy the following
conditions.

– If 2 edges which belong to 2 different spiders intersect, then both of them are
the centers (also called first edges earlier) of spiders.

– No vertex is in more than z of the centers.

The following lemma gives an upperbound on the broadcast time in a z-
disjoint family of spiders. Recall that for a family F of spiders, deg(F) =
maxS∈F deg(F) and len(F) = maxS∈F len(S).

Lemma 6. We are given a z-disjoint family of spiders F , such that for each
spider, at least one vertex in its center is informed. Assuming that D is the
maximum size of a hyperedge, we can find a broadcast schedule for F with a
length at most len(F) + 2zD in polynomial time.

590 A. Nikzad and R. Ravi

Proof. Let H be a hypergraph where V (H) is the set of the vertices which belong
to the center of at least one spider in F . Also, let E(H) be the set of the centers of
spiders in F , i.e. each of the centers is a hyperedge in H. We claim χ′(H) ≤ 2zD.
If we prove this claim and find such a coloring in polynomial time, we can easily
convert it to a broadcast schedule for F with a length at most len(F) + 2zD as
follows: Dedicate one round to each color, e.g. assume that rounds 1, . . . , χ′(G)
are respectively dedicated to the colors 1, . . . , χ′(G). Then for each color i, pick
the subset of the edges with color i as the matching used in round i. Having that
each hyperedge in H contains an informed vertex implies we can inform V (H) in
χ′(H) rounds. Also, we can inform the rest of the vertices in F in an additional
len(F) rounds, due to the disjointness of the spiders legs. This means the length
of the obtained broadcast schedule is at most χ′(H) + len(F). To complete the
proof, we show that χ′(H) ≤ 2zD and find a coloring with at most 2zD colors
in polynomial time.

Let the strong degree of a vertex v, denoted by d̄(v), be the summation, over
all u
= v, of the number of hyperedges that contain both v and u. Also, let
Δ̄(H) = maxv∈V (H) d̄(v). It’s a well-known fact that χ′(H) ≤ 2Δ̄(H), and in
fact, we can find such a coloring by a greedy algorithm in polynomial time [4].

Since H is loop-less, d̄(v) is at most the summation of the size of the hyper-
edges that contain v. Also, note that F is z-disjoint, which means v is in at
most z hyperedges in H. It implies Δ̄(H) ≤ zD since the maximum size of a
hyperedge is at most D. Consequently, χ′(H) ≤ 2zD.

Recall that our goal in Phase 4 is informing the set of uninformed vertices,
R\V (P), using a family F of spiders. If we can find a z-disjoint family of spiders
F such that both z and len(F) are small, then by Lemma 6 we get a short
broadcast schedule for F , and consequently, a short schedule for the original
hypercast instance. The properties required for the family F are formally defined
below:

Definition 6. A family F of spiders is called fast if it satisfies the following
properties:

i. len(F) ≤ 2L.
ii. F is z-disjoint for z = O(L log n)
iii. The center of each spider in F has a non-empty intersection with V (P).
iv. Each vertex in R\V (P) belongs to exactly one of the spiders in F .

Lemma 7. If we can find a fast family of spiders for any given Hypercast in-
stance, then we can design an O(log k · logn ·D)-approximation for the Hypercast
problem.

Proof. Our recursive algorithm for the Hypercast problem reduces the number
of terminals by at least a factor of 2 in each level of the recursion. This is easily
observable by the definition of R′ in Phase 2 of the Algorithm: from the two
terminals connected by a path in P , only one of them is in R′. So, the depth of
the recursion is at most log k.

Approximation Algorithms for Generalized Multicast Problems 591

The proof is complete if we show that each level of the recursion takes at most
O(LD · logn) number of rounds. First, see that the cost of the optimal solution
does not increase when the number of terminals decreases in the next levels of
recursion. So, if we find a fast family F at each level of the recursion, then by
Lemma 6 we spend at most O(LD · logn) rounds in that level. This means the
length of the obtained schedule for the given Hypercast instance would be at
most O(LD · log k · logn).

So, by Lemma 7, all we need to do in Phase 4 is finding a fast family F and a
broadcast schedule for it. In the rest of this section, we describe an algorithm for
finding a fast family of spiders, given that P is maximal and V (P) is informed.

D.4 Finding a Fast Family of Spiders

The idea for finding the family of spiders is similar to Section 5, except that
instead of a bipartite graph, we construct a tripartite graph H [A,B,C], where
A = R\V (P), B has a vertex for every hyperedge which intersects both V (P)
and V (G)\V (P), and C = V (G). Note that B is in fact the set of potential
centers for the family of spiders F .

The edges of H , which lie only between the partitions A,B and B,C, are
defined as follows: There is an edge between the vertices v ∈ A and e ∈ B iff
there is a path in G[V (G)\V (P)] of length at most 2L, such that its first edge
contains v and its last edge intersects with the hyperedge e. Also, there is an
edge between the vertices e ∈ B and u ∈ C iff the hyperedge e contains the
vertex u.

The induced bipartite graph between the partitions A,B, denoted by H [A,B]
is used in a way similar to Section 5.2, i.e. any |A|-matching in H [A,B], e.g. M ,
represents a family of spiders, and more precisely, any connected component in
M , represents a spider. Observe that any connected component of M forms a
star. The vertex e in the center of the star, represents the center of the spider,
and the edges of the star, represent the legs of the spider, i.e. the paths which
are attached to the center of the spider. Recall that each edge of H [A,B] is
associated with a path in G. Any two legs, whether or not belonging to the same
spider, are vertex-disjoint, due to the maximality of P .

The family of spiders represented by M , namely F , is z-disjoint for z = |B|.
It is easy to verify that F is z-disjoint if each vertex in C is adjacent to at most
z of the centers of the stars in M .

For F to be a fast family, we only need to choose M in such a way that F
becomes z-disjoint for z = O(L logn), and this is where we use partition C of
H . To be more formal, for any subset S ⊆ B, define the weight of S, denoted by
w(S), to be maxv∈C |S∩N(v)|. Now, finding a fast family F can be reformulated
as finding a subset S ⊆ B, such that N(S) = A and w(S) ∈ O(L logn). If we
find such a subset S, then we can easily find a fast family by choosing any |A|-
matching in H [A,S]. The family of spiders associated with the |A|-matching
would be w(S)-disjoint, and consequently, fast.

All that remains to do is finding such a subset S. First, we show that there
exists such S, and then we present an algorithm for finding it in Section D.5.

592 A. Nikzad and R. Ravi

Lemma 8. There exists a subset S ⊆ B with N(S) = A and w(S) ≤ L.

Proof. Let L be an optimal schedule for the given Hypercast instance. Note that
|L| = L. Also, let J be a hypergraph where V (J) = V (G) and E(J) is the set
of the hyperedges used in L. Delete the isolated vertices of J . Then clearly, J is
connected and diam(J) ≤ 2L. So, for each vertex v ∈ R\V (P), J should contain
a path of length at most 2L connecting v to a vertex in V (P). If there are many
such paths, then select one of them arbitrarily and define g(v) to be the first
edge on this path (closest to v) which intersects both V (P) and R\V (P).

By the definition of partition B, it contains a vertex for each hyperedge g(v),

which we denote by g′(v). We prove that S =
⋃

v∈R\V (P)

g′(v) satisfies the re-

quirements of the lemma: For all v ∈ R\V (P), since there is an edge between v
and g(v) in H [A,B], then N(S) = A. Also, since each vertex u ∈ V (G) is in at
most L of the hyperedges of J , then |N(u) ∩ S| ≤ L for all u ∈ C, which means
w(S) ≤ L.

D.5 An LP-Rounding Approach for Finding Fast Spiders

Given a tripartite graph H [A,B,C], we want to find a subset S ⊆ B which
minimizes w(S) and satisfies N(S) = A. Here we present a 8 lnn-approximation
for this problem. This result, along with Lemma 8 implies that we can find a
subset S such that w(S) ≤ 8L lnn and N(S) = A.

To solve the above optimization problem, first we solve the fractional version
of it by writing a linear program and then, using randomized rounding, we round
the fractional solution of the linear program and obtain an integral one. To write
this LP, a variable xi is associated with each vertex i ∈ B.

min z

s.t.
∑

i∈N(u)

xi ≥ 1, ∀u ∈ A (1)

z ≥
∑

j∈N(v)

xj , ∀v ∈ C (2)

0 ≤ xi ≤ 1, ∀i ∈ B (3)

Note that there is a one-to-one correspondence between the integral solutions
of this LP and the subsets S such that N(S) = A. To see this, let x be an
integral solution, then the set S = {i : xi = 1} would be a feasible solution for
the original problem, because constraint (1) is enforcing N(S) = A. The reverse
direction can also be verified easily: if N(S) = A for a subset S, then x = �S , i.e.
the characteristic vector of S, is a feasible integral solution for the LP. Also, note
that constraint (2) is enforcing z = w(S). However, we can’t solve the integer
program in polynomial time, and so, we relax the program by adding constraint
(3) and use the optimal solution of the obtained LP as a lower bound on the
optimal integral solution.

Approximation Algorithms for Generalized Multicast Problems 593

Let x̄ be the optimal solution (assignment of values to the variables) for this
LP. Also, let the optimal objective values for the integer program and the (frac-
tional) LP be denoted by OPT,OPTf respectively. We round x̄ to obtain a
feasible integral solution x̊ with objective value at most 8 lnn ·max{1, OPTf}.
This gives an (8 lnn)-approximation since OPTf ≤ OPT and 1 ≤ OPT . The
rounding procedure is described below.

The Rounding Procedure. For each j ∈ B, flip a coin 2 lnn times indepen-
dently where the coin comes up heads with probability x̄j . If heads were observed
at least once, then pick j to be in S. More formally, we create 2 lnn independent
random variables xj,i such that xj,i = 1 with probability x̄j and xj,i = 0 with

probability 1− x̄j . We pick j to be in S iff
∑2 lnn

i=1 xj,i ≥ 1.

Lemma 9. The rounding procedure outputs a set S such that with probability
at least 1 − 2

n both of the following conditions are satisfied: N(S) = A, and
w(S) ≤ 8 lnn ·max{1, OPTf}.

Proof. First we prove that the N(S) = A with high probability. For any u ∈ A,
we compute the probability that u is not covered, i.e. none of the neighbors of
u are in S:

Pr [u is not covered] =
∏

j∈N(u)

(1− x̄j)
2 lnn ≤

∏

j∈N(u)

e−x̄j2 lnn ≤ 1

n2

An application of the union bound over the nodes implies that the probability
of one of the elements of A not being covered, i.e. N(S)
= A, is at most 1

n .
For the second condition, we claim that w(S) ≤ 8 lnn · max{1, OPTf} with

high probability. To prove this, we fix a vertex v ∈ C and compute an upper
bound on the probability of having |N(v) ∩ S| > 8 lnn · max{1, OPTf}. Then,
we prove the main claim using a union bound over all v.

More formally, for any v ∈ C we prove that

Pr

⎡

⎣
∑

j∈N(v)

x̊j > 2α lnn ·max{1, z̄}

⎤

⎦ ≤ 1

n2
(4)

where α = 4 is a fixed constant and z̄ = OPTf . First, observe that

Pr

⎡

⎣
∑

j∈N(v)

x̊j > 2α lnn · z̄
⎤

⎦ ≤ Pr

⎡

⎣
∑

j∈N(v)

x̊j > 2α lnn ·
∑

j∈N(v)

x̄j

⎤

⎦

≤ Pr

⎡

⎣
∑

j∈N(v)

2 lnn∑

i=1

xj,i > α
∑

j∈N(v)

2 lnn∑

i=1

E [xj,i]

⎤

⎦ ≤
(
eα−1

αα

)μ

(5)

where μ =
∑

j∈N(v)

∑2 lnn
i=1 E [xj,i]. Note that (5) is a direct consequence of the

Chernoff bound. Now we consider two cases: μ ≥ 2 lnn and μ < 2 lnn.

594 A. Nikzad and R. Ravi

In the first case, having μ ≥ 2 lnn implies
(

eα−1

αα

)μ

≤ 1
n2 , and this proves (4).

On the other hand, if μ < 2 lnn then we have

Pr

⎡

⎣
∑

j∈N(v)

x̊j > 2α lnn

⎤

⎦ ≤ Pr

⎡

⎣
∑

j∈N(v)

2 lnn∑

i=1

xj,i >
2α lnn

μ
· μ

⎤

⎦ ≤
(
eβ−1

ββ

)μ

(6)

where β = 2α lnn
μ . Now, since μ < 2 lnn we have

(
eβ−1

ββ

)μ

≤
(e

α

)2α lnn

≤ 1

n2

This fact, and (6) together imply the correctness of (4) in the second case as
well. By a union bound over all v ∈ C we have

Pr [w(S) > 2α lnn ·max{1, z̄}] ≤
∑

v∈C

Pr

⎡

⎣
∑

j∈N(v)

x̊j > 2α lnn ·max{1, z̄}

⎤

⎦ ≤ 1

n

which is due to (4). Consequently, the events w(S) > 8 lnn ·max{1, OPTf} and
N(S)
= A each happen with probability at most 1

n . This proves the lemma.

E Asymmetric Multicast Problem

In this section, we look at a variation of the Multicast Problem where the phone-
calls are not bidirected. They are directed in the sense that only one vertex will
be the sender, and the other one will be the receiver, i.e. a vertex u can call
another vertex v and send (any number of) messages to v, but then v can not
send any messages to u in the same phonecall. This variation is formally defined
below:

Definition 7. In the Asymmetric Multicast Problem, each vertex v has an out-
capacity c−v as well as an in-capacity c+v , which are respectively the number of
the vertices that v can send messages to, and receive messages from, in a single
round. The objective is identical to the objective of the Multicast Problem.

An asymmetric variation of the Multi-commodity Multicast Problem can also
be defined in a natural way, which we call the Asymmetric Multi-commodity
Multicast Problem (AMM). It is worth mentioning that a natural extension of
Algorithm MM can solve AMM as long as all the capacities are non-zero. We do
not state the algorithm, but the idea of the extension is very similar to the idea
we used for designing the algorithm for the Capacitated Multicast Problem.

Below, we prove a lemma for comparing the lengths of the optimum schedules
for an AMM instance and its corresponding MM instance. This Lemma will be
used later in Section F.

Approximation Algorithms for Generalized Multicast Problems 595

Lemma 10. Assume we are given an AMM instance IA with the set of demand
pairs P such that c−v = c+v = 1 for all v ∈ V (G). Define I(P,G) to be the corre-
sponding MM instance. Also, let LA, L respectively denote the length of optimal
schedules for IA, I. Then, we have L

3 ≤ LA ≤ 2L. Moreover, any schedule of
length l for I can be converted to a schedule of length 2l for IA in polynomial
time, and also, any schedule of length lA for IA can be converted to a schedule
of length 3lA for I in polynomial time.

Proof. First, observe that any schedule S for I can be easily turned into a
schedule SA for IA as follows. For each round in I, we have exactly two rounds
in IA: In each of these two rounds, we use the same matching which is used in
I, e.g. the matching M , except that the edges of M will be used in different
directions in each of these two rounds. Consequently, LA ≤ 2L.

To prove L
3 ≤ LA, we show that given any feasible schedule SA for the instance

IA, we can construct a schedule S for the instance I such that |S| ≤ 3|SA|. This
time, for each round in SA we will have 3 rounds in S.

To see this, first fix any arbitrary round in SA, and let M be the subset of the
(directed) edges used in that round. Note that M is a union of paths and cycles,
due to the fact that all the in-capacities and out-capacities are 1. Consequently,
we can decompose the edges of M into 3 matchings, M1,M2,M3, and use each
of these matchings in one of the 3 rounds in S. Clearly, |S| ≤ 3|SA|, and also,
all of the demand pairs that were satisfied in SA will also be satisfied in the
obtained schedule S.

F An Algorithm for Small Numbers of Terminals

Given a Multi-commodity Multicast instance, we present an algorithm which
finds a schedule of length O(|P | + D) where D denotes diamP (G). Instead of
solving this problem directly, we solve the Asymmetric MM instance where c+v =
c−v = 1 for all v ∈ V (G), and then by Lemma 10, we can convert this schedule to
a schedule for the original MM instance. So from now on, we think of the given
instance as the Asymmetric MM instance described above.

Before presenting our algorithm, we need a few definitions. Let m(u, v) denote
the message that vertex u wants to send to v, given that (u, v) ∈ P . Also, let
M = {m(u, v)|(u, v) ∈ P} be the set of all of the messages.

F.1 The Algorithm

Our algorithm has two Phases. In Phase 1, we find a path for each message
through which the message is sent. In Phase 2, a non-lazy schedule is used to
send all the messages through the paths that were found in Phase 1. A non-lazy
schedule in this context, is a schedule in which the messages are greedily sent to
the next vertex on their paths, i.e. a message does not wait on a vertex if it can
be sent to the next vertex on its path without violating the capacity constraints.

596 A. Nikzad and R. Ravi

Phase 1. For each messagem(s, t) we find an s, t-shortest path. Moreover, these
paths are found in such a way that the intersection of any two of them is a path
itself (possibly empty). To find such a family of paths, we introduce the notion
of lightness and choose the lightest path among all the s, t-shortest paths.

Definition 8. Let ≺ be an arbitrary precedence relation defined on E(G). For
any path Q, let Q̄ be the sequence of the edges of Q sorted in a decreasing order
with respect to ≺. A path Q is lighter than Q′ if Q̄ is lexicographically (dictionary
ordering) smaller than Q̄′. We abuse the notation and denote this by Q ≺ Q′.
Also, we extend this definition in the natural way to compare any two subsets of
the edges (not necessarily forming a path).

Definition 9. For any two vertices s, t, define the best s, t-path to be the lightest
path among all the shortest paths between s and t.

All we do in Phase 1, is finding the best s, t-path for each pair (s, t) ∈ P .
We finish the description of this Phase by showing how to find these paths in
polynomial time.

Lemma 11. For any two vertices s, t, the best s, t-path can be found in polyno-
mial time using Dijkstra’s Algorithm.

Proof. The proof has the same analysis as the analysis of Dijkstra’s Algorithm.
Define the weight of the i-th edge in the precedence relation to be 1+2−i−|E(G)|

and run Dijkstra’s Algorithm to find the shortest (s, t)-path with respect to these
weights, the obtained path would be the best (s, t)-path in G.

Phase 2. In Phase 2, we use an arbitrary non-lazy schedule which for all (s, t) ∈
P , sends m(s, t) from s to t through the best s, t-path that was found in Phase 1.

The Algorithm is now completed by describing Phase 2. The schedule pro-
duced in Phase 2 is clearly feasible. In the analysis of the algorithm, we bound
the length of this schedule by 2|P | +D. But before moving to the analysis, we
further exploit the structure of best paths.

F.2 On the Structure of Best Paths

Proposition 3. Assume A,B,C,D ⊆ E(G) such that A ≺ B and C ≺ D.
Moreover, we have A
⊆ C,C
⊆ A,B
⊆ D and D
⊆ B. Then (A∪C) ≺ (B∪D).

Lemma 12. For any 4 (not necessarily disjoint) vertices s, s′, t, t′, the intersec-
tion of the best s, t-path and the best s′, t′-path is a path itself (possibly empty).

Proof. Let the best s, t-path and the best s′, t′-path be respectively denoted by
Ps,t and Ps′,t′ . For the sake of contradiction, assume the intersection of Ps,t and
Ps′,t′ is not a path, then, it is easy to verity that there exist two vertices a, b
satisfying the following properties:

Approximation Algorithms for Generalized Multicast Problems 597

1. a, b ∈ V (Ps,t) ∩ V (Ps′,t′).
2. If we denote the path connecting a, b in Ps,t by Q, and denote the path con-

necting a, b in Ps′,t′ byQ′, then Q andQ′ are of the same length, E(Q), E(Q′)
are non-empty, and E(Q)
⊆ E(Q′) and E(Q′)
⊆ E(Q).

Note that Q,Q′ must be of the same length due to the fact that Ps,t, Ps′,t′ are

shortest paths. Let P̂s,t be the path from s to t which is similar to Ps,t except

that it uses Q′ instead of Q for connecting a and b. Similarly, Let P̂s′,t′ be the
path from s′ to t′ which is similar to Ps′,t′ except that it uses Q instead of Q′ for
connecting a and b. Observe that P̂s,t and P̂s′,t′ can not have repeated vertices,
again due to the fact that Ps,t, Ps′,t′ are shortest paths.

We claim that Ps,t ≺ P̂s,t and Ps′,t′ ≺ P̂s′,t′ . To verify this claim, first note

that E(Ps,t)
= E(P̂s,t) and E(Ps′,t′)
= E(P̂s′,t′), due to the fact that E(Q)
⊆
E(Q′) and E(Q′)
⊆ E(Q). Also, see that P̂s,t and P̂s′,t′ are both shortest, but

not the lightest shortest paths. This implies E(Ps,t) ≺ E(P̂s,t) and E(Ps′,t′) ≺
E(P̂s′,t′). Now, since the conditions stated in Proposition 3 apply, we can use
this proposition and imply

(E(Ps,t) ∪ E(Ps′,t′)) ≺ (E(P̂s,t) ∪ E(P̂s′,t′))

But this is a contradiction, since we have

(E(Ps,t) ∪ E(Ps′,t′)) = (E(P̂s,t) ∪ E(P̂s′,t′))

by the definition of P̂s,t and P̂s′,t′ .

Analysis of the Algorithm. We say a message m is out-waiting for another
message m′ in round t, if the following conditions hold in that round:

i. m,m′ have not reached their destinations and currently, they are on the
same vertex u.

ii. The next vertices that m,m′ should be sent to, are respectively v, v′, and
we have v
= v′.

iii. In round t, we send m′ to the next vertex by a phone-call from u to v′.

Similarly, we say a message m is in-waiting for another message m′ in round
t, if the following conditions hold in that round:

i. m,m′ have not reached their destinations and currently, they are on two
different vertices, u, u′ respectively.

ii. The vertex v is the next vertex that m,m′ should be sent to.
iii. In round t, we send m′ to the vertex v by a phone-call from u′ to v.

The in-delay of a message m ∈ M in a given Multicast schedule Π is defined
as the number of rounds in which m has been in-waiting for at least one other
message, and it is denoted by ξ+Π(m), or simply ξ+(m), whenever Π is clear
from the context. Similarly, the out-delay of a message m in a given Multicast

598 A. Nikzad and R. Ravi

schedule Π is defined as the number of rounds in which m has been out-waiting
for at least one other message, and is denoted by ξ−Π(m). The delay of a message
m, denoted by ξΠ(m), is simply equal to ξ+Π(m) + ξ−Π(m).

The length of any non-lazy schedule Π is then clearly at most max(s,t)∈P dG
(s, t) + ξ(m(s, t)), or simply, D + ξ where ξ denotes max(s,t)∈P ξ(s, t).

To bound the length of the non-lazy schedule obtained in Phase 2 by 2|P |+D,
its enough to show that ξ ≤ 2|P |.

Lemma 13. For any message m we have ξ(m) ≤ 2|P |.

Proof. We prove the claim by showing that ξ+(m), ξ−(m) ≤ |P |. To do so, we
show that a message m would not be out-waiting for any other message m′

in more than one round of the non-lazy schedule, which implies ξ−(m) ≤ |P |.
Similarly, we show that m would not be in-waiting for another message m′ in
more than one round of the schedule, and imply that ξ+(m) ≤ |P |.

Assume m is out-waiting for m′, and let Q,Q′ respectively be the best paths
associated with m,m′. Since m is out-waiting for m′, then they are currently
on the same vertex, e.g. u, but the vertices right after u on Q,Q′ are two dif-
ferent vertices, e.g. respectively v, v′. Lemma 12 implies the uniqueness of u. In
other words, it says that for any fixed m,m′, there is no more than one 5-tuple
(m,m′, u, v, v′) satisfying the properties above. Consequently, m would out-wait
for m′ in at most one round, which means ξ−(m) ≤ |P |.

Now, assume m is in-waiting for m′, and let Q,Q′ respectively be the best
paths associated with m,m′. Since m is in-waiting form′, then they are currently
on different vertices, e.g. u, u′, but the vertices right after u, u′ on Q,Q′ are the
same, e.g. the vertex v. Again, Lemma 12 implies the uniqueness of the 5-tuple
(m,m′, u, u′, v). Consequently, m would in-wait for m′ in at most one round,
which means ξ+(m) ≤ |P |.

Theorem 3. The length of the non-lazy schedule is at most 2|P |+D.

Proof. Recall that length of the schedule is bounded by ξ + D. By Lemma 13
we have ξ ≤ 2|P |, which implies length of the schedule is at most 2|P |+D.

G An Additive Approximation Algorithm

In this section, we provide an algorithm for the MM Problem which uses no
more than O(log n ·OPT +

√
n log2 n) rounds. Before presenting the algorithm,

we need the following definition.

Definition 10. During the running time of a broadcast schedule, a pair of ver-
tices (u, v) is called active if either (u, v) or (v, u) is an unsatisfied demand pair,
i.e. the message from the source node is not yet received by the sink node. A
subset of vertices X is called active, if there exist some active pair (u, v) such
that u ∈ X and v
∈ X. In particular, a terminal u is called active if there is
some vertex v such that (u, v) is active.

Approximation Algorithms for Generalized Multicast Problems 599

Our algorithm has 4 phases. In Phase 1, we select a set C of at most
√
n

vertices from G, which we call the set of centers. In Phase 2 we find a schedule
S with length O(

√
n) which sends each vertex v ∈ R\C to one of the centers,

namely f(v). Overall, our goal in Phases 1 and 2 is to send all the messages to
the set of centers. In Phase 3, we solve another MM instance defined on G, in
which the set of demand pairs is P ′ = {(f(u), f(v))|(u, v) ∈ P}. In Phase 4,
we simply run the schedule S in the reverse order to complete the information
received by every f(v) to the corresponding v. We describe each of these phases
in more details, and then formally present the algorithm.

Phase 1. The goal in this phase is finding and running a schedule which we call
S0. First, find two families of vertex-disjoint connected subgraphs of G, namely
T and T ′. The subgraphs in T , T ′ are called the components of T , T ′, or simply
components, whenever it’s clear from the context. These components will be
chosen in such a way that we can broadcast within each of them in at most

√
n

rounds, which also means this can be done simultaneously for all of them, since
they’re vertex disjoint.

To construct T , repeatedly find vertex-disjoint trees of size
√
n: Order the

vertices of G arbitrarily and visit the vertices in that order. When visiting a
vertex v, run DFS to find a tree of size

√
n rooted at v, which does share any

vertices with the trees (of size
√
n) that are found previously. After visiting all

the vertices of G, assume T = {T1, . . . , Tk} is the family of the trees we have
found and C = {r1, . . . , rk} is the set of their roots where ri is the root of Ti.

Find an arbitrary spanning tree in each component of G[V (G)\V (T)], and
let the obtained set of trees be T ′ = {T ′

1, . . . , T
′
k′}. Clearly, any tree in T ′ has

less than
√
n vertices since otherwise, another tree could have been added to T .

So, there exist a broadcast schedule of length at most
√
n to transmit messages

from the root to all nodes in each component in T , T ′. By running this schedule
twice, first in the reverse order to the root and then regularly from the root, we
can inform all the vertices in a component about the information of the rest of
the vertices in that component. Moreover, this can be done simultaneously for
all of the components since they are vertex disjoint. Let S0 be the final schedule
accomplishing this. Run the schedule S0 in Phase 1.

Phase 2. This Phase is a preparation for Phase 3, where we solve a new MM
instance defined on the set C as the set of new terminals. In Phase 2, we construct
this instance by sending each active vertex v
∈ C to some vertex in C, namely
f(v). Note that this has already been done for all v ∈ V (T) in Phase 1, i.e. we
sent each vertex v ∈ V (T) to one of the centers.

To accomplish this for all v
∈ V (T) as well, we find a schedule S which
sends a vertex from each active components in T ′ to another arbitrary vertex in
V (T). To find S, we find a b-matching in the bipartite graph G[V (T), V (T ′)] in
polynomial time, which saturates exactly one vertex from each active component
T ′
i , and minimizes b. Recall that b-matchings in bipartite graphs are like regular

matchings, except that the degrees on one side of the partition, i.e. V (T) in here,
can be as large as b.

600 A. Nikzad and R. Ravi

Before giving an algorithm for finding the b-matching, we show how to use it
to construct S. Assuming that a vertex v ∈ V (T ′) is matched to m(v) in our
b-matching, the schedule S sends a message from each vertex v to m(v). This
clearly can be done in b rounds by decomposing the edges of the b-matching into
at most b disjoint matchings, so we have |S| ≤ b.

All we do in Phase 2, is run the schedule S and then S0. By doing so, we
send each active vertex v ∈ V (T ′) to one of the centers, i.e. the vertex f(v). To
see why, note that in Phase 1, S0 already sent all the information from all the
nodes in V (T ′) to all other nodes in the same component of T ′, and hence in
particular to the node v in the component which has an edge of the b-matching
incident on it. In this phase, S sends all the messages from v to its matched
vertex m(v) in V (T), and S0 sends all the information from m(v) in V (T) to
one of the centers.

Finally, it remains to find the optimal b-matching in polynomial time.

Lemma 14. We can find the minimum integer b along with a b-matching in
G[V (T), V (T ′)] in polynomial time which saturates one vertex from each active
component in V (T ′).

Proof. Shrink each active component in V (T ′) and replace it with a single node.
Also, remove all of the inactive components from the graph. Now, it’s enough
to find a minimum b-matching which saturates all of the shrunk nodes. This is
doable by the standard algorithms for finding minimum b-matchings in bipartite
graphs, e.g. see [22]. Note that since every shrunk node has at least one neighbor
in V (T) since the message from an active vertex in this node must transmit the
message to its made outside the shrunk node, the existence of such a b-matching
is guaranteed.

Phase 3. In this Phase, we reduce the original MM instance to a new instance
with a smaller number of terminals. Naturally, since v is sent to f(v) for every
active terminal v, we want to reduce this instance to a new instance I ′ defined
on the new set of terminals R′ = {f(v)|v ∈ R} along with the new set of demand
pairs P ′ = {(f(u), f(v))|(u, v) ∈ P}.

To find a schedule for I ′, we can use Theorem 3, which guarantees a schedule
of length O(|P ′|+diamP ′(G)). But note that |P ′| can be as large as Ω(n), which
makes this solution inefficient. To overcome this issue, we use an idea similar to
Phase 1 of AlgorithmMM . We can sparsify the demand pairs P ′ using Algorithm
Sparsify , and obtain a subset P̂ ′ ⊆ P ′, which satisfies the properties below:

1. |P̂ ′| ≤ 2|R′| log |R′|
2. Assuming that Ŝ ′ is a feasible schedule for I(G, P̂ ′), then repeating Ŝ ′ for

8 log |R′| times makes a feasible schedule for I(G,P ′).

The process of finding the sparsified subset of demand pairs, P̂ ′, is identical to
Algorithm MM . To summarize, all we need to do in Phase 3 is:

1. Construct the new set of demand pairs P ′ = {(f(u), f(v))|(u, v) ∈ P}.
2. Find the sparsified subset of demand pairs P̂ ′.

Approximation Algorithms for Generalized Multicast Problems 601

3. By applying Theorem 3 on P̂ ′, find a schedule Ŝ ′ for I(G, P̂ ′).
4. Run the schedule Ŝ ′ for 8 log |R′| times to solve the instance I(G,P ′).

Phase 4. At this point, we know that for any (u, v) ∈ P , vertex f(v) has received
the message pu, i.e. the message from vertex u. So, all we need to do to complete
the solution is to inform v of what f(v) knows. Note that by running Phase 1
and Phase 2, exactly the reverse happened, i.e. f(v) was informed of what v
knew. Consequently, all we need to do in Phase 4, is the same as we did in Phase
1 and Phase 2, but in the reverse order.

Theorem 4. The given algorithm produces a schedule of length O(log n ·OPT+√
n log2 n).

Proof. Let S∗ be the optimal schedule, so we have |S∗| = OPT . We provide
an upper bound, in terms of OPT , on the number of rounds used in each of
the four phases. In Phase 1, we only run the schedule S0, for which we showed
|S0| ≤ 2

√
n in the description of the phase.

In Phase 2, we run the schedule S and then S0, where we have |S| ≤ b. Recall
that b was the minimum integer for which there exists a b-matching saturating
exactly one vertex from each active component T ′

i . Here we prove b ≤ OPT
which implies that |S| ≤ OPT . To see this, we should consider the optimal
multicast schedule, S∗.

Let E∗ ⊆ E(G) be the subset of the edges used in S∗. For any active com-
ponent T ′

i ∈ T ′, there must exist an edge (xi, yi) ∈ E∗ such that xi ∈ V (T ′
i)

and yi ∈ V (T). This holds since otherwise, in the schedule S∗, the active com-
ponent T ′

i would be disconnected from the rest of the vertices, contradicting the
feasibility of S∗. Now, let

M =
{
(xi, yi)

∣∣ T ′
i ∈ T ′, T ′

i is active
}

Clearly, M defines a b-matching in G[V (T ′), V (T)], but for what value of b? In
other words, what is the maximum number of edges in M which share the same
endpoint in V (T)? To answer this question, note that M ⊆ E∗, and no vertex
in E∗ has a degree more than OPT , due to the optimality of S∗. This implies
b ≤ OPT , and so, |S| ≤ OPT . Recall that we run the schedule S and then S0

in Phase 2, which means we use at most OPT + 2
√
n rounds in this phase.

In Phase 3, we run the schedule Ŝ′ for 8 log |R′| times, so, the number of rounds
used in this phase is at most 8 log |R′| · |Ŝ′|, which we are going to compute in
terms of OPT . By applying Theorem 3 on P̂ ′, we get

|Ŝ ′| ≤ O(|P̂ ′|+ diamP̂ ′(G))

≤ O(2|R′| log |R′|+ diamP̂ ′(G)) (7)

≤ O(
√
n logn+ 4

√
n+OPT) (8)

602 A. Nikzad and R. Ravi

where (7) is due to the fact that |P̂ ′| ≤ 2|R′| log |R′| as a result of the sparsi-
fication, and (8) holds since diamP̂ ′(G) ≤ 4

√
n + OPT . To see why, note that

dG(v, f(v)) ≤ 2
√
n for all v, which implies

dG(f(u), f(v)) ≤ dG(f(u), u) + dG(u, v) + dG(v, f(v))

≤ 4
√
n+ dG(u, v)

≤ 4
√
n+OPT

Recall that the number of rounds used in Phase 3 is at most 8 log |R′| · |Ŝ′|.
If we plug in (8) we get

8 log |R′| · |Ŝ′| ≤ O(log n · (
√
n logn+OPT))

Consequently, we use at most O(log n ·OPT +
√
n log2 n) rounds in Phase 3.

In Phase 4, we clearly use as many rounds as we use in Phase 1 and Phase
2 overall, i.e. 4

√
n + OPT . By summing the upper bounds obtained on the

length of each phase, it implies that the total length of the produced schedule is
O(log n · OPT +

√
n log2 n).

H Equivalence with the Minimum Poise Subgraph
Problem

Themain result of this section is an (approximate) equivalence between theMulti-
commodity Multicast Problem and the Minimum Poise Subgraph Problem.

Definition 11. In the Minimum Poise Subgraph Problem (MP), we are given
a connected graph G along with a subset of pairs of its vertices, P . The goal is
to find a subgraph H of G which minimizes Δ(H) + diamP (H).

We denote the quantity Δ(H) + diamP (H) as the Poise of the subgraph H
generalizing from the corresponding version for the broadcast problem in [20].
Recall that if two vertices u, v are not connected in H , then by convention,
dH(u, v) = ∞. So the subgraphs H which do not connect a pair (u, v) ∈ P will
be automatically excluded from the solution domain.

Assume we are given an MM instance, I(G,P), defined on the graph G with
the set of demand pairs P . Also, let J denote the associated MP instance, i.e.
the MP instance defined on the graph G with the subset of pairs P .

Theorem 5. Given a feasible schedule for I, namely S, in polynomial time we
can obtain a feasible solution for J with poise at most O(|S|). In the other
direction, given a feasible solution for J with poise x, in polynomial time we can

obtain a feasible schedule for I with length at most O(x · log3 n
log log n).

We need the following Lemma for the proof of Theorem 5.

Lemma 15. There exist a collection of log |P | subgraphs of G, namely F , sat-
isfying the following properties.

Approximation Algorithms for Generalized Multicast Problems 603

i. Each element of F is a forest,
ii. For each pair in P , e.g. (si, ti), there exist a forest in F , which connects both

si and ti, and
iii. For each F ∈ F we have diam(F) ≤ diamP (G) · 4 log |P | and Δ(F) ≤ OPT

where OPT is the length of the optimum schedule for I(G,P).

Proof. Let P = {P1, . . . , Pk} be the set of paths in the optimal schedule for
I(G,P), where Pi is the path through which the message from si is sent to ti.
For any Q ∈ P , let N(Q) denote the subset of the paths in P which have at
least one vertex in common with Q. Also, for any subset S of P , let N(S) =
{N(Q)|Q ∈ S}\S.

Now, we use the following algorithm to find the first forest in F . Later, we
find the subsequent forests using the same algorithm.

Algorithm Extract Forest
Input: A graph G and a a family of paths P
Output: A subgraph of G, which is a forest
1. H,X ← φ and P ′ ← P
2. repeat
3. Let Q ∈ P ′

4. X ← X ∪ {Q}
5. while |N(X)| ≥ |X |
6. do X ← X ∪N(X)
7. H ← H∪ X .
8. P ′ ← P ′\(X ∪N(X))
9. until P ′ = φ
10. Let H be a subgraph of G, with V (H) = V (H) and E(H) = E(H)
11. Using BFS, find a spanning tree with an arbitrary root in each connected

component of H
12. Output the collection of all trees found in the previous step

Let the forest F be the output of Algorithm Extract Forest . First, we bound
the diameter of each connected component of F by 2 log |P| ·OPT . See that each
connected component of H , namely X , is made of a family of paths, namely X .
This family is formed by a consecutive execution of line 6 of the Algorithm
Extract Forest . So, we can decompose X into a number of families X1, . . . ,Xj ,
where for each i, Xi is the family of paths that was added to X in some iteration
of line 6. W.L.O.G we can assume that Xa is added sooner than Xb iff a < b.
Observe that after each iteration of line 6, the size of X is at least doubled,
which implies j ≤ log |P|.

Now, let u, v be two arbitrary vertices of X , such that u ∈ V (Xa) and
v ∈ V (Xb) for some a, b. To prove our bound on the diameter, we show that
dX(u, v) ≤ 2 log |P| · OPT , as follows: Let w be an arbitrary vertex in V (X1).
Note that there is path in X between u and w with length at most a · OPT .
Similarly, there is a path between v and w with length at most b · OPT . This
implies dX(u, v) ≤ (a + b) · OPT . Moreover, having a, b ≤ log |P| implies
dX(u, v) ≤ 2 log |P| · OPT . So, a BFS tree in X with an arbitrary root ver-
tex, has a diameter at most 4 log |P| · OPT .

604 A. Nikzad and R. Ravi

After we found the first forest, we update P by removing H from it. Then, by
running the above algorithm on the updated P , we find the second forest. We
continue this process until P becomes empty. To bound the number of forests,
we show that after extracting each forest, the size of P is reduced by at least a
factor of 2. This will finish the proof, since it just means P becomes empty after
finding at most log |P| forests.

To prove the claim, simply see that in line 8 of the Algorithm Extract Forest ,
whenever we remove a subset of paths from P ′, we also add a subset of paths

with at least the same size to H, in line 7. It means |H| ≥ |P|
2 . Consequently,

the size of the updated P , i.e. P\H, is at most |P|/2. This finishes the proof.

Corollary 2. Given a simple n-vertex graph G, we can find a subgraph s(G) of
G in polynomial time, such that |E(s(G))| ≤ 2n logn and for each (u, v) ∈ E(G),
we have ds(G)(u, v) ≤ 8 logn.

Proof. We define an MM instance and then, we prove our claim by applying
Lemma 15 on it. Let I(G,P) be an MM instance where P = {(u, v)|(u, v) ∈
E(G)}. By applying Lemma 15 on I, we obtain a family of forests, namely F ,
which is satisfying the properties (ii) and (iii) of Lemma 15. This means that
for every (u, v) ∈ P , there exists a forest in F , namely F , such that dF (u, v) ≤
4 log |P |. So, if we define E(s(G)) to be E(F), then, diam(s(G)) ≤ 4 log |P | ≤
8 logn, and moreover, |E(s(G))| ≤ (log |P |).n ≤ 2n logn, which finishes the
proof.

Note that Algorithm Sparsify which was used in Section 6 is derived in the
proof of the above corollary.

Proof (of Theorem 5). First we prove the easy direction. Given a schedule S, we
find a subgraph with poise at most 2|S|. Let E∗ ⊆ E(G) be the subset of edges
used in S. Let H be the subgraph of G with E(H) = E∗. Clearly, Δ(H) ≤ |S|
and diamP (H) ≤ |S|. This proves the claim.

Now, given a subgraph H with poise x, we construct a schedule S with |S| ≤
O
(
x · log3 n

log logn

)
. Similar to Lemma 15, we show the existence a collection of

log |P | subgraphs of H , namely F , satisfying the following properties: i. Each
element of F is a forest, ii. For each pair in P , e.g. (si, ti), there exist a forest in
F , e.g. F , which connects si and ti, and iii. For each F ∈ F we have diam(F) ≤
diamP (H) · 4 log |P |.

Proof of this claim is very similar to the proof in Lemma 15. We can obtain the
family F by running Algorithm Extract Forest iteratively on the family of paths
P∗, which is defined as follows: The family P∗ contains an arbitrary shortest
path in H from u to v for all (u, v) ∈ P . It is easy to verify that the output will
satisfy the required properties for F , we do not repeat the proof here.

Given the family F , we construct the schedule S as follows: Order the elements
of F arbitrarily. Then, for each forest F in that order, broadcast within all
components of F simultaneously. Since for each (si, ti) ∈ P , there exists a forest
in F which connects si and ti, the schedule is clearly feasible. To provide an

Approximation Algorithms for Generalized Multicast Problems 605

upper bound on |S|, we show that we need at most O(x · log2 n
log logn) rounds for

each forest F . Then, given that |F| = O(log n), we would have |S| ≤ O(x log3 n).
To finish the proof, given a forest F , we prove that broadcasting within each

component of F can be done in O(x · log2 n
log logn) rounds. Note that this can be

done simultaneously for all components since they are clearly vertex-disjoint.
Ravi [20] has shown that the minimum broadcast time for a tree T is at most
log n

log logn · poise(T). Using dynamic programming, he also provides an Algorithm
to find such a broadcast schedule in polynomial time. It just remains to see that
each connected component in F is a tree, by the properties of F , and has a poise
at most Δ(H) + diamP (G) · 4 log |P | = O(x log n).

Corollary 3 (of Theorem 5). Given an MM instance I(G,P), in polynomial
time we can find a feasible schedule for it with length at most

O
(

log3 n
log logn · (OPT +Δ(G))

)
.

Proof. In polynomial time, we can find a subgraph H of G with poise at most
OPT +Δ(G), i.e. a subgraph H satisfying Δ(H) + diamP (H) ≤ OPT +Δ(G).
To find such a subgraph, we just need to define H as the union of the (s, t)-
shortest paths for all (s, t) ∈ P . Then, clearly we would have Δ(H) ≤ Δ(G) and
diamP (H) ≤ OPT , which together imply the desired bound on the poise of H .

After we found H , all we need to do is applying Theorem 5 on H and ob-

tain a schedule of length O
(

log3 n
log logn · (Δ(H) + diamP (H))

)
, which is at most

O
(

log3 n
log logn · (Δ(G) +OPT)

)
.

I Hardness

Definition 12. In the Hyperedge-Coloring problem (HC), we are asked to color
the edges of a given hypergraph H with the minimum number of colors such that
no two intersecting edges have the same color.

Lemma 16. Assuming ZPP
= NP, and for any positive ε < 1, there are no
O(m1−ε)-approximations for the HC problem, where m is the number of the
edges of the hypergraph.

Proof. We reduce the problem to the vertex-coloring problem. It is known that
the vertex-coloring problem is not approximable within a factor of O(|V (G)|1−ε)
unless ZPP = NP [8]. Given a graph G as the input for the vertex-coloring
problem, we construct a hypergraph H such that V (H) = E(G), i.e. there is a
vertex ē in H for each edge e ∈ E(G). Also, for each vertex v ∈ V (G), there is
a hyperedge v̄ in H, where v̄ contains all the vertices ē such that v is one of the
endpoints of e in G, i.e. v̄ contains the set of vertices {ē|∃u : e = (u, v)} .

It’s easy to verify that χ′(H) = χ(G): Observe that any valid vertex-coloring
for G gives a valid edge-coloring for H, and vice versa. This can be done by
assigning the same colors to the vertex v ∈ V (G) and the edge v̄ ∈ E(H).
Now, see that the existence of a O(m1−ε)-approximation algorithm for the HC

606 A. Nikzad and R. Ravi

problem, implies we can approximate χ′(H) within a factor of O(|E(H)|1−ε),
and this means we can approximate χ(G) within a factor of O(|V (G)|1−ε) due
to the fact that |E(H)| = |V (G)|. Contradiction.

Theorem 6. Assuming P
= NP, and for any positive ε < 1, there are no
O(max{n,m}1−ε)-approximations for the Hypercast problem, where n,m are re-
spectively the number of the vertices and edges of the hypergraph G given in the
Hypecast instance.

Proof. To prove the claim, given an instance of the HC problem with the hyper-
graph H , we reduce it to an instance of the Hypercast problem as follows. Let
G be a hypergraph which contains a copy of all the edges and vertices of H . We
will modify G step by step to obtain the desired Hypercast instance.

First, for each hyperedge e ∈ E(H), insert two distinct new vertices e− and
e+ in it. Then, add another new vertex r− to G, and also, add a hyperedge which
contains r− and all the vertices e−. Let r− be the source node in our Hypercast
instance and R = {e+|e ∈ E(H)} be the set of terminals. We claim that any
L-coloring of the hypergraph H corresponds to a solution of length L+1 for the
Hypercast instance, and vice versa.

Assume we are given an L-coloring for H , then, we construct a schedule of
length L + 1 as follows: In the first round of the schedule, use the only edge
containing r− to inform all the vertices e−. Then, use one round for each color-
class of the L-coloring, i.e. sort the colors in an arbitrary order and dedicate a
round to each color with respect to that ordering. Use each edge of H in the
round dedicated to its color. The obtained schedule has length L + 1 and is
obviously feasible since each terminal e+ ∈ R is informed by e− when the edge
containing them is used in the round dedicated to its color.

To show the other direction, given a schedule of length L+1 for the Hypercast
instance, we find an L-coloring for H . We can assume the first round is dedicated
to the only edge containing r− W.L.O.G. and that is because this edge intersects
with all the other edges and also is the only edge containing the source node.
Since each edge e ∈ E(G) contains a distinct terminal, then e should be used
in at least one of the rounds 2, . . . , L + 1. Pick one of the rounds in which e is
used arbitrarily and let it be the color of e. Clearly, the number of used colors
is L, and moreover, no two intersecting edges have the same color due to the
feasibility of the given schedule.

The above argument implies that any α-approximation for the Hypercast
problem gives an O(α)-approximation for the HC problem. Since there are no
O(|V (H)|1−ε)-approximations for the HC problem, and since n,m ∈ O(|V (H)|),
then there are no O(max{n,m}1−ε)-approximations for the Hypercast problem.

Under Khot’s 2-to-1 conjecture, we also provide a harness result in terms of D
for the Hypercast Problem. To prove this result, we need the following Theorem
of [11]:

Theorem 3.1. from [11] Assuming 2-to-1 conjecture, the following holds: Given
any integer k ≥ 7 and Δ ≥ Δ0(k), it is NP-hard (under randomized reductions)

Approximation Algorithms for Generalized Multicast Problems 607

to decide whether an unweighted graphG with maximum degreeΔ is k-colorable
or has largest independent set size at most O(n/Δ1−c/k−1)

Proposition 4. Under Khot’s 2-to-1 conjecture, it is NP-hard to color a 7-
colorable graph with O(Δ1/3) colors.

Theorem 7. Assuming P
= NP , there are no O(D1/3)-approximations for
the Hypercast problem, where D is the maximum size of a hyperedge in the
hypergraph G.

Proof. The proof is similar to the proof of Theorem6.Weuse the exact same reduc-
tion to the vertex coloring problem, and then, instead of using the Ω(|V (G)|1−ε)
hardness ratio of [8], we use Proposition 4.

For contradiction, assume we are given an algorithm for the Hypercast prob-
lem, namely Algorithm A, which has an approximation ratio of O(D1/3). Us-
ing this algorithm, we will design an algorithm which, for any Δ, colors any
7-colorable graph with O(Δ1/3) colors. This will be a contradiction with Propo-
sition 4.

Assuming that we are given a 7-colorable graph G as the input of the ver-
tex coloring problem, we reduce this instance to an instance of the Hypercast
Problem. This is done in exactly the similar way as it was done in Lemma 16 fol-
lowed by Theorem 6. Note that the size of the hyperedges in obtained Hypercast
instance would be bounded by Δ, i.e. D = Δ.

By the properties of our reduction, since χ(G) ≤ 7, then the optimal schedule
for the produced Hypercast instance has length O(1), and so, Algorithm A gen-
erates a schedule of length at most O(Δ1/3). Due to our reduction, this schedule
can be converted into a coloring of vertices for the graph G which uses no more
than O(Δ1/3) colors. This is a contradiction with Proposition 4.

	Sending Secrets Swiftly:
Approximation Algorithms
for Generalized Multicast Problems

	1 Introduction and Motivation
	2 Related Work
	3 Our Results

	4 Preliminaries
	4.1 The Multicast Problem
	4.2 Schedules
	4.3 Graphs and Matchings
	4.4 Spiders

	5 The Multicast Problem
	5.1 Outline of the Algorithm
	5.2 The Algorithm: Phase 4
	5.3 The Algorithm

	6 The Multicommodity Multicast Problem
	6.1 Preleminaries: Multicast Schedules
	6.2 Sparsification
	6.3 The Algorithm

	7 Conclusion
	References

