
A polylogarithmi
 approximation algorithm for the group Steiner treeproblem
Naveen Garg� Goran Konjevody R. Raviz

Abstra
tGiven a weighted graph with some subsets of verti
es 
alled groups, the group Steiner treeproblem is to �nd a minimum-weight subgraph whi
h 
ontains at least one vertex from ea
hgroup. We give a randomized algorithm with a polylogarithmi
 approximation guarantee forthe group Steiner tree problem. The previous best approximation guarantee was O(i2k1=i) intime O(nik2i) (Charikar, Chekuri, Goel and Guha).Our algorithm also improves existing approximation results for network design problemswith lo
ation-based 
onstraints and for the symmetri
 generalized traveling salesman problem.Key Words: Steiner tree, approximation algorithms, set 
over, randomized rounding, networkdesign, tree de
ompositions
1 Introdu
tion.1.1 Motivation.The group Steiner problem was introdu
ed by Rei
h and Widmayer [27℄. The problem arises inwire routing with multi-port terminals in physi
al VLSI design. The traditional model assumingsingle ports for ea
h of the terminals to be 
onne
ted in a net of minimum length is a 
ase of the
lassi
al Steiner tree problem. When the terminal is a 
olle
tion of di�erent possible ports, so thatthe net 
an be 
onne
ted to any one of them, we have a group Steiner tree problem: ea
h terminalis a 
olle
tion of ports and we seek a minimum length net 
ontaining at least one port from ea
hterminal group.The multiple port lo
ations for a single terminal may also model di�erent 
hoi
es of pla
ing asingle port by rotating and/or mirroring the module 
ontaining the port in the pla
ement. The
hoi
e allows for more intera
tion between the pla
ement and routing phases of physi
al VLSIdesign, potentially allowing for better optimization of the design.The group Steiner tree problem 
an be stated formally as follows: we are given a graph G =(V;E) with the 
ost fun
tion 
 : E ! R+ , and subsets of verti
es g1; g2; : : : gk � V . We 
allg1; : : : ; gk groups. The obje
tive is to �nd the minimum 
ost subtree T of G that 
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least one vertex from ea
h of the sets gi. Formally, �nd a 
onne
ted subgraph T = (V 0; E0) thatminimizesPe2E0 
e, su
h that V 0 \ gi 6= ; for all i 2 f1; � � � ; kg. We use n to denote jV j and N todenote the size of the largest group, N = maxi jgij � n. The following transformation allows us toassume that the groups are pairwise disjoint: if a vertex v o

urs in p groups, p � 1, atta
h p newverti
es to v with zero-
ost edges. Ea
h leaf of this star is assigned to one of the groups while vdoes not belong to any group.The group Steiner tree problem is a generalization of the 
lassi
al Steiner tree problem [30℄,and therefore NP-hard. In fa
t, it is also a dire
t generalization of the even harder set 
overproblem [15, 20, 29℄. In the set 
over problem, we are given a 
olle
tion of weighted subsets of agiven ground set and seek a minimum-weight sub-
olle
tion whose union is the entire ground set.To redu
e this problem to a group Steiner problem, build a star with a leaf for ea
h set. Everyelement in the set 
over problem de�nes a group of leaves in the star in a natural way, namely, theleaves 
orresponding to the sets that 
ontain this element. The equivalen
e is 
ompleted by givingthe edges the weights of the 
orresponding sets. (Even if we require the groups to be disjoint, this
onstru
tion 
an be realized by the transformation des
ribed above.) Therefore, the group Steinertree problem 
annot be approximated to a fa
tor o(ln k) unless P = NP [3, 9, 26℄.1.2 Previous Work.The papers of Ihler [14, 15, 16℄, and Ihler, Rei
h and Widmayer [17, 18℄ 
ontain some early workon the group Steiner tree problem. (In some of these papers the group Steiner problem is 
alledthe 
lass Steiner problem.) In parti
ular, in [14℄ it is proved that the heuristi
 introdu
ed by Rei
hand Widmayer [27℄ has an approximation ratio of k � 1 (k is the number of groups). The relatedproblem of minimum diameter group tree is shown to be polynomially solvable in [17℄. Ihler [16℄gives a polynomial algorithm for a spe
ial 
ase of the group Steiner problem where the groups ofpoints are intervals on two parallel lines. Rei
h and Widmayer [18℄ show that the group Steinertree problem is NP-hard even if the graph is a subgraph of a square grid in the plane, and ea
hgroup has at most 3 verti
es.A spe
ial 
ase of the group Steiner problem is the 
onne
ted dominating set problem where givenan unweighted undire
ted graph, the problem is to �nd a 
onne
ted subgraph with the smallestnumber of verti
es whose neighborhood 
overs all the verti
es in the graph. This is a 
ase of thegroup Steiner problem where every vertex de�nes a group whi
h is its neighborhood in the graphand all edges have unit 
osts. The 
onne
ted subgraph found as a solution is a tree without lossof generality and in the unweighted setting, the number of edges in the tree is one less than thenumber of verti
es in the tree. An approximation algorithm for this spe
ial 
ase with ratio O(log�)where � is the maximum degree of the graph is presented by Guha and Khuller [12℄.Slav��k [29℄ 
onsidered the group Steiner problem on rooted trees and gave an algorithm withan approximation ratio of B �H(N) = B �O(lnN), where B is the maximum number of verti
es ofa group in a subtree of the root, and H(N) is the N -th harmoni
 number.Bateman, Helvig, Robins and Zelikovsky [6℄ gave the �rst algorithm with a sub-linear perfor-man
e guarantee. Their algorithm gives an approximation ratio of (1 + ln k2 )pk. This ratio 
omesfrom approximating the group Steiner tree by a 2-star (tree of depth 2), and then approximatingthe 
overing problem on the 2-star within a logarithmi
 fa
tor.Charikar, Chekuri, Goel and Guha [7℄ des
ribe a family of algorithms for the dire
ted Steinertree problem with running time O(nik2i) and approximation ratio O(i2k1=i). The dire
ted Steinertree problem is de�ned on a rooted dire
ted weighted graph, and the obje
tive is to �nd a minimum-weight set of edges that 
ontains a path from the root to ea
h of k given terminal verti
es. Sin
e the
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dire
ted Steiner tree problem is a generalization of the group Steiner problem [20℄, these algorithmsare dire
tly appli
able.1.3 Our results.For any � > 0, we give a polynomial time algorithm that with probability 1�� �nds a group Steinertree of 
ost O(log2 n log logn log k) times the 
ost of the optimal group Steiner tree. The mainte
hni
al result is a randomized algorithm that solves the problem on trees with an O(log k logN)approximation ratio. The extension to arbitrary graphs uses the result of Bartal [4, 5℄, and theapproximation ratio for general graphs is O(log2 n log log n log k) (the size of the largest group,N , is at most the number of verti
es n). The results of [21℄ used in pla
e of Bartal's improvethe performan
e ratio to O(logn log logn log k) on graphs that ex
lude Ks;s as a minor for some�xed 
onstant s. An example is planar graphs that ex
lude K3;3. Sin
e planar graph distan
esapproximate distan
es in the two-dimensional Eu
lidean plane well [8℄, the improvement also 
arriesover to group Steiner problems in the plane.Our approximation algorithm for the 
ase of tree metri
s �rst solves a linear programmingrelaxation of the group Steiner tree problem. Then an extension of randomized rounding is employedto get the solution subtree. The bound on the 
ost of the tree follows from the rounding pro
ess.On the other hand, to show that the solution tree a
tually 
overs all the groups with reasonableprobability, we use Janson's inequality [19℄.As a 
orollary to the performan
e guarantee, we also get an upper bound on the integrality gapof our linear programming relaxation.Our algorithm works with similar performan
e bounds when applied to the errand s
hedulingproblem of [29℄ also known as the generalized TSP [10, 13, 28℄, to the servi
e-
onstrained networkdesign problems of [22, 23℄, and the traveling pur
haser problem in [25℄.In the remainder of the paper, we �rst present our linear programming formulation and ourrounding pro
edure for trees, and then prove the performan
e guarantee. Then, we des
ribe theredu
tion of the general 
ase to the 
ase of tree metri
s, and 
lose with appli
ations to relatedproblems.
2 Linear program.We 
onsider the group Steiner tree problem on a tree T 00 = (V;E) with nonnegative 
osts 
 onits edges. We study the rooted version where a pre-spe
i�ed root vertex r is required to be inthe solution subtree. To solve the unrooted version, we 
an run through the di�erent verti
es in asmallest group as the 
hoi
e for the root r, and pi
k the best solution among these runs. For anysubset of verti
es S � V , let Æ(S) denote the set of edges with exa
tly one endpoint in S. We usethe following linear programming relaxation of the (rooted) group Steiner tree problem:

minXe2E 
exeXe2Æ(S)xe � 1, for all S � V su
h that r 2 S and S \ gi = ; for some i
0 � xe � 1; 8e 2 E:

(1)
This linear program 
an be solved in polynomial time, despite the exponential number of 
on-straints. This follows, for example from [11℄ and the fa
t that a separation ora
le 
an be 
onstru
ted3



using a minimum 
ut pro
edure. A more dire
t way to see the polynomial-time solvability of theprogram is to add new variables and re-interpret the 
onstraints using the max-
ow min-
ut theo-rem. The 
onstraints require that any 
ut separating the root from all the verti
es of a given groupmust have 
apa
ity at least one. We 
an think of adding a new sour
e vertex for this group withedges to all the verti
es in it of in�nite 
apa
ity and interpret the value xe as the 
apa
ity of theedge e. Then the linear 
onstraints and the max-
ow min-
ut theorem imply that any solution xmust support a 
ow of at least one unit from this sour
e to the root|in other words, the installed
apa
ity x is suÆ
ient to support a total 
ow of value at least one from the verti
es of any groupto the root. This 
an be written as a polynomial-sized set of linear 
onstraints involving one set of
ow variables for ea
h group. The resulting formulation is equivalent to the above.Note that the linear program (1) remains a valid relaxation when T 00 is not a tree. In fa
t, weshow in Se
tion 5 that the integrality gap of the program is small even when no restri
tions areimposed on the underlying graph.Let x be the optimal solution of the linear program (1), and T 0 the support of x (the graph
onsisting of all edges e su
h that xe > 0). Sin
e T 00 is a tree, T 0 is a tree as well. We denote by z�the optimal value of the obje
tive fun
tion.
3 Random experiment.In this se
tion we explain our rounding pro
ess and prove the main te
hni
al results. Our roundingmay be seen as an extension of traditional randomized rounding [24℄ for the set 
over problem tothis \tree version" of the problem.Assume without loss of generality that all group verti
es are leaves of T 0 (internal group verti
es
an be made leaves by inserting a zero-
ost edge).Consider the following random experiment. For every edge e 2 E(T 0), in
lude e in a forest Fwith probability xe=xf , where f is the edge adja
ent to e and 
loser to r (the parent edge of e).Note that xe � xf be
ause T 0 is a tree. If e is in
ident on r, in
lude it with probability xe (wethink of a �
titious edge above r with unit 
ow as the parent edge of e denoting that r is alwaysin
luded in F ). Then delete all 
omponents of F not 
ontaining the root r, as well as every edgethat is not 
ontained in a path from r to a group vertex. Let T denote the resulting tree.Lemma 3.1. The expe
ted 
ost of the tree T pi
ked by the random experiment is z�, the 
ost ofthe optimal solution to the linear program.Proof. We show that the probability of in
luding any edge e in T is xe, and the lemma follows fromthe linearity of expe
tation.An edge e is in
luded in T if and only if all the edges in the path from r to e, say e0; e1; : : : ; ep = eare pi
ked in their respe
tive independent random trials. This event happens with probabilityxe0 �Qpi=1(xei=xei�1) = xe:To analyze this experiment, we use Janson's inequality ([19℄, see also [1℄, p. 95), whi
h 
an bestated as follows: let 
 be a universal set, and R � 
 determined by the experiment in whi
h ea
helement r 2 
 is independently in
luded in R with probability pr. In what follows I will denote a�nite index set. Let A = fAi j i 2 Ig be a family of subsets of 
, and denote by Bi the event thatAi � R. Write i � j if Bi and Bj are not independent. De�ne � =Pi�j Pr[Bi \ Bj ℄ (the sum isover ordered pairs). Let � =Pi Pr[Bi℄, and � be su
h that Pr[Bi℄ � � for all i.
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Theorem 3.2. (Janson's inequality.) With the notation as above, if � � �(1� �), thenPr�\i Bi� � e��2(1��)2� :
In our 
ase, 
 = E(T 0), and pe = xe=xf . The family A is the family of edge-sets of pathsfrom r to leaves belonging to a �xed group g, and TiBi is the event that we don't rea
h g in theexperiment. In the sequel, we provide an upper bound on Pr �TiBi� by using Janson's inequality,whi
h implies a lower bound on the probability of in
luding a group's vertex.To prove the main result we need a simple lemma.Lemma 3.3. If T and T 0 are trees that di�er only in the 
apa
ity of an edge e, and xT (e) � xT 0(e),then for any group g, the probability of in
luding a vertex from g is no greater in T 0 than in T .Proof. Let A be the event that we pi
k a vertex of g from the subtree below e. ThenPr �A� = 1� xe + xe Pr �A j e is pi
ked� :Note that in the above expression the 
oeÆ
ient of xe is always negative. Hen
e if xe isde
reased, Pr �A� in
reases, so that Pr [A℄ de
reases.Theorem 3.4. If we run the random experiment on a feasible solution to LP (1), then for everygroup g, the probability of in
luding a vertex from g in the 
hosen tree T is 
(1= logN) where Nis the maximum size of a group.Proof. Consider the tree spanned by the paths from r to the leaves of a �xed group g. We willtransform this tree into one where it will be easier to estimate the su

ess probability. In thepro
ess we only de
rease the su

ess probability, so that a lower bound 
arries over to the originaltree.Sin
e this tree 
omes from a feasible solution x to LP (1), as argued before, the 
apa
ityfun
tion x supports a 
ow of at least one between r and the verti
es of g. De
rease the 
apa
itieson the edges so that xe equals the value of the 
ow from r to g supported by the edge e. Be
ausethe groups are disjoint, the total 
ow to g is exa
tly 1. By Lemma 3.3, this only de
reases thesu

ess probability.We now have a tree with 
ow of 1 between the root and g. Round down all the 
apa
ities tonext powers of 2. This in the worst 
ase halves the 
ow from r to g. Let Ng � jgj be the number ofleaves in this tree, and let d = dlogNge. Delete all edges of 
apa
ity less than 1=2d+2. This redu
esthe 
ow again, but sin
e there were only Ng leaves to begin with, the total 
ow we lose now is atmost Ng2�(d+2) � 1=4. If there is a leaf with 
ow at least 1=4, we remove all the edges ex
ept theones on the path to this leaf. Then we redu
e the 
apa
ities along this path to 1=4. Otherwise, weremove some leaves until the 
ow to the remaining ones is exa
tly 1=4, and then delete the edgesused to 
arry 
ow only to the deleted leaves. Assume that the 
ow is now exa
tly 1=4. Finally,shrink every edge (ex
ept the ones in
ident on leaves) that is pre
eded (on the path from the root)by another edge of the same 
apa
ity. This doesn't 
hange the su

ess probability, and redu
es thedepth of the tree to d + 1. We abuse notation slightly and 
ontinue to denote by x the resulting
apa
ity fun
tion 
arrying a 
ow of value exa
tly 1=4 to group g. We denote by T g the supporttree of x.For 
larity, we say that an edge is a leaf edge, if it is in
ident on a leaf. We will show that� = O(logNg) in T g. Consider a leaf edge e, and let�e =Xf�e xexfxg ;
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where g is the least 
ommon an
estor of e and f . Re
all that f � e implies that f is another leafedge to a vertex in this group whose path to r shares at least one edge with the path from e to r.Thus �e is the 
ontribution to � of the edge e, and � =Pe�e.Suppose edge e goes from level i to level i + 1 of T g, and denote by ej = vjvj+1 the edges onthe path from the root to e (j = 0; : : : ; i, v0 = r and ei = e). Further, let Tj be the subtree of T gwhose root is vj , and whi
h does not in
lude ej (Figure 1). Let fj be the total 
ow from subtreeTj to the root. Then we have �e = iXj=0 xefjxej�1 ;where we de�ne xe�1 = 1: f0r=v0 v1

vi�1 vi
vi+1

e0

ei�1ei=e

T1

Ti�1 Ti

f1

fi�1 fi
Figure 1.Sin
e the 
apa
ities on these edges are a result of rounding down to powers of 2, it followsthat fj � 2xej�1 . (Indeed, assume fj > 2xej�1 . In the rounding, xej�1 was at most halved, andso before the rounding it must have been true that fj > xej�1 . But this would 
ontradi
t the
ow-
onservation 
onstraints that were satis�ed before the rounding). So,
�e � xe iXj=0 2 = 2(i+ 1)xe:

Therefore, � =Xe �e �Xe 2(d+ 2)xe = 12(d+ 2) � log2Ng:Now we 
an apply Janson's equality with � = 1=4, � = logNg and � = 1=2. We getPr [fail to rea
h g℄ � e� 164� = e� 164 log2 Ng = 1� 164 log2Ng + 14096 log22Ng � � � � ;
and we see that we will rea
h group g with probability of about 1=(64 log2Ng). Sin
e Ng � N , themaximum size of any group, the theorem follows.
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Our analysis in the above theorem is tight up to a 
onstant fa
tor as 
an be seen by 
onsideringT g to be the 
omplete binary tree where all 
apa
ities in a level are equal and where the 
apa
itiesde
rease by a fa
tor of two as we go down the tree. The su

ess probability pd (when this tree is ofdepth d) satis�es the re
urren
e relation pd = pd�1(1� pd�1=4), and p0 = 1. It 
an be shown thatlimd dpd=4 = 1. Thus the probability of su

ess is �(1= logn) where n is the number of leaves.
4 Building the Steiner tree.Now we show how to use the result of the previous se
tion and amplify the probability of su

ess,while keeping the �nal 
ost low.When we pi
k a single tree randomly, the probability that it 
overs g is at least 1=(64 log2N) forany group g. If we pi
k 64 log2N trees, their union will 
over g with a probability of at least 1�1=e.If we pi
k 128 log2N log 2k trees, the probability of missing a given group is at most 1=4k, and bysubadditivity, the probability of missing any group is at most 1=4. So, if we pi
k 128 log2N log 2ktrees, their union will 
over all groups with probability at least 3=4.The total 
ost of the union of these trees is at most the sum of their 
osts. Denote this by 
(T ).Re
all that z� denotes the 
ost of the optimal solution to the LP (1). Then by Lemma 3.1 andMarkov's inequality, Pr [
(T ) � 4 � 128 � logN log 2k z�℄ � 1=4:Thus the tree T has low 
ost with probability at least 3=4.Sin
e the two \good" events ea
h o

upy at least three quarters of the probability spa
e, theymust overlap in at least one half, and so with probability at least 1=2, we 
over all groups with atree of 
ost O(logN log k z�). Sin
e z� is a lower bound on the 
ost of an optimal group Steinertree, we obtain the following theorem.Theorem 4.1. There is a randomized polynomial time algorithm that, with probability at least 1=2,�nds a group Steiner tree on an underlying graph whi
h is a tree, of 
ost no more than O(logN log k)times the optimum, where N is the maximum size of a group and k is the number of groups.
5 General graphs.We need a few more de�nitions before explaining how to extend the above to the general 
ase.De�nition 5.1. A set of metri
 spa
es S over V is said to �-probabilisti
ally approximate a metri
spa
e M over V , if (1) for all x; y 2 V and S 2 S, dS(x; y) � dM (x; y), and (2) there existsa probability distribution D over metri
 spa
es in S su
h that for all x; y 2 V , E[dD(x; y)℄ ��dM (x; y).Bartal [4, 5℄ proved the following theorem.Theorem 5.2. Every weighted 
onne
ted graph G on n verti
es 
an be �-probabilisti
ally approxi-mated by a set of weighted trees, where � = O(logn log log n). Moreover, the probability distribution
an be 
omputed in polynomial time.Theorem 5.3. For any � > 0, there is a polynomial-time algorithm that with probability 1�� �ndsa group Steiner tree whose 
ost is O(logN logn log logn log k) times the 
ost of the optimal tree.
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Proof. We �rst state the algorithm.(1) Randomly 
hoose a tree T from Bartal's distribution.(2) Solve the linear program (1) on T ; let x be the optimal solution found.(3) Run the rounding pro
edure des
ribed in Se
tion 3 independently 128 log 1� logn log 2k timesand let F be the union of trees found. Return F .We show that the expe
ted 
ost of the optimal group Steiner tree in a tree 
hosen at randomfrom Bartal's distribution is O(logn log logn) times the 
ost of the optimal group Steiner tree inthe original graph G. Then our 
laim follows from Theorem 4.1, sin
e by running the tree-roundingalgorithm log 1=� times we 
an boost the su

ess probability to 1� �.Consider a tree T 
hosen from Bartal's distribution. Repla
e every edge ij of the optimal groupSteiner tree H in G by the (unique) ij-path in T . This produ
es a group Steiner tree in T whose
ost is no more than the sum of the 
osts of the paths in T . By Theorem 5.2 the expe
ted 
ost ofthe ij-path in T is O(logn log logn) times 
ij . Thus an optimal group Steiner tree in a tree 
hosenfrom Bartal's distribution has expe
ted 
ost O(logn log logn) times the 
ost of the optimal groupSteiner tree in G.
6 Integrality gaps and tree-de
ompositionsThe following is dire
tly implied by Theorem 4.1.Corollary 6.1. The integrality gap of LP (1) is O(logn log k) when the underlying graph is a tree.However, a similar result follows for LP (1) in the 
ase of general graphs as well.Corollary 6.2. The integrality gap of LP (1) is O(logn log logn logN log k) on an n-vertex graphG, when there are k groups ea
h of size at most N .Proof. Let z� be the 
ost of the optimal solution of LP (1), and T a tree found by Bartal's algorithm.Let z�T be the 
ost of the optimal solution to LP (1) on the tree T . By Bartal's theorem, with
onstant probability z�T � 2z� logn log logn. (Let x� be the optimal solution of LP (1). For everyedge e = ij 2 T with x�e > 0, de�ne we = x�e. De�ne we = 0 for all other e 2 T . Then 
onsiderin turn every edge e su
h that x�e > 0 and e 62 T . For every edge f in the path 
orresponding toe in T , add x�e to wf . By Bartal's theorem, the expe
ted 
ost of w is O(logn log logn)z�, and by
onstru
tion w is a fra
tional group Steiner tree in T .) By Theorem 3.4, the weight of the groupSteiner tree output by our algorithm is with 
onstant probability O(z�T logN log k).In the remainder of this se
tion we dis
uss the idea of de
omposing a solution of LP (1) intosubtrees. We �rst de�ne what we mean by a de
omposition. Let x be a (fra
tional) solution toLP (1), and G its support graph. We use the notation T � g to denote that a graph T 
ontainsa vertex of group g. Similarly we use T 6� g to denote that a graph T 
ontains no vertex ofgroup g. The set of subtrees T1; T2; : : : ; T` of G, together with weights �1; �2; : : : ; �` forms an�-de
omposition of the solution x, ifXTi�g �i � 1 for all groups g(2) XTi3e�i � �xe for all edges e(3) r 2 Ti for all i.(4)
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For instan
e, suppose � = 1 (that is, suppose we 
an always �nd a \perfe
t" pa
king that 
oversea
h group fra
tionally in the sense of 
ondition (2) above). Then we 
ould think of the subtreesT1; : : : ; T` as sets in a set 
over problem. In this 
ase we 
ould apply the randomized roundingpro
edure for set 
over: independently of all other trees, in
lude edges of Ti with probability �i.Taking the union of O(log k) independent experiments would with probability at least 3=4 give agroup Steiner tree. Also with probability at least 3=4, the 
ost of this tree is bounded by z log kwhere z is the 
ost of the solution x.More generally, an �-de
omposition into trees of any solution of LP (1) gives an algorithm forthe group Steiner problem with an approximation ratio of O(� log k). Our algorithm provides anupper bound on the parameter �.Theorem 6.3. Let N denote the size of the largest group. For any solution of LP (1) whosesupport graph is a tree T , there is an �-de
omposition, where � = O(logN).Proof. Let T1; : : : ; T` be all the possible out
omes of a rounding step from Se
tion 3, and letp1; : : : ; p` be their respe
tive probabilities. Let Ye be the indi
ator variable for pi
king the edge ein a rounding step. Then for every edge e,XTi3e pi = EYe = xe:
Let Ng denote the size of the group g. By Theorem 3.4,XTi3g pi � 
logNg :De�ning �i = pi �maxg(logNg=
), we get a de
omposition with � = (logN)=
.Similarly as above, in the 
ase of general graphs the fa
tor is multiplied by logn log logn.It is not possible to always have � = 1, even in the 
ase of trees, as shown by the example inFigure 2, where � = 6=5, and no better � is possible for this solution.

xe=1
xf=1=2xg=1=2 xh=1=2

u21;2 v22;3 w23;1
T1 T2 T3
T4 T5 T6

�1=�2=:::=�6=1=5
Figure 2.However, a perfe
t de
omposition always exists when there are only two groups.Theorem 6.4. Let x be a solution of LP (1) in an instan
e of the group Steiner problem on a treeT where there are only two groups denoted by g1 and g2. Then there exists a perfe
t de
ompositionof x. Moreover, this de
omposition 
an be found in polynomial time.
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Proof. We assume as before that all verti
es belonging to any group are leaves of T and that T isthe support graph of x. We also assume that the groups g1 and g2 are disjoint and that 
apa
ities ofedges on any path down the tree form a non in
reasing sequen
e. First de�ne y = x. We will redu
ey in ea
h step until �nally y = 0 to get the de
omposition of x. To 
onstru
t the de
omposition,while neither of the two groups are empty, �nd a pair (v; w) of leaves su
h that v 2 g1 and w 2 g2.This pair should be 
hosen so that the interse
tion of the r � v path and r � w path is maximal.Denote by u the least 
ommon an
estor (l
a) of v and w. Let a be the 
apa
ity of the leaf edgein
ident on v and b the 
apa
ity of the leaf edge in
ident on w. Let 
 = minfa; bg. De�ne Ti tobe the union of the three paths r � u, u � v and u � w, and �i = 
. Then add the tree Ti to thede
omposition, and redu
e y by subtra
ting the in
iden
e ve
tor of Ti multiplied by �i. Update Tby deleting edges whose y-values have been redu
ed to zero. This pro
edure is repeated until thetree T is empty.We 
laim that after redu
ing y in step i, the 
ow to ea
h of the two groups redu
es by at most�i. Indeed, suppose that the 
ow to g1 redu
es by more than �i. Redu
ing the edge-values alongthe path from r to v by �i only redu
es the 
ow to g1 by �i. Therefore, any further de
rease in the
ow to g1 must 
ome from the redu
tion of an edge outside the r � v path. The only su
h edgesbelong to the path from u to w. By the 
hoi
e of v and w, no vertex of g1 
an share a longer pathwith w than v and thus no vertex of g1 re
eives 
ow along any portion of the path from u to w.Condition (2) 
an be established as follows:XTi�g �i = Xv2g\Ti XTi3v �i = Xv2g\T xv = 1:
The �rst equality follows be
ause in ea
h step we only take out at most one vertex of the group g,and the se
ond be
ause the 
ow from r to g in the redu
ed graph de
reases by �i in step i. The�nal equality holds be
ause x is a feasible solution to LP (1).Let Ie1 be the set of all leaves v 2 g1 su
h that e is one of the edges in the unique r � v pathin T . Let xv denote the value of the 
ow from r to v in x.Now 
ondition (3) follows as well:XTi3e�i = Xv2Ie1 XTi3v �i = Xv2Ie1 xv � xe:
The �rst equality follows sin
e every iteration i redu
es the 
ow to g1 by exa
tly �i, and the se
ondbe
ause every leaf is eventually removed. The �nal inequality is true be
ause x supports a 
ow ofxv to v.
7 Other formulations and appli
ations.In this se
tion, we �rst sket
h the improvement in the 
ase of graphs that ex
lude small minors.Then we give some more appli
ations of our results. One is to a bi
riteria network design problemthat involves lo
ation-based 
onstraints, and the other to some generalizations of the travelingsalesman problem.7.1 Improved metri
 approximations.The following improvement of Bartal's result to graphs that ex
lude small minors is presented byKonjevod, Ravi and Salman [21℄.
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Theorem 7.1. Let G be an n-vertex graph that ex
ludes Ks;s as a minor. Then G 
an be �-probabilisti
ally approximated by a set of weighted trees, where � = O(s3 log n). Moreover, theprobability distribution 
an be 
omputed in polynomial time.This improved result (for 
onstant s) applies, e.g., to planar graphs, whi
h ex
lude K3;3 asa minor. This theorem, together with the arguments from the previous se
tion, then gives animproved approximation ratio of O(logn logN log k) for su
h graphs.Sin
e distan
es in the Eu
lidean plane 
an be approximated to within a fa
tor of 2 by a planargraph [8℄, the improvements also apply to this 
ase. More formally, if the edge lengths of the result-ing planar graph 
an be assumed to be integers in a polynomial range, then we 
an probabilisti
allyapproximate the original distan
es by trees with only a logarithmi
 loss. By identifying some pointswe 
an assume the distan
es to be in f1; : : : ; O(n2)g. This 
an be done so that the optimum valueof a group Steiner tree only 
hanges by a fa
tor of 1 + � for any 
onstant � as in [2℄.7.2 Servi
e-
onstrained network design problems.Marathe, Ravi and Sundaram [22, 23℄ study the following problem: an instan
e is given by anundire
ted graph G = (V;E) with two di�erent (nonnegative) 
ost fun
tions on the edges, 
 (mod-eling the servi
e 
ost) and d (modeling the 
onstru
tion 
ost), and a nonnegative fun
tion s on theverti
es (de�ning the servi
e-radius 
onstraints). The goal is to �nd a minimum d-
ost tree su
hthat every vertex v in the graph is servi
ed by some vertex in the tree, i.e. every vertex v is withindistan
e sv (under the 
-
osts) of some vertex in the tree.An (�; �)-bi
riteria approximation for su
h a problem is an algorithm whi
h �nds a solution inwhi
h the servi
e 
onstraints are not ex
eeded by more than a fa
tor of �, and whose 
ost under dis within a � fa
tor of the optimal one that satis�es the servi
e 
onstraints (under the 
-
osts).Marathe et al. [22, 23℄ give a (1; 2�)-approximation algorithm, where � is the maximum servi
edegree, the maximum number of verti
es that 
an servi
e any given vertex.We observe that if the �rst approximation fa
tor � is �xed at 1, this problem is equivalent tothe group Steiner tree problem.First we redu
e the servi
e-
onstrained problem to a group Steiner tree problem. We de�ne aset of groups fgv j v 2 V g. Let gv be the set of verti
es w that are within the budget (
-)distan
eof v, gv = fw 2 V j 
(vw) � svg:Now any group Steiner tree will satisfy the servi
e 
onstraints, and 
onversely, any tree that servi
esall verti
es within the budget (i. e. su
h that � = 1) will be a group Steiner tree.Note that our algorithm improves the approximation fa
tor of [23℄ to (1; O(log2 n log logn log k)),where n = jV j and k is the maximum servi
e-degree of any vertex (in parti
ular, k � n).Next we redu
e the group Steiner problem to a version of the servi
e-
onstrained network designproblem. Assume without loss of generality that the groups are disjoint. Let the weights in thegiven graph represent the d-
ost. De�ne the 
-
ost as follows: between a pair of verti
es in thesame group, the 
-
ost is zero, and between all other pairs, the 
-
ost is one. The servi
e radius svis set to zero for every vertex whi
h is 
ontained in some group and to n for all other verti
es. Anysolution output by an (�; �)-approximation algorithm for this servi
e-
onstrained network designproblem for any � in
ludes at least one vertex from every group, and is therefore a group Steinertree of 
ost at most � times the minimum.
11



7.3 Generalized traveling salesman problem.The generalized traveling salesman problem is de�ned on a graph G = (V;E) with a nonnegative
ost fun
tion on the edges. Also given are subsets of verti
es S1, : : : Sm � V . These sets are 
alled
lusters. The goal is to �nd a minimum-
ost 
y
le 
ontaining at least one vertex from ea
h 
luster.Unlike the group Steiner problem, it may be assumed that every vertex of the graph belongs to oneof the 
lusters.The generalized traveling salesman problem was �rst des
ribed by Henry-Labordere [13℄ andSaksena [28℄. More information and further referen
es 
an be found in the paper by Fis
hetti,Salazar and Toth [10℄.We assume that the 
ost fun
tion satis�es the triangle inequality.Before our results, the only approximation algorithm for the generalized traveling salesmanproblem was due to Slav��k [29℄. The approximation guarantee is 3�=2, where � denotes the maxi-mum size of a group.We note that an �-approximation algorithm for the group Steiner problem implies a 1:5�-approximation algorithm for the generalized traveling salesman problem. The graphs in bothinstan
es are identi
al, and the groups are de�ned to be exa
tly the 
lusters. Then any groupSteiner tree 
an be short
ut into a generalized traveling salesman tour of at most 1:5 times its 
ost,using the 
lassi
al Christo�des heuristi
. On the other hand, any feasible tour indu
es a groupSteiner tree of no greater 
ost.Thus, our algorithm gives an O(log2 n log logn log k) approximation for the generalized travelingsalesman problem.7.4 Traveling pur
haser problem.Ravi and Salman [25℄ study the traveling pur
haser problem and give approximation algorithmsfor this problem and a bi
riteria version; Their approximation guarantees are similar to ours. LetG = (V;E) be a graph and 
 : E ! R+ a weight fun
tion. Let a set of produ
ts P be given togetherwith nonnegative pri
es dpv for every p 2 P and v 2 V . We think of V as the set of markets. Afeasible solution of the traveling pur
haser problem is a tour on some of the verti
es in V . If wevisit a vertex v 2 V then we 
an buy any produ
t at the pri
e it is o�ered at v. Every produ
tmust be bought at some market that the tour visits. The obje
tive is to minimize the sum of thelength of the tour and all the pri
es paid for produ
ts in P .This problem generalizes the group Steiner problem sin
e we may think of a group as a produ
tand assign 
ost 0 for a group g at a vertex v if and only if v 2 g. If v is not a vertex of g, then the
ost is de�ned to be 1. Now a tour of total 
ost z 
orresponds to a group Steiner tour of equal
ost, and vi
e versa.However, we 
an also redu
e the traveling pur
haser problem to the group Steiner problem. Weshow that a �-approximation algorithm for the group Steiner problem implies a 1:5�-approximationalgorithm for the metri
 traveling pur
haser problem. Starting with an instan
e of the travelingpur
haser problem, de�ne an extra vertex wpv for ea
h pair (p; v) 2 P � V . Add an edge of weightdpv=2 from wpv to v. Then de�ne a group 
orresponding to ea
h produ
t to 
onsist of exa
tlythe new verti
es added for this produ
t. A group Steiner tree may be short
ut to a tour visitingea
h group, in
reasing the 
ost by at most a fa
tor of 1:5. The 
ost of the edges entering andleaving group verti
es is then exa
tly equal to the 
ost of buying ea
h produ
t at the 
orrespondingmarket. So our group Steiner algorithm gives an algorithm with similar performan
e guarantee forthe traveling pur
haser problem.
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7.5 Group prize-
olle
ting Steiner problem.The group prize-
olle
ting Steiner problem was de�ned by David Johnson. Like in the group Steinerproblem, a weighted graph is given together with a family of subsets, 
alled groups. With ea
hgroup, we asso
iate a penalty. The goal is to �nd a 
onne
ted subgraph that minimizes the sumof the 
osts of the edges used by the subgraph and the sum of penalties in
urred for groups notvisited in the subgraph. The redu
tion to group Steiner is similar to the one from the travelingpur
haser problem. For every group, we add a new vertex and 
onne
t it to all other verti
es ofthe graph with edges of 
ost equal to this group's penalty. The group Steiner problem on this newgraph is equivalent to the original prize-
olle
ting problem.
8 Con
lusion.We have presented the �rst algorithm with a polylogarithmi
 approximation ratio for the groupSteiner problem. After reading a preliminary version of our paper, Charikar, Chekuri, Goel andGuha [7℄ derandomized our algorithm. They gave a general way to use Bartal's theorems in adeterministi
 setting and, independently of this result, a deterministi
 version of our tree-roundingpro
edure.We leave open several problems. The only known lower bounds for the group Steiner problemare the ones that arise from the hardness of the set 
over problem. It is a natural open problem then,to redu
e the approximation ratio to O(logn). This would require avoiding Bartal's 
onstru
tionand solving the problem on the given general graph. A related question is to �nd a 
ombinatorialalgorithm for the group Steiner problem with a (poly)logarithmi
 approximation guarantee (evenon a tree).Another interesting question is whether better (say, 
onstant ratio) approximations are possiblefor the Eu
lidean 
ase. Finally, showing 
onstru
tively the existen
e of a better de
ompositionwould yield a simpler algorithm and establish a more dire
t 
onne
tion to the set 
over problem.A
knowledgment. We would like to thank Santosh Vempala for a stimulating dis
ussion onde
ompositions and splitting-o� during our early attempts to �nd an approximation algorithm forthe group Steiner problem.
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