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Abstract

Given a weighted graph with some subsets of vertices called groups, the group Steiner tree
problem is to find a minimum-weight subgraph which contains at least one vertex from each
group. We give a randomized algorithm with a polylogarithmic approximation guarantee for
the group Steiner tree problem. The previous best approximation guarantee was O(i2k1/ %) in
time O(n'k?!) (Charikar, Chekuri, Goel and Guha).

Our algorithm also improves existing approximation results for network design problems

with location-based constraints and for the symmetric generalized traveling salesman problem.

Key Words: Steiner tree, approximation algorithms, set cover, randomized rounding, network
design, tree decompositions

1 Introduction.

1.1 Motivation.

The group Steiner problem was introduced by Reich and Widmayer [27]. The problem arises in
wire routing with multi-port terminals in physical VLSI design. The traditional model assuming
single ports for each of the terminals to be connected in a net of minimum length is a case of the
classical Steiner tree problem. When the terminal is a collection of different possible ports, so that
the net can be connected to any one of them, we have a group Steiner tree problem: each terminal
is a collection of ports and we seek a minimum length net containing at least one port from each
terminal group.

The multiple port locations for a single terminal may also model different choices of placing a
single port by rotating and/or mirroring the module containing the port in the placement. The
choice allows for more interaction between the placement and routing phases of physical VLSI
design, potentially allowing for better optimization of the design.

The group Steiner tree problem can be stated formally as follows: we are given a graph G =
(V, E) with the cost function ¢ : E — R", and subsets of vertices g1,92,...9x C V. We call
g1, ... ,9gk groups. The objective is to find the minimum cost subtree 7" of G that contains at
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least one vertex from each of the sets g;. Formally, find a connected subgraph T' = (V', E’) that
minimizes ) g Ce, such that V' N g; # 0 for all i € {1,--- ,k}. We use n to denote |V| and N to
denote the size of the largest group, N = max; |g;| < n. The following transformation allows us to
assume that the groups are pairwise disjoint: if a vertex v occurs in p groups, p > 1, attach p new
vertices to v with zero-cost edges. Each leaf of this star is assigned to one of the groups while v
does not belong to any group.

The group Steiner tree problem is a generalization of the classical Steiner tree problem [30],
and therefore NP-hard. In fact, it is also a direct generalization of the even harder set cover
problem [15, 20, 29]. In the set cover problem, we are given a collection of weighted subsets of a
given ground set and seek a minimum-weight sub-collection whose union is the entire ground set.
To reduce this problem to a group Steiner problem, build a star with a leaf for each set. Every
element in the set cover problem defines a group of leaves in the star in a natural way, namely, the
leaves corresponding to the sets that contain this element. The equivalence is completed by giving
the edges the weights of the corresponding sets. (Even if we require the groups to be disjoint, this
construction can be realized by the transformation described above.) Therefore, the group Steiner
tree problem cannot be approximated to a factor o(Ink) unless P = NP [3, 9, 26].

1.2 Previous Work.

The papers of Thler [14, 15, 16], and Ihler, Reich and Widmayer [17, 18] contain some early work
on the group Steiner tree problem. (In some of these papers the group Steiner problem is called
the class Steiner problem.) In particular, in [14] it is proved that the heuristic introduced by Reich
and Widmayer [27] has an approximation ratio of £k — 1 (k is the number of groups). The related
problem of minimum diameter group tree is shown to be polynomially solvable in [17]. Ihler [16]
gives a polynomial algorithm for a special case of the group Steiner problem where the groups of
points are intervals on two parallel lines. Reich and Widmayer [18] show that the group Steiner
tree problem is NP-hard even if the graph is a subgraph of a square grid in the plane, and each
group has at most 3 vertices.

A special case of the group Steiner problem is the connected dominating set problem where given
an unweighted undirected graph, the problem is to find a connected subgraph with the smallest
number of vertices whose neighborhood covers all the vertices in the graph. This is a case of the
group Steiner problem where every vertex defines a group which is its neighborhood in the graph
and all edges have unit costs. The connected subgraph found as a solution is a tree without loss
of generality and in the unweighted setting, the number of edges in the tree is one less than the
number of vertices in the tree. An approximation algorithm for this special case with ratio O(log A)
where A is the maximum degree of the graph is presented by Guha and Khuller [12].

Slavik [29] considered the group Steiner problem on rooted trees and gave an algorithm with
an approximation ratio of B- H(N) = B-O(In N), where B is the maximum number of vertices of
a group in a subtree of the root, and H(N) is the N-th harmonic number.

Bateman, Helvig, Robins and Zelikovsky [6] gave the first algorithm with a sub-linear perfor-
mance guarantee. Their algorithm gives an approximation ratio of (1 + %)\/E This ratio comes
from approximating the group Steiner tree by a 2-star (tree of depth 2), and then approximating
the covering problem on the 2-star within a logarithmic factor.

Charikar, Chekuri, Goel and Guha [7] describe a family of algorithms for the directed Steiner
tree problem with running time O(n’k%) and approximation ratio O(i2k'/?). The directed Steiner
tree problem is defined on a rooted directed weighted graph, and the objective is to find a minimum-
weight set of edges that contains a path from the root to each of & given terminal vertices. Since the



directed Steiner tree problem is a generalization of the group Steiner problem [20], these algorithms
are directly applicable.

1.3 Our results.

For any € > 0, we give a polynomial time algorithm that with probability 1 — e finds a group Steiner
tree of cost O(log? nloglognlogk) times the cost of the optimal group Steiner tree. The main
technical result is a randomized algorithm that solves the problem on trees with an O(logk log V)
approximation ratio. The extension to arbitrary graphs uses the result of Bartal [4, 5], and the
approximation ratio for general graphs is O(loanlog lognlogk) (the size of the largest group,
N, is at most the number of vertices n). The results of [21] used in place of Bartal’s improve
the performance ratio to O(lognloglognlogk) on graphs that exclude K, as a minor for some
fixed constant s. An example is planar graphs that exclude K3 3. Since planar graph distances
approximate distances in the two-dimensional Euclidean plane well [8], the improvement also carries
over to group Steiner problems in the plane.

Our approximation algorithm for the case of tree metrics first solves a linear programming
relaxation of the group Steiner tree problem. Then an extension of randomized rounding is employed
to get the solution subtree. The bound on the cost of the tree follows from the rounding process.
On the other hand, to show that the solution tree actually covers all the groups with reasonable
probability, we use Janson’s inequality [19].

As a corollary to the performance guarantee, we also get an upper bound on the integrality gap
of our linear programming relaxation.

Our algorithm works with similar performance bounds when applied to the errand scheduling
problem of [29] also known as the generalized TSP [10, 13, 28], to the service-constrained network
design problems of [22, 23], and the traveling purchaser problem in [25].

In the remainder of the paper, we first present our linear programming formulation and our
rounding procedure for trees, and then prove the performance guarantee. Then, we describe the
reduction of the general case to the case of tree metrics, and close with applications to related
problems.

2 Linear program.

We consider the group Steiner tree problem on a tree 7" = (V, E) with nonnegative costs ¢ on
its edges. We study the rooted version where a pre-specified root vertex r is required to be in
the solution subtree. To solve the unrooted version, we can run through the different vertices in a
smallest group as the choice for the root r, and pick the best solution among these runs. For any
subset of vertices S C V, let §(S) denote the set of edges with exactly one endpoint in S. We use
the following linear programming relaxation of the (rooted) group Steiner tree problem:

min E CeZTe

eckE
(1) Z ze>1, forall S CV suchthat r € S and SNg; =0 for some 4
e€d(S)
0<z.<1, Ve€E.

This linear program can be solved in polynomial time, despite the exponential number of con-
straints. This follows, for example from [11] and the fact that a separation oracle can be constructed



using a minimum cut procedure. A more direct way to see the polynomial-time solvability of the
program is to add new variables and re-interpret the constraints using the max-flow min-cut theo-
rem. The constraints require that any cut separating the root from all the vertices of a given group
must have capacity at least one. We can think of adding a new source vertex for this group with
edges to all the vertices in it of infinite capacity and interpret the value x. as the capacity of the
edge e. Then the linear constraints and the max-flow min-cut theorem imply that any solution x
must support a flow of at least one unit from this source to the root—in other words, the installed
capacity z is sufficient to support a total flow of value at least one from the vertices of any group
to the root. This can be written as a polynomial-sized set of linear constraints involving one set of
flow variables for each group. The resulting formulation is equivalent to the above.

Note that the linear program (1) remains a valid relaxation when T” is not a tree. In fact, we
show in Section 5 that the integrality gap of the program is small even when no restrictions are
imposed on the underlying graph.

Let = be the optimal solution of the linear program (1), and 7" the support of z (the graph
consisting of all edges e such that z. > 0). Since 7" is a tree, T" is a tree as well. We denote by z*
the optimal value of the objective function.

3 Random experiment.

In this section we explain our rounding process and prove the main technical results. Our rounding
may be seen as an extension of traditional randomized rounding [24] for the set cover problem to
this “tree version” of the problem.

Assume without loss of generality that all group vertices are leaves of 7" (internal group vertices
can be made leaves by inserting a zero-cost edge).

Consider the following random experiment. For every edge e € E(T"), include e in a forest F
with probability z./z¢, where f is the edge adjacent to e and closer to r (the parent edge of e).
Note that z. < z; because T" is a tree. If e is incident on 7, include it with probability z. (we
think of a fictitious edge above r with unit flow as the parent edge of e denoting that r is always
included in F'). Then delete all components of F' not containing the root r, as well as every edge
that is not contained in a path from r to a group vertex. Let T' denote the resulting tree.

Lemma 3.1. The expected cost of the tree T picked by the random experiment is z*, the cost of
the optimal solution to the linear program.

Proof. We show that the probability of including any edge e in T is x,, and the lemma follows from
the linearity of expectation.

An edge e is included in T if and only if all the edges in the path from r to e, say eg,e1,... ,ep, =€
are picked in their respective independent random trials. This event happens with probability
Teg * H?:l(xei/xeiﬂ) = Te- 0

To analyze this experiment, we use Janson’s inequality ([19], see also [1], p. 95), which can be
stated as follows: let Q2 be a universal set, and R C 2 determined by the experiment in which each
element r € () is independently included in R with probability p.. In what follows I will denote a
finite index set. Let A = {A; | ¢ € I} be a family of subsets of {2, and denote by B; the event that
A; C R. Write i ~ j if B; and Bj are not independent. Define A = 3, . Pr[B; N Bj] (the sum is
over ordered pairs). Let u = ). Pr[B;], and € be such that Pr[B;] < € for all i.



Theorem 3.2. (Janson’s inequality.) With the notation as above, if A > u(1l —€), then
W21
Pr[ﬂE] <e uz(Al ).
i

In our case, @ = E(T"), and p. = z./xzy. The family A is the family of edge-sets of paths
from r to leaves belonging to a fixed group g, and ﬂZE is the event that we don’t reach g in the
experiment. In the sequel, we provide an upper bound on Pr [ﬂz E] by using Janson’s inequality,
which implies a lower bound on the probability of including a group’s vertex.

To prove the main result we need a simple lemma.

Lemma 3.3. IfT and T' are trees that differ only in the capacity of an edge e, and zr(e) > z7:(e),
then for any group g, the probability of including a vertex from g is no greater in T' than in T.

Proof. Let A be the event that we pick a vertex of g from the subtree below e. Then
Pr [Z] =1—z,+z.Pr [Z | e is picked} .

Note that in the above expression the coefficient of x. is always negative. Hence if z. is
decreased, Pr [A] increases, so that Pr[A] decreases. O

Theorem 3.4. If we run the random experiment on a feasible solution to LP (1), then for every
group g, the probability of including a vertex from g in the chosen tree T is Q(1/log N) where N
is the maximum size of a group.

Proof. Consider the tree spanned by the paths from r to the leaves of a fixed group g. We will
transform this tree into one where it will be easier to estimate the success probability. In the
process we only decrease the success probability, so that a lower bound carries over to the original
tree.

Since this tree comes from a feasible solution =z to LP (1), as argued before, the capacity
function x supports a flow of at least one between r and the vertices of g. Decrease the capacities
on the edges so that z. equals the value of the flow from 7 to g supported by the edge e. Because
the groups are disjoint, the total flow to g is exactly 1. By Lemma 3.3, this only decreases the
success probability.

We now have a tree with flow of 1 between the root and g. Round down all the capacities to
next powers of 2. This in the worst case halves the flow from r to g. Let Ny < |g| be the number of
leaves in this tree, and let d = [log Ny|. Delete all edges of capacity less than 1/ 2412 This reduces
the flow again, but since there were only IV, leaves to begin with, the total flow we lose now is at
most Ng2*(d+2) < 1/4. If there is a leaf with flow at least 1/4, we remove all the edges except the
ones on the path to this leaf. Then we reduce the capacities along this path to 1/4. Otherwise, we
remove some leaves until the flow to the remaining ones is exactly 1/4, and then delete the edges
used to carry flow only to the deleted leaves. Assume that the flow is now exactly 1/4. Finally,
shrink every edge (except the ones incident on leaves) that is preceded (on the path from the root)
by another edge of the same capacity. This doesn’t change the success probability, and reduces the
depth of the tree to d + 1. We abuse notation slightly and continue to denote by x the resulting
capacity function carrying a flow of value exactly 1/4 to group g. We denote by 79 the support
tree of z.

For clarity, we say that an edge is a leaf edge, if it is incident on a leaf. We will show that
A = O(log Ny) in TY9. Consider a leaf edge e, and let

Ae = Z $e$f,

T
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where g is the least common ancestor of e and f. Recall that f ~ e implies that f is another leaf
edge to a vertex in this group whose path to r shares at least one edge with the path from e to 7.
Thus A, is the contribution to A of the edge e, and A =) A..

Suppose edge e goes from level 7 to level 4 + 1 of T, and denote by e; = v;v; 1 the edges on
the path from the root toe (j =0,...,4, vo = r and e; = e). Further, let T} be the subtree of T
whose root is v;, and which does not include e; (Figure 1). Let f; be the total flow from subtree

T} to the root. Then we have
i
A=Y Zeli

=0 Tei—1

where we define z. ; = 1.

Figure 1.

Since the capacities on these edges are a result of rounding down to powers of 2, it follows
that f; < 2%, _, . (Indeed, assume fi > 2zc;_,- In the rounding, Te;_, Was at most halved, and
so before the rounding it must have been true that f; > z.; ,. But this would contradict the
flow-conservation constraints that were satisfied before the rounding). So,

7
Ac<me ) 2=2(i+1)z..
j=0

Therefore,
1
A= Z;Ae < 2632(d+ 2)ze = 5(d +2) < logy Ny.
Now we can apply Janson’s equality with u = 1/4, A =log Ny and € = 1/2. We get

1 o1 1 1
Pr[fail to reach g| < e7 648 = ¢ 64logaNg — 1 — + _
| 9l 641logy Ny 4096 log3 N,

and we see that we will reach group g with probability of about 1/(64 logy Ng). Since Ny < N, the
maximum size of any group, the theorem follows. O



Our analysis in the above theorem is tight up to a constant factor as can be seen by considering
TY9 to be the complete binary tree where all capacities in a level are equal and where the capacities
decrease by a factor of two as we go down the tree. The success probability pg (when this tree is of
depth d) satisfies the recurrence relation pg = pg_1(1 — pg—1/4), and pg = 1. It can be shown that
limgdpa/4 = 1. Thus the probability of success is ©(1/logn) where n is the number of leaves.

4 Building the Steiner tree.

Now we show how to use the result of the previous section and amplify the probability of success,
while keeping the final cost low.

When we pick a single tree randomly, the probability that it covers g is at least 1/(641ogy N) for
any group g. If we pick 641ogy N trees, their union will cover g with a probability of at least 1—1/e.
If we pick 128logy N log 2k trees, the probability of missing a given group is at most 1/4k, and by
subadditivity, the probability of missing any group is at most 1/4. So, if we pick 1281og, N log 2k
trees, their union will cover all groups with probability at least 3/4.

The total cost of the union of these trees is at most the sum of their costs. Denote this by ¢(7).
Recall that z* denotes the cost of the optimal solution to the LP (1). Then by Lemma 3.1 and
Markov’s inequality,

Pric(T) > 4-128 -log Nlog 2k z*] < 1/4.

Thus the tree 7 has low cost with probability at least 3/4.

Since the two “good” events each occupy at least three quarters of the probability space, they
must overlap in at least one half, and so with probability at least 1/2, we cover all groups with a
tree of cost O(log N logk z*). Since z* is a lower bound on the cost of an optimal group Steiner
tree, we obtain the following theorem.

Theorem 4.1. There is a randomized polynomial time algorithm that, with probability at least 1/2,
finds a group Steiner tree on an underlying graph which is a tree, of cost no more than O(log N log k)
times the optimum, where N is the maximum size of a group and k is the number of groups.

5 General graphs.

We need a few more definitions before explaining how to extend the above to the general case.

Definition 5.1. A set of metric spaces S over V is said to a-probabilistically approximate a metric
space M over V, if (1) for all z,y € V and S € S, dg(z,y) > dy(z,y), and (2) there exists
a probability distribution D over metric spaces in S such that for all z,y € V, Eldp(z,y)] <
Osz(CU,y)-

Bartal [4, 5] proved the following theorem.

Theorem 5.2. Fvery weighted connected graph G on n vertices can be a-probabilistically approxi-
mated by a set of weighted trees, where oo = O(log nloglogn). Moreover, the probability distribution
can be computed in polynomial time.

Theorem 5.3. For any € > 0, there is a polynomial-time algorithm that with probability 1 — e finds
a group Steiner tree whose cost is O(log N lognloglognlogk) times the cost of the optimal tree.



Proof. We first state the algorithm.

(1) Randomly choose a tree T' from Bartal’s distribution.

(2) Solve the linear program (1) on T let = be the optimal solution found.

(3) Run the rounding procedure described in Section 3 independently 1281log % log nlog 2k times
and let F' be the union of trees found. Return F'.

We show that the expected cost of the optimal group Steiner tree in a tree chosen at random
from Bartal’s distribution is O(lognloglogn) times the cost of the optimal group Steiner tree in
the original graph G. Then our claim follows from Theorem 4.1, since by running the tree-rounding
algorithm log 1/e times we can boost the success probability to 1 — e.

Consider a tree T' chosen from Bartal’s distribution. Replace every edge ij of the optimal group
Steiner tree H in G by the (unique) ¢j-path in 7. This produces a group Steiner tree in 7" whose
cost is no more than the sum of the costs of the paths in 7. By Theorem 5.2 the expected cost of
the ij-path in T' is O(lognloglogn) times ¢;;. Thus an optimal group Steiner tree in a tree chosen
from Bartal’s distribution has expected cost O(lognloglogn) times the cost of the optimal group
Steiner tree in G. O

6 Integrality gaps and tree-decompositions

The following is directly implied by Theorem 4.1.
Corollary 6.1. The integrality gap of LP (1) is O(lognlog k) when the underlying graph is a tree.
However, a similar result follows for LP (1) in the case of general graphs as well.

Corollary 6.2. The integrality gap of LP (1) is O(lognloglognlog N logk) on an n-vertex graph
G, when there are k groups each of size at most N.

Proof. Let z* be the cost of the optimal solution of LP (1), and T a tree found by Bartal’s algorithm.
Let z}. be the cost of the optimal solution to LP (1) on the tree 7. By Bartal’s theorem, with
constant probability z}. < 2z* lognloglogn. (Let z* be the optimal solution of LP (1). For every
edge e = ¢j € T with z} > 0, define w, = z}. Define w. = 0 for all other e € T'. Then consider
in turn every edge e such that z} > 0 and e ¢ T. For every edge f in the path corresponding to
ein T, add z} to wy. By Bartal’s theorem, the expected cost of w is O(log nloglogn)z*, and by
construction w is a fractional group Steiner tree in 7'.) By Theorem 3.4, the weight of the group
Steiner tree output by our algorithm is with constant probability O(z7.log N log k). O

In the remainder of this section we discuss the idea of decomposing a solution of LP (1) into
subtrees. We first define what we mean by a decomposition. Let = be a (fractional) solution to
LP (1), and G its support graph. We use the notation 7" ~ g to denote that a graph 7' contains
a vertex of group g. Similarly we use T' ¢ g to denote that a graph T contains no vertex of
group g. The set of subtrees T1,75,... ,Ty of G, together with weights A1, Aa,... , Ay forms an
a-decomposition of the solution x, if

(2) Z Ai > 1 for all groups g
Ti~g

(3) Z Ai < azx, for all edges e
T;2e

(4) r € T; for all 4.



For instance, suppose o = 1 (that is, suppose we can always find a “perfect” packing that covers
each group fractionally in the sense of condition (2) above). Then we could think of the subtrees
T1,...,Ty as sets in a set cover problem. In this case we could apply the randomized rounding
procedure for set cover: independently of all other trees, include edges of T; with probability A;.
Taking the union of O(logk) independent experiments would with probability at least 3/4 give a
group Steiner tree. Also with probability at least 3/4, the cost of this tree is bounded by zlogk
where z is the cost of the solution .

More generally, an a-decomposition into trees of any solution of LP (1) gives an algorithm for
the group Steiner problem with an approximation ratio of O(alogk). Our algorithm provides an
upper bound on the parameter a.

Theorem 6.3. Let N denote the size of the largest group. For any solution of LP (1) whose
support graph is a tree T, there is an a-decomposition, where a = O(log N).

Proof. Let T1,...,Ty be all the possible outcomes of a rounding step from Section 3, and let
p1,- .. ,pe be their respective probabilities. Let Y. be the indicator variable for picking the edge e
in a rounding step. Then for every edge e,

> pi=EY. =z
T;>e

Let Ny denote the size of the group g. By Theorem 3.4,

c
Z pi 2> :
Tioe log N,

Defining A\; = p; - maxy(log Ny/c), we get a decomposition with a = (log N)/c. O

Similarly as above, in the case of general graphs the factor is multiplied by lognloglogn.
It is not possible to always have a = 1, even in the case of trees, as shown by the example in
Figure 2, where a = 6/5, and no better « is possible for this solution.

re=1

A1=Aa=..=X¢=1/5

Ty iy T3
Ty

zp=1/2 zp=1/2
zg=1/2
o
u€l,2 v€2,3 we3,1 Ts Ts
Figure 2.

However, a perfect decomposition always exists when there are only two groups.

Theorem 6.4. Let z be a solution of LP (1) in an instance of the group Steiner problem on a tree
T where there are only two groups denoted by g1 and g2. Then there exists a perfect decomposition
of ©. Moreover, this decomposition can be found in polynomial time.



Proof. We assume as before that all vertices belonging to any group are leaves of T and that T is
the support graph of . We also assume that the groups g1 and g2 are disjoint and that capacities of
edges on any path down the tree form a non increasing sequence. First define y = z. We will reduce
y in each step until finally y = 0 to get the decomposition of . To construct the decomposition,
while neither of the two groups are empty, find a pair (v, w) of leaves such that v € g; and w € gs.
This pair should be chosen so that the intersection of the » — v path and r — w path is maximal.
Denote by u the least common ancestor (lca) of v and w. Let a be the capacity of the leaf edge
incident on v and b the capacity of the leaf edge incident on w. Let ¢ = min{a,b}. Define T; to
be the union of the three paths r — u, v — v and u — w, and A\; = ¢. Then add the tree T; to the
decomposition, and reduce y by subtracting the incidence vector of T; multiplied by ;. Update T’
by deleting edges whose y-values have been reduced to zero. This procedure is repeated until the
tree T is empty.

We claim that after reducing y in step ¢, the flow to each of the two groups reduces by at most
A;. Indeed, suppose that the flow to g1 reduces by more than A;. Reducing the edge-values along
the path from r to v by A; only reduces the flow to g; by A;. Therefore, any further decrease in the
flow to g1 must come from the reduction of an edge outside the r — v path. The only such edges
belong to the path from u to w. By the choice of v and w, no vertex of g; can share a longer path
with w than v and thus no vertex of g; receives flow along any portion of the path from u to w.

Condition (2) can be established as follows:

IZN:AZ-: Yo A=)z =1

vegNT; T;dv vegNT

The first equality follows because in each step we only take out at most one vertex of the group g,
and the second because the flow from r to g in the reduced graph decreases by \; in step i. The
final equality holds because z is a feasible solution to LP (1).

Let I be the set of all leaves v € g; such that e is one of the edges in the unique r — v path
in T. Let z, denote the value of the flow from r to v in z.

Now condition (3) follows as well:

ZAi:ZZAi:vagxe.

Ti>e velf T;5v velf

The first equality follows since every iteration ¢ reduces the flow to g1 by exactly );, and the second
because every leaf is eventually removed. The final inequality is true because z supports a flow of
z, to v. O

7 Other formulations and applications.

In this section, we first sketch the improvement in the case of graphs that exclude small minors.
Then we give some more applications of our results. One is to a bicriteria network design problem
that involves location-based constraints, and the other to some generalizations of the traveling
salesman problem.

7.1 Improved metric approximations.

The following improvement of Bartal’s result to graphs that exclude small minors is presented by
Konjevod, Ravi and Salman [21].
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Theorem 7.1. Let G be an n-vertex graph that excludes K,, as a minor. Then G can be -
probabilistically approximated by a set of weighted trees, where o = 0(33 logn). Moreover, the
probability distribution can be computed in polynomial time.

This improved result (for constant s) applies, e.g., to planar graphs, which exclude K33 as
a minor. This theorem, together with the arguments from the previous section, then gives an
improved approximation ratio of O(lognlog N log k) for such graphs.

Since distances in the Euclidean plane can be approximated to within a factor of 2 by a planar
graph [8], the improvements also apply to this case. More formally, if the edge lengths of the result-
ing planar graph can be assumed to be integers in a polynomial range, then we can probabilistically
approximate the original distances by trees with only a logarithmic loss. By identifying some points
we can assume the distances to be in {1,...,0(n?)}. This can be done so that the optimum value
of a group Steiner tree only changes by a factor of 1 + € for any constant € as in [2].

7.2 Service-constrained network design problems.

Marathe, Ravi and Sundaram [22, 23] study the following problem: an instance is given by an
undirected graph G = (V, E) with two different (nonnegative) cost functions on the edges, ¢ (mod-
eling the service cost) and d (modeling the construction cost), and a nonnegative function s on the
vertices (defining the service-radius constraints). The goal is to find a minimum d-cost tree such
that every vertex v in the graph is serviced by some vertex in the tree, i.e. every vertex v is within
distance s, (under the c-costs) of some vertex in the tree.

An (a, B)-bicriteria approximation for such a problem is an algorithm which finds a solution in
which the service constraints are not exceeded by more than a factor of «, and whose cost under d
is within a 3 factor of the optimal one that satisfies the service constraints (under the c-costs).
Marathe et al. [22, 23] give a (1,2A)-approximation algorithm, where A is the maximum service
degree, the maximum number of vertices that can service any given vertex.

We observe that if the first approximation factor « is fixed at 1, this problem is equivalent to
the group Steiner tree problem.

First we reduce the service-constrained problem to a group Steiner tree problem. We define a
set of groups {g, | v € V}. Let g, be the set of vertices w that are within the budget (c-)distance
of v,

gy = {w € V| c(vw) < sy}

Now any group Steiner tree will satisfy the service constraints, and conversely, any tree that services
all vertices within the budget (i. e. such that a = 1) will be a group Steiner tree.

Note that our algorithm improves the approximation factor of [23] to (1, O(log® n log log nlog k)),
where n = |V| and k is the maximum service-degree of any vertex (in particular, &k < n).

Next we reduce the group Steiner problem to a version of the service-constrained network design
problem. Assume without loss of generality that the groups are disjoint. Let the weights in the
given graph represent the d-cost. Define the c-cost as follows: between a pair of vertices in the
same group, the c-cost is zero, and between all other pairs, the c-cost is one. The service radius s,
is set to zero for every vertex which is contained in some group and to n for all other vertices. Any
solution output by an (a,3)-approximation algorithm for this service-constrained network design
problem for any « includes at least one vertex from every group, and is therefore a group Steiner
tree of cost at most 0 times the minimum.
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7.3 Generalized traveling salesman problem.

The generalized traveling salesman problem is defined on a graph G = (V, E) with a nonnegative
cost function on the edges. Also given are subsets of vertices S1, ... Sm C V. These sets are called
clusters. The goal is to find a minimum-cost cycle containing at least one vertex from each cluster.
Unlike the group Steiner problem, it may be assumed that every vertex of the graph belongs to one
of the clusters.

The generalized traveling salesman problem was first described by Henry-Labordere [13] and
Saksena [28]. More information and further references can be found in the paper by Fischetti,
Salazar and Toth [10].

We assume that the cost function satisfies the triangle inequality.

Before our results, the only approximation algorithm for the generalized traveling salesman
problem was due to Slavik [29]. The approximation guarantee is 3p/2, where p denotes the maxi-
mum size of a group.

We note that an p-approximation algorithm for the group Steiner problem implies a 1.5p-
approximation algorithm for the generalized traveling salesman problem. The graphs in both
instances are identical, and the groups are defined to be exactly the clusters. Then any group
Steiner tree can be shortcut into a generalized traveling salesman tour of at most 1.5 times its cost,
using the classical Christofides heuristic. On the other hand, any feasible tour induces a group
Steiner tree of no greater cost.

Thus, our algorithm gives an O(log2 nloglognlog k) approximation for the generalized traveling
salesman problem.

7.4 Traveling purchaser problem.

Ravi and Salman [25] study the traveling purchaser problem and give approximation algorithms
for this problem and a bicriteria version; Their approximation guarantees are similar to ours. Let
G = (V,E) be agraph and ¢ : E — R, a weight function. Let a set of products P be given together
with nonnegative prices dp, for every p € P and v € V. We think of V' as the set of markets. A
feasible solution of the traveling purchaser problem is a tour on some of the vertices in V. If we
visit a vertex v € V then we can buy any product at the price it is offered at v. Every product
must be bought at some market that the tour visits. The objective is to minimize the sum of the
length of the tour and all the prices paid for products in P.

This problem generalizes the group Steiner problem since we may think of a group as a product
and assign cost 0 for a group g at a vertex v if and only if v € g. If v is not a vertex of g, then the
cost is defined to be co. Now a tour of total cost z corresponds to a group Steiner tour of equal
cost, and vice versa.

However, we can also reduce the traveling purchaser problem to the group Steiner problem. We
show that a p-approximation algorithm for the group Steiner problem implies a 1.5p-approximation
algorithm for the metric traveling purchaser problem. Starting with an instance of the traveling
purchaser problem, define an extra vertex wy, for each pair (p,v) € P x V. Add an edge of weight
dpy/2 from wp, to v. Then define a group corresponding to each product to consist of exactly
the new vertices added for this product. A group Steiner tree may be shortcut to a tour visiting
each group, increasing the cost by at most a factor of 1.5. The cost of the edges entering and
leaving group vertices is then exactly equal to the cost of buying each product at the corresponding
market. So our group Steiner algorithm gives an algorithm with similar performance guarantee for
the traveling purchaser problem.
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7.5 Group prize-collecting Steiner problem.

The group prize-collecting Steiner problem was defined by David Johnson. Like in the group Steiner
problem, a weighted graph is given together with a family of subsets, called groups. With each
group, we associate a penalty. The goal is to find a connected subgraph that minimizes the sum
of the costs of the edges used by the subgraph and the sum of penalties incurred for groups not
visited in the subgraph. The reduction to group Steiner is similar to the one from the traveling
purchaser problem. For every group, we add a new vertex and connect it to all other vertices of
the graph with edges of cost equal to this group’s penalty. The group Steiner problem on this new
graph is equivalent to the original prize-collecting problem.

8 Conclusion.

We have presented the first algorithm with a polylogarithmic approximation ratio for the group
Steiner problem. After reading a preliminary version of our paper, Charikar, Chekuri, Goel and
Gubha [7] derandomized our algorithm. They gave a general way to use Bartal’s theorems in a
deterministic setting and, independently of this result, a deterministic version of our tree-rounding
procedure.

We leave open several problems. The only known lower bounds for the group Steiner problem
are the ones that arise from the hardness of the set cover problem. It is a natural open problem then,
to reduce the approximation ratio to O(logn). This would require avoiding Bartal’s construction
and solving the problem on the given general graph. A related question is to find a combinatorial
algorithm for the group Steiner problem with a (poly)logarithmic approximation guarantee (even
on a tree).

Another interesting question is whether better (say, constant ratio) approximations are possible
for the Euclidean case. Finally, showing constructively the existence of a better decomposition
would yield a simpler algorithm and establish a more direct connection to the set cover problem.

Acknowledgment. We would like to thank Santosh Vempala for a stimulating discussion on
decompositions and splitting-off during our early attempts to find an approximation algorithm for
the group Steiner problem.
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