Improved Approximations for Graph-TSP in Regular Graphs

R Ravi

Carnegie Mellon University

Joint work with Uriel Feige (Weizmann), Satoru Iwata (U Tokyo), Jeremy Karp (CMU), Alantha Newman (G-SCOP) and Mohit Singh (MSR)

Graph TSP

Given a connected unweighted graph, a tour is a closed walk that visits every vertex at least once.

Objective: find shortest tour.

Ideally – a Hamiltonian cycle.

A tour may use the same edge twice

A tour may use the same edge twice length 8x1 + 1x2 = 10

Results

1. Size 4n/3 in a graph with a spanning tree and a simple cycle on its odd nodes (WG14, joint with Satoru Iwata and Alantha Newman)

"Regular graphs have short tours"

- 2. Size 9n/7 in cubic bipartite graphs (APPROX14, joint with Jeremy Karp)
- 3. Size $(1 + O(\frac{1}{\sqrt{d}}))$ n in d-regular graphs (IPCO14, joint with Uri Feige and Mohit Singh)

Main ideas for short tours

- Augment spanning tree with carefully chosen edges
- 2. Delete carefully chosen edges from the whole graph
- 3. Augment cycle cover with few cycles
- 4. Augment path cover with few paths

General bounds

In every connected n-vertex graph, the length of the shortest tour is between n and 2n-2.

Spanning tree lower bound

Double spanning tree edges, drop remaining edges

Christofides 1976

 A 3/2-approximation to graph TSP (and more generally, metric TSP).

Tour composed of union of:

- (minimum) Spanning tree.
- Minimum T-join on odd-degree vertices.

Gives a connected Eulerian graph (= tour).

Recall definitions

Let *T* be a subset of the vertex set of a graph. An edge set is called a *T*-join if in the induced subgraph of this edge set, the collection of all the odd-degree vertices is *T*.

A graph is Eulerian if all degrees are even. A connected Eulerian (multi)-graph has an Eulerian circuit: a walk that uses every edge exactly once.

Christofides for graph TSP

Arbitrary spanning tree

Odd degree vertices

Odd degree vertices

Find minimum T-join

Union of the T-join...

... and the spanning tree

Union of T-join and the spanning tree

Drop remaining edges

Analysis

The algorithm gives a connected multi-graph with even degrees. It has an Eulerian tour.

Spanning trees and minimum T-joins can be found in polynomial time.

Approximation ratio:

Spanning tree < opt
Minimum T-join ≤ opt/2
Christofides tour < 3opt/2

Upper bound on T-join

Consider optimal tour

Ignore other edges

Take either even or odd segments

The even segments

The odd segments

Steiner Cycles

Obs: If G has a spanning tree T and a simple cycle C on the odd nodes of T, then it has a tour of length 4n/3

- |C| > 2n/3 Contract cycle and double remaining spanning tree
- |C| < 2n/3 Use Christofides' idea and take shorter of even and odd segments to get T-join of size at most n/3

Cor: If G has a Hamiltonian path, then it has a tour of length 4n/3

Approximating TSP

- NP-hard and APX-hard.
- 3/2 still best approx ratio for metric TSP.
- Dantzig, Fulkerson, Johnson (aka Held-Karp) linear program gives at least as good approximation. Moreover, worst integrality gap example known is 4/3, on an instance of graph TSP of max degree 3.
- For graph TSP, there has been substantial progress in recent years, leading to 7/5 approximation [Sebo and Vygen 2012]

Oveis-Gharan, Saberi and Singh 2011

Thm: Graph TSP can be approximated within a ratio better than 3/2.

Proof idea: Rather than starting from arbitrary spanning tree, start with one that would give a cheaper T-join than OPT/2.

Use fractional solution of LP to define a distribution over spanning trees, sample one at random, and it is likely to have a cheap T-join.

Main ideas for short tours

- Augment spanning tree with carefully chosen edges
- 2. Delete carefully chosen edges from the whole graph
- 3. Augment cycle cover with few cycles
- 4. Augment path cover with few paths

Mömke and Svensson 2011

- A different approach, giving a 1.461 approximation for graph-TSP.
- Every 3-regular 2-vertex connected graph has a tour of length at most 4n/3. (Also proven independently and differently by Aggarwal, Garg, Gupta '11 and Boyd, Sitters, van der Ster, Stougie '11)
- Improvement of analysis to 13/9 (Mucha '12)

Mömke and Svensson 2011

Every 3-regular 2-vertex connected graph has a tour of length at most 4n/3.

New ideas:

- Use probability distribution over T-joins to fix up a single tree
- Delete carefully chosen edges from T-join

Naddef and Pulleyblank 1981

Assigning every edge in a 3-regular 2-vertex connected graph a value of 1/3 puts it in the perfect matching polytope

Theorem [Edmonds 1964]: Perfect Matching polytope characterization

$$\chi(\partial(s)) = 1 \quad \forall v \quad \partial(v)$$

$$\chi(\partial(s)) \geq 1$$

$$\forall s : |s| \text{ odd}$$

$$\chi(\partial(s)) = 1 \quad \forall v \quad \partial(v)$$

$$\chi(\partial(s)) \geq 1$$

$$\chi(\partial(s)) \geq 1$$

Naddef and Pulleyblank 1981

Assigning every edge in a 3-regular 2-vertex connected graph a value of 1/3 puts it in the perfect matching polytope

- |S| odd and cubic graph implies $|\delta(S)|$ odd
- 2-connectivity implies $|\delta(S)| \ge 3$

Naddef and Pulleyblank 1981

Assigning every edge in a 3-regular 2-vertex connected graph G a value of 1/3 puts it in the perfect matching polytope

(Caratheodory's theorem): G with 1/3 on every edge can be written as a convex combination of a polynomial number of perfect matchings M1, M2, ..., Mk

- Pick a DFS tree T with a set of back edges B
 - P: Tree edges with back edge hanging from parent
 - -Q = T P
- Pick a matching M randomly from the distribution defined by x=1/3 on E(G)
- Initialize solution H to whole graph G
 - For all edges in M ∩ B, delete it from H
 - For all edges in M ∩ P, delete it from H
 - For all edges in $M \cap Q$, double it in H

Claim: H is an Eulerian connected graph (and hence contains a tour)

- Pick a DFS tree T with a set of back edges B
 - P: Tree edges with back edge hanging from parent
 - Q = T P
- Pick a matching M randomly from the distribution defined by x=1/3 on E(G)
- Initialize solution H to whole graph G
 - For all edges in M ∩ B, delete it from H
 - For all edges in M ∩ P, delete it from H
 - For all edges in M ∩ Q, double it in H

- Pick a DFS tree T with a set of back edges B
 - P: Tree edges with back edge hanging from parent
 - Q = T P

- Pick a DFS tree T with a set of back edges B
 - P: Tree edges with back edge hanging from parent
 - Q = T P

- Pick a DFS tree T with a set of back edges B
 - P: Tree edges with back edge hanging from parent
 - -Q = T P
- Pick a matching M randomly from the distribution defined by x=1/3 on E(G)
- Initialize solution H to whole graph G
 - For all edges in M ∩ B, delete it from H
 - For all edges in M ∩ P, delete it from H
 - For all edges in M ∩ Q, double it in H

- Pick a DFS tree T with a set of back edges B
 - P: Tree edges with back edge hanging from parent
 - Q = T P
- Pick a matching M randomly from the distribution defined by x=1/3 on E(G)
- Initialize solution H to whole graph G
 - For all edges in M ∩ B, delete it from H
 - For all edges in M ∩ P, delete it from H
 - For all edges in M ∩ Q, double it in H

- Pick a DFS tree T with a set of back edges B
 - P: Tree edges with back edge hanging from parent
 - Q = T P
- Pick a matching M randomly from the distribution defined by x=1/3 on E(G)
- Initialize solution H to whole graph G
 - For all edges in M ∩ B, delete it from H
 - For all edges in M ∩ P, delete it from H
 - For all edges in M ∩ Q, double it in H

Claim: H is a connected Eulerian graph

- Pick a DFS tree T with a set of back edges B
 - P: Tree edges with back edge hanging from parent
 - -Q = T P
- Pick a matching M randomly from the distribution defined by x=1/3 on E(G)
- Initialize solution H to whole graph G
 - For all edges in M ∩ B, delete it from H
 - For all edges in M ∩ P, delete it from H
 - For all edges in M ∩ Q, double it in H

- Pick a DFS tree T with a set of back edges B
 - P: Tree edges with back edge hanging from parent
 - Q = T P
- Pick a matching M randomly from the distribution defined by x=1/3 on E(G)
- Initialize solution H to whole graph G
 - For all edges in M ∩ B, delete it from H
 - For all edges in M ∩ P, delete it from H
 - For all edges in M ∩ Q, double it in H

- Pick a DFS tree T with a set of back edges B
 - P: Tree edges with back edge hanging from parent
 - Q = T P
- Pick a matching M randomly from the distribution defined by x=1/3 on E(G)
- Initialize solution H to whole graph G
 - For all edges in M ∩ B, delete it from H
 - For all edges in M ∩ P, delete it from H
 - For all edges in M ∩ Q, double it in H

Claim: H is a connected Eulerian graph

Claim: H is an Eulerian connected graph (and hence contains a tour)

- Eulerian: Every node has initial degree 3. One matching edge incident is deleted or doubled making degree 2 or 4
- Connected (Bottom up induction)
 - If tree edge in P deleted, back edge hanging from parent connects subtree to upper part
 - If back edge in B is deleted, its sibling tree edge in P connects both sides

```
E[|H|] = |G| - E[|M \cap B|] - E[|M \cap P|] + E[|M \cap Q|]
= 3n/2 - (1/3) |B| - (1/3) |P| + (1/3) |Q|
\approx 3n/2 - (1/3)(n/2) - (1/3) (n/2) + (1/3) (n/2)
= 9n/6 - n/6
= 4n/3
```

Theorem: Every 3-regular 2-vertex connected graph has a tour of length at most 4n/3

Main ideas for short tours

- Augment spanning tree with carefully chosen edges
- 2. Delete carefully chosen edges from the whole graph
- 3. Augment cycle cover with few cycles
- 4. Augment path cover with few paths

Sebo and Vygen 2012

- Find a 'nice' ear decomposition of G based on Frank's min-max theorem for min number of even ears
- Pick a set of edges based on the decomposition (earmuff) to form a connected sugraph
- Extend chosen subgraph to an even supergraph by inductively adding edges from the pendant ears
 - If many pendant ears, add T-join on odd nodes (augment)
 - If few pendant ears, use Mömke and Svensson's method (deletion)

Theorem: 7/5-approximation for graph-TSP (best known currently)

Main ideas for short tours

- Augment spanning tree with carefully chosen edges
- 2. Delete carefully chosen edges from the whole graph
- 3. Augment cycle cover with few cycles
- 4. Augment path cover with few paths

Augment cycle cover with few cycles

- Find a cycle cover with few cycles.
- Connect it by doubled edges to get a connected Eulerian multi-graph.
- If the cycle cover has c cycles, the tour length is at most n + 2(c-1).
- Need c to be small, i.e., average cycle length to be large.

Cycle cover

Connecting the cycle cover

Drop remaining edges

Simple 3n/2 tour in cubic bipartite graphs

1. Find a cycle cover with no parallel edges (e.g. union of any two disjoint perfect matchings)

Bipartite implies no odd cycles \rightarrow min cycle length is 4 \rightarrow At most n/4 cycles

2. Add doubled spanning tree connecting cycles

Total no of edges \approx n + 2(n/4)

Simple 4n/3 tour in cubic bipartite graphs

- 1. While there is a square, replace it with a gadget
- 2. Find cycle cover in square-free graph
- 3. Expand gadgets maintaining square-free cycle cover

Total no of edges \approx n + 2(n/6)

Better than 4/3 approximation?

Sub-cubic graph instances already require 4n/3 edges.

Better than 4/3 approximation?

Correa, Larre, Soto 2011, 2012

2-edge-connected cubic graphs have a tour of length (4/3 – 1/61236)n

3-edge-connected bipartite cubic graphs have a tour of length (4/3 - 1/108)n

Jeremy Karp, Ravi 2013

Cubic bipartite graphs have a tour of length 9n/7

Van Zuylen 2015

Cubic bipartite graphs have a tour of length 5n/4

Open: Barnette's Conjecture: 3-connected planar bipartite cubic graphs have a Hamiltonian cycle

Newman 2014

Momke-Svensson gives tour of length 46n/33 in subquartic graphs

Main idea: Replace short cycles

Algorithm Sketch

- "Organic": made up of original nodes and edges (not resulting from earlier replacements)
- While graph contains 4-cycle or organic 6cycle, COMPRESS by replacing cycle with gadget
- 2. Find cycle cover in final compressed graph
- 3. EXPAND compressed cycles in reverse order rewiring cycle cover to span all deleted nodes

Algorithm Example

Figure: An organic 6-cycle

Figure : The gadget which replaces the 6-cycle

Algorithm Example

Figure : Part of the cycle cover in the compressed graph

Figure: The same portion of the cycle cover, after expanding the graph

Algorithm: Good Expansion

Figure: The same portion of the cycle cover, after expanding the graph

Algorithm: Bad Expansion

6 3 4 5 y

Figure : A cycle of length x + y + 4 that passes through a gadget that replaced a 6-cycle

Figure: The cycle from the previous figure, after expanding the graph

Handling Bad Expansions

Figure: The gadgets which replace the "bad" subgraphs

Figure: Two other "bad" subgraphs

After handling, $y \ge 3$

Figure : A cycle of length x + y + 4 that passes through a gadget that replaced a 6-cycle

Figure: The cycle from the previous figure, after expanding the graph

Analysis: Protected Edges

Analysis Outline

- Every 6-cycle can be disjointly charged towards 2 or 3 protected edges
- If a final cycle has P protected edges, at most
 P/3 6-cycles are charged to it
- Final amortized average cycle length ≥ 7
- Total number of edges $\leq n + 2 (n/7)$

Main ideas for short tours

- Augment spanning tree with carefully chosen edges
- 2. Delete carefully chosen edges from the whole graph
- 3. Augment cycle cover with few cycles
- 4. Augment path cover with few paths

Nisheeth Vishnoi 2012

- Thm: Every n-vertex d-regular graph has a tour of length (1 + o(1))n, where the o(1) term tends to 0 as d grows.
- Moreover, such a tour can be found in random polynomial time.

Vishnoi's approach

- Find a cycle cover with few cycles.
- Connect it by doubled edges to get a connected Eulerian multi-graph.
- If the cycle cover has c cycles, the tour length is at most n + 2(c-1).
- Need c to be small.

Key questions

- Why would a d-regular graph have a cycle cover with few cycles?
- Even if such a cycle cover exists, how can it be found?
 - (A Hamiltonian cycle is a cycle cover with one cycle, but it is NP-hard to find it.)

Matrix representation of cycle covers

Given G, consider its n by n adjacency matrix A. An all-1 permutation is a cycle cover.

	1	1		1			
1			1				1
1			1		1		
	1	1		1			
1			1			1	
		1				1	1
				1	1		1
	1				1	1	

Permanents and cycle covers

- The permanent of the adjacency matrix is precisely the number of cycle covers.
- For d-regular graphs, the matrix is doubly stochastic (after scaling by 1/d).
- Van-der-Warden's conjecture [1926] (proved by Egorychev and by Falikman [1981]) implies that the permanent is large.

Permanents and cycle covers [Vishnoi 2012; ~Noga Alon 2003]

- Van-der-Warden's conjecture implies that d-regular graphs have many different cycle covers.
- There are only few permutations with linearly many cycles (a random permutation has O(log n) cycles).
- A random cycle cover in a d-regular graph has $O(\frac{n}{\sqrt{\log d}})$ cycles.

Vishnoi's algorithm

Use the approximation algorithm of Jerrum Sinclair and Vigoda [2004] for the permanent to find a random cycle cover.

Connect it using double edges to get a connected Eulerian subgraph.

In a d-regular graph, this gives a tour of length

$$\left(1 + O\left(\frac{1}{\sqrt{\log d}}\right)\right)n$$

Regularity is essential

Graphs of minimum degree d need not have

short tours.

Improved bounds

Thm: Every n-vertex d-regular graph has a tour of length (1 + o(1))n, where the o(1) term tends to 0 as d grows.

Moreover, such a tour can be found in random polynomial time.

Vishnoi 2012

$$o(1) = O(\frac{1}{\sqrt{\log d}})$$

$$o(1) = O(\frac{1}{\sqrt{d}})$$

Our proof approach

- Find a spanning tree with a small set T of odd degree vertices.
- Find a small T-join, of size O(|T|) + O(n/d).

The union of the spanning tree and T-join is a connected Eulerian subgraph, hence a tour of length n + O(|T|) + O(n/d).

How small can we make |T|?

In our proof
$$|T| = O\left(\frac{n}{\sqrt{d}}\right)$$
.

Proof approach

- Find a spanning tree with a small set T of odd degree vertices.
- Find a small T-join, of size O(|T|) + O(n/d).

The union of the spanning tree and T-join is a connected Eulerian subgraph, hence a tour of length n + O(|T|) + O(n/d).

Why is there a T-join of size O(|T|) + O(n/d)?

Let T' be a tree spanning T.

Claim: There is a T-join supported only on edges of T', and hence of size at most |T'|-1.

Upper bound on T-join

A tree T' spanning T

A tree T' spanning T

A T-join

Tree T' of size at most 2|T| + 3n/(d+1) spanning a set T

- A 3-net: maximal set of vertices, no two of which at distance less than 3 from each other.
- 3-net has at most n/(d+1) vertices.
- Every vertex from T at distance at most 2 from 3-net.
- All of T plus the 3-net can be connected by 2|T| + 3n/(d+1)-3 edges.

Proof approach

- Find a spanning tree with a small set T of odd degree vertices.
- Find a small T-join, of size O(|T|) + O(n/d).

The union of the spanning tree and T-join is a connected Eulerian subgraph, hence a tour of length n + O(|T|) + O(n/d).

Proof approach

- Find a spanning tree with a small set T of odd degree vertices.
- Find a small T-join, of size O(|T|) + O(n/d).

The union of the spanning tree and T-join is a connected Eulerian subgraph, hence a tour of length n + O(|T|) + O(n/d).

Spanning tree with few odd degree vertices

Thm: Every connected d-regular graph has a spanning tree with $O(\frac{n}{\sqrt{d}})$ odd degree vertices.

Proof approach: cover all vertices in G by a small number of paths (a spanning linear forest). Complete to a spanning tree arbitrarily.

If the number of paths is P, then the number of odd degree vertices in the resulting spanning tree is at most 2P-2.

A spanning linear forest

A spanning linear forest

Main ideas for short tours

- Augment spanning tree with carefully chosen edges
- 2. Delete carefully chosen edges from the whole graph
- 3. Augment cycle cover with few cycles
- 4. Augment path cover with few paths

Path cover number

The fewest number of components in a linear forest is the path cover number of the graph.

Conjecture [Magnant and Martin, 2009]: the path cover number of a d-regular graph is at most n/(d+1).

Proved for d < 6.

If true for all d, would imply a tour of length (1 + O(1/d))n. Better than what we know how to prove.

Linear arboricity conjecture

Arboricity – covering all edges by forests.

Linear arboricity – covering all edges by linear forests.

Conjecture [Akiyama, Exoo, Harary, 1981]: in dregular graphs, $\left\lceil \frac{d+1}{2} \right\rceil$ linear forests suffice.

If true, one of these linear forests has at least n - O(n/d) edges, and hence at most O(n/d) components.

Results on linear arboricity conjecture

Alon, Teague and Wormald 2001 (see also Alon and

Spencer): Linear arboricity is at most $\frac{d+\tilde{O}(d^{\frac{1}{3}})}{2}$.

Implies linear forest of size
$$\left(1-\tilde{O}\left(\left(\frac{1}{d}\right)^{\frac{1}{3}}\right)\right)n$$
, and

by our results, a tour of length
$$\left(1+\tilde{O}\left(\left(\frac{1}{d}\right)^{\frac{1}{3}}\right)\right)n$$
.

Improved bounds

Thm: every d-regular graph has a path cover with $O(\frac{n}{\sqrt{d}})$ paths.

Corollary: every d-regular graph has a tour of length $\left(1 + O\left(\frac{1}{\sqrt{d}}\right)\right)n$.

Inductive construction of a path cover

Single vertex v: any two of its edges can be used as part of a path.

Path between s and t: only one edge from each endpoint can be used as part of a longer path.

Cannot contract the path to a single vertex.

Inductive construction of a path cover Easier for directed graphs

Path between s and t: only one edge from each endpoint can be used as part of a longer path.

Cannot contract the path to a single vertex.

If edges are oriented, directed path from s to t can be contracted to single vertex, leaving incoming edges to s and outgoing edges from t.

Orienting the edges

- Suppose for simplicity that d is even.
- Take an Euler tour through all edges.
- Orient the edges according to tour.
- Gives a directed graph with in and out degrees d/2.

- Pair up nodes arbitrarily
- Put the two nodes of a pair in (L,R) or (R,L) respectively at random
- Find max matching of directed edges from L to R;
 Use "dummy" edges to complete to a perfect matching M
- Delete non matching arcs from L to R and all arcs within L and within R
- Use matching arc to "extend" paths and reduce number of paths by half

Algorithm: Analysis Sketch

- Assume n is power of 2 → vertex in phase t is a path of 2^t nodes;
 Exactly log n phases
- Show that max matching in phase t is of size $\geq (1 \text{err}(t)) (n/2^t)$ Size of final linear forest $\geq \sum_t |M_t|$

$$\geq \sum_{t} \left(1 - err(t)\right) \left(\frac{n}{2^{t}}\right)$$
$$\geq n - n \sum_{t} \frac{err(t)}{2^{t}}$$

Key technical claim: $err(t) \le c2^{\frac{t}{2}} \frac{\sqrt{\log d}}{\sqrt{d}}$

Final linear forest size
$$\geq n - n \sum_t \frac{err(t)}{2^t} \geq n - cn \frac{\sqrt{\log d}}{\sqrt{d}} \sum_t \frac{1}{\frac{t}{2^2}} \geq n - c'n \frac{\sqrt{\log d}}{\sqrt{d}}$$

Summary of our approach

- Every d-regular digraph can be covered by $O(\frac{n}{\sqrt{d}})$ paths. (via improved algorithm)
- Every d-regular graph has a spanning tree with $|T| = O(\frac{n}{\sqrt{d}})$ odd degree vertices.
- There is a T-join with $O(|T|) + O(\frac{n}{d})$ edges.
- There is a tour of length $n + O(\frac{n}{\sqrt{d}})$.

More generally

Let G be a connected n-vertex graph with max degree Δ , avg degree d, min degree δ . Then there is a tour of length

$$\left(1 + \frac{\Delta - d}{\Delta} + O\left(\frac{1}{\sqrt{\Delta}}\right) + O\left(\frac{1}{\delta}\right)\right)n$$

Moreover, such a tour can be found in random polynomial time.

Results

- Size 4n/3 in a graph with a spanning tree and a simple cycle on its odd nodes
 (WG14, joint with Satoru Iwata and Alantha Newman)
 "Regular graphs have short tours"
- 2. Size 9n/7 in cubic bipartite graphs (APPROX14, joint with Jeremy Karp)
- 3. Size $(1 + O(\frac{1}{\sqrt{d}}))$ n in d-regular graphs (IPCO14, joint with Uri Feige and Mohit Singh)

Open

- Use Steiner cycles approach for graph-TSP
- Prove Barnette's conjecture
- Improve additive bound in d-regular graphs from $O\left(\frac{n}{\sqrt{d}}\right)$ to $O\left(\frac{n}{d}\right)$
- 4/3-approximation for general graph-TSP

Main ideas for short tours

- Augment spanning tree with carefully chosen edges
- 2. Delete carefully chosen edges from the whole graph
- 3. Augment cycle cover with few cycles
- 4. Augment path cover with few paths