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AbstratGiven a weighted graph with some subsets of verties alled groups, the group Steiner treeproblem is to �nd a minimum-weight subgraph whih ontains at least one vertex from eahgroup. We give a randomized algorithm with a polylogarithmi approximation guarantee forthe group Steiner tree problem. The previous best approximation guarantee was O(i2k1=i) intime O(nik2i) (Charikar, Chekuri, Goel and Guha).Our algorithm also improves existing approximation results for network design problemswith loation-based onstraints and for the symmetri generalized traveling salesman problem.Key Words: Steiner tree, approximation algorithms, set over, randomized rounding, networkdesign, tree deompositions
1 Introdution.1.1 Motivation.The group Steiner problem was introdued by Reih and Widmayer [27℄. The problem arises inwire routing with multi-port terminals in physial VLSI design. The traditional model assumingsingle ports for eah of the terminals to be onneted in a net of minimum length is a ase of thelassial Steiner tree problem. When the terminal is a olletion of di�erent possible ports, so thatthe net an be onneted to any one of them, we have a group Steiner tree problem: eah terminalis a olletion of ports and we seek a minimum length net ontaining at least one port from eahterminal group.The multiple port loations for a single terminal may also model di�erent hoies of plaing asingle port by rotating and/or mirroring the module ontaining the port in the plaement. Thehoie allows for more interation between the plaement and routing phases of physial VLSIdesign, potentially allowing for better optimization of the design.The group Steiner tree problem an be stated formally as follows: we are given a graph G =(V;E) with the ost funtion  : E ! R+ , and subsets of verties g1; g2; : : : gk � V . We allg1; : : : ; gk groups. The objetive is to �nd the minimum ost subtree T of G that ontains at�Computer Siene and Engineering, Indian Institute of Tehnology, New Delhi 110016. Work done whilethe author was at the Max-Plank Institut f�ur Informatik, Im Stadtwald, 66123 Saarbr�uken, Germany. Email:naveen�se.iitd.ernet.inyDept. of Math. Sienes, Carnegie Mellon University, Pittsburgh, PA 15213-3890. Supported in part by an NSFCAREER grant CCR-9625297. Email: konjevod�andrew.mu.eduzGSIA, Carnegie Mellon University, Pittsburgh, PA 15213-3890. Supported in part by an NSF CAREER grantCCR-9625297. Email: ravi�mu.edu
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least one vertex from eah of the sets gi. Formally, �nd a onneted subgraph T = (V 0; E0) thatminimizesPe2E0 e, suh that V 0 \ gi 6= ; for all i 2 f1; � � � ; kg. We use n to denote jV j and N todenote the size of the largest group, N = maxi jgij � n. The following transformation allows us toassume that the groups are pairwise disjoint: if a vertex v ours in p groups, p � 1, attah p newverties to v with zero-ost edges. Eah leaf of this star is assigned to one of the groups while vdoes not belong to any group.The group Steiner tree problem is a generalization of the lassial Steiner tree problem [30℄,and therefore NP-hard. In fat, it is also a diret generalization of the even harder set overproblem [15, 20, 29℄. In the set over problem, we are given a olletion of weighted subsets of agiven ground set and seek a minimum-weight sub-olletion whose union is the entire ground set.To redue this problem to a group Steiner problem, build a star with a leaf for eah set. Everyelement in the set over problem de�nes a group of leaves in the star in a natural way, namely, theleaves orresponding to the sets that ontain this element. The equivalene is ompleted by givingthe edges the weights of the orresponding sets. (Even if we require the groups to be disjoint, thisonstrution an be realized by the transformation desribed above.) Therefore, the group Steinertree problem annot be approximated to a fator o(ln k) unless P = NP [3, 9, 26℄.1.2 Previous Work.The papers of Ihler [14, 15, 16℄, and Ihler, Reih and Widmayer [17, 18℄ ontain some early workon the group Steiner tree problem. (In some of these papers the group Steiner problem is alledthe lass Steiner problem.) In partiular, in [14℄ it is proved that the heuristi introdued by Reihand Widmayer [27℄ has an approximation ratio of k � 1 (k is the number of groups). The relatedproblem of minimum diameter group tree is shown to be polynomially solvable in [17℄. Ihler [16℄gives a polynomial algorithm for a speial ase of the group Steiner problem where the groups ofpoints are intervals on two parallel lines. Reih and Widmayer [18℄ show that the group Steinertree problem is NP-hard even if the graph is a subgraph of a square grid in the plane, and eahgroup has at most 3 verties.A speial ase of the group Steiner problem is the onneted dominating set problem where givenan unweighted undireted graph, the problem is to �nd a onneted subgraph with the smallestnumber of verties whose neighborhood overs all the verties in the graph. This is a ase of thegroup Steiner problem where every vertex de�nes a group whih is its neighborhood in the graphand all edges have unit osts. The onneted subgraph found as a solution is a tree without lossof generality and in the unweighted setting, the number of edges in the tree is one less than thenumber of verties in the tree. An approximation algorithm for this speial ase with ratio O(log�)where � is the maximum degree of the graph is presented by Guha and Khuller [12℄.Slav��k [29℄ onsidered the group Steiner problem on rooted trees and gave an algorithm withan approximation ratio of B �H(N) = B �O(lnN), where B is the maximum number of verties ofa group in a subtree of the root, and H(N) is the N -th harmoni number.Bateman, Helvig, Robins and Zelikovsky [6℄ gave the �rst algorithm with a sub-linear perfor-mane guarantee. Their algorithm gives an approximation ratio of (1 + ln k2 )pk. This ratio omesfrom approximating the group Steiner tree by a 2-star (tree of depth 2), and then approximatingthe overing problem on the 2-star within a logarithmi fator.Charikar, Chekuri, Goel and Guha [7℄ desribe a family of algorithms for the direted Steinertree problem with running time O(nik2i) and approximation ratio O(i2k1=i). The direted Steinertree problem is de�ned on a rooted direted weighted graph, and the objetive is to �nd a minimum-weight set of edges that ontains a path from the root to eah of k given terminal verties. Sine the
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direted Steiner tree problem is a generalization of the group Steiner problem [20℄, these algorithmsare diretly appliable.1.3 Our results.For any � > 0, we give a polynomial time algorithm that with probability 1�� �nds a group Steinertree of ost O(log2 n log logn log k) times the ost of the optimal group Steiner tree. The maintehnial result is a randomized algorithm that solves the problem on trees with an O(log k logN)approximation ratio. The extension to arbitrary graphs uses the result of Bartal [4, 5℄, and theapproximation ratio for general graphs is O(log2 n log log n log k) (the size of the largest group,N , is at most the number of verties n). The results of [21℄ used in plae of Bartal's improvethe performane ratio to O(logn log logn log k) on graphs that exlude Ks;s as a minor for some�xed onstant s. An example is planar graphs that exlude K3;3. Sine planar graph distanesapproximate distanes in the two-dimensional Eulidean plane well [8℄, the improvement also arriesover to group Steiner problems in the plane.Our approximation algorithm for the ase of tree metris �rst solves a linear programmingrelaxation of the group Steiner tree problem. Then an extension of randomized rounding is employedto get the solution subtree. The bound on the ost of the tree follows from the rounding proess.On the other hand, to show that the solution tree atually overs all the groups with reasonableprobability, we use Janson's inequality [19℄.As a orollary to the performane guarantee, we also get an upper bound on the integrality gapof our linear programming relaxation.Our algorithm works with similar performane bounds when applied to the errand shedulingproblem of [29℄ also known as the generalized TSP [10, 13, 28℄, to the servie-onstrained networkdesign problems of [22, 23℄, and the traveling purhaser problem in [25℄.In the remainder of the paper, we �rst present our linear programming formulation and ourrounding proedure for trees, and then prove the performane guarantee. Then, we desribe theredution of the general ase to the ase of tree metris, and lose with appliations to relatedproblems.
2 Linear program.We onsider the group Steiner tree problem on a tree T 00 = (V;E) with nonnegative osts  onits edges. We study the rooted version where a pre-spei�ed root vertex r is required to be inthe solution subtree. To solve the unrooted version, we an run through the di�erent verties in asmallest group as the hoie for the root r, and pik the best solution among these runs. For anysubset of verties S � V , let Æ(S) denote the set of edges with exatly one endpoint in S. We usethe following linear programming relaxation of the (rooted) group Steiner tree problem:

minXe2E exeXe2Æ(S)xe � 1, for all S � V suh that r 2 S and S \ gi = ; for some i
0 � xe � 1; 8e 2 E:

(1)
This linear program an be solved in polynomial time, despite the exponential number of on-straints. This follows, for example from [11℄ and the fat that a separation orale an be onstruted3



using a minimum ut proedure. A more diret way to see the polynomial-time solvability of theprogram is to add new variables and re-interpret the onstraints using the max-ow min-ut theo-rem. The onstraints require that any ut separating the root from all the verties of a given groupmust have apaity at least one. We an think of adding a new soure vertex for this group withedges to all the verties in it of in�nite apaity and interpret the value xe as the apaity of theedge e. Then the linear onstraints and the max-ow min-ut theorem imply that any solution xmust support a ow of at least one unit from this soure to the root|in other words, the installedapaity x is suÆient to support a total ow of value at least one from the verties of any groupto the root. This an be written as a polynomial-sized set of linear onstraints involving one set ofow variables for eah group. The resulting formulation is equivalent to the above.Note that the linear program (1) remains a valid relaxation when T 00 is not a tree. In fat, weshow in Setion 5 that the integrality gap of the program is small even when no restritions areimposed on the underlying graph.Let x be the optimal solution of the linear program (1), and T 0 the support of x (the graphonsisting of all edges e suh that xe > 0). Sine T 00 is a tree, T 0 is a tree as well. We denote by z�the optimal value of the objetive funtion.
3 Random experiment.In this setion we explain our rounding proess and prove the main tehnial results. Our roundingmay be seen as an extension of traditional randomized rounding [24℄ for the set over problem tothis \tree version" of the problem.Assume without loss of generality that all group verties are leaves of T 0 (internal group vertiesan be made leaves by inserting a zero-ost edge).Consider the following random experiment. For every edge e 2 E(T 0), inlude e in a forest Fwith probability xe=xf , where f is the edge adjaent to e and loser to r (the parent edge of e).Note that xe � xf beause T 0 is a tree. If e is inident on r, inlude it with probability xe (wethink of a �titious edge above r with unit ow as the parent edge of e denoting that r is alwaysinluded in F ). Then delete all omponents of F not ontaining the root r, as well as every edgethat is not ontained in a path from r to a group vertex. Let T denote the resulting tree.Lemma 3.1. The expeted ost of the tree T piked by the random experiment is z�, the ost ofthe optimal solution to the linear program.Proof. We show that the probability of inluding any edge e in T is xe, and the lemma follows fromthe linearity of expetation.An edge e is inluded in T if and only if all the edges in the path from r to e, say e0; e1; : : : ; ep = eare piked in their respetive independent random trials. This event happens with probabilityxe0 �Qpi=1(xei=xei�1) = xe:To analyze this experiment, we use Janson's inequality ([19℄, see also [1℄, p. 95), whih an bestated as follows: let 
 be a universal set, and R � 
 determined by the experiment in whih eahelement r 2 
 is independently inluded in R with probability pr. In what follows I will denote a�nite index set. Let A = fAi j i 2 Ig be a family of subsets of 
, and denote by Bi the event thatAi � R. Write i � j if Bi and Bj are not independent. De�ne � =Pi�j Pr[Bi \ Bj ℄ (the sum isover ordered pairs). Let � =Pi Pr[Bi℄, and � be suh that Pr[Bi℄ � � for all i.
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Theorem 3.2. (Janson's inequality.) With the notation as above, if � � �(1� �), thenPr�\i Bi� � e��2(1��)2� :
In our ase, 
 = E(T 0), and pe = xe=xf . The family A is the family of edge-sets of pathsfrom r to leaves belonging to a �xed group g, and TiBi is the event that we don't reah g in theexperiment. In the sequel, we provide an upper bound on Pr �TiBi� by using Janson's inequality,whih implies a lower bound on the probability of inluding a group's vertex.To prove the main result we need a simple lemma.Lemma 3.3. If T and T 0 are trees that di�er only in the apaity of an edge e, and xT (e) � xT 0(e),then for any group g, the probability of inluding a vertex from g is no greater in T 0 than in T .Proof. Let A be the event that we pik a vertex of g from the subtree below e. ThenPr �A� = 1� xe + xe Pr �A j e is piked� :Note that in the above expression the oeÆient of xe is always negative. Hene if xe isdereased, Pr �A� inreases, so that Pr [A℄ dereases.Theorem 3.4. If we run the random experiment on a feasible solution to LP (1), then for everygroup g, the probability of inluding a vertex from g in the hosen tree T is 
(1= logN) where Nis the maximum size of a group.Proof. Consider the tree spanned by the paths from r to the leaves of a �xed group g. We willtransform this tree into one where it will be easier to estimate the suess probability. In theproess we only derease the suess probability, so that a lower bound arries over to the originaltree.Sine this tree omes from a feasible solution x to LP (1), as argued before, the apaityfuntion x supports a ow of at least one between r and the verties of g. Derease the apaitieson the edges so that xe equals the value of the ow from r to g supported by the edge e. Beausethe groups are disjoint, the total ow to g is exatly 1. By Lemma 3.3, this only dereases thesuess probability.We now have a tree with ow of 1 between the root and g. Round down all the apaities tonext powers of 2. This in the worst ase halves the ow from r to g. Let Ng � jgj be the number ofleaves in this tree, and let d = dlogNge. Delete all edges of apaity less than 1=2d+2. This reduesthe ow again, but sine there were only Ng leaves to begin with, the total ow we lose now is atmost Ng2�(d+2) � 1=4. If there is a leaf with ow at least 1=4, we remove all the edges exept theones on the path to this leaf. Then we redue the apaities along this path to 1=4. Otherwise, weremove some leaves until the ow to the remaining ones is exatly 1=4, and then delete the edgesused to arry ow only to the deleted leaves. Assume that the ow is now exatly 1=4. Finally,shrink every edge (exept the ones inident on leaves) that is preeded (on the path from the root)by another edge of the same apaity. This doesn't hange the suess probability, and redues thedepth of the tree to d + 1. We abuse notation slightly and ontinue to denote by x the resultingapaity funtion arrying a ow of value exatly 1=4 to group g. We denote by T g the supporttree of x.For larity, we say that an edge is a leaf edge, if it is inident on a leaf. We will show that� = O(logNg) in T g. Consider a leaf edge e, and let�e =Xf�e xexfxg ;
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where g is the least ommon anestor of e and f . Reall that f � e implies that f is another leafedge to a vertex in this group whose path to r shares at least one edge with the path from e to r.Thus �e is the ontribution to � of the edge e, and � =Pe�e.Suppose edge e goes from level i to level i + 1 of T g, and denote by ej = vjvj+1 the edges onthe path from the root to e (j = 0; : : : ; i, v0 = r and ei = e). Further, let Tj be the subtree of T gwhose root is vj , and whih does not inlude ej (Figure 1). Let fj be the total ow from subtreeTj to the root. Then we have �e = iXj=0 xefjxej�1 ;where we de�ne xe�1 = 1: f0r=v0 v1

vi�1 vi
vi+1

e0

ei�1ei=e

T1

Ti�1 Ti

f1

fi�1 fi
Figure 1.Sine the apaities on these edges are a result of rounding down to powers of 2, it followsthat fj � 2xej�1 . (Indeed, assume fj > 2xej�1 . In the rounding, xej�1 was at most halved, andso before the rounding it must have been true that fj > xej�1 . But this would ontradit theow-onservation onstraints that were satis�ed before the rounding). So,
�e � xe iXj=0 2 = 2(i+ 1)xe:

Therefore, � =Xe �e �Xe 2(d+ 2)xe = 12(d+ 2) � log2Ng:Now we an apply Janson's equality with � = 1=4, � = logNg and � = 1=2. We getPr [fail to reah g℄ � e� 164� = e� 164 log2 Ng = 1� 164 log2Ng + 14096 log22Ng � � � � ;
and we see that we will reah group g with probability of about 1=(64 log2Ng). Sine Ng � N , themaximum size of any group, the theorem follows.
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Our analysis in the above theorem is tight up to a onstant fator as an be seen by onsideringT g to be the omplete binary tree where all apaities in a level are equal and where the apaitiesderease by a fator of two as we go down the tree. The suess probability pd (when this tree is ofdepth d) satis�es the reurrene relation pd = pd�1(1� pd�1=4), and p0 = 1. It an be shown thatlimd dpd=4 = 1. Thus the probability of suess is �(1= logn) where n is the number of leaves.
4 Building the Steiner tree.Now we show how to use the result of the previous setion and amplify the probability of suess,while keeping the �nal ost low.When we pik a single tree randomly, the probability that it overs g is at least 1=(64 log2N) forany group g. If we pik 64 log2N trees, their union will over g with a probability of at least 1�1=e.If we pik 128 log2N log 2k trees, the probability of missing a given group is at most 1=4k, and bysubadditivity, the probability of missing any group is at most 1=4. So, if we pik 128 log2N log 2ktrees, their union will over all groups with probability at least 3=4.The total ost of the union of these trees is at most the sum of their osts. Denote this by (T ).Reall that z� denotes the ost of the optimal solution to the LP (1). Then by Lemma 3.1 andMarkov's inequality, Pr [(T ) � 4 � 128 � logN log 2k z�℄ � 1=4:Thus the tree T has low ost with probability at least 3=4.Sine the two \good" events eah oupy at least three quarters of the probability spae, theymust overlap in at least one half, and so with probability at least 1=2, we over all groups with atree of ost O(logN log k z�). Sine z� is a lower bound on the ost of an optimal group Steinertree, we obtain the following theorem.Theorem 4.1. There is a randomized polynomial time algorithm that, with probability at least 1=2,�nds a group Steiner tree on an underlying graph whih is a tree, of ost no more than O(logN log k)times the optimum, where N is the maximum size of a group and k is the number of groups.
5 General graphs.We need a few more de�nitions before explaining how to extend the above to the general ase.De�nition 5.1. A set of metri spaes S over V is said to �-probabilistially approximate a metrispae M over V , if (1) for all x; y 2 V and S 2 S, dS(x; y) � dM (x; y), and (2) there existsa probability distribution D over metri spaes in S suh that for all x; y 2 V , E[dD(x; y)℄ ��dM (x; y).Bartal [4, 5℄ proved the following theorem.Theorem 5.2. Every weighted onneted graph G on n verties an be �-probabilistially approxi-mated by a set of weighted trees, where � = O(logn log log n). Moreover, the probability distributionan be omputed in polynomial time.Theorem 5.3. For any � > 0, there is a polynomial-time algorithm that with probability 1�� �ndsa group Steiner tree whose ost is O(logN logn log logn log k) times the ost of the optimal tree.
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Proof. We �rst state the algorithm.(1) Randomly hoose a tree T from Bartal's distribution.(2) Solve the linear program (1) on T ; let x be the optimal solution found.(3) Run the rounding proedure desribed in Setion 3 independently 128 log 1� logn log 2k timesand let F be the union of trees found. Return F .We show that the expeted ost of the optimal group Steiner tree in a tree hosen at randomfrom Bartal's distribution is O(logn log logn) times the ost of the optimal group Steiner tree inthe original graph G. Then our laim follows from Theorem 4.1, sine by running the tree-roundingalgorithm log 1=� times we an boost the suess probability to 1� �.Consider a tree T hosen from Bartal's distribution. Replae every edge ij of the optimal groupSteiner tree H in G by the (unique) ij-path in T . This produes a group Steiner tree in T whoseost is no more than the sum of the osts of the paths in T . By Theorem 5.2 the expeted ost ofthe ij-path in T is O(logn log logn) times ij . Thus an optimal group Steiner tree in a tree hosenfrom Bartal's distribution has expeted ost O(logn log logn) times the ost of the optimal groupSteiner tree in G.
6 Integrality gaps and tree-deompositionsThe following is diretly implied by Theorem 4.1.Corollary 6.1. The integrality gap of LP (1) is O(logn log k) when the underlying graph is a tree.However, a similar result follows for LP (1) in the ase of general graphs as well.Corollary 6.2. The integrality gap of LP (1) is O(logn log logn logN log k) on an n-vertex graphG, when there are k groups eah of size at most N .Proof. Let z� be the ost of the optimal solution of LP (1), and T a tree found by Bartal's algorithm.Let z�T be the ost of the optimal solution to LP (1) on the tree T . By Bartal's theorem, withonstant probability z�T � 2z� logn log logn. (Let x� be the optimal solution of LP (1). For everyedge e = ij 2 T with x�e > 0, de�ne we = x�e. De�ne we = 0 for all other e 2 T . Then onsiderin turn every edge e suh that x�e > 0 and e 62 T . For every edge f in the path orresponding toe in T , add x�e to wf . By Bartal's theorem, the expeted ost of w is O(logn log logn)z�, and byonstrution w is a frational group Steiner tree in T .) By Theorem 3.4, the weight of the groupSteiner tree output by our algorithm is with onstant probability O(z�T logN log k).In the remainder of this setion we disuss the idea of deomposing a solution of LP (1) intosubtrees. We �rst de�ne what we mean by a deomposition. Let x be a (frational) solution toLP (1), and G its support graph. We use the notation T � g to denote that a graph T ontainsa vertex of group g. Similarly we use T 6� g to denote that a graph T ontains no vertex ofgroup g. The set of subtrees T1; T2; : : : ; T` of G, together with weights �1; �2; : : : ; �` forms an�-deomposition of the solution x, ifXTi�g �i � 1 for all groups g(2) XTi3e�i � �xe for all edges e(3) r 2 Ti for all i.(4)
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For instane, suppose � = 1 (that is, suppose we an always �nd a \perfet" paking that overseah group frationally in the sense of ondition (2) above). Then we ould think of the subtreesT1; : : : ; T` as sets in a set over problem. In this ase we ould apply the randomized roundingproedure for set over: independently of all other trees, inlude edges of Ti with probability �i.Taking the union of O(log k) independent experiments would with probability at least 3=4 give agroup Steiner tree. Also with probability at least 3=4, the ost of this tree is bounded by z log kwhere z is the ost of the solution x.More generally, an �-deomposition into trees of any solution of LP (1) gives an algorithm forthe group Steiner problem with an approximation ratio of O(� log k). Our algorithm provides anupper bound on the parameter �.Theorem 6.3. Let N denote the size of the largest group. For any solution of LP (1) whosesupport graph is a tree T , there is an �-deomposition, where � = O(logN).Proof. Let T1; : : : ; T` be all the possible outomes of a rounding step from Setion 3, and letp1; : : : ; p` be their respetive probabilities. Let Ye be the indiator variable for piking the edge ein a rounding step. Then for every edge e,XTi3e pi = EYe = xe:
Let Ng denote the size of the group g. By Theorem 3.4,XTi3g pi � logNg :De�ning �i = pi �maxg(logNg=), we get a deomposition with � = (logN)=.Similarly as above, in the ase of general graphs the fator is multiplied by logn log logn.It is not possible to always have � = 1, even in the ase of trees, as shown by the example inFigure 2, where � = 6=5, and no better � is possible for this solution.

xe=1
xf=1=2xg=1=2 xh=1=2

u21;2 v22;3 w23;1
T1 T2 T3
T4 T5 T6

�1=�2=:::=�6=1=5
Figure 2.However, a perfet deomposition always exists when there are only two groups.Theorem 6.4. Let x be a solution of LP (1) in an instane of the group Steiner problem on a treeT where there are only two groups denoted by g1 and g2. Then there exists a perfet deompositionof x. Moreover, this deomposition an be found in polynomial time.

9



Proof. We assume as before that all verties belonging to any group are leaves of T and that T isthe support graph of x. We also assume that the groups g1 and g2 are disjoint and that apaities ofedges on any path down the tree form a non inreasing sequene. First de�ne y = x. We will reduey in eah step until �nally y = 0 to get the deomposition of x. To onstrut the deomposition,while neither of the two groups are empty, �nd a pair (v; w) of leaves suh that v 2 g1 and w 2 g2.This pair should be hosen so that the intersetion of the r � v path and r � w path is maximal.Denote by u the least ommon anestor (la) of v and w. Let a be the apaity of the leaf edgeinident on v and b the apaity of the leaf edge inident on w. Let  = minfa; bg. De�ne Ti tobe the union of the three paths r � u, u � v and u � w, and �i = . Then add the tree Ti to thedeomposition, and redue y by subtrating the inidene vetor of Ti multiplied by �i. Update Tby deleting edges whose y-values have been redued to zero. This proedure is repeated until thetree T is empty.We laim that after reduing y in step i, the ow to eah of the two groups redues by at most�i. Indeed, suppose that the ow to g1 redues by more than �i. Reduing the edge-values alongthe path from r to v by �i only redues the ow to g1 by �i. Therefore, any further derease in theow to g1 must ome from the redution of an edge outside the r � v path. The only suh edgesbelong to the path from u to w. By the hoie of v and w, no vertex of g1 an share a longer pathwith w than v and thus no vertex of g1 reeives ow along any portion of the path from u to w.Condition (2) an be established as follows:XTi�g �i = Xv2g\Ti XTi3v �i = Xv2g\T xv = 1:
The �rst equality follows beause in eah step we only take out at most one vertex of the group g,and the seond beause the ow from r to g in the redued graph dereases by �i in step i. The�nal equality holds beause x is a feasible solution to LP (1).Let Ie1 be the set of all leaves v 2 g1 suh that e is one of the edges in the unique r � v pathin T . Let xv denote the value of the ow from r to v in x.Now ondition (3) follows as well:XTi3e�i = Xv2Ie1 XTi3v �i = Xv2Ie1 xv � xe:
The �rst equality follows sine every iteration i redues the ow to g1 by exatly �i, and the seondbeause every leaf is eventually removed. The �nal inequality is true beause x supports a ow ofxv to v.
7 Other formulations and appliations.In this setion, we �rst sketh the improvement in the ase of graphs that exlude small minors.Then we give some more appliations of our results. One is to a biriteria network design problemthat involves loation-based onstraints, and the other to some generalizations of the travelingsalesman problem.7.1 Improved metri approximations.The following improvement of Bartal's result to graphs that exlude small minors is presented byKonjevod, Ravi and Salman [21℄.
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Theorem 7.1. Let G be an n-vertex graph that exludes Ks;s as a minor. Then G an be �-probabilistially approximated by a set of weighted trees, where � = O(s3 log n). Moreover, theprobability distribution an be omputed in polynomial time.This improved result (for onstant s) applies, e.g., to planar graphs, whih exlude K3;3 asa minor. This theorem, together with the arguments from the previous setion, then gives animproved approximation ratio of O(logn logN log k) for suh graphs.Sine distanes in the Eulidean plane an be approximated to within a fator of 2 by a planargraph [8℄, the improvements also apply to this ase. More formally, if the edge lengths of the result-ing planar graph an be assumed to be integers in a polynomial range, then we an probabilistiallyapproximate the original distanes by trees with only a logarithmi loss. By identifying some pointswe an assume the distanes to be in f1; : : : ; O(n2)g. This an be done so that the optimum valueof a group Steiner tree only hanges by a fator of 1 + � for any onstant � as in [2℄.7.2 Servie-onstrained network design problems.Marathe, Ravi and Sundaram [22, 23℄ study the following problem: an instane is given by anundireted graph G = (V;E) with two di�erent (nonnegative) ost funtions on the edges,  (mod-eling the servie ost) and d (modeling the onstrution ost), and a nonnegative funtion s on theverties (de�ning the servie-radius onstraints). The goal is to �nd a minimum d-ost tree suhthat every vertex v in the graph is servied by some vertex in the tree, i.e. every vertex v is withindistane sv (under the -osts) of some vertex in the tree.An (�; �)-biriteria approximation for suh a problem is an algorithm whih �nds a solution inwhih the servie onstraints are not exeeded by more than a fator of �, and whose ost under dis within a � fator of the optimal one that satis�es the servie onstraints (under the -osts).Marathe et al. [22, 23℄ give a (1; 2�)-approximation algorithm, where � is the maximum serviedegree, the maximum number of verties that an servie any given vertex.We observe that if the �rst approximation fator � is �xed at 1, this problem is equivalent tothe group Steiner tree problem.First we redue the servie-onstrained problem to a group Steiner tree problem. We de�ne aset of groups fgv j v 2 V g. Let gv be the set of verties w that are within the budget (-)distaneof v, gv = fw 2 V j (vw) � svg:Now any group Steiner tree will satisfy the servie onstraints, and onversely, any tree that serviesall verties within the budget (i. e. suh that � = 1) will be a group Steiner tree.Note that our algorithm improves the approximation fator of [23℄ to (1; O(log2 n log logn log k)),where n = jV j and k is the maximum servie-degree of any vertex (in partiular, k � n).Next we redue the group Steiner problem to a version of the servie-onstrained network designproblem. Assume without loss of generality that the groups are disjoint. Let the weights in thegiven graph represent the d-ost. De�ne the -ost as follows: between a pair of verties in thesame group, the -ost is zero, and between all other pairs, the -ost is one. The servie radius svis set to zero for every vertex whih is ontained in some group and to n for all other verties. Anysolution output by an (�; �)-approximation algorithm for this servie-onstrained network designproblem for any � inludes at least one vertex from every group, and is therefore a group Steinertree of ost at most � times the minimum.
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7.3 Generalized traveling salesman problem.The generalized traveling salesman problem is de�ned on a graph G = (V;E) with a nonnegativeost funtion on the edges. Also given are subsets of verties S1, : : : Sm � V . These sets are alledlusters. The goal is to �nd a minimum-ost yle ontaining at least one vertex from eah luster.Unlike the group Steiner problem, it may be assumed that every vertex of the graph belongs to oneof the lusters.The generalized traveling salesman problem was �rst desribed by Henry-Labordere [13℄ andSaksena [28℄. More information and further referenes an be found in the paper by Fishetti,Salazar and Toth [10℄.We assume that the ost funtion satis�es the triangle inequality.Before our results, the only approximation algorithm for the generalized traveling salesmanproblem was due to Slav��k [29℄. The approximation guarantee is 3�=2, where � denotes the maxi-mum size of a group.We note that an �-approximation algorithm for the group Steiner problem implies a 1:5�-approximation algorithm for the generalized traveling salesman problem. The graphs in bothinstanes are idential, and the groups are de�ned to be exatly the lusters. Then any groupSteiner tree an be shortut into a generalized traveling salesman tour of at most 1:5 times its ost,using the lassial Christo�des heuristi. On the other hand, any feasible tour indues a groupSteiner tree of no greater ost.Thus, our algorithm gives an O(log2 n log logn log k) approximation for the generalized travelingsalesman problem.7.4 Traveling purhaser problem.Ravi and Salman [25℄ study the traveling purhaser problem and give approximation algorithmsfor this problem and a biriteria version; Their approximation guarantees are similar to ours. LetG = (V;E) be a graph and  : E ! R+ a weight funtion. Let a set of produts P be given togetherwith nonnegative pries dpv for every p 2 P and v 2 V . We think of V as the set of markets. Afeasible solution of the traveling purhaser problem is a tour on some of the verties in V . If wevisit a vertex v 2 V then we an buy any produt at the prie it is o�ered at v. Every produtmust be bought at some market that the tour visits. The objetive is to minimize the sum of thelength of the tour and all the pries paid for produts in P .This problem generalizes the group Steiner problem sine we may think of a group as a produtand assign ost 0 for a group g at a vertex v if and only if v 2 g. If v is not a vertex of g, then theost is de�ned to be 1. Now a tour of total ost z orresponds to a group Steiner tour of equalost, and vie versa.However, we an also redue the traveling purhaser problem to the group Steiner problem. Weshow that a �-approximation algorithm for the group Steiner problem implies a 1:5�-approximationalgorithm for the metri traveling purhaser problem. Starting with an instane of the travelingpurhaser problem, de�ne an extra vertex wpv for eah pair (p; v) 2 P � V . Add an edge of weightdpv=2 from wpv to v. Then de�ne a group orresponding to eah produt to onsist of exatlythe new verties added for this produt. A group Steiner tree may be shortut to a tour visitingeah group, inreasing the ost by at most a fator of 1:5. The ost of the edges entering andleaving group verties is then exatly equal to the ost of buying eah produt at the orrespondingmarket. So our group Steiner algorithm gives an algorithm with similar performane guarantee forthe traveling purhaser problem.
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7.5 Group prize-olleting Steiner problem.The group prize-olleting Steiner problem was de�ned by David Johnson. Like in the group Steinerproblem, a weighted graph is given together with a family of subsets, alled groups. With eahgroup, we assoiate a penalty. The goal is to �nd a onneted subgraph that minimizes the sumof the osts of the edges used by the subgraph and the sum of penalties inurred for groups notvisited in the subgraph. The redution to group Steiner is similar to the one from the travelingpurhaser problem. For every group, we add a new vertex and onnet it to all other verties ofthe graph with edges of ost equal to this group's penalty. The group Steiner problem on this newgraph is equivalent to the original prize-olleting problem.
8 Conlusion.We have presented the �rst algorithm with a polylogarithmi approximation ratio for the groupSteiner problem. After reading a preliminary version of our paper, Charikar, Chekuri, Goel andGuha [7℄ derandomized our algorithm. They gave a general way to use Bartal's theorems in adeterministi setting and, independently of this result, a deterministi version of our tree-roundingproedure.We leave open several problems. The only known lower bounds for the group Steiner problemare the ones that arise from the hardness of the set over problem. It is a natural open problem then,to redue the approximation ratio to O(logn). This would require avoiding Bartal's onstrutionand solving the problem on the given general graph. A related question is to �nd a ombinatorialalgorithm for the group Steiner problem with a (poly)logarithmi approximation guarantee (evenon a tree).Another interesting question is whether better (say, onstant ratio) approximations are possiblefor the Eulidean ase. Finally, showing onstrutively the existene of a better deompositionwould yield a simpler algorithm and establish a more diret onnetion to the set over problem.Aknowledgment. We would like to thank Santosh Vempala for a stimulating disussion ondeompositions and splitting-o� during our early attempts to �nd an approximation algorithm forthe group Steiner problem.
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